1 /* 2 * Copyright (c) 2017 Google, Inc 3 * Written by Simon Glass <sjg@chromium.org> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 #ifndef _DM_OFNODE_H 9 #define _DM_OFNODE_H 10 11 /* TODO(sjg@chromium.org): Drop fdtdec.h include */ 12 #include <fdtdec.h> 13 #include <dm/of.h> 14 15 /* Enable checks to protect against invalid calls */ 16 #undef OF_CHECKS 17 18 struct resource; 19 20 /** 21 * ofnode - reference to a device tree node 22 * 23 * This union can hold either a straightforward pointer to a struct device_node 24 * in the live device tree, or an offset within the flat device tree. In the 25 * latter case, the pointer value is just the integer offset within the flat DT. 26 * 27 * Thus we can reference nodes in both the live tree (once available) and the 28 * flat tree (until then). Functions are available to translate between an 29 * ofnode and either an offset or a struct device_node *. 30 * 31 * The reference can also hold a null offset, in which case the pointer value 32 * here is NULL. This corresponds to a struct device_node * value of 33 * NULL, or an offset of -1. 34 * 35 * There is no ambiguity as to whether ofnode holds an offset or a node 36 * pointer: when the live tree is active it holds a node pointer, otherwise it 37 * holds an offset. The value itself does not need to be unique and in theory 38 * the same value could point to a valid device node or a valid offset. We 39 * could arrange for a unique value to be used (e.g. by making the pointer 40 * point to an offset within the flat device tree in the case of an offset) but 41 * this increases code size slightly due to the subtraction. Since it offers no 42 * real benefit, the approach described here seems best. 43 * 44 * For now these points use constant types, since we don't allow writing 45 * the DT. 46 * 47 * @np: Pointer to device node, used for live tree 48 * @of_offset: Pointer into flat device tree, used for flat tree. Note that this 49 * is not a really a pointer to a node: it is an offset value. See above. 50 */ 51 typedef union ofnode_union { 52 const struct device_node *np; /* will be used for future live tree */ 53 long of_offset; 54 } ofnode; 55 56 struct ofnode_phandle_args { 57 ofnode node; 58 int args_count; 59 uint32_t args[OF_MAX_PHANDLE_ARGS]; 60 }; 61 62 /** 63 * ofprop - reference to a property of a device tree node 64 * 65 * This struct hold the reference on one property of one node, 66 * using struct ofnode and an offset within the flat device tree or either 67 * a pointer to a struct property in the live device tree. 68 * 69 * Thus we can reference arguments in both the live tree and the flat tree. 70 * 71 * The property reference can also hold a null reference. This corresponds to 72 * a struct property NULL pointer or an offset of -1. 73 * 74 * @node: Pointer to device node 75 * @offset: Pointer into flat device tree, used for flat tree. 76 * @prop: Pointer to property, used for live treee. 77 */ 78 79 struct ofprop { 80 ofnode node; 81 union { 82 int offset; 83 const struct property *prop; 84 }; 85 }; 86 87 /** 88 * _ofnode_to_np() - convert an ofnode to a live DT node pointer 89 * 90 * This cannot be called if the reference contains an offset. 91 * 92 * @node: Reference containing struct device_node * (possibly invalid) 93 * @return pointer to device node (can be NULL) 94 */ 95 static inline const struct device_node *ofnode_to_np(ofnode node) 96 { 97 #ifdef OF_CHECKS 98 if (!of_live_active()) 99 return NULL; 100 #endif 101 return node.np; 102 } 103 104 /** 105 * ofnode_to_offset() - convert an ofnode to a flat DT offset 106 * 107 * This cannot be called if the reference contains a node pointer. 108 * 109 * @node: Reference containing offset (possibly invalid) 110 * @return DT offset (can be -1) 111 */ 112 static inline int ofnode_to_offset(ofnode node) 113 { 114 #ifdef OF_CHECKS 115 if (of_live_active()) 116 return -1; 117 #endif 118 return node.of_offset; 119 } 120 121 /** 122 * ofnode_valid() - check if an ofnode is valid 123 * 124 * @return true if the reference contains a valid ofnode, false if it is NULL 125 */ 126 static inline bool ofnode_valid(ofnode node) 127 { 128 if (of_live_active()) 129 return node.np != NULL; 130 else 131 return node.of_offset != -1; 132 } 133 134 /** 135 * offset_to_ofnode() - convert a DT offset to an