1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements most of the debugging stuff which is compiled in only 14 * when it is enabled. But some debugging check functions are implemented in 15 * corresponding subsystem, just because they are closely related and utilize 16 * various local functions of those subsystems. 17 */ 18 19 #include <hexdump.h> 20 21 #ifndef __UBOOT__ 22 #include <linux/module.h> 23 #include <linux/debugfs.h> 24 #include <linux/math64.h> 25 #include <linux/uaccess.h> 26 #include <linux/random.h> 27 #else 28 #include <linux/compat.h> 29 #include <linux/err.h> 30 #endif 31 #include "ubifs.h" 32 33 #ifndef __UBOOT__ 34 static DEFINE_SPINLOCK(dbg_lock); 35 #endif 36 37 static const char *get_key_fmt(int fmt) 38 { 39 switch (fmt) { 40 case UBIFS_SIMPLE_KEY_FMT: 41 return "simple"; 42 default: 43 return "unknown/invalid format"; 44 } 45 } 46 47 static const char *get_key_hash(int hash) 48 { 49 switch (hash) { 50 case UBIFS_KEY_HASH_R5: 51 return "R5"; 52 case UBIFS_KEY_HASH_TEST: 53 return "test"; 54 default: 55 return "unknown/invalid name hash"; 56 } 57 } 58 59 static const char *get_key_type(int type) 60 { 61 switch (type) { 62 case UBIFS_INO_KEY: 63 return "inode"; 64 case UBIFS_DENT_KEY: 65 return "direntry"; 66 case UBIFS_XENT_KEY: 67 return "xentry"; 68 case UBIFS_DATA_KEY: 69 return "data"; 70 case UBIFS_TRUN_KEY: 71 return "truncate"; 72 default: 73 return "unknown/invalid key"; 74 } 75 } 76 77 #ifndef __UBOOT__ 78 static const char *get_dent_type(int type) 79 { 80 switch (type) { 81 case UBIFS_ITYPE_REG: 82 return "file"; 83 case UBIFS_ITYPE_DIR: 84 return "dir"; 85 case UBIFS_ITYPE_LNK: 86 return "symlink"; 87 case UBIFS_ITYPE_BLK: 88 return "blkdev"; 89 case UBIFS_ITYPE_CHR: 90 return "char dev"; 91 case UBIFS_ITYPE_FIFO: 92 return "fifo"; 93 case UBIFS_ITYPE_SOCK: 94 return "socket"; 95 default: 96 return "unknown/invalid type"; 97 } 98 } 99 #endif 100 101 const char *dbg_snprintf_key(const struct ubifs_info *c, 102 const union ubifs_key *key, char *buffer, int len) 103 { 104 char *p = buffer; 105 int type = key_type(c, key); 106 107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 108 switch (type) { 109 case UBIFS_INO_KEY: 110 len -= snprintf(p, len, "(%lu, %s)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type)); 113 break; 114 case UBIFS_DENT_KEY: 115 case UBIFS_XENT_KEY: 116 len -= snprintf(p, len, "(%lu, %s, %#08x)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_hash(c, key)); 119 break; 120 case UBIFS_DATA_KEY: 121 len -= snprintf(p, len, "(%lu, %s, %u)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type), key_block(c, key)); 124 break; 125 case UBIFS_TRUN_KEY: 126 len -= snprintf(p, len, "(%lu, %s)", 127 (unsigned long)key_inum(c, key), 128 get_key_type(type)); 129 break; 130 default: 131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 132 key->u32[0], key->u32[1]); 133 } 134 } else 135 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 136 ubifs_assert(len > 0); 137 return p; 138 } 139 140 const char *dbg_ntype(int type) 141 { 142 switch (type) { 143 case UBIFS_PAD_NODE: 144 return "padding node"; 145 case UBIFS_SB_NODE: 146 return "superblock node"; 147 case UBIFS_MST_NODE: 148 return "master node"; 149 case UBIFS_REF_NODE: 150 return "reference node"; 151 case UBIFS_INO_NODE: 152 return "inode node"; 153 case UBIFS_DENT_NODE: 154 return "direntry node"; 155 case UBIFS_XENT_NODE: 156 return "xentry node"; 157 case UBIFS_DATA_NODE: 158 return "data node"; 159 case UBIFS_TRUN_NODE: 160 return "truncate node"; 161 case UBIFS_IDX_NODE: 162 return "indexing node"; 163 case UBIFS_CS_NODE: 164 return "commit start node"; 165 case UBIFS_ORPH_NODE: 166 return "orphan node"; 167 default: 168 return "unknown node"; 169 } 170 } 171 172 static const char *dbg_gtype(int type) 173 { 174 switch (type) { 175 case UBIFS_NO_NODE_GROUP: 176 return "no node group"; 177 case