1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 14 * the UBIFS B-tree. 15 * 16 * At the moment the locking rules of the TNC tree are quite simple and 17 * straightforward. We just have a mutex and lock it when we traverse the 18 * tree. If a znode is not in memory, we read it from flash while still having 19 * the mutex locked. 20 */ 21 22 #ifndef __UBOOT__ 23 #include <linux/crc32.h> 24 #include <linux/slab.h> 25 #else 26 #include <linux/compat.h> 27 #include <linux/err.h> 28 #include <linux/stat.h> 29 #endif 30 #include "ubifs.h" 31 32 /* 33 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 34 * @NAME_LESS: name corresponding to the first argument is less than second 35 * @NAME_MATCHES: names match 36 * @NAME_GREATER: name corresponding to the second argument is greater than 37 * first 38 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 39 * 40 * These constants were introduce to improve readability. 41 */ 42 enum { 43 NAME_LESS = 0, 44 NAME_MATCHES = 1, 45 NAME_GREATER = 2, 46 NOT_ON_MEDIA = 3, 47 }; 48 49 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 50 int len, int lnum, int offs); 51 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 52 struct ubifs_zbranch *zbr, void *node); 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err(c, "old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct ubifs_old_idx *old_idx, *n; 182 183 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 184 kfree(old_idx); 185 186 c->old_idx = RB_ROOT; 187 } 188 189 /** 190 * copy_znode - copy a dirty znode. 191 * @c: UBIFS file-system description object 192 * @znode: znode to copy 193 * 194 * A dirty znode being committed may not be changed, so it is copied. 195 */ 196 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 197 struct ubifs_znode *znode) 198 { 199 struct ubifs_znode *zn; 200 201 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 202 if (unlikely(!zn)) 203 return ERR_PTR(-ENOMEM); 204 205 memcpy(zn, znode, c->max_znode_sz); 206 zn->cnext = NULL; 207 __set_bit(DIRTY_ZNODE, &zn->flags); 208 __clear_bit(COW_ZNODE, &zn->flags); 209 210 ubifs_assert(!ubifs_zn_obsolete(znode)); 211 __set_bit(OBSOLETE_ZNODE, &znode->flags); 212 213 if (znode->level != 0) { 214 int i; 215 const int n = zn->child_cnt; 216 217 /* The children now have new parent */ 218 for (i = 0; i < n; i++) { 219 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 220 221 if (zbr->znode) 222 zbr->znode->parent = zn; 223 } 224 } 225 226 atomic_long_inc(&c->dirty_zn_cnt); 227 return zn; 228 } 229 230 /** 231 * add_idx_dirt - add dirt due to a dirty znode. 232 * @c: UBIFS file-system description object 233 * @lnum: LEB number of index node 234 * @dirt: size of index node 235 * 236 * This function updates lprops dirty space and the new size of the index. 237 */ 238 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 239 { 240 c->calc_idx_sz -= ALIGN(dirt, 8); 241 return ubifs_add_dirt(c, lnum, dirt); 242 } 243 244 /** 245 * dirty_cow_znode - ensure a znode is not being committed. 246 * @c: UBIFS file-system description object 247 * @zbr: branch of znode to check 248 * 249 * Returns dirtied znode on success or negative error code on failure. 250 */ 251 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 252 struct ubifs_zbranch *zbr) 253 { 254 struct ubifs_znode *znode = zbr->znode; 255 struct ubifs_znode *zn; 256 int err; 257 258 if (!ubifs_zn_cow(znode)) { 259 /* znode is not being committed */ 260 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 261 atomic_long_inc(&c->dirty_zn_cnt); 262 atomic_long_dec(&c->clean_zn_cnt); 263 atomic_long_dec(&ubifs_clean_zn_cnt); 264 err = add_idx_dirt(c, zbr->lnum, zbr->len); 265 if (unlikely(err)) 266 return ERR_PTR(err); 267 } 268 return znode; 269 } 270 271 zn = copy_znode(c, znode); 272 if (IS_ERR(zn)) 273 return zn; 274 275 if (zbr->len) { 276 err = insert_old_idx(c, zbr->lnum, zbr->offs); 277 if (unlikely(err)) 278 return ERR_PTR(err); 279 err = add_idx_dirt(c, zbr->lnum, zbr->len); 280 } else 281 err = 0; 282 283 zbr->znode = zn; 284 zbr->lnum = 0; 285 zbr->offs = 0; 286 zbr->len = 0; 287 288 if (unlikely(err)) 289 return ERR_PTR(err); 290 return zn; 291 } 292 293 /** 294 * lnc_add - add a leaf node to the leaf node cache. 295 * @c: UBIFS file-system description object 296 * @zbr: zbranch of leaf node 297 * @node: leaf node 298 * 299 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 300 * purpose of the leaf node cache is to save re-reading the same leaf node over 301 * and over again. Most things are cached by VFS, however the file system must 302 * cache directory entries for readdir and for resolving hash collisions. The 303 * present implementation of the leaf node cache is extremely simple, and 304 * allows for error returns that are not used but that may be needed if a more 305 * complex implementation is created. 306 * 307 * Note, this function does not add the @node object to LNC directly, but 308 * allocates a copy of the object and adds the copy to LNC. The reason for this 309 * is that @node has been allocated outside of the TNC subsystem and will be 310 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 311 * may be changed at any time, e.g. freed by the shrinker. 312 */ 313 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 314 const void *node) 315 { 316 int err; 317 void *lnc_node; 318 const struct ubifs_dent_node *dent = node; 319 320 ubifs_assert(!zbr->leaf); 321 ubifs_assert(zbr->len != 0); 322 ubifs_assert(is_hash_key(c, &zbr->key)); 323 324 err = ubifs_validate_entry(c, dent); 325 if (err) { 326 dump_stack(); 327 ubifs_dump_node(c, dent); 328 return err; 329 } 330 331 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 332 if (!lnc_node) 333 /* We don't have to have the cache, so no error */ 334 return 0; 335 336 zbr->leaf = lnc_node; 337 return 0; 338 } 339 340 /** 341 * lnc_add_directly - add a leaf node to the leaf-node-cache. 342 * @c: UBIFS file-system description object 343 * @zbr: zbranch of leaf node 344 * @node: leaf node 345 * 346 * This function is similar to 'lnc_add()', but it does not create a copy of 347 * @node but inserts @node to TNC directly. 348 */ 349 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 350 void *node) 351 { 352 int err; 353 354 ubifs_assert(!zbr->leaf); 355 ubifs_assert(zbr->len != 0); 356 357 err = ubifs_validate_entry(c, node); 358 if (err) { 359 dump_stack(); 360 ubifs_dump_node(c, node); 361 return err; 362 } 363 364 zbr->leaf = node; 365 return 0; 366 } 367 368 /** 369 * lnc_free - remove a leaf node from the leaf node cache. 370 * @zbr: zbranch of leaf node 371 * @node: leaf node 372 */ 373 static void lnc_free(struct ubifs_zbranch *zbr) 374 { 375 if (!zbr->leaf) 376 return; 377 kfree(zbr->leaf); 378 zbr->leaf = NULL; 379 } 380 381 /** 382 * tnc_read_node_nm - read a "hashed" leaf node. 383 * @c: UBIFS file-system description object 384 * @zbr: key and position of the node 385 * @node: node is returned here 386 * 387 * This function reads a "hashed" node defined by @zbr from the leaf node cache 388 * (in it is there) or from the hash media, in which case the node is also 389 * added to LNC. Returns zero in case of success or a negative negative error 390 * code in case of failure. 391 */ 392 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 393 void *node) 394 { 395 int err; 396 397 ubifs_assert(is_hash_key(c, &zbr->key)); 398 399 if (zbr->leaf) { 400 /* Read from the leaf node cache */ 401 ubifs_assert(zbr->len != 0); 402 memcpy(node, zbr->leaf, zbr->len); 403 return 0; 404 } 405 406 if (c->replaying) { 407 err = fallible_read_node(c, &zbr->key, zbr, node); 408 /* 409 * When the node was not found, return -ENOENT, 0 otherwise. 410 * Negative return codes stay as-is. 411 */ 412 if (err == 0) 413 err = -ENOENT; 414 else if (err == 1) 415 err = 0; 416 } else { 417 err = ubifs_tnc_read_node(c, zbr, node); 418 } 419 if (err) 420 return err; 421 422 /* Add the node to the leaf node cache */ 423 err = lnc_add(c, zbr, node); 424 return err; 425 } 426 427 /** 428 * try_read_node - read a node if it is a node. 429 * @c: UBIFS file-system description object 430 * @buf: buffer to read to 431 * @type: node type 432 * @len: node length (not aligned) 433 * @lnum: LEB number of node to read 434 * @offs: offset of node to read 435 * 436 * This function tries to read a node of known type and length, checks it and 437 * stores it in @buf. This function returns %1 if a node is present and %0 if 438 * a node is not present. A negative error code is returned for I/O errors. 439 * This function performs that same function as ubifs_read_node except that 440 * it does not require that there is actually a node present and instead 441 * the return code indicates if a node was read. 442 * 443 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 444 * is true (it is controlled by corresponding mount option). However, if 445 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 446 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 447 * because during mounting or re-mounting from R/O mode to R/W mode we may read 448 * journal nodes (when replying the journal or doing the recovery) and the 449 * journal nodes may potentially be corrupted, so checking is required. 450 */ 451 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 452 int len, int lnum, int offs) 453 { 454 int err, node_len; 455 struct ubifs_ch *ch = buf; 456 uint32_t crc, node_crc; 457 458 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 459 460 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 461 if (err) { 462 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 463 type, lnum, offs, err); 464 return err; 465 } 466 467 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 468 return 0; 469 470 if (ch->node_type != type) 471 return 0; 472 473 node_len = le32_to_cpu(ch->len); 474 if (node_len != len) 475 return 0; 476 477 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 478 !c->remounting_rw) 479 return 1; 480 481 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 482 node_crc = le32_to_cpu(ch->crc); 483 if (crc != node_crc) 484 return 0; 485 486 return 1; 487 } 488 489 /** 490 * fallible_read_node - try to read a leaf node. 491 * @c: UBIFS file-system description object 492 * @key: key of node to read 493 * @zbr: position of node 494 * @node: node returned 495 * 496 * This function tries to read a node and returns %1 if the node is read, %0 497 * if the node is not present, and a negative error code in the case of error. 498 */ 499 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 500 struct ubifs_zbranch *zbr, void *node) 501 { 502 int ret; 503 504 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 505 506 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 507 zbr->offs); 508 if (ret == 1) { 509 union ubifs_key node_key; 510 struct ubifs_dent_node *dent = node; 511 512 /* All nodes have key in the same place */ 513 key_read(c, &dent->key, &node_key); 514 if (keys_cmp(c, key, &node_key) != 0) 515 ret = 0; 516 } 517 if (ret == 0 && c->replaying) 518 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 519 zbr->lnum, zbr->offs, zbr->len); 520 return ret; 521 } 522 523 /** 524 * matches_name - determine if a direntry or xattr entry matches a given name. 525 * @c: UBIFS file-system description object 526 * @zbr: zbranch of dent 527 * @nm: name to match 528 * 529 * This function checks if xentry/direntry referred by zbranch @zbr matches name 530 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 531 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 532 * of failure, a negative error code is returned. 