ofnode 136 * 137 * @of_offset: DT offset (either valid, or -1) 138 * @return reference to the associated DT offset 139 */ 140 static inline ofnode offset_to_ofnode(int of_offset) 141 { 142 ofnode node; 143 144 if (of_live_active()) 145 node.np = NULL; 146 else 147 node.of_offset = of_offset; 148 149 return node; 150 } 151 152 /** 153 * np_to_ofnode() - convert a node pointer to an ofnode 154 * 155 * @np: Live node pointer (can be NULL) 156 * @return reference to the associated node pointer 157 */ 158 static inline ofnode np_to_ofnode(const struct device_node *np) 159 { 160 ofnode node; 161 162 node.np = np; 163 164 return node; 165 } 166 167 /** 168 * ofnode_is_np() - check if a reference is a node pointer 169 * 170 * This function associated that if there is a valid live tree then all 171 * references will use it. This is because using the flat DT when the live tree 172 * is valid is not permitted. 173 * 174 * @node: reference to check (possibly invalid) 175 * @return true if the reference is a live node pointer, false if it is a DT 176 * offset 177 */ 178 static inline bool ofnode_is_np(ofnode node) 179 { 180 #ifdef OF_CHECKS 181 /* 182 * Check our assumption that flat tree offsets are not used when a 183 * live tree is in use. 184 */ 185 assert(!ofnode_valid(node) || 186 (of_live_active() ? _ofnode_to_np(node) 187 : _ofnode_to_np(node))); 188 #endif 189 return of_live_active() && ofnode_valid(node); 190 } 191 192 /** 193 * ofnode_equal() - check if two references are equal 194 * 195 * @return true if equal, else false 196 */ 197 static inline bool ofnode_equal(ofnode ref1, ofnode ref2) 198 { 199 /* We only need to compare the contents */ 200 return ref1.of_offset == ref2.of_offset; 201 } 202 203 /** 204 * ofnode_null() - Obtain a null ofnode 205 * 206 * This returns an ofnode which points to no node. It works both with the flat 207 * tree and livetree. 208 */ 209 static inline ofnode ofnode_null(void) 210 { 211 ofnode node; 212 213 if (of_live_active()) 214 node.np = NULL; 215 else 216 node.of_offset = -1; 217 218 return node; 219 } 220 221 /** 222 * ofnode_read_u32() - Read a 32-bit integer from a property 223 * 224 * @ref: valid node reference to read property from 225 * @propname: name of the property to read from 226 * @outp: place to put value (if found) 227 * @return 0 if OK, -ve on error 228 */ 229 int ofnode_read_u32(ofnode node, const char *propname, u32 *outp); 230 231 /** 232 * ofnode_read_s32() - Read a 32-bit integer from a property 233 * 234 * @ref: valid node reference to read property from 235 * @propname: name of the property to read from 236 * @outp: place to put value (if found) 237 * @return 0 if OK, -ve on error 238 */ 239 static inline int ofnode_read_s32(ofnode node, const char *propname, 240 s32 *out_value) 241 { 242 return ofnode_read_u32(node, propname, (u32 *)out_value); 243 } 244 245 /** 246 * ofnode_read_u32_default() - Read a 32-bit integer from a property 247 * 248 * @ref: valid node reference to read property from 249 * @propname: name of the property to read from 250 * @def: default value to return if the property has no value 251 * @return property value, or @def if not found 252 */ 253 int ofnode_read_u32_default(ofnode ref, const char *propname, u32 def); 254 255 /** 256 * ofnode_read_u64() - Read a 64-bit integer from a property 257 * 258 * @ref: valid node reference to read property from 259 * @propname: name of the property to read from 260 * @outp: place to put value (if found) 261 * @return 0 if OK, -ve on error 262 */ 263 int ofnode_read_u64(ofnode node, const char *propname, u64 *outp); 264 265 /** 266 * ofnode_read_s32_default() - Read a 32-bit integer from a property 267 * 268 * @ref: valid node reference to read property from 269 * @propname: name of the property to read from 270 * @def: default value to return if the property has no value 271 * @return property value, or @def if not found 272 */ 273 int ofnode_read_s32_default(ofnode node, const char *propname, s32 def); 274 275 /** 276 * ofnode_read_string() - Read a string from a property 277 * 278 * @ref: valid node reference to read property from 279 * @propname: name of the property to read 280 * @return string from property value, or NULL if there is no such property 281 */ 282 const char *ofnode_read_string(ofnode node, const char *propname); 283 284 /** 285 * ofnode_read_u32_array() - Find and read an array of 32 bit integers 286 * 287 * @node: valid node reference to read property from 288 * @propname: name of the property to read 289 * @out_values: pointer to return value, modified only if return value is 0 290 * @sz: number of array elements to read 291 * 292 * Search for a property in a device node and read 32-bit value(s) from 293 * it. Returns 0 on success, -EINVAL if the property does not exist, 294 * -ENODATA if property does not have a value, and -EOVERFLOW if the 295 * property data isn't large enough. 