UBIFS_IN_NODE_GROUP: 178 return "in node group"; 179 case UBIFS_LAST_OF_NODE_GROUP: 180 return "last of node group"; 181 default: 182 return "unknown"; 183 } 184 } 185 186 const char *dbg_cstate(int cmt_state) 187 { 188 switch (cmt_state) { 189 case COMMIT_RESTING: 190 return "commit resting"; 191 case COMMIT_BACKGROUND: 192 return "background commit requested"; 193 case COMMIT_REQUIRED: 194 return "commit required"; 195 case COMMIT_RUNNING_BACKGROUND: 196 return "BACKGROUND commit running"; 197 case COMMIT_RUNNING_REQUIRED: 198 return "commit running and required"; 199 case COMMIT_BROKEN: 200 return "broken commit"; 201 default: 202 return "unknown commit state"; 203 } 204 } 205 206 const char *dbg_jhead(int jhead) 207 { 208 switch (jhead) { 209 case GCHD: 210 return "0 (GC)"; 211 case BASEHD: 212 return "1 (base)"; 213 case DATAHD: 214 return "2 (data)"; 215 default: 216 return "unknown journal head"; 217 } 218 } 219 220 static void dump_ch(const struct ubifs_ch *ch) 221 { 222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 224 pr_err("\tnode_type %d (%s)\n", ch->node_type, 225 dbg_ntype(ch->node_type)); 226 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 227 dbg_gtype(ch->group_type)); 228 pr_err("\tsqnum %llu\n", 229 (unsigned long long)le64_to_cpu(ch->sqnum)); 230 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 231 } 232 233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 234 { 235 #ifndef __UBOOT__ 236 const struct ubifs_inode *ui = ubifs_inode(inode); 237 struct qstr nm = { .name = NULL }; 238 union ubifs_key key; 239 struct ubifs_dent_node *dent, *pdent = NULL; 240 int count = 2; 241 242 pr_err("Dump in-memory inode:"); 243 pr_err("\tinode %lu\n", inode->i_ino); 244 pr_err("\tsize %llu\n", 245 (unsigned long long)i_size_read(inode)); 246 pr_err("\tnlink %u\n", inode->i_nlink); 247 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 248 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 249 pr_err("\tatime %u.%u\n", 250 (unsigned int)inode->i_atime.tv_sec, 251 (unsigned int)inode->i_atime.tv_nsec); 252 pr_err("\tmtime %u.%u\n", 253 (unsigned int)inode->i_mtime.tv_sec, 254 (unsigned int)inode->i_mtime.tv_nsec); 255 pr_err("\tctime %u.%u\n", 256 (unsigned int)inode->i_ctime.tv_sec, 257 (unsigned int)inode->i_ctime.tv_nsec); 258 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 259 pr_err("\txattr_size %u\n", ui->xattr_size); 260 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 261 pr_err("\txattr_names %u\n", ui->xattr_names); 262 pr_err("\tdirty %u\n", ui->dirty); 263 pr_err("\txattr %u\n", ui->xattr); 264 pr_err("\tbulk_read %u\n", ui->xattr); 265 pr_err("\tsynced_i_size %llu\n", 266 (unsigned long long)ui->synced_i_size); 267 pr_err("\tui_size %llu\n", 268 (unsigned long long)ui->ui_size); 269 pr_err("\tflags %d\n", ui->flags); 270 pr_err("\tcompr_type %d\n", ui->compr_type); 271 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 272 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 273 pr_err("\tdata_len %d\n", ui->data_len); 274 275 if (!S_ISDIR(inode->i_mode)) 276 return; 277 278 pr_err("List of directory entries:\n"); 279 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 280 281 lowest_dent_key(c, &key, inode->i_ino); 282 while (1) { 283 dent = ubifs_tnc_next_ent(c, &key, &nm); 284 if (IS_ERR(dent)) { 285 if (PTR_ERR(dent) != -ENOENT) 286 pr_err("error %ld\n", PTR_ERR(dent)); 287 break; 288 } 289 290 pr_err("\t%d: %s (%s)\n", 291 count++, dent->name, get_dent_type(dent->type)); 292 293 nm.name = dent->name; 294 nm.len = le16_to_cpu(dent->nlen); 295 kfree(pdent); 296 pdent = dent; 297 key_read(c, &dent->key, &key); 298 } 299 kfree(pdent); 300 #endif 301 } 302 303 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 304 { 305 int i, n; 306 union ubifs_key key; 307 const struct ubifs_ch *ch = node; 308 char key_buf[DBG_KEY_BUF_LEN]; 309 310 /* If the magic is incorrect, just