533 */ 534 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 535 const struct qstr *nm) 536 { 537 struct ubifs_dent_node *dent; 538 int nlen, err; 539 540 /* If possible, match against the dent in the leaf node cache */ 541 if (!zbr->leaf) { 542 dent = kmalloc(zbr->len, GFP_NOFS); 543 if (!dent) 544 return -ENOMEM; 545 546 err = ubifs_tnc_read_node(c, zbr, dent); 547 if (err) 548 goto out_free; 549 550 /* Add the node to the leaf node cache */ 551 err = lnc_add_directly(c, zbr, dent); 552 if (err) 553 goto out_free; 554 } else 555 dent = zbr->leaf; 556 557 nlen = le16_to_cpu(dent->nlen); 558 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 559 if (err == 0) { 560 if (nlen == nm->len) 561 return NAME_MATCHES; 562 else if (nlen < nm->len) 563 return NAME_LESS; 564 else 565 return NAME_GREATER; 566 } else if (err < 0) 567 return NAME_LESS; 568 else 569 return NAME_GREATER; 570 571 out_free: 572 kfree(dent); 573 return err; 574 } 575 576 /** 577 * get_znode - get a TNC znode that may not be loaded yet. 578 * @c: UBIFS file-system description object 579 * @znode: parent znode 580 * @n: znode branch slot number 581 * 582 * This function returns the znode or a negative error code. 583 */ 584 static struct ubifs_znode *get_znode(struct ubifs_info *c, 585 struct ubifs_znode *znode, int n) 586 { 587 struct ubifs_zbranch *zbr; 588 589 zbr = &znode->zbranch[n]; 590 if (zbr->znode) 591 znode = zbr->znode; 592 else 593 znode = ubifs_load_znode(c, zbr, znode, n); 594 return znode; 595 } 596 597 /** 598 * tnc_next - find next TNC entry. 599 * @c: UBIFS file-system description object 600 * @zn: znode is passed and returned here 601 * @n: znode branch slot number is passed and returned here 602 * 603 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 604 * no next entry, or a negative error code otherwise. 605 */ 606 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 607 { 608 struct ubifs_znode *znode = *zn; 609 int nn = *n; 610 611 nn += 1; 612 if (nn < znode->child_cnt) { 613 *n = nn; 614 return 0; 615 } 616 while (1) { 617 struct ubifs_znode *zp; 618 619 zp = znode->parent; 620 if (!zp) 621 return -ENOENT; 622 nn = znode->iip + 1; 623 znode = zp; 624 if (nn < znode->child_cnt) { 625 znode = get_znode(c, znode, nn); 626 if (IS_ERR(znode)) 627 return PTR_ERR(znode); 628 while (znode->level != 0) { 629 znode = get_znode(c, znode, 0); 630 if (IS_ERR(znode)) 631 return PTR_ERR(znode); 632 } 633 nn = 0; 634 break; 635 } 636 } 637 *zn = znode; 638 *n = nn; 639 return 0; 640 } 641 642 /** 643 * tnc_prev - find previous TNC entry. 644 * @c: UBIFS file-system description object 645 * @zn: znode is returned here 646 * @n: znode branch slot number is passed and returned here 647 * 648 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 649 * there is no next entry, or a negative error code otherwise. 650 */ 651 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 652 { 653 struct ubifs_znode *znode = *zn; 654 int nn = *n; 655 656 if (nn > 0) { 657 *n = nn - 1; 658 return 0; 659 } 660 while (1) { 661 struct ubifs_znode *zp; 662 663 zp = znode->parent; 664 if (!zp) 665 return -ENOENT; 666 nn = znode->iip - 1; 667 znode = zp; 668 if (nn >= 0) { 669 znode = get_znode(c, znode, nn); 670 if (IS_ERR(znode)) 671 return PTR_ERR(znode); 672 while (znode->level != 0) { 673 nn = znode->child_cnt - 1; 674 znode = get_znode(c, znode, nn); 675 if (IS_ERR(znode)) 676 return PTR_ERR(znode); 677 } 678 nn = znode->child_cnt - 1; 679 break; 680 } 681 } 682 *zn = znode; 683 *n = nn; 684 return 0; 685 } 686 687 /** 688 * resolve_collision - resolve a collision. 689 * @c: UBIFS file-system description object 690 * @key: key of a directory or extended attribute entry 691 * @zn: znode is returned here 692 * @n: zbranch number is passed and returned here 693 * @nm: name of the entry 694 * 695 * This function is called for "hashed" keys to make sure that the found key 696 * really corresponds to the looked up node (directory or extended attribute 697 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 698 * %0 is returned if @nm is not found and @zn and @n are set to the previous 699 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 700 * This means that @n may be set to %-1 if the leftmost key in @zn is the 701 * previous one. A negative error code is returned on failures. 702 */ 703 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 704 struct ubifs_znode **zn, int *n, 705 const struct qstr *nm) 706 { 707 int err; 708 709 err = matches_name(c, &(*zn)->zbranch[*n], nm); 710 if (unlikely(err < 0)) 711 return err; 712 if (err == NAME_MATCHES) 713 return 1; 714 715 if (err == NAME_GREATER) { 716 /* Look left */ 717 while (1) { 718 err = tnc_prev(c, zn, n); 719 if (err == -ENOENT) { 720 ubifs_assert(*n == 0); 721 *n = -1; 722 return 0; 723 } 724 if (err < 0) 725 return err; 726 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 727 /* 728 * We have found the branch after which we would 729 * like to insert, but inserting in this znode 730 * may still be wrong. Consider the following 3 731 * znodes, in the case where we are resolving a 732 * collision with Key2. 733 * 734 * znode zp 735 * ---------------------- 736 * level 1 | Key0 | Key1 | 737 * ----------------------- 738 * | | 739 * znode za | | znode zb 740 * ------------ ------------ 741 * level 0 | Key0 | | Key2 | 742 * ------------ ------------ 743 * 744 * The lookup finds Key2 in znode zb. Lets say 745 * there is no match and the name is greater so 746 * we look left. When we find Key0, we end up 747 * here. If we return now, we will insert into 748 * znode za at slot n = 1. But that is invalid 749 * according to the parent's keys. Key2 must 750 * be inserted into znode zb. 751 * 752 * Note, this problem is not relevant for the 753 * case when we go right, because 754 * 'tnc_insert()' would correct the parent key. 755 */ 756 if (*n == (*zn)->child_cnt - 1) { 757 err = tnc_next(c, zn, n); 758 if (err) { 759 /* Should be impossible */ 760 ubifs_assert(0); 761 if (err == -ENOENT) 762 err = -EINVAL; 763 return err; 764 } 765 ubifs_assert(*n == 0); 766 *n = -1; 767 } 768 return 0; 769 } 770 err = matches_name(c, &(*zn)->zbranch[*n], nm); 771 if (err < 0) 772 return err; 773 if (err == NAME_LESS) 774 return 0; 775 if (err == NAME_MATCHES) 776 return 1; 777 ubifs_assert(err == NAME_GREATER); 778 } 779 } else { 780 int nn = *n; 781 struct ubifs_znode *znode = *zn; 782 783 /* Look right */ 784 while (1) { 785 err = tnc_next(c, &znode, &nn); 786 if (err == -ENOENT) 787 return 0; 788 if (err < 0) 789 return err; 790 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 791 return 0; 792 err = matches_name(c, &znode->zbranch[nn], nm); 793 if (err < 0) 794 return err; 795 if (err == NAME_GREATER) 796 return 0; 797 *zn = znode; 798 *n = nn; 799 if (err == NAME_MATCHES) 800 return 1; 801 ubifs_assert(err == NAME_LESS); 802 } 803 } 804 } 805 806 /** 807 * fallible_matches_name - determine if a dent matches a given name. 808 * @c: UBIFS file-system description object 809 * @zbr: zbranch of dent 810 * @nm: name to match 811 * 812 * This is a "fallible" version of 'matches_name()' function which does not 813 * panic if the direntry/xentry referred by @zbr does not exist on the media. 814 * 815 * This function checks if xentry/direntry referred by zbranch @zbr matches name 816 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 817 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 818 * if xentry/direntry referred by @zbr does not exist on the media. A negative 819 * error code is returned in case of failure. 820 */ 821 static int fallible_matches_name(struct ubifs_info *c, 822 struct ubifs_zbranch *zbr, 823 const struct qstr *nm) 824 { 825 struct ubifs_dent_node *dent; 826 int nlen, err; 827 828 /* If possible, match against the dent in the leaf node cache */ 829 if (!zbr->leaf) { 830 dent = kmalloc(zbr->len, GFP_NOFS); 831 if (!dent) 832 return -ENOMEM; 833 834 err = fallible_read_node(c, &zbr->key, zbr, dent); 835 if (err < 0) 836 goto out_free; 837 if (err == 0) { 838 /* The node was not present */ 839 err = NOT_ON_MEDIA; 840 goto out_free; 841 } 842 ubifs_assert(err == 1); 843 844 err = lnc_add_directly(c, zbr, dent); 845 if (err) 846 goto out_free; 847 } else 848 dent = zbr->leaf; 849 850 nlen = le16_to_cpu(dent->nlen); 851 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 852 if (err == 0) { 853 if (nlen == nm->len) 854 return NAME_MATCHES; 855 else if (nlen < nm->len) 856 return NAME_LESS; 857 else 858 return NAME_GREATER; 859 } else if (err < 0) 860 return NAME_LESS; 861 else 862 return NAME_GREATER; 863 864 out_free: 865 kfree(dent); 866 return err; 867 } 868 869 /** 870 * fallible_resolve_collision - resolve a collision even if nodes are missing. 871 * @c: UBIFS file-system description object 872 * @key: key 873 * @zn: znode is returned here 874 * @n: branch number is passed and returned here 875 * @nm: name of directory entry 876 * @adding: indicates caller is adding a key to the TNC 877 * 878 * This is a "fallible" version of the 'resolve_collision()' function which 879 * does not panic if one of the nodes referred to by TNC does not exist on the 880 * media. This may happen when replaying the journal if a deleted node was 881 * Garbage-collected and the commit was not done. A branch that refers to a node 882 * that is not present is called a dangling branch. The following are the return 883 * codes for this function: 884 * o if @nm was found, %1 is returned and @zn and @n are set to the found 885 * branch; 886 * o if we are @adding and @nm was not found, %0 is returned; 887 * o if we are not @adding and @nm was not found, but a dangling branch was 888 * found, then %1 is returned and @zn and @n are set to the dangling branch; 889 * o a negative error code is returned in case of failure. 890 */ 891 static int fallible_resolve_collision(struct ubifs_info *c, 892 const union ubifs_key *key, 893 struct ubifs_znode **zn, int *n, 894 const struct qstr *nm, int adding) 895 { 896 struct ubifs_znode *o_znode = NULL, *znode = *zn; 897 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 898 899 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 900 if (unlikely(cmp < 0)) 901 return cmp; 902 if (cmp == NAME_MATCHES) 903 return 1; 904 if (cmp == NOT_ON_MEDIA) { 905 o_znode = znode; 906 o_n = nn; 907 /* 908 * We are unlucky and hit a dangling branch straight away. 909 * Now we do not really know where to go to find the needed 910 * branch - to the left or to the right. Well, let's try left. 911 */ 912 unsure = 1; 913 } else if (!adding) 914 unsure = 1; /* Remove a dangling branch wherever it is */ 915 916 if (cmp == NAME_GREATER || unsure) { 917 /* Look left */ 918 while (1) { 919 err = tnc_prev(c, zn, n); 920 if (err == -ENOENT) { 921 ubifs_assert(*n == 0); 922 *n = -1; 923 break; 924 } 925 if (err < 0) 926 return err; 927 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 928 /* See comments in 'resolve_collision()' */ 929 if (*n == (*zn)->child_cnt - 1) { 930 err = tnc_next(c, zn, n); 931 if (err) { 932 /* Should be impossible */ 933 ubifs_assert(0); 934 if (err == -ENOENT) 935 err = -EINVAL; 936 return err; 937 } 938 ubifs_assert(*n == 0); 939 *n = -1; 940 } 941 break; 942 } 943 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 944 if (err < 0) 945 return err; 946 if (err == NAME_MATCHES) 947 return 1; 948 if (err == NOT_ON_MEDIA) { 949 o_znode = *zn; 950 o_n = *n; 951 continue; 952 } 953 if (!adding) 954 continue; 955 if (err == NAME_LESS) 956 break; 957 else 958 unsure = 0; 959 } 960 } 961 962 if (cmp == NAME_LESS || unsure) { 963 /* Look right */ 964 *zn = znode; 965 *n = nn; 966 while (1) { 967 err = tnc_next(c, &znode, &nn); 968 if (err == -ENOENT) 969 break; 970 if (err < 0) 971 return err; 972 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 973 break; 974 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 975 if (err < 0) 976 return err; 977 if (err == NAME_GREATER) 978 break; 979 *zn = znode; 980 *n = nn; 981 if (err == NAME_MATCHES) 982 return 1; 983 if (err == NOT_ON_MEDIA) { 984 o_znode = znode; 985 o_n = nn; 986 } 987 } 988 } 989 990 /* Never match a dangling branch when adding */ 991 if (adding || !o_znode) 992 return 0; 993 994 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 995 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 996 o_znode->zbranch[o_n].len); 997 *zn = o_znode; 998 *n = o_n; 999 return 1; 1000 } 1001 1002 /** 1003 * matches_position - determine if a zbranch matches a given position. 