296 * 297 * The out_values is modified only if a valid u32 value can be decoded. 298 */ 299 int ofnode_read_u32_array(ofnode node, const char *propname, 300 u32 *out_values, size_t sz); 301 302 /** 303 * ofnode_write_u32_array() - Find and write an array of 32 bit integers 304 * 305 * @node: valid node reference to read property from 306 * @propname: name of the property to read 307 * @values: pointer to update value, modified only if return value is 0 308 * @sz: number of array elements to read 309 * @return 0 on success, -EINVAL if the property does not exist, -ENODATA 310 * if property does not have a value, and -EOVERFLOW is longer than sz. 311 */ 312 int ofnode_write_u32_array(ofnode node, const char *propname, 313 u32 *values, size_t sz); 314 315 /** 316 * ofnode_read_bool() - read a boolean value from a property 317 * 318 * @node: valid node reference to read property from 319 * @propname: name of property to read 320 * @return true if property is present (meaning true), false if not present 321 */ 322 bool ofnode_read_bool(ofnode node, const char *propname); 323 324 /** 325 * ofnode_find_subnode() - find a named subnode of a parent node 326 * 327 * @node: valid reference to parent node 328 * @subnode_name: name of subnode to find 329 * @return reference to subnode (which can be invalid if there is no such 330 * subnode) 331 */ 332 ofnode ofnode_find_subnode(ofnode node, const char *subnode_name); 333 334 /** 335 * ofnode_first_subnode() - find the first subnode of a parent node 336 * 337 * @node: valid reference to a valid parent node 338 * @return reference to the first subnode (which can be invalid if the parent 339 * node has no subnodes) 340 */ 341 ofnode ofnode_first_subnode(ofnode node); 342 343 /** 344 * ofnode_next_subnode() - find the next sibling of a subnode 345 * 346 * @node: valid reference to previous node (sibling) 347 * @return reference to the next subnode (which can be invalid if the node 348 * has no more siblings) 349 */ 350 ofnode ofnode_next_subnode(ofnode node); 351 352 /** 353 * ofnode_get_parent() - get the ofnode's parent (enclosing ofnode) 354 * 355 * @node: valid node to look up 356 * @return ofnode reference of the parent node 357 */ 358 ofnode ofnode_get_parent(ofnode node); 359 360 /** 361 * ofnode_get_name() - get the name of a node 362 * 363 * @node: valid node to look up 364 * @return name or node 365 */ 366 const char *ofnode_get_name(ofnode node); 367 368 /** 369 * ofnode_get_by_phandle() - get ofnode from phandle 370 * 371 * @phandle: phandle to look up 372 * @return ofnode reference to the phandle 373 */ 374 ofnode ofnode_get_by_phandle(uint phandle); 375 376 /** 377 * ofnode_read_size() - read the size of a property 378 * 379 * @node: node to check 380 * @propname: property to check 381 * @return size of property if present, or -EINVAL if not 382 */ 383 int ofnode_read_size(ofnode node, const char *propname); 384 385 /** 386 * ofnode_get_addr_index() - get an address from a node 387 * 388 * This reads the register address from a node 389 * 390 * @node: node to read from 391 * @index: Index of address to read (0 for first) 392 * @return address, or FDT_ADDR_T_NONE if not present or invalid 393 */ 394 phys_addr_t ofnode_get_addr_index(ofnode node, int index); 395 396 /** 397 * ofnode_get_addr() - get an address from a node 398 * 399 * This reads the register address from a node 400 * 401 * @node: node to read from 402 * @return address, or FDT_ADDR_T_NONE if not present or invalid 403 */ 404 phys_addr_t ofnode_get_addr(ofnode node); 405 406 /** 407 * ofnode_stringlist_search() - find a string in a string list and return index 408 * 409 * Note that it is possible for this function to succeed on property values 410 * that are not NUL-terminated. That's because the function will stop after 411 * finding the first occurrence of @string. This can for example happen with 412 * small-valued cell properties, such as #address-cells, when searching for 413 * the empty string. 