hexdump the first bytes */ 311 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 312 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 313 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, 314 (void *)node, UBIFS_CH_SZ, 1); 315 return; 316 } 317 318 spin_lock(&dbg_lock); 319 dump_ch(node); 320 321 switch (ch->node_type) { 322 case UBIFS_PAD_NODE: 323 { 324 const struct ubifs_pad_node *pad = node; 325 326 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 327 break; 328 } 329 case UBIFS_SB_NODE: 330 { 331 const struct ubifs_sb_node *sup = node; 332 unsigned int sup_flags = le32_to_cpu(sup->flags); 333 334 pr_err("\tkey_hash %d (%s)\n", 335 (int)sup->key_hash, get_key_hash(sup->key_hash)); 336 pr_err("\tkey_fmt %d (%s)\n", 337 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 338 pr_err("\tflags %#x\n", sup_flags); 339 pr_err("\tbig_lpt %u\n", 340 !!(sup_flags & UBIFS_FLG_BIGLPT)); 341 pr_err("\tspace_fixup %u\n", 342 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 343 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 344 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 345 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 346 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 347 pr_err("\tmax_bud_bytes %llu\n", 348 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 349 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 350 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 351 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 352 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 353 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 354 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 355 pr_err("\tdefault_compr %u\n", 356 (int)le16_to_cpu(sup->default_compr)); 357 pr_err("\trp_size %llu\n", 358 (unsigned long long)le64_to_cpu(sup->rp_size)); 359 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 360 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 361 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 362 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 363 pr_err("\tUUID %pUB\n", sup->uuid); 364 break; 365 } 366 case UBIFS_MST_NODE: 367 { 368 const struct ubifs_mst_node *mst = node; 369 370 pr_err("\thighest_inum %llu\n", 371 (unsigned long long)le64_to_cpu(mst->highest_inum)); 372 pr_err("\tcommit number %llu\n", 373 (unsigned long long)le64_to_cpu(mst->cmt_no)); 374 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 375 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 376 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 377 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 378 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 379 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 380 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 381 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 382 pr_err("\tindex_size %llu\n", 383 (unsigned long long)le64_to_cpu(mst->index_size)); 384 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 385 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 386 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 387 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 388 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 389 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 390 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 391 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 392 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 393 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 394 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 395 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 396 pr_err("\ttotal_free %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_free)); 398 pr_err("\ttotal_dirty %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_dirty)); 400 pr_err("\ttotal_used %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_used)); 