1004 * @zbr: zbranch of dent 1005 * @lnum: LEB number of dent to match 1006 * @offs: offset of dent to match 1007 * 1008 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1009 */ 1010 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1011 { 1012 if (zbr->lnum == lnum && zbr->offs == offs) 1013 return 1; 1014 else 1015 return 0; 1016 } 1017 1018 /** 1019 * resolve_collision_directly - resolve a collision directly. 1020 * @c: UBIFS file-system description object 1021 * @key: key of directory entry 1022 * @zn: znode is passed and returned here 1023 * @n: zbranch number is passed and returned here 1024 * @lnum: LEB number of dent node to match 1025 * @offs: offset of dent node to match 1026 * 1027 * This function is used for "hashed" keys to make sure the found directory or 1028 * extended attribute entry node is what was looked for. It is used when the 1029 * flash address of the right node is known (@lnum:@offs) which makes it much 1030 * easier to resolve collisions (no need to read entries and match full 1031 * names). This function returns %1 and sets @zn and @n if the collision is 1032 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1033 * previous directory entry. Otherwise a negative error code is returned. 1034 */ 1035 static int resolve_collision_directly(struct ubifs_info *c, 1036 const union ubifs_key *key, 1037 struct ubifs_znode **zn, int *n, 1038 int lnum, int offs) 1039 { 1040 struct ubifs_znode *znode; 1041 int nn, err; 1042 1043 znode = *zn; 1044 nn = *n; 1045 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1046 return 1; 1047 1048 /* Look left */ 1049 while (1) { 1050 err = tnc_prev(c, &znode, &nn); 1051 if (err == -ENOENT) 1052 break; 1053 if (err < 0) 1054 return err; 1055 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1056 break; 1057 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1058 *zn = znode; 1059 *n = nn; 1060 return 1; 1061 } 1062 } 1063 1064 /* Look right */ 1065 znode = *zn; 1066 nn = *n; 1067 while (1) { 1068 err = tnc_next(c, &znode, &nn); 1069 if (err == -ENOENT) 1070 return 0; 1071 if (err < 0) 1072 return err; 1073 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1074 return 0; 1075 *zn = znode; 1076 *n = nn; 1077 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1078 return 1; 1079 } 1080 } 1081 1082 /** 1083 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1084 * @c: UBIFS file-system description object 1085 * @znode: znode to dirty 1086 * 1087 * If we do not have a unique key that resides in a znode, then we cannot 1088 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1089 * This function records the path back to the last dirty ancestor, and then 1090 * dirties the znodes on that path. 1091 */ 1092 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1093 struct ubifs_znode *znode) 1094 { 1095 struct ubifs_znode *zp; 1096 int *path = c->bottom_up_buf, p = 0; 1097 1098 ubifs_assert(c->zroot.znode); 1099 ubifs_assert(znode); 1100 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1101 kfree(c->bottom_up_buf); 1102 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1103 GFP_NOFS); 1104 if (!c->bottom_up_buf) 1105 return ERR_PTR(-ENOMEM); 1106 path = c->bottom_up_buf; 1107 } 1108 if (c->zroot.znode->level) { 1109 /* Go up until parent is dirty */ 1110 while (1) { 1111 int n; 1112 1113 zp = znode->parent; 1114 if (!zp) 1115 break; 1116 n = znode->iip; 1117 ubifs_assert(p < c->zroot.znode->level); 1118 path[p++] = n; 1119 if (!zp->cnext && ubifs_zn_dirty(znode)) 1120 break; 1121 znode = zp; 1122 } 1123 } 1124 1125 /* Come back down, dirtying as we go */ 1126 while (1) { 1127 struct ubifs_zbranch *zbr; 1128 1129 zp = znode->parent; 1130 if (zp) { 1131 ubifs_assert(path[p - 1] >= 0); 1132 ubifs_assert(path[p - 1] < zp->child_cnt); 1133 zbr = &zp->zbranch[path[--p]]; 1134 znode = dirty_cow_znode(c, zbr); 1135 } else { 1136 ubifs_assert(znode == c->zroot.znode); 1137 znode = dirty_cow_znode(c, &c->zroot); 1138 } 1139 if (IS_ERR(znode) || !p) 1140 break; 1141 ubifs_assert(path[p - 1] >= 0); 1142 ubifs_assert(path[p - 1] < znode->child_cnt); 1143 znode = znode->zbranch[path[p - 1]].znode; 1144 } 1145 1146 return znode; 1147 } 1148 1149 /** 1150 * ubifs_lookup_level0 - search for zero-level znode. 1151 * @c: UBIFS file-system description object 1152 * @key: key to lookup 1153 * @zn: znode is returned here 1154 * @n: znode branch slot number is returned here 1155 * 1156 * This function looks up the TNC tree and search for zero-level znode which 1157 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1158 * cases: 1159 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1160 * is returned and slot number of the matched branch is stored in @n; 1161 * o not exact match, which means that zero-level znode does not contain 1162 * @key, then %0 is returned and slot number of the closest branch is stored 1163 * in @n; 1164 * o @key is so small that it is even less than the lowest key of the 1165 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1166 * 1167 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1168 * function reads corresponding indexing nodes and inserts them to TNC. In 1169 * case of failure, a negative error code is returned. 1170 */ 1171 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1172 struct ubifs_znode **zn, int *n) 1173 { 1174 int err, exact; 1175 struct ubifs_znode *znode; 1176 unsigned long time = get_seconds(); 1177 1178 dbg_tnck(key, "search key "); 1179 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1180 1181 znode = c->zroot.znode; 1182 if (unlikely(!znode)) { 1183 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1184 if (IS_ERR(znode)) 1185 return PTR_ERR(znode); 1186 } 1187 1188 znode->time = time; 1189 1190 while (1) { 1191 struct ubifs_zbranch *zbr; 1192 1193 exact = ubifs_search_zbranch(c, znode, key, n); 1194 1195 if (znode->level == 0) 1196 break; 1197 1198 if (*n < 0) 1199 *n = 0; 1200 zbr = &znode->zbranch[*n]; 1201 1202 if (zbr->znode) { 1203 znode->time = time; 1204 znode = zbr->znode; 1205 continue; 1206 } 1207 1208 /* znode is not in TNC cache, load it from the media */ 1209 znode = ubifs_load_znode(c, zbr, znode, *n); 1210 if (IS_ERR(znode)) 1211 return PTR_ERR(znode); 1212 } 1213 1214 *zn = znode; 1215 if (exact || !is_hash_key(c, key) || *n != -1) { 1216 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1217 return exact; 1218 } 1219 1220 /* 1221 * Here is a tricky place. We have not found the key and this is a 1222 * "hashed" key, which may collide. The rest of the code deals with 1223 * situations like this: 1224 * 1225 * | 3 | 5 | 1226 * / \ 1227 * | 3 | 5 | | 6 | 7 | (x) 1228 * 1229 * Or more a complex example: 1230 * 1231 * | 1 | 5 | 1232 * / \ 1233 * | 1 | 3 | | 5 | 8 | 1234 * \ / 1235 * | 5 | 5 | | 6 | 7 | (x) 1236 * 1237 * In the examples, if we are looking for key "5", we may reach nodes 1238 * marked with "(x)". In this case what we have do is to look at the 1239 * left and see if there is "5" key there. If there is, we have to 1240 * return it. 1241 * 1242 * Note, this whole situation is possible because we allow to have 1243 * elements which are equivalent to the next key in the parent in the 1244 * children of current znode. For example, this happens if we split a 1245 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1246 * like this: 1247 * | 3 | 5 | 1248 * / \ 1249 * | 3 | 5 | | 5 | 6 | 7 | 1250 * ^ 1251 * And this becomes what is at the first "picture" after key "5" marked 1252 * with "^" is removed. What could be done is we could prohibit 1253 * splitting in the middle of the colliding sequence. Also, when 1254 * removing the leftmost key, we would have to correct the key of the 1255 * parent node, which would introduce additional complications. Namely, 1256 * if we changed the leftmost key of the parent znode, the garbage 1257 * collector would be unable to find it (GC is doing this when GC'ing 1258 * indexing LEBs). Although we already have an additional RB-tree where 1259 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1260 * after the commit. But anyway, this does not look easy to implement 1261 * so we did not try this. 1262 */ 1263 err = tnc_prev(c, &znode, n); 1264 if (err == -ENOENT) { 1265 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1266 *n = -1; 1267 return 0; 1268 } 1269 if (unlikely(err < 0)) 1270 return err; 1271 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1272 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1273 *n = -1; 1274 return 0; 1275 } 1276 1277 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1278 *zn = znode; 1279 return 1; 1280 } 1281 1282 /** 1283 * lookup_level0_dirty - search for zero-level znode dirtying. 1284 * @c: UBIFS file-system description object 1285 * @key: key to lookup 1286 * @zn: znode is returned here 1287 * @n: znode branch slot number is returned here 1288 * 1289 * This function looks up the TNC tree and search for zero-level znode which 1290 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1291 * cases: 1292 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1293 * is returned and slot number of the matched branch is stored in @n; 1294 * o not exact match, which means that zero-level znode does not contain @key 1295 * then %0 is returned and slot number of the closed branch is stored in 1296 * @n; 1297 * o @key is so small that it is even less than the lowest key of the 1298 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1299 * 1300 * Additionally all znodes in the path from the root to the located zero-level 1301 * znode are marked as dirty. 1302 * 1303 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1304 * function reads corresponding indexing nodes and inserts them to TNC. In 1305 * case of failure, a negative error code is returned. 