414 * 415 * @node: node to check 416 * @propname: name of the property containing the string list 417 * @string: string to look up in the string list 418 * 419 * @return: 420 * the index of the string in the list of strings 421 * -ENODATA if the property is not found 422 * -EINVAL on some other error 423 */ 424 int ofnode_stringlist_search(ofnode node, const char *propname, 425 const char *string); 426 427 /** 428 * ofnode_read_string_index() - obtain an indexed string from a string list 429 * 430 * Note that this will successfully extract strings from properties with 431 * non-NUL-terminated values. For example on small-valued cell properties 432 * this function will return the empty string. 433 * 434 * If non-NULL, the length of the string (on success) or a negative error-code 435 * (on failure) will be stored in the integer pointer to by lenp. 436 * 437 * @node: node to check 438 * @propname: name of the property containing the string list 439 * @index: index of the string to return 440 * @lenp: return location for the string length or an error code on failure 441 * 442 * @return: 443 * length of string, if found or -ve error value if not found 444 */ 445 int ofnode_read_string_index(ofnode node, const char *propname, int index, 446 const char **outp); 447 448 /** 449 * ofnode_read_string_count() - find the number of strings in a string list 450 * 451 * @node: node to check 452 * @propname: name of the property containing the string list 453 * @return: 454 * number of strings in the list, or -ve error value if not found 455 */ 456 int ofnode_read_string_count(ofnode node, const char *property); 457 458 /** 459 * ofnode_parse_phandle_with_args() - Find a node pointed by phandle in a list 460 * 461 * This function is useful to parse lists of phandles and their arguments. 462 * Returns 0 on success and fills out_args, on error returns appropriate 463 * errno value. 464 * 465 * Caller is responsible to call of_node_put() on the returned out_args->np 466 * pointer. 467 * 468 * Example: 469 * 470 * phandle1: node1 { 471 * #list-cells = <2>; 472 * } 473 * 474 * phandle2: node2 { 475 * #list-cells = <1>; 476 * } 477 * 478 * node3 { 479 * list = <&phandle1 1 2 &phandle2 3>; 480 * } 481 * 482 * To get a device_node of the `node2' node you may call this: 483 * ofnode_parse_phandle_with_args(node3, "list", "#list-cells", 0, 1, &args); 484 * 485 * @node: device tree node containing a list 486 * @list_name: property name that contains a list 487 * @cells_name: property name that specifies phandles' arguments count 488 * @cells_count: Cell count to use if @cells_name is NULL 489 * @index: index of a phandle to parse out 490 * @out_args: optional pointer to output arguments structure (will be filled) 491 * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if 492 * @list_name does not exist, -EINVAL if a phandle was not found, 493 * @cells_name could not be found, the arguments were truncated or there 494 * were too many arguments. 495 */ 496 int ofnode_parse_phandle_with_args(ofnode node, const char *list_name, 497 const char *cells_name, int cell_count, 498 int index, 499 struct ofnode_phandle_args *out_args); 500 501 /** 502 * ofnode_count_phandle_with_args() - Count number of phandle in a list 503 * 504 * This function is useful to count phandles into a list. 505 * Returns number of phandle on success, on error returns appropriate 506 * errno value. 507 * 508 * @node: device tree node containing a list 509 * @list_name: property name that contains a list 510 * @cells_name: property name that specifies phandles' arguments count 511 * @return number of phandle on success, -ENOENT if @list_name does not 512 * exist, -EINVAL if a phandle was not found, @cells_name could not 513 * be found. 514 */ 515 int ofnode_count_phandle_with_args(ofnode node, const char *list_name, 516 const char *cells_name); 517 518 /** 519 * ofnode_path() - find a node by full path 520 * 521 * @path: Full path to node, e.g. "/bus/spi@1" 522 * @return reference to the node found. Use ofnode_valid() to check if it exists 523 */ 524 ofnode ofnode_path(const char *path); 525 526 /** 527 * ofnode_get_chosen_prop() - get the value of a chosen property 528 * 529 * This looks for a property within the /chosen node and returns its value 530 * 531 * @propname: Property name to look for 532 */ 533 const char *ofnode_get_chosen_prop(const char *propname); 534 535 /** 536 * ofnode_get_chosen_node() - get the chosen node 537 * 538 * @return the chosen node if present, else ofnode_null() 539 */ 540 ofnode ofnode_get_chosen_node(const char *name); 541 542 struct display_timing; 543 /** 544 * ofnode_decode_display_timing() - decode display timings 545 * 546 * Decode display timings from the supplied 'display-timings' node. 547 * See doc/device-tree-bindings/video/display-timing.txt for binding 548 * information. 549 * 550 * @node 'display-timing' node containing the timing subnodes 551 * @index Index number to read (0=first timing subnode) 552 * @config Place to put timings 553 * @return 0 if OK, -FDT_ERR_NOTFOUND if not found 554 */ 555 int ofnode_decode_display_timing(ofnode node, int index, 556 struct display_timing *config); 557 558 /** 559 * ofnode_get_property() - get a pointer to the value of a node property 560 * 561 * @node: node to read 562 * @propname: property to read 563 * @lenp: place to put length on success 564 * @return pointer to property, or NULL if not found 565 */ 566 const void *ofnode_get_property(ofnode node, const char *propname, int *lenp); 567 568 /** 569 * ofnode_get_first_property()- get the reference of the first property 570 * 571 * Get reference to the first property of the node, it is used to iterate 572 * and read all the property with ofnode_get_property_by_prop(). 573 * 574 * @node: node to read 575 * @prop: place to put argument reference 576 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found 577 */ 578 int ofnode_get_first_property(ofnode node, struct ofprop *prop); 579 580 /** 581 * ofnode_get_next_property() - get the reference of the next property 582 * 583 * Get reference to the next property of the node, it is used to iterate 584 * and read all the property with ofnode_get_property_by_prop(). 585 * 586 * @prop: reference of current argument and place to put reference of next one 587 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found 588 */ 589 int ofnode_get_next_property(struct ofprop *prop); 590 591 /** 592 * ofnode_get_property_by_prop() - get a pointer to the value of a property 593 * 594 * Get value for the property identified by the provided reference. 595 * 596 * @prop: reference on property 597 * @propname: If non-NULL, place to property name on success, 598 * @lenp: If non-NULL, place to put length on success 599 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found 600 */ 601 const void *ofnode_get_property_by_prop(const struct ofprop *prop, 602 const char **propname, int *lenp); 603 604 /** 605 * ofnode_is_available() - check if a node is marked available 606 * 607 * @node: node to check 608 * @return true if node's 'status' property is "okay" (or is missing) 609 */ 610 bool ofnode_is_available(ofnode node); 611 612 /** 613 * ofnode_get_addr_size() - get address and size from a property 614 * 615 * This does no address translation. It simply reads an property that contains 616 * an address and a size value, one after the other. 617 * 618 * @node: node to read from 619 * @propname: property to read 620 * @sizep: place to put size value (on success) 621 * @return address value, or FDT_ADDR_T_NONE on error 622 */ 623 phys_addr_t ofnode_get_addr_size(ofnode node, const char *propname, 624 phys_size_t *sizep); 625 626 /** 627 * ofnode_read_u8_array_ptr() - find an 8-bit array 628 * 629 * Look up a property in a node and return a pointer to its contents as a 630 * byte array of given length. The property must have at least enough data 631 * for the array (count bytes). It may have more, but this will be ignored. 632 * The data is not copied. 633 * 634 * @node node to examine 635 * @propname name of property to find 636 * @sz number of array elements 637 * @return pointer to byte array if found, or NULL if the property is not 638 * found or there is not enough data 639 */ 640 const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname, 641 size_t sz); 642 643 /** 644 * ofnode_read_pci_addr() - look up a PCI address 645 * 646 * Look at an address property in a node and return the PCI address which 647 * corresponds to the given type in the form of fdt_pci_addr. 648 * The property must hold one fdt_pci_addr with a lengh. 649 * 650 * @node node to examine 651 * @type pci address type (FDT_PCI_SPACE_xxx) 652 * @propname name of property to find 653 * @addr returns pci address in the form of fdt_pci_addr 654 * @return 0 if ok, -ENOENT if the property did not exist, -EINVAL if the 655 * format of the property was invalid, -ENXIO if the requested 656 * address type was not found 657 */ 658 int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type, 659 const char *propname, struct fdt_pci_addr *addr); 660 661 /** 662 * ofnode_read_addr_cells() - Get the number of address cells for a node 663 * 664 * This walks back up the tree to find the closest #address-cells property 665 * which controls the given node. 666 * 667 * @node: Node to check 668 * @return number of address cells this node uses 669 */ 670 int ofnode_read_addr_cells(ofnode node); 671 672 /** 673 * ofnode_read_size_cells() - Get the number of size cells for a node 674 * 675 * This walks back up the tree to find the closest #size-cells property 676 * which controls the given node. 677 * 678 * @node: Node to check 679 * @return number of size cells this node uses 680 */ 681 int ofnode_read_size_cells(ofnode node); 682 683 /** 684 * ofnode_read_simple_addr_cells() - Get the address cells property in a node 685 * 686 * This function matches fdt_address_cells(). 687 * 688 * @np: Node pointer to check 689 * @return value of #address-cells property in this node, or 2 if none 690 */ 691 int ofnode_read_simple_addr_cells(ofnode node); 692 693 /** 694 * ofnode_read_simple_size_cells() - Get the size cells property in a node 695 * 696 * This function matches fdt_size_cells(). 697 * 698 * @np: Node pointer to check 699 * @return value of #size-cells property in this node, or 2 if none 700 */ 701 int ofnode_read_simple_size_cells(ofnode node); 702 703 /** 704 * ofnode_pre_reloc() - check if a node should be bound before relocation 705 * 706 * Device tree nodes can be marked as needing-to-be-bound in the loader stages 707 * via special device tree properties. 708 * 709 * Before relocation this function can be used to check if nodes are required 710 * in either SPL or TPL stages. 711 * 712 * After relocation and jumping into the real U-Boot binary it is possible to 713 * determine if a node was bound in one of SPL/TPL stages. 714 * 715 * There are 3 settings currently in use 716 * - 717 * - u-boot,dm-pre-reloc: legacy and indicates any of TPL or SPL 718 * Existing platforms only use it to indicate nodes needed in 719 * SPL. Should probably be replaced by u-boot,dm-spl for 720 * new platforms. 721 * 722 * @node: node to check 723 * @eturns true if node is needed in SPL/TL, false otherwise 724 */ 725 bool ofnode_pre_reloc(ofnode node); 726 727 int ofnode_read_resource(ofnode node, uint index, struct resource *res); 728 int ofnode_read_resource_byname(ofnode node, const char *name, 729 struct resource *res); 730 731 /** 732 * ofnode_for_each_subnode() - iterate over all subnodes of a parent 733 * 734 * @node: child node (ofnode, lvalue) 735 * @parent: parent node (ofnode) 736 * 737 * This is a wrapper around a for loop and is used like so: 738 * 739 * ofnode node; 740 * 741 * ofnode_for_each_subnode(node, parent) { 742 * Use node 743 * ... 744 * } 745 * 746 * Note that this is implemented as a macro and @node is used as 747 * iterator in the loop. The parent variable can be a constant or even a 748 * literal. 749 */ 750 #define ofnode_for_each_subnode(node, parent) \ 751 for (node = ofnode_first_subnode(parent); \ 752 ofnode_valid(node); \ 753 node = ofnode_next_subnode(node)) 754 755 /** 756 * ofnode_translate_address() - Tranlate a device-tree address 757 * 758 * Translate an address from the device-tree into a CPU physical address. This 759 * function walks up the tree and applies the various bus mappings along the 760 * way. 761 * 762 * @ofnode: Device tree node giving the context in which to translate the 763 * address 764 * @in_addr: pointer to the address to translate 765 * @return the translated address; OF_BAD_ADDR on error 766 */ 767 u64 ofnode_translate_address(ofnode node, const fdt32_t *in_addr); 768 #endif 769