402 pr_err("\ttotal_dead %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dead)); 404 pr_err("\ttotal_dark %llu\n", 405 (unsigned long long)le64_to_cpu(mst->total_dark)); 406 break; 407 } 408 case UBIFS_REF_NODE: 409 { 410 const struct ubifs_ref_node *ref = node; 411 412 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 413 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 414 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 415 break; 416 } 417 case UBIFS_INO_NODE: 418 { 419 const struct ubifs_ino_node *ino = node; 420 421 key_read(c, &ino->key, &key); 422 pr_err("\tkey %s\n", 423 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 424 pr_err("\tcreat_sqnum %llu\n", 425 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 426 pr_err("\tsize %llu\n", 427 (unsigned long long)le64_to_cpu(ino->size)); 428 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 429 pr_err("\tatime %lld.%u\n", 430 (long long)le64_to_cpu(ino->atime_sec), 431 le32_to_cpu(ino->atime_nsec)); 432 pr_err("\tmtime %lld.%u\n", 433 (long long)le64_to_cpu(ino->mtime_sec), 434 le32_to_cpu(ino->mtime_nsec)); 435 pr_err("\tctime %lld.%u\n", 436 (long long)le64_to_cpu(ino->ctime_sec), 437 le32_to_cpu(ino->ctime_nsec)); 438 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 439 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 440 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 441 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 442 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 443 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 444 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 445 pr_err("\tcompr_type %#x\n", 446 (int)le16_to_cpu(ino->compr_type)); 447 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 448 break; 449 } 450 case UBIFS_DENT_NODE: 451 case UBIFS_XENT_NODE: 452 { 453 const struct ubifs_dent_node *dent = node; 454 int nlen = le16_to_cpu(dent->nlen); 455 456 key_read(c, &dent->key, &key); 457 pr_err("\tkey %s\n", 458 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 459 pr_err("\tinum %llu\n", 460 (unsigned long long)le64_to_cpu(dent->inum)); 461 pr_err("\ttype %d\n", (int)dent->type); 462 pr_err("\tnlen %d\n", nlen); 463 pr_err("\tname "); 464 465 if (nlen > UBIFS_MAX_NLEN) 466 pr_err("(bad name length, not printing, bad or corrupted node)"); 467 else { 468 for (i = 0; i < nlen && dent->name[i]; i++) 469 pr_cont("%c", dent->name[i]); 470 } 471 pr_cont("\n"); 472 473 break; 474 } 475 case UBIFS_DATA_NODE: 476 { 477 const struct ubifs_data_node *dn = node; 478 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 479 480 key_read(c, &dn->key, &key); 481 pr_err("\tkey %s\n", 482 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 483 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 484 pr_err("\tcompr_typ %d\n", 485 (int)le16_to_cpu(dn->compr_type)); 486 pr_err("\tdata size %d\n", dlen); 487 pr_err("\tdata:\n"); 488 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1, 489 (void *)&dn->data, dlen, 0); 490 break; 491 } 492 case UBIFS_TRUN_NODE: 493 { 494 const struct ubifs_trun_node *trun = node; 495 496 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 497 pr_err("\told_size %llu\n", 498 (unsigned long long)le64_to_cpu(trun->old_size)); 499 pr_err("\tnew_size %llu\n", 500 (unsigned long long)le64_to_cpu(trun->new_size)); 501 break; 502 } 503 case UBIFS_IDX_NODE: 504 { 505 const struct ubifs_idx_node *idx = node; 506 507 n = le16_to_cpu(idx->child_cnt); 508 pr_err("\tchild_cnt %d\n", n); 509 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 510 pr_err("\tBranches:\n"); 511 512 for (i = 0; i < n && i < c->fanout - 1; i++) { 513 const struct ubifs_branch *br; 514 515 br = ubifs_idx_branch(c, idx, i); 516 key_read(c, &br->key, &key); 517 pr_err("\t%d: LEB %d:%d len %d key %s\n", 518 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 519 le32_to_cpu(br->len), 