1306 */ 1307 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1308 struct ubifs_znode **zn, int *n) 1309 { 1310 int err, exact; 1311 struct ubifs_znode *znode; 1312 unsigned long time = get_seconds(); 1313 1314 dbg_tnck(key, "search and dirty key "); 1315 1316 znode = c->zroot.znode; 1317 if (unlikely(!znode)) { 1318 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1319 if (IS_ERR(znode)) 1320 return PTR_ERR(znode); 1321 } 1322 1323 znode = dirty_cow_znode(c, &c->zroot); 1324 if (IS_ERR(znode)) 1325 return PTR_ERR(znode); 1326 1327 znode->time = time; 1328 1329 while (1) { 1330 struct ubifs_zbranch *zbr; 1331 1332 exact = ubifs_search_zbranch(c, znode, key, n); 1333 1334 if (znode->level == 0) 1335 break; 1336 1337 if (*n < 0) 1338 *n = 0; 1339 zbr = &znode->zbranch[*n]; 1340 1341 if (zbr->znode) { 1342 znode->time = time; 1343 znode = dirty_cow_znode(c, zbr); 1344 if (IS_ERR(znode)) 1345 return PTR_ERR(znode); 1346 continue; 1347 } 1348 1349 /* znode is not in TNC cache, load it from the media */ 1350 znode = ubifs_load_znode(c, zbr, znode, *n); 1351 if (IS_ERR(znode)) 1352 return PTR_ERR(znode); 1353 znode = dirty_cow_znode(c, zbr); 1354 if (IS_ERR(znode)) 1355 return PTR_ERR(znode); 1356 } 1357 1358 *zn = znode; 1359 if (exact || !is_hash_key(c, key) || *n != -1) { 1360 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1361 return exact; 1362 } 1363 1364 /* 1365 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1366 * code. 1367 */ 1368 err = tnc_prev(c, &znode, n); 1369 if (err == -ENOENT) { 1370 *n = -1; 1371 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1372 return 0; 1373 } 1374 if (unlikely(err < 0)) 1375 return err; 1376 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1377 *n = -1; 1378 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1379 return 0; 1380 } 1381 1382 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1383 znode = dirty_cow_bottom_up(c, znode); 1384 if (IS_ERR(znode)) 1385 return PTR_ERR(znode); 1386 } 1387 1388 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1389 *zn = znode; 1390 return 1; 1391 } 1392 1393 /** 1394 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1395 * @c: UBIFS file-system description object 1396 * @lnum: LEB number 1397 * @gc_seq1: garbage collection sequence number 1398 * 1399 * This function determines if @lnum may have been garbage collected since 1400 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1401 * %0 is returned. 1402 */ 1403 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1404 { 1405 #ifndef __UBOOT__ 1406 int gc_seq2, gced_lnum; 1407 1408 gced_lnum = c->gced_lnum; 1409 smp_rmb(); 1410 gc_seq2 = c->gc_seq; 1411 /* Same seq means no GC */ 1412 if (gc_seq1 == gc_seq2) 1413 return 0; 1414 /* Different by more than 1 means we don't know */ 1415 if (gc_seq1 + 1 != gc_seq2) 1416 return 1; 1417 /* 1418 * We have seen the sequence number has increased by 1. Now we need to 1419 * be sure we read the right LEB number, so read it again. 1420 */ 1421 smp_rmb(); 1422 if (gced_lnum != c->gced_lnum) 1423 return 1; 1424 /* Finally we can check lnum */ 1425 if (gced_lnum == lnum) 1426 return 1; 1427 #else 1428 /* No garbage collection in the read-only U-Boot implementation */ 1429 #endif 1430 return 0; 1431 } 1432 1433 /** 1434 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1435 * @c: UBIFS file-system description object 1436 * @key: node key to lookup 1437 * @node: the node is returned here 1438 * @lnum: LEB number is returned here 1439 * @offs: offset is returned here 1440 * 1441 * This function looks up and reads node with key @key. The caller has to make 1442 * sure the @node buffer is large enough to fit the node. Returns zero in case 1443 * of success, %-ENOENT if the node was not found, and a negative error code in 1444 * case of failure. The node location can be returned in @lnum and @offs. 1445 */ 1446 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1447 void *node, int *lnum, int *offs) 1448 { 1449 int found, n, err, safely = 0, gc_seq1; 1450 struct ubifs_znode *znode; 1451 struct ubifs_zbranch zbr, *zt; 1452 1453 again: 1454 mutex_lock(&c->tnc_mutex); 1455 found = ubifs_lookup_level0(c, key, &znode, &n); 1456 if (!found) { 1457 err = -ENOENT; 1458 goto out; 1459 } else if (found < 0) { 1460 err = found; 1461 goto out; 1462 } 1463 zt = &znode->zbranch[n]; 1464 if (lnum) { 1465 *lnum = zt->lnum; 1466 *offs = zt->offs; 1467 } 1468 if (is_hash_key(c, key)) { 1469 /* 1470 * In this case the leaf node cache gets used, so we pass the 1471 * address of the zbranch and keep the mutex locked 1472 */ 1473 err = tnc_read_node_nm(c, zt, node); 1474 goto out; 1475 } 1476 if (safely) { 1477 err = ubifs_tnc_read_node(c, zt, node); 1478 goto out; 1479 } 1480 /* Drop the TNC mutex prematurely and race with garbage collection */ 1481 zbr = znode->zbranch[n]; 1482 gc_seq1 = c->gc_seq; 1483 mutex_unlock(&c->tnc_mutex); 1484 1485 if (ubifs_get_wbuf(c, zbr.lnum)) { 1486 /* We do not GC journal heads */ 1487 err = ubifs_tnc_read_node(c, &zbr, node); 1488 return err; 1489 } 1490 1491 err = fallible_read_node(c, key, &zbr, node); 1492 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1493 /* 1494 * The node may have been GC'ed out from under us so try again 1495 * while keeping the TNC mutex locked. 1496 */ 1497 safely = 1; 1498 goto again; 1499 } 1500 return 0; 1501 1502 out: 1503 mutex_unlock(&c->tnc_mutex); 1504 return err; 1505 } 1506 1507 /** 1508 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1509 * @c: UBIFS file-system description object 1510 * @bu: bulk-read parameters and results 1511 * 1512 * Lookup consecutive data node keys for the same inode that reside 1513 * consecutively in the same LEB. This function returns zero in case of success 1514 * and a negative error code in case of failure. 1515 * 1516 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1517 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1518 * maximum possible amount of nodes for bulk-read. 1519 */ 1520 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1521 { 1522 int n, err = 0, lnum = -1, uninitialized_var(offs); 1523 int uninitialized_var(len); 1524 unsigned int block = key_block(c, &bu->key); 1525 struct ubifs_znode *znode; 1526 1527 bu->cnt = 0; 1528 bu->blk_cnt = 0; 1529 bu->eof = 0; 1530 1531 mutex_lock(&c->tnc_mutex); 1532 /* Find first key */ 1533 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1534 if (err < 0) 1535 goto out; 1536 if (err) { 1537 /* Key found */ 1538 len = znode->zbranch[n].len; 1539 /* The buffer must be big enough for at least 1 node */ 1540 if (len > bu->buf_len) { 1541 err = -EINVAL; 1542 goto out; 1543 } 1544 /* Add this key */ 1545 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1546 bu->blk_cnt += 1; 1547 lnum = znode->zbranch[n].lnum; 1548 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1549 } 1550 while (1) { 1551 struct ubifs_zbranch *zbr; 1552 union ubifs_key *key; 1553 unsigned int next_block; 1554 1555 /* Find next key */ 1556 err = tnc_next(c, &znode, &n); 1557 if (err) 1558 goto out; 1559 zbr = &znode->zbranch[n]; 1560 key = &zbr->key; 1561 /* See if there is another data key for this file */ 1562 if (key_inum(c, key) != key_inum(c, &bu->key) || 1563 key_type(c, key) != UBIFS_DATA_KEY) { 1564 err = -ENOENT; 1565 goto out; 1566 } 1567 if (lnum < 0) { 1568 /* First key found */ 1569 lnum = zbr->lnum; 1570 offs = ALIGN(zbr->offs + zbr->len, 8); 1571 len = zbr->len; 1572 if (len > bu->buf_len) { 1573 err = -EINVAL; 1574 goto out; 1575 } 1576 } else { 1577 /* 1578 * The data nodes must be in consecutive positions in 1579 * the same LEB. 1580 */ 1581 if (zbr->lnum != lnum || zbr->offs != offs) 1582 goto out; 1583 offs += ALIGN(zbr->len, 8); 1584 len = ALIGN(len, 8) + zbr->len; 1585 /* Must not exceed buffer length */ 1586 if (len > bu->buf_len) 1587 goto out; 1588 } 1589 /* Allow for holes */ 1590 next_block = key_block(c, key); 1591 bu->blk_cnt += (next_block - block - 1); 1592 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1593 goto out; 1594 block = next_block; 1595 /* Add this key */ 1596 bu->zbranch[bu->cnt++] = *zbr; 1597 bu->blk_cnt += 1; 1598 /* See if we have room for more */ 1599 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1600 goto out; 1601 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1602 goto out; 1603 } 1604 out: 1605 if (err == -ENOENT) { 1606 bu->eof = 1; 1607 err = 0; 1608 } 1609 bu->gc_seq = c->gc_seq; 1610 mutex_unlock(&c->tnc_mutex); 1611 if (err) 1612 return err; 1613 /* 1614 * An enormous hole could cause bulk-read to encompass too many 1615 * page cache pages, so limit the number here. 1616 */ 1617 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1618 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1619 /* 1620 * Ensure that bulk-read covers a whole number of page cache 1621 * pages. 1622 */ 1623 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1624 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1625 return 0; 1626 if (bu->eof) { 1627 /* At the end of file we can round up */ 1628 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1629 return 0; 1630 } 1631 /* Exclude data nodes that do not make up a whole page cache page */ 1632 block = key_block(c, &bu->key) + bu->blk_cnt; 1633 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1634 while (bu->cnt) { 1635 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1636 break; 1637 bu->cnt -= 1; 1638 } 1639 return 0; 1640 } 1641 1642 /** 1643 * read_wbuf - bulk-read from a LEB with a wbuf. 1644 * @wbuf: wbuf that may overlap the read 1645 * @buf: buffer into which to read 1646 * @len: read length 1647 * @lnum: LEB number from which to read 1648 * @offs: offset from which to read 1649 * 1650 * This functions returns %0 on success or a negative error code on failure. 1651 */ 1652 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1653 int offs) 1654 { 1655 const struct ubifs_info *c = wbuf->c; 1656 int rlen, overlap; 1657 1658 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1659 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1660 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1661 ubifs_assert(offs + len <= c->leb_size); 1662 1663 spin_lock(&wbuf->lock); 1664 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1665 if (!overlap) { 1666 /* We may safely unlock the write-buffer and read the data */ 1667 spin_unlock(&wbuf->lock); 1668 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1669 } 1670 1671 /* Don't read under wbuf */ 1672 rlen = wbuf->offs - offs; 1673 if (rlen < 0) 1674 rlen = 0; 1675 1676 /* Copy the rest from the write-buffer */ 1677 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1678 spin_unlock(&wbuf->lock); 1679 1680 if (rlen > 0) 1681 /* Read everything that goes before write-buffer */ 1682 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * validate_data_node - validate data nodes for bulk-read. 1689 * @c: UBIFS file-system description object 1690 * @buf: buffer containing data node to validate 1691 * @zbr: zbranch of data node to validate 1692 * 1693 * This functions returns %0 on success or a negative error code on failure. 1694 */ 1695 static int validate_data_node(struct ubifs_info *c, void *buf, 1696 struct ubifs_zbranch *zbr) 1697 { 1698 union ubifs_key key1; 1699 struct ubifs_ch *ch = buf; 1700 int err, len; 1701 1702 if (ch->node_type != UBIFS_DATA_NODE) { 1703 ubifs_err(c, "bad node type (%d but expected %d)", 1704 ch->node_type, UBIFS_DATA_NODE); 1705 goto out_err; 1706 } 1707 1708 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1709 if (err) { 1710 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1711 goto out; 1712 } 1713 1714 len = le32_to_cpu(ch->len); 1715 if (len != zbr->len) { 1716 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1717 goto out_err; 1718 } 1719 1720 /* Make sure the key of the read node is correct */ 1721 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1722 if (!keys_eq(c, &zbr->key, &key1)) { 1723 ubifs_err(c, "bad key in node at LEB %d:%d", 1724 zbr->lnum, zbr->offs); 1725 dbg_tnck(&zbr->key, "looked for key "); 1726 dbg_tnck(&key1, "found node's key "); 1727 goto out_err; 1728 } 1729 1730 return 0; 1731 1732 out_err: 1733 err = -EINVAL; 1734 out: 1735 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1736 ubifs_dump_node(c, buf); 1737 dump_stack(); 1738 return err; 1739 } 1740 1741 /** 1742 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1743 * @c: UBIFS file-system description object 1744 * @bu: bulk-read parameters and results 1745 * 1746 * This functions reads and validates the data nodes that were identified by the 1747 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1748 * -EAGAIN to indicate a race with GC, or another negative error code on 1749 * failure. 1750 */ 1751 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1752 { 1753 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1754 struct ubifs_wbuf *wbuf; 1755 void *buf; 1756 1757 len = bu->zbranch[bu->cnt - 1].offs; 1758 len += bu->zbranch[bu->cnt - 1].len - offs; 1759 if (len > bu->buf_len) { 1760 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1761 return -EINVAL; 1762 } 1763 1764 /* Do the read */ 1765 wbuf = ubifs_get_wbuf(c, lnum); 1766 if (wbuf) 1767 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1768 else 1769 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1770 1771 /* Check for a race with GC */ 1772 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1773 return -EAGAIN; 1774 1775 if (err && err != -EBADMSG) { 1776 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1777 lnum, offs, err); 1778 dump_stack(); 1779 dbg_tnck(&bu->key, "key "); 1780 return err; 1781 } 1782 1783 /* Validate the nodes read */ 1784 buf = bu->buf; 1785 for (i = 0; i < bu->cnt; i++) { 1786 err = validate_data_node(c, buf, &bu->zbranch[i]); 1787 if (err) 1788 return err; 1789 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1790 } 1791 1792 return 0; 1793 } 1794 1795 /** 1796 * do_lookup_nm- look up a "hashed" node. 1797 * @c: UBIFS file-system description object 1798 * @key: node key to lookup 1799 * @node: the node is returned here 1800 * @nm: node name 1801 * 1802 * This function look up and reads a node which contains name hash in the key. 1803 * Since the hash may have collisions, there may be many nodes with the same 1804 * key, so we have to sequentially look to all of them until the needed one is 1805 * found. This function returns zero in case of success, %-ENOENT if the node 1806 * was not found, and a negative error code in case of failure. 1807 */ 1808 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1809 void *node, const struct qstr *nm) 1810 { 1811 int found, n, err; 1812 struct ubifs_znode *znode; 1813 1814 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); 1815 mutex_lock(&c->tnc_mutex); 1816 found = ubifs_lookup_level0(c, key, &znode, &n); 1817 if (!found) { 1818 err = -ENOENT; 1819 goto out_unlock; 1820 } else if (found < 0) { 1821 err = found; 1822 goto out_unlock; 1823 } 1824 1825 ubifs_assert(n >= 0); 1826 1827 err = resolve_collision(c, key, &znode, &n, nm); 1828 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1829 if (unlikely(err < 0)) 1830 goto out_unlock; 1831 if (err == 0) { 1832 err = -ENOENT; 1833 goto out_unlock; 1834 } 1835 1836 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1837 1838 out_unlock: 1839 mutex_unlock(&c->tnc_mutex); 1840 return err; 1841 } 1842 1843 /** 1844 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1845 * @c: UBIFS file-system description object 1846 * @key: node key to lookup 1847 * @node: the node is returned here 1848 * @nm: node name 1849 * 1850 * This function look up and reads a node which contains name hash in the key. 1851 * Since the hash may have collisions, there may be many nodes with the same 1852 * key, so we have to sequentially look to all of them until the needed one is 1853 * found. This function returns zero in case of success, %-ENOENT if the node 1854 * was not found, and a negative error code in case of failure. 1855 */ 1856 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1857 void *node, const struct qstr *nm) 1858 { 1859 int err, len; 1860 const struct ubifs_dent_node *dent = node; 1861 1862 /* 1863 * We assume that in most of the cases there are no name collisions and 1864 * 'ubifs_tnc_lookup()' returns us the right direntry. 1865 */ 1866 err = ubifs_tnc_lookup(c, key, node); 1867 if (err) 1868 return err; 1869 1870 len = le16_to_cpu(dent->nlen); 1871 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1872 return 0; 1873 1874 /* 1875 * Unluckily, there are hash collisions and we have to iterate over 1876 * them look at each direntry with colliding name hash sequentially. 1877 */ 1878 return do_lookup_nm(c, key, node, nm); 1879 } 1880 1881 /** 1882 * correct_parent_keys - correct parent znodes' keys. 1883 * @c: UBIFS file-system description object 1884 * @znode: znode to correct parent znodes for 1885 * 1886 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1887 * zbranch changes, keys of parent znodes have to be corrected. This helper 1888 * function is called in such situations and corrects the keys if needed. 1889 */ 1890 static void correct_parent_keys(const struct ubifs_info *c, 1891 struct ubifs_znode *znode) 1892 { 1893 union ubifs_key *key, *key1; 1894 1895 ubifs_assert(znode->parent); 1896 ubifs_assert(znode->iip == 0); 1897 1898 key = &znode->zbranch[0].key; 1899 key1 = &znode->parent->zbranch[0].key; 1900 1901 while (keys_cmp(c, key, key1) < 0) { 1902 key_copy(c, key, key1); 1903 znode = znode->parent; 1904 znode->alt = 1; 1905 if (!znode->parent || znode->iip) 1906 break; 1907 key1 = &znode->parent->zbranch[0].key; 1908 } 1909 } 1910 1911 /** 1912 * insert_zbranch - insert a zbranch into a znode. 1913 * @znode: znode into which to insert 1914 * @zbr: zbranch to insert 1915 * @n: slot number to insert to 1916 * 1917 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1918 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1919 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1920 * slot, zbranches starting from @n have to be moved right. 1921 */ 1922 static void insert_zbranch(struct ubifs_znode *znode, 1923 const struct ubifs_zbranch *zbr, int n) 1924 { 1925 int i; 1926 1927 ubifs_assert(ubifs_zn_dirty(znode)); 1928 1929 if (znode->level) { 1930 for (i = znode->child_cnt; i > n; i--) { 1931 znode->zbranch[i] = znode->zbranch[i - 1]; 1932 if (znode->zbranch[i].znode) 1933 znode->zbranch[i].znode->iip = i; 1934 } 1935 if (zbr->znode) 1936 zbr->znode->iip = n; 1937 } else 1938 for (i = znode->child_cnt; i > n; i--) 1939 znode->zbranch[i] = znode->zbranch[i - 1]; 1940 1941 znode->zbranch[n] = *zbr; 1942 znode->child_cnt += 1; 1943 1944 /* 1945 * After inserting at slot zero, the lower bound of the key range of 1946 * this znode may have changed. If this znode is subsequently split 1947 * then the upper bound of the key range may change, and furthermore 1948 * it could change to be lower than the original lower bound. If that 1949 * happens, then it will no longer be possible to find this znode in the 1950 * TNC using the key from the index node on flash. That is bad because 1951 * if it is not found, we will assume it is obsolete and may overwrite 1952 * it. Then if there is an unclean unmount, we will start using the 1953 * old index which will be broken. 1954 * 1955 * So we first mark znodes that have insertions at slot zero, and then 1956 * if they are split we add their lnum/offs to the old_idx tree. 1957 */ 1958 if (n == 0) 1959 znode->alt = 1; 1960 } 1961 1962 /** 1963 * tnc_insert - insert a node into TNC. 1964 * @c: UBIFS file-system description object 1965 * @znode: znode to insert into 1966 * @zbr: branch to insert 1967 * @n: slot number to insert new zbranch to 1968 * 1969 * This function inserts a new node described by @zbr into znode @znode. If 1970 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1971 * are splat as well if needed. Returns zero in case of success or a negative 1972 * error code in case of failure. 1973 */ 1974 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1975 struct ubifs_zbranch *zbr, int n) 1976 { 1977 struct ubifs_znode *zn, *zi, *zp; 1978 int i, keep, move, appending = 0; 1979 union ubifs_key *key = &zbr->key, *key1; 1980 1981 ubifs_assert(n >= 0 && n <= c->fanout); 1982 1983 /* Implement naive insert for now */ 1984 again: 1985 zp = znode->parent; 1986 if (znode->child_cnt < c->fanout) { 1987 ubifs_assert(n != c->fanout); 1988 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 1989 1990 insert_zbranch(znode, zbr, n); 1991 1992 /* Ensure parent's key is correct */ 1993 if (n == 0 && zp && znode->iip == 0) 1994 correct_parent_keys(c, znode); 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * Unfortunately, @znode does not have more empty slots and we have to 2001 * split it. 2002 */ 2003 dbg_tnck(key, "splitting level %d, key ", znode->level); 2004 2005 if (znode->alt) 2006 /* 2007 * We can no longer be sure of finding this znode by key, so we 2008 * record it in the old_idx tree. 2009 */ 2010 ins_clr_old_idx_znode(c, znode); 2011 2012 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2013 if (!zn) 2014 return -ENOMEM; 2015 zn->parent = zp; 2016 zn->level = znode->level; 2017 2018 /* Decide where to split */ 2019 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2020 /* Try not to split consecutive data keys */ 2021 if (n == c->fanout) { 2022 key1 = &znode->zbranch[n - 1].key; 2023 if (key_inum(c, key1) == key_inum(c, key) && 2024 key_type(c, key1) == UBIFS_DATA_KEY) 2025 appending = 1; 2026 } else 2027 goto check_split; 2028 } else if (appending && n != c->fanout) { 2029 /* Try not to split consecutive data keys */ 2030 appending = 0; 2031 check_split: 2032 if (n >= (c->fanout + 1) / 2) { 2033 key1 = &znode->zbranch[0].key; 2034 if (key_inum(c, key1) == key_inum(c, key) && 2035 key_type(c, key1) == UBIFS_DATA_KEY) { 2036 key1 = &znode->zbranch[n].key; 2037 if (key_inum(c, key1) != key_inum(c, key) || 2038 key_type(c, key1) != UBIFS_DATA_KEY) { 2039 keep = n; 2040 move = c->fanout - keep; 2041 zi = znode; 2042 goto do_split; 2043 } 2044 } 2045 } 2046 } 2047 2048 if (appending) { 2049 keep = c->fanout; 2050 move = 0; 2051 } else { 2052 keep = (c->fanout + 1) / 2; 2053 move = c->fanout - keep; 2054 } 2055 2056 /* 2057 * Although we don't at present, we could look at the neighbors and see 2058 * if we can move some zbranches there. 2059 */ 2060 2061 if (n < keep) { 2062 /* Insert into existing znode */ 2063 zi = znode; 2064 move += 1; 2065 keep -= 1; 2066 } else { 2067 /* Insert into new znode */ 2068 zi = zn; 2069 n -= keep; 2070 /* Re-parent */ 2071 if (zn->level != 0) 2072 zbr->znode->parent = zn; 2073 } 2074 2075 do_split: 2076 2077 __set_bit(DIRTY_ZNODE, &zn->flags); 2078 atomic_long_inc(&c->dirty_zn_cnt); 2079 2080 zn->child_cnt = move; 2081 znode->child_cnt = keep; 2082 2083 dbg_tnc("moving %d, keeping %d", move, keep); 2084 2085 /* Move zbranch */ 2086 for (i = 0; i < move; i++) { 2087 zn->zbranch[i] = znode->zbranch[keep + i]; 2088 /* Re-parent */ 2089 if (zn->level != 0) 2090 if (zn->zbranch[i].znode) { 2091 zn->zbranch[i].znode->parent = zn; 2092 zn->zbranch[i].znode->iip = i; 2093 } 2094 } 2095 2096 /* Insert new key and branch */ 2097 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2098 2099 insert_zbranch(zi, zbr, n); 2100 2101 /* Insert new znode (produced by spitting) into the parent */ 2102 if (zp) { 2103 if (n == 0 && zi == znode && znode->iip == 0) 2104 correct_parent_keys(c, znode); 2105 2106 /* Locate insertion point */ 2107 n = znode->iip + 1; 2108 2109 /* Tail recursion */ 2110 zbr->key = zn->zbranch[0].key; 2111 zbr->znode = zn; 2112 zbr->lnum = 0; 2113 zbr->offs = 0; 2114 zbr->len = 0; 2115 znode = zp; 2116 2117 goto again; 2118 } 2119 2120 /* We have to split root znode */ 2121 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2122 2123 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2124 if (!zi) 2125 return -ENOMEM; 2126 2127 zi->child_cnt = 2; 2128 zi->level = znode->level + 1; 2129 2130 __set_bit(DIRTY_ZNODE, &zi->flags); 2131 atomic_long_inc(&c->dirty_zn_cnt); 2132 2133 zi->zbranch[0].key = znode->zbranch[0].key; 2134 zi->zbranch[0].znode = znode; 2135 zi->zbranch[0].lnum = c->zroot.lnum; 2136 zi->zbranch[0].offs = c->zroot.offs; 2137 zi->zbranch[0].len = c->zroot.len; 2138 zi->zbranch[1].key = zn->zbranch[0].key; 2139 zi->zbranch[1].znode = zn; 2140 2141 c->zroot.lnum = 0; 2142 c->zroot.offs = 0; 2143 c->zroot.len = 0; 2144 c->zroot.znode = zi; 2145 2146 zn->parent = zi; 2147 zn->iip = 1; 2148 znode->parent = zi; 2149 znode->iip = 0; 2150 2151 return 0; 2152 } 2153 2154 /** 2155 * ubifs_tnc_add - add a node to TNC. 2156 * @c: UBIFS file-system description object 2157 * @key: key to add 2158 * @lnum: LEB number of node 2159 * @offs: node offset 2160 * @len: node length 2161 * 2162 * This function adds a node with key @key to TNC. The node may be new or it may 2163 * obsolete some existing one. Returns %0 on success or negative error code on 2164 * failure. 2165 */ 2166 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2167 int offs, int len) 2168 { 2169 int found, n, err = 0; 2170 struct ubifs_znode *znode; 2171 2172 mutex_lock(&c->tnc_mutex); 2173 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2174 found = lookup_level0_dirty(c, key, &znode, &n); 2175 if (!found) { 2176 struct ubifs_zbranch zbr; 2177 2178 zbr.znode = NULL; 2179 zbr.lnum = lnum; 2180 zbr.offs = offs; 2181 zbr.len = len; 2182 key_copy(c, key, &zbr.key); 2183 err = tnc_insert(c, znode, &zbr, n + 1); 2184 } else if (found == 1) { 2185 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2186 2187 lnc_free(zbr); 2188 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2189 zbr->lnum = lnum; 2190 zbr->offs = offs; 2191 zbr->len = len; 2192 } else 2193 err = found; 2194 if (!err) 2195 err = dbg_check_tnc(c, 0); 2196 mutex_unlock(&c->tnc_mutex); 2197 2198 return err; 2199 } 2200 2201 /** 2202 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2203 * @c: UBIFS file-system description object 2204 * @key: key to add 2205 * @old_lnum: LEB number of old node 2206 * @old_offs: old node offset 2207 * @lnum: LEB number of node 2208 * @offs: node offset 2209 * @len: node length 2210 * 2211 * This function replaces a node with key @key in the TNC only if the old node 2212 * is found. This function is called by garbage collection when node are moved. 2213 * Returns %0 on success or negative error code on failure. 2214 */ 2215 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2216 int old_lnum, int old_offs, int lnum, int offs, int len) 2217 { 2218 int found, n, err = 0; 2219 struct ubifs_znode *znode; 2220 2221 mutex_lock(&c->tnc_mutex); 2222 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2223 old_offs, lnum, offs, len); 2224 found = lookup_level0_dirty(c, key, &znode, &n); 2225 if (found < 0) { 2226 err = found; 2227 goto out_unlock; 2228 } 2229 2230 if (found == 1) { 2231 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2232 2233 found = 0; 2234 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2235 lnc_free(zbr); 2236 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2237 if (err) 2238 goto out_unlock; 2239 zbr->lnum = lnum; 2240 zbr->offs = offs; 2241 zbr->len = len; 2242 found = 1; 2243 } else if (is_hash_key(c, key)) { 2244 found = resolve_collision_directly(c, key, &znode, &n, 2245 old_lnum, old_offs); 2246 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2247 found, znode, n, old_lnum, old_offs); 2248 if (found < 0) { 2249 err = found; 2250 goto out_unlock; 2251 } 2252 2253 if (found) { 2254 /* Ensure the znode is dirtied */ 2255 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2256 znode = dirty_cow_bottom_up(c, znode); 2257 if (IS_ERR(znode)) { 2258 err = PTR_ERR(znode); 2259 goto out_unlock; 2260 } 2261 } 2262 zbr = &znode->zbranch[n]; 2263 lnc_free(zbr); 2264 err = ubifs_add_dirt(c, zbr->lnum, 2265 zbr->len); 2266 if (err) 2267 goto out_unlock; 2268 zbr->lnum = lnum; 2269 zbr->offs = offs; 2270 zbr->len = len; 2271 } 2272 } 2273 } 2274 2275 if (!found) 2276 err = ubifs_add_dirt(c, lnum, len); 2277 2278 if (!err) 2279 err = dbg_check_tnc(c, 0); 2280 2281 out_unlock: 2282 mutex_unlock(&c->tnc_mutex); 2283 return err; 2284 } 2285 2286 /** 2287 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2288 * @c: UBIFS file-system description object 2289 * @key: key to add 2290 * @lnum: LEB number of node 2291 * @offs: node offset 2292 * @len: node length 2293 * @nm: node name 2294 * 2295 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2296 * may have collisions, like directory entry keys. 2297 */ 2298 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2299 int lnum, int offs, int len, const struct qstr *nm) 2300 { 2301 int found, n, err = 0; 2302 struct ubifs_znode *znode; 2303 2304 mutex_lock(&c->tnc_mutex); 2305 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", 2306 lnum, offs, nm->len, nm->name); 2307 found = lookup_level0_dirty(c, key, &znode, &n); 2308 if (found < 0) { 2309 err = found; 2310 goto out_unlock; 2311 } 2312 2313 if (found == 1) { 2314 if (c->replaying) 2315 found = fallible_resolve_collision(c, key, &znode, &n, 2316 nm, 1); 2317 else 2318 found = resolve_collision(c, key, &znode, &n, nm); 2319 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2320 if (found < 0) { 2321 err = found; 2322 goto out_unlock; 2323 } 2324 2325 /* Ensure the znode is dirtied */ 2326 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2327 znode = dirty_cow_bottom_up(c, znode); 2328 if (IS_ERR(znode)) { 2329 err = PTR_ERR(znode); 2330 goto out_unlock; 2331 } 2332 } 2333 2334 if (found == 1) { 2335 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2336 2337 lnc_free(zbr); 2338 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2339 zbr->lnum = lnum; 2340 zbr->offs = offs; 2341 zbr->len = len; 2342 goto out_unlock; 2343 } 2344 } 2345 2346 if (!found) { 2347 struct ubifs_zbranch zbr; 2348 2349 zbr.znode = NULL; 2350 zbr.lnum = lnum; 2351 zbr.offs = offs; 2352 zbr.len = len; 2353 key_copy(c, key, &zbr.key); 2354 err = tnc_insert(c, znode, &zbr, n + 1); 2355 if (err) 2356 goto out_unlock; 2357 if (c->replaying) { 2358 /* 2359 * We did not find it in the index so there may be a 2360 * dangling branch still in the index. So we remove it 2361 * by passing 'ubifs_tnc_remove_nm()' the same key but 2362 * an unmatchable name. 2363 */ 2364 struct qstr noname = { .name = "" }; 2365 2366 err = dbg_check_tnc(c, 0); 2367 mutex_unlock(&c->tnc_mutex); 2368 if (err) 2369 return err; 2370 return ubifs_tnc_remove_nm(c, key, &noname); 2371 } 2372 } 2373 2374 out_unlock: 2375 if (!err) 2376 err = dbg_check_tnc(c, 0); 2377 mutex_unlock(&c->tnc_mutex); 2378 return err; 2379 } 2380 2381 /** 2382 * tnc_delete - delete a znode form TNC. 2383 * @c: UBIFS file-system description object 2384 * @znode: znode to delete from 2385 * @n: zbranch slot number to delete 2386 * 2387 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2388 * case of success and a negative error code in case of failure. 2389 */ 2390 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2391 { 2392 struct ubifs_zbranch *zbr; 2393 struct ubifs_znode *zp; 2394 int i, err; 2395 2396 /* Delete without merge for now */ 2397 ubifs_assert(znode->level == 0); 2398 ubifs_assert(n >= 0 && n < c->fanout); 2399 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2400 2401 zbr = &znode->zbranch[n]; 2402 lnc_free(zbr); 2403 2404 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2405 if (err) { 2406 ubifs_dump_znode(c, znode); 2407 return err; 2408 } 2409 2410 /* We do not "gap" zbranch slots */ 2411 for (i = n; i < znode->child_cnt - 1; i++) 2412 znode->zbranch[i] = znode->zbranch[i + 1]; 2413 znode->child_cnt -= 1; 2414 2415 if (znode->child_cnt > 0) 2416 return 0; 2417 2418 /* 2419 * This was the last zbranch, we have to delete this znode from the 2420 * parent. 2421 */ 2422 2423 do { 2424 ubifs_assert(!ubifs_zn_obsolete(znode)); 2425 ubifs_assert(ubifs_zn_dirty(znode)); 2426 2427 zp = znode->parent; 2428 n = znode->iip; 2429 2430 atomic_long_dec(&c->dirty_zn_cnt); 2431 2432 err = insert_old_idx_znode(c, znode); 2433 if (err) 2434 return err; 2435 2436 if (znode->cnext) { 2437 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2438 atomic_long_inc(&c->clean_zn_cnt); 2439 atomic_long_inc(&ubifs_clean_zn_cnt); 2440 } else 2441 kfree(znode); 2442 znode = zp; 2443 } while (znode->child_cnt == 1); /* while removing last child */ 2444 2445 /* Remove from znode, entry n - 1 */ 2446 znode->child_cnt -= 1; 2447 ubifs_assert(znode->level != 0); 2448 for (i = n; i < znode->child_cnt; i++) { 2449 znode->zbranch[i] = znode->zbranch[i + 1]; 2450 if (znode->zbranch[i].znode) 2451 znode->zbranch[i].znode->iip = i; 2452 } 2453 2454 /* 2455 * If this is the root and it has only 1 child then 2456 * collapse the tree. 2457 */ 2458 if (!znode->parent) { 2459 while (znode->child_cnt == 1 && znode->level != 0) { 2460 zp = znode; 2461 zbr = &znode->zbranch[0]; 2462 znode = get_znode(c, znode, 0); 2463 if (IS_ERR(znode)) 2464 return PTR_ERR(znode); 2465 znode = dirty_cow_znode(c, zbr); 2466 if (IS_ERR(znode)) 2467 return PTR_ERR(znode); 2468 znode->parent = NULL; 2469 znode->iip = 0; 2470 if (c->zroot.len) { 2471 err = insert_old_idx(c, c->zroot.lnum, 2472 c->zroot.offs); 2473 if (err) 2474 return err; 2475 } 2476 c->zroot.lnum = zbr->lnum; 2477 c->zroot.offs = zbr->offs; 2478 c->zroot.len = zbr->len; 2479 c->zroot.znode = znode; 2480 ubifs_assert(!ubifs_zn_obsolete(zp)); 2481 ubifs_assert(ubifs_zn_dirty(zp)); 2482 atomic_long_dec(&c->dirty_zn_cnt); 2483 2484 if (zp->cnext) { 2485 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2486 atomic_long_inc(&c->clean_zn_cnt); 2487 atomic_long_inc(&ubifs_clean_zn_cnt); 2488 } else 2489 kfree(zp); 2490 } 2491 } 2492 2493 return 0; 2494 } 2495 2496 /** 2497 * ubifs_tnc_remove - remove an index entry of a node. 2498 * @c: UBIFS file-system description object 2499 * @key: key of node 2500 * 2501 * Returns %0 on success or negative error code on failure. 2502 */ 2503 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2504 { 2505 int found, n, err = 0; 2506 struct ubifs_znode *znode; 2507 2508 mutex_lock(&c->tnc_mutex); 2509 dbg_tnck(key, "key "); 2510 found = lookup_level0_dirty(c, key, &znode, &n); 2511 if (found < 0) { 2512 err = found; 2513 goto out_unlock; 2514 } 2515 if (found == 1) 2516 err = tnc_delete(c, znode, n); 2517 if (!err) 2518 err = dbg_check_tnc(c, 0); 2519 2520 out_unlock: 2521 mutex_unlock(&c->tnc_mutex); 2522 return err; 2523 } 2524 2525 /** 2526 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2527 * @c: UBIFS file-system description object 2528 * @key: key of node 2529 * @nm: directory entry name 2530 * 2531 * Returns %0 on success or negative error code on failure. 2532 */ 2533 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2534 const struct qstr *nm) 2535 { 2536 int n, err; 2537 struct ubifs_znode *znode; 2538 2539 mutex_lock(&c->tnc_mutex); 2540 dbg_tnck(key, "%.*s, key ", nm->len, nm->name); 2541 err = lookup_level0_dirty(c, key, &znode, &n); 2542 if (err < 0) 2543 goto out_unlock; 2544 2545 if (err) { 2546 if (c->replaying) 2547 err = fallible_resolve_collision(c, key, &znode, &n, 2548 nm, 0); 2549 else 2550 err = resolve_collision(c, key, &znode, &n, nm); 2551 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2552 if (err < 0) 2553 goto out_unlock; 2554 if (err) { 2555 /* Ensure the znode is dirtied */ 2556 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2557 znode = dirty_cow_bottom_up(c, znode); 2558 if (IS_ERR(znode)) { 2559 err = PTR_ERR(znode); 2560 goto out_unlock; 2561 } 2562 } 2563 err = tnc_delete(c, znode, n); 2564 } 2565 } 2566 2567 out_unlock: 2568 if (!err) 2569 err = dbg_check_tnc(c, 0); 2570 mutex_unlock(&c->tnc_mutex); 2571 return err; 2572 } 2573 2574 /** 2575 * key_in_range - determine if a key falls within a range of keys. 2576 * @c: UBIFS file-system description object 2577 * @key: key to check 2578 * @from_key: lowest key in range 2579 * @to_key: highest key in range 2580 * 2581 * This function returns %1 if the key is in range and %0 otherwise. 2582 */ 2583 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2584 union ubifs_key *from_key, union ubifs_key *to_key) 2585 { 2586 if (keys_cmp(c, key, from_key) < 0) 2587 return 0; 2588 if (keys_cmp(c, key, to_key) > 0) 2589 return 0; 2590 return 1; 2591 } 2592 2593 /** 2594 * ubifs_tnc_remove_range - remove index entries in range. 2595 * @c: UBIFS file-system description object 2596 * @from_key: lowest key to remove 2597 * @to_key: highest key to remove 2598 * 2599 * This function removes index entries starting at @from_key and ending at 2600 * @to_key. This function returns zero in case of success and a negative error 2601 * code in case of failure. 2602 */ 2603 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2604 union ubifs_key *to_key) 2605 { 2606 int i, n, k, err = 0; 2607 struct ubifs_znode *znode; 2608 union ubifs_key *key; 2609 2610 mutex_lock(&c->tnc_mutex); 2611 while (1) { 2612 /* Find first level 0 znode that contains keys to remove */ 2613 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2614 if (err < 0) 2615 goto out_unlock; 2616 2617 if (err) 2618 key = from_key; 2619 else { 2620 err = tnc_next(c, &znode, &n); 2621 if (err == -ENOENT) { 2622 err = 0; 2623 goto out_unlock; 2624 } 2625 if (err < 0) 2626 goto out_unlock; 2627 key = &znode->zbranch[n].key; 2628 if (!key_in_range(c, key, from_key, to_key)) { 2629 err = 0; 2630 goto out_unlock; 2631 } 2632 } 2633 2634 /* Ensure the znode is dirtied */ 2635 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2636 znode = dirty_cow_bottom_up(c, znode); 2637 if (IS_ERR(znode)) { 2638 err = PTR_ERR(znode); 2639 goto out_unlock; 2640 } 2641 } 2642 2643 /* Remove all keys in range except the first */ 2644 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2645 key = &znode->zbranch[i].key; 2646 if (!key_in_range(c, key, from_key, to_key)) 2647 break; 2648 lnc_free(&znode->zbranch[i]); 2649 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2650 znode->zbranch[i].len); 2651 if (err) { 2652 ubifs_dump_znode(c, znode); 2653 goto out_unlock; 2654 } 2655 dbg_tnck(key, "removing key "); 2656 } 2657 if (k) { 2658 for (i = n + 1 + k; i < znode->child_cnt; i++) 2659 znode->zbranch[i - k] = znode->zbranch[i]; 2660 znode->child_cnt -= k; 2661 } 2662 2663 /* Now delete the first */ 2664 err = tnc_delete(c, znode, n); 2665 if (err) 2666 goto out_unlock; 2667 } 2668 2669 out_unlock: 2670 if (!err) 2671 err = dbg_check_tnc(c, 0); 2672 mutex_unlock(&c->tnc_mutex); 2673 return err; 2674 } 2675 2676 /** 2677 * ubifs_tnc_remove_ino - remove an inode from TNC. 2678 * @c: UBIFS file-system description object 2679 * @inum: inode number to remove 2680 * 2681 * This function remove inode @inum and all the extended attributes associated 2682 * with the anode from TNC and returns zero in case of success or a negative 2683 * error code in case of failure. 2684 */ 2685 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2686 { 2687 union ubifs_key key1, key2; 2688 struct ubifs_dent_node *xent, *pxent = NULL; 2689 struct qstr nm = { .name = NULL }; 2690 2691 dbg_tnc("ino %lu", (unsigned long)inum); 2692 2693 /* 2694 * Walk all extended attribute entries and remove them together with 2695 * corresponding extended attribute inodes. 2696 */ 2697 lowest_xent_key(c, &key1, inum); 2698 while (1) { 2699 ino_t xattr_inum; 2700 int err; 2701 2702 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2703 if (IS_ERR(xent)) { 2704 err = PTR_ERR(xent); 2705 if (err == -ENOENT) 2706 break; 2707 return err; 2708 } 2709 2710 xattr_inum = le64_to_cpu(xent->inum); 2711 dbg_tnc("xent '%s', ino %lu", xent->name, 2712 (unsigned long)xattr_inum); 2713 2714 nm.name = xent->name; 2715 nm.len = le16_to_cpu(xent->nlen); 2716 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2717 if (err) { 2718 kfree(xent); 2719 return err; 2720 } 2721 2722 lowest_ino_key(c, &key1, xattr_inum); 2723 highest_ino_key(c, &key2, xattr_inum); 2724 err = ubifs_tnc_remove_range(c, &key1, &key2); 2725 if (err) { 2726 kfree(xent); 2727 return err; 2728 } 2729 2730 kfree(pxent); 2731 pxent = xent; 2732 key_read(c, &xent->key, &key1); 2733 } 2734 2735 kfree(pxent); 2736 lowest_ino_key(c, &key1, inum); 2737 highest_ino_key(c, &key2, inum); 2738 2739 return ubifs_tnc_remove_range(c, &key1, &key2); 2740 } 2741 2742 /** 2743 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2744 * @c: UBIFS file-system description object 2745 * @key: key of last entry 2746 * @nm: name of last entry found or %NULL 2747 * 2748 * This function finds and reads the next directory or extended attribute entry 2749 * after the given key (@key) if there is one. @nm is used to resolve 2750 * collisions. 2751 * 2752 * If the name of the current entry is not known and only the key is known, 2753 * @nm->name has to be %NULL. In this case the semantics of this function is a 2754 * little bit different and it returns the entry corresponding to this key, not 2755 * the next one. If the key was not found, the closest "right" entry is 2756 * returned. 2757 * 2758 * If the fist entry has to be found, @key has to contain the lowest possible 2759 * key value for this inode and @name has to be %NULL. 2760 * 2761 * This function returns the found directory or extended attribute entry node 2762 * in case of success, %-ENOENT is returned if no entry was found, and a 2763 * negative error code is returned in case of failure. 2764 */ 2765 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2766 union ubifs_key *key, 2767 const struct qstr *nm) 2768 { 2769 int n, err, type = key_type(c, key); 2770 struct ubifs_znode *znode; 2771 struct ubifs_dent_node *dent; 2772 struct ubifs_zbranch *zbr; 2773 union ubifs_key *dkey; 2774 2775 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); 2776 ubifs_assert(is_hash_key(c, key)); 2777 2778 mutex_lock(&c->tnc_mutex); 2779 err = ubifs_lookup_level0(c, key, &znode, &n); 2780 if (unlikely(err < 0)) 2781 goto out_unlock; 2782 2783 if (nm->name) { 2784 if (err) { 2785 /* Handle collisions */ 2786 if (c->replaying) 2787 err = fallible_resolve_collision(c, key, &znode, &n, 2788 nm, 0); 2789 else 2790 err = resolve_collision(c, key, &znode, &n, nm); 2791 dbg_tnc("rc returned %d, znode %p, n %d", 2792 err, znode, n); 2793 if (unlikely(err < 0)) 2794 goto out_unlock; 2795 } 2796 2797 /* Now find next entry */ 2798 err = tnc_next(c, &znode, &n); 2799 if (unlikely(err)) 2800 goto out_unlock; 2801 } else { 2802 /* 2803 * The full name of the entry was not given, in which case the 2804 * behavior of this function is a little different and it 2805 * returns current entry, not the next one. 2806 */ 2807 if (!err) { 2808 /* 2809 * However, the given key does not exist in the TNC 2810 * tree and @znode/@n variables contain the closest 2811 * "preceding" element. Switch to the next one. 2812 */ 2813 err = tnc_next(c, &znode, &n); 2814 if (err) 2815 goto out_unlock; 2816 } 2817 } 2818 2819 zbr = &znode->zbranch[n]; 2820 dent = kmalloc(zbr->len, GFP_NOFS); 2821 if (unlikely(!dent)) { 2822 err = -ENOMEM; 2823 goto out_unlock; 2824 } 2825 2826 /* 2827 * The above 'tnc_next()' call could lead us to the next inode, check 2828 * this. 2829 */ 2830 dkey = &zbr->key; 2831 if (key_inum(c, dkey) != key_inum(c, key) || 2832 key_type(c, dkey) != type) { 2833 err = -ENOENT; 2834 goto out_free; 2835 } 2836 2837 err = tnc_read_node_nm(c, zbr, dent); 2838 if (unlikely(err)) 2839 goto out_free; 2840 2841 mutex_unlock(&c->tnc_mutex); 2842 return dent; 2843 2844 out_free: 2845 kfree(dent); 2846 out_unlock: 2847 mutex_unlock(&c->tnc_mutex); 2848 return ERR_PTR(err); 2849 } 2850 2851 /** 2852 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2853 * @c: UBIFS file-system description object 2854 * 2855 * Destroy left-over obsolete znodes from a failed commit. 2856 */ 2857 static void tnc_destroy_cnext(struct ubifs_info *c) 2858 { 2859 struct ubifs_znode *cnext; 2860 2861 if (!c->cnext) 2862 return; 2863 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2864 cnext = c->cnext; 2865 do { 2866 struct ubifs_znode *znode = cnext; 2867 2868 cnext = cnext->cnext; 2869 if (ubifs_zn_obsolete(znode)) 2870 kfree(znode); 2871 } while (cnext && cnext != c->cnext); 2872 } 2873 2874 /** 2875 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2876 * @c: UBIFS file-system description object 2877 */ 2878 void ubifs_tnc_close(struct ubifs_info *c) 2879 { 2880 tnc_destroy_cnext(c); 2881 if (c->zroot.znode) { 2882 long n, freed; 2883 2884 n = atomic_long_read(&c->clean_zn_cnt); 2885 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2886 ubifs_assert(freed == n); 2887 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2888 } 2889 kfree(c->gap_lebs); 2890 kfree(c->ilebs); 2891 destroy_old_idx(c); 2892 } 2893 2894 /** 2895 * left_znode - get the znode to the left. 2896 * @c: UBIFS file-system description object 2897 * @znode: znode 2898 * 2899 * This function returns a pointer to the znode to the left of @znode or NULL if 2900 * there is not one. A negative error code is returned on failure. 2901 */ 2902 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2903 struct ubifs_znode *znode) 2904 { 2905 int level = znode->level; 2906 2907 while (1) { 2908 int n = znode->iip - 1; 2909 2910 /* Go up until we can go left */ 2911 znode = znode->parent; 2912 if (!znode) 2913 return NULL; 2914 if (n >= 0) { 2915 /* Now go down the rightmost branch to 'level' */ 2916 znode = get_znode(c, znode, n); 2917 if (IS_ERR(znode)) 2918 return znode; 2919 while (znode->level != level) { 2920 n = znode->child_cnt - 1; 2921 znode = get_znode(c, znode, n); 2922 if (IS_ERR(znode)) 2923 return znode; 2924 } 2925 break; 2926 } 2927 } 2928 return znode; 2929 } 2930 2931 /** 2932 * right_znode - get the znode to the right. 2933 * @c: UBIFS file-system description object 2934 * @znode: znode 2935 * 2936 * This function returns a pointer to the znode to the right of @znode or NULL 2937 * if there is not one. A negative error code is returned on failure. 2938 */ 2939 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2940 struct ubifs_znode *znode) 2941 { 2942 int level = znode->level; 2943 2944 while (1) { 2945 int n = znode->iip + 1; 2946 2947 /* Go up until we can go right */ 2948 znode = znode->parent; 2949 if (!znode) 2950 return NULL; 2951 if (n < znode->child_cnt) { 2952 /* Now go down the leftmost branch to 'level' */ 2953 znode = get_znode(c, znode, n); 2954 if (IS_ERR(znode)) 2955 return znode; 2956 while (znode->level != level) { 2957 znode = get_znode(c, znode, 0); 2958 if (IS_ERR(znode)) 2959 return znode; 2960 } 2961 break; 2962 } 2963 } 2964 return znode; 2965 } 2966 2967 /** 2968 * lookup_znode - find a particular indexing node from TNC. 2969 * @c: UBIFS file-system description object 2970 * @key: index node key to lookup 2971 * @level: index node level 2972 * @lnum: index node LEB number 2973 * @offs: index node offset 2974 * 2975 * This function searches an indexing node by its first key @key and its 2976 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2977 * nodes it traverses to TNC. This function is called for indexing nodes which 2978 * were found on the media by scanning, for example when garbage-collecting or 2979 * when doing in-the-gaps commit. This means that the indexing node which is 2980 * looked for does not have to have exactly the same leftmost key @key, because 2981 * the leftmost key may have been changed, in which case TNC will contain a 2982 * dirty znode which still refers the same @lnum:@offs. This function is clever 2983 * enough to recognize such indexing nodes. 2984 * 2985 * Note, if a znode was deleted or changed too much, then this function will 2986 * not find it. For situations like this UBIFS has the old index RB-tree 2987 * (indexed by @lnum:@offs). 2988 * 2989 * This function returns a pointer to the znode found or %NULL if it is not 2990 * found. A negative error code is returned on failure. 2991 */ 2992 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2993 union ubifs_key *key, int level, 2994 int lnum, int offs) 2995 { 2996 struct ubifs_znode *znode, *zn; 2997 int n, nn; 2998 2999 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 3000 3001 /* 3002 * The arguments have probably been read off flash, so don't assume 3003 * they are valid. 3004 */ 3005 if (level < 0) 3006 return ERR_PTR(-EINVAL); 3007 3008 /* Get the root znode */ 3009 znode = c->zroot.znode; 3010 if (!znode) { 3011 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3012 if (IS_ERR(znode)) 3013 return znode; 3014 } 3015 /* Check if it is the one we are looking for */ 3016 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3017 return znode; 3018 /* Descend to the parent level i.e. (level + 1) */ 3019 if (level >= znode->level) 3020 return NULL; 3021 while (1) { 3022 ubifs_search_zbranch(c, znode, key, &n); 3023 if (n < 0) { 3024 /* 3025 * We reached a znode where the leftmost key is greater 3026 * than the key we are searching for. This is the same 3027 * situation as the one described in a huge comment at 3028 * the end of the 'ubifs_lookup_level0()' function. And 3029 * for exactly the same reasons we have to try to look 3030 * left before giving up. 3031 */ 3032 znode = left_znode(c, znode); 3033 if (!znode) 3034 return NULL; 3035 if (IS_ERR(znode)) 3036 return znode; 3037 ubifs_search_zbranch(c, znode, key, &n); 3038 ubifs_assert(n >= 0); 3039 } 3040 if (znode->level == level + 1) 3041 break; 3042 znode = get_znode(c, znode, n); 3043 if (IS_ERR(znode)) 3044 return znode; 3045 } 3046 /* Check if the child is the one we are looking for */ 3047 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3048 return get_znode(c, znode, n); 3049 /* If the key is unique, there is nowhere else to look */ 3050 if (!is_hash_key(c, key)) 3051 return NULL; 3052 /* 3053 * The key is not unique and so may be also in the znodes to either 3054 * side. 3055 */ 3056 zn = znode; 3057 nn = n; 3058 /* Look left */ 3059 while (1) { 3060 /* Move one branch to the left */ 3061 if (n) 3062 n -= 1; 3063 else { 3064 znode = left_znode(c, znode); 3065 if (!znode) 3066 break; 3067 if (IS_ERR(znode)) 3068 return znode; 3069 n = znode->child_cnt - 1; 3070 } 3071 /* Check it */ 3072 if (znode->zbranch[n].lnum == lnum && 3073 znode->zbranch[n].offs == offs) 3074 return get_znode(c, znode, n); 3075 /* Stop if the key is less than the one we are looking for */ 3076 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3077 break; 3078 } 3079 /* Back to the middle */ 3080 znode = zn; 3081 n = nn; 3082 /* Look right */ 3083 while (1) { 3084 /* Move one branch to the right */ 3085 if (++n >= znode->child_cnt) { 3086 znode = right_znode(c, znode); 3087 if (!znode) 3088 break; 3089 if (IS_ERR(znode)) 3090 return znode; 3091 n = 0; 3092 } 3093 /* Check it */ 3094 if (znode->zbranch[n].lnum == lnum && 3095 znode->zbranch[n].offs == offs) 3096 return get_znode(c, znode, n); 3097 /* Stop if the key is greater than the one we are looking for */ 3098 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3099 break; 3100 } 3101 return NULL; 3102 } 3103 3104 /** 3105 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3106 * @c: UBIFS file-system description object 3107 * @key: key of index node 3108 * @level: index node level 3109 * @lnum: LEB number of index node 3110 * @offs: offset of index node 3111 * 3112 * This function returns %0 if the index node is not referred to in the TNC, %1 3113 * if the index node is referred to in the TNC and the corresponding znode is 3114 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3115 * znode is clean, and a negative error code in case of failure. 3116 * 3117 * Note, the @key argument has to be the key of the first child. Also note, 3118 * this function relies on the fact that 0:0 is never a valid LEB number and 3119 * offset for a main-area node. 3120 */ 3121 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3122 int lnum, int offs) 3123 { 3124 struct ubifs_znode *znode; 3125 3126 znode = lookup_znode(c, key, level, lnum, offs); 3127 if (!znode) 3128 return 0; 3129 if (IS_ERR(znode)) 3130 return PTR_ERR(znode); 3131 3132 return ubifs_zn_dirty(znode) ? 1 : 2; 3133 } 3134 3135 /** 3136 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3137 * @c: UBIFS file-system description object 3138 * @key: node key 3139 * @lnum: node LEB number 3140 * @offs: node offset 3141 * 3142 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3143 * not, and a negative error code in case of failure. 3144 * 3145 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3146 * and offset for a main-area node. 3147 */ 3148 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3149 int lnum, int offs) 3150 { 3151 struct ubifs_zbranch *zbr; 3152 struct ubifs_znode *znode, *zn; 3153 int n, found, err, nn; 3154 const int unique = !is_hash_key(c, key); 3155 3156 found = ubifs_lookup_level0(c, key, &znode, &n); 3157 if (found < 0) 3158 return found; /* Error code */ 3159 if (!found) 3160 return 0; 3161 zbr = &znode->zbranch[n]; 3162 if (lnum == zbr->lnum && offs == zbr->offs) 3163 return 1; /* Found it */ 3164 if (unique) 3165 return 0; 3166 /* 3167 * Because the key is not unique, we have to look left 3168 * and right as well 3169 */ 3170 zn = znode; 3171 nn = n; 3172 /* Look left */ 3173 while (1) { 3174 err = tnc_prev(c, &znode, &n); 3175 if (err == -ENOENT) 3176 break; 3177 if (err) 3178 return err; 3179 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3180 break; 3181 zbr = &znode->zbranch[n]; 3182 if (lnum == zbr->lnum && offs == zbr->offs) 3183 return 1; /* Found it */ 3184 } 3185 /* Look right */ 3186 znode = zn; 3187 n = nn; 3188 while (1) { 3189 err = tnc_next(c, &znode, &n); 3190 if (err) { 3191 if (err == -ENOENT) 3192 return 0; 3193 return err; 3194 } 3195 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3196 break; 3197 zbr = &znode->zbranch[n]; 3198 if (lnum == zbr->lnum && offs == zbr->offs) 3199 return 1; /* Found it */ 3200 } 3201 return 0; 3202 } 3203 3204 /** 3205 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3206 * @c: UBIFS file-system description object 3207 * @key: node key 3208 * @level: index node level (if it is an index node) 3209 * @lnum: node LEB number 3210 * @offs: node offset 3211 * @is_idx: non-zero if the node is an index node 3212 * 3213 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3214 * negative error code in case of failure. For index nodes, @key has to be the 3215 * key of the first child. An index node is considered to be in the TNC only if 3216 * the corresponding znode is clean or has not been loaded. 3217 */ 3218 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3219 int lnum, int offs, int is_idx) 3220 { 3221 int err; 3222 3223 mutex_lock(&c->tnc_mutex); 3224 if (is_idx) { 3225 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3226 if (err < 0) 3227 goto out_unlock; 3228 if (err == 1) 3229 /* The index node was found but it was dirty */ 3230 err = 0; 3231 else if (err == 2) 3232 /* The index node was found and it was clean */ 3233 err = 1; 3234 else 3235 BUG_ON(err != 0); 3236 } else 3237 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3238 3239 out_unlock: 3240 mutex_unlock(&c->tnc_mutex); 3241 return err; 3242 } 3243 3244 /** 3245 * ubifs_dirty_idx_node - dirty an index node. 3246 * @c: UBIFS file-system description object 3247 * @key: index node key 3248 * @level: index node level 3249 * @lnum: index node LEB number 3250 * @offs: index node offset 3251 * 3252 * This function loads and dirties an index node so that it can be garbage 3253 * collected. The @key argument has to be the key of the first child. This 3254 * function relies on the fact that 0:0 is never a valid LEB number and offset 3255 * for a main-area node. Returns %0 on success and a negative error code on 3256 * failure. 3257 */ 3258 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3259 int lnum, int offs) 3260 { 3261 struct ubifs_znode *znode; 3262 int err = 0; 3263 3264 mutex_lock(&c->tnc_mutex); 3265 znode = lookup_znode(c, key, level, lnum, offs); 3266 if (!znode) 3267 goto out_unlock; 3268 if (IS_ERR(znode)) { 3269 err = PTR_ERR(znode); 3270 goto out_unlock; 3271 } 3272 znode = dirty_cow_bottom_up(c, znode); 3273 if (IS_ERR(znode)) { 3274 err = PTR_ERR(znode); 3275 goto out_unlock; 3276 } 3277 3278 out_unlock: 3279 mutex_unlock(&c->tnc_mutex); 3280 return err; 3281 } 3282 3283 /** 3284 * dbg_check_inode_size - check if inode size is correct. 3285 * @c: UBIFS file-system description object 3286 * @inum: inode number 3287 * @size: inode size 3288 * 3289 * This function makes sure that the inode size (@size) is correct and it does 3290 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3291 * if it has a data page beyond @size, and other negative error code in case of 3292 * other errors. 3293 */ 3294 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3295 loff_t size) 3296 { 3297 int err, n; 3298 union ubifs_key from_key, to_key, *key; 3299 struct ubifs_znode *znode; 3300 unsigned int block; 3301 3302 if (!S_ISREG(inode->i_mode)) 3303 return 0; 3304 if (!dbg_is_chk_gen(c)) 3305 return 0; 3306 3307 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3308 data_key_init(c, &from_key, inode->i_ino, block); 3309 highest_data_key(c, &to_key, inode->i_ino); 3310 3311 mutex_lock(&c->tnc_mutex); 3312 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3313 if (err < 0) 3314 goto out_unlock; 3315 3316 if (err) { 3317 key = &from_key; 3318 goto out_dump; 3319 } 3320 3321 err = tnc_next(c, &znode, &n); 3322 if (err == -ENOENT) { 3323 err = 0; 3324 goto out_unlock; 3325 } 3326 if (err < 0) 3327 goto out_unlock; 3328 3329 ubifs_assert(err == 0); 3330 key = &znode->zbranch[n].key; 3331 if (!key_in_range(c, key, &from_key, &to_key)) 3332 goto out_unlock; 3333 3334 out_dump: 3335 block = key_block(c, key); 3336 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3337 (unsigned long)inode->i_ino, size, 3338 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3339 mutex_unlock(&c->tnc_mutex); 3340 ubifs_dump_inode(c, inode); 3341 dump_stack(); 3342 return -EINVAL; 3343 3344 out_unlock: 3345 mutex_unlock(&c->tnc_mutex); 3346 return err; 3347 } 3348