520 dbg_snprintf_key(c, &key, key_buf, 521 DBG_KEY_BUF_LEN)); 522 } 523 break; 524 } 525 case UBIFS_CS_NODE: 526 break; 527 case UBIFS_ORPH_NODE: 528 { 529 const struct ubifs_orph_node *orph = node; 530 531 pr_err("\tcommit number %llu\n", 532 (unsigned long long) 533 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 534 pr_err("\tlast node flag %llu\n", 535 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 536 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 537 pr_err("\t%d orphan inode numbers:\n", n); 538 for (i = 0; i < n; i++) 539 pr_err("\t ino %llu\n", 540 (unsigned long long)le64_to_cpu(orph->inos[i])); 541 break; 542 } 543 default: 544 pr_err("node type %d was not recognized\n", 545 (int)ch->node_type); 546 } 547 spin_unlock(&dbg_lock); 548 } 549 550 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 551 { 552 spin_lock(&dbg_lock); 553 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 554 req->new_ino, req->dirtied_ino); 555 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 556 req->new_ino_d, req->dirtied_ino_d); 557 pr_err("\tnew_page %d, dirtied_page %d\n", 558 req->new_page, req->dirtied_page); 559 pr_err("\tnew_dent %d, mod_dent %d\n", 560 req->new_dent, req->mod_dent); 561 pr_err("\tidx_growth %d\n", req->idx_growth); 562 pr_err("\tdata_growth %d dd_growth %d\n", 563 req->data_growth, req->dd_growth); 564 spin_unlock(&dbg_lock); 565 } 566 567 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 568 { 569 spin_lock(&dbg_lock); 570 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 571 current->pid, lst->empty_lebs, lst->idx_lebs); 572 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 573 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 574 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 575 lst->total_used, lst->total_dark, lst->total_dead); 576 spin_unlock(&dbg_lock); 577 } 578 579 #ifndef __UBOOT__ 580 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 581 { 582 int i; 583 struct rb_node *rb; 584 struct ubifs_bud *bud; 585 struct ubifs_gced_idx_leb *idx_gc; 586 long long available, outstanding, free; 587 588 spin_lock(&c->space_lock); 589 spin_lock(&dbg_lock); 590 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 591 current->pid, bi->data_growth + bi->dd_growth, 592 bi->data_growth + bi->dd_growth + bi->idx_growth); 593 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 594 bi->data_growth, bi->dd_growth, bi->idx_growth); 595 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 596 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 597 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 598 bi->page_budget, bi->inode_budget, bi->dent_budget); 599 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 600 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 601 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 602 603 if (bi != &c->bi) 604 /* 605 * If we are dumping saved budgeting data, do not print 606 * additional information which is about the current state, not 607 * the old one which corresponded to the saved budgeting data. 608 */ 609 goto out_unlock; 610 611 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 612 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 613 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 614 atomic_long_read(&c->dirty_pg_cnt), 615 atomic_long_read(&c->dirty_zn_cnt), 616 atomic_long_read(&c->clean_zn_cnt)); 617 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 618 619 /* If we are in R/O mode, journal heads do not exist */ 620 if (c->jheads) 621 for (i = 0; i < c->jhead_cnt; i++) 622 pr_err("\tjhead %s\t LEB %d\n", 623 dbg_jhead(c->jheads[i].wbuf.jhead), 624 c->jheads[i].wbuf.lnum); 625 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 626 bud = rb_entry(rb, struct ubifs_bud, rb); 627 pr_err("\tbud LEB %d\n", bud->lnum); 628 } 629 list_for_each_entry(bud, &c->old_buds, list) 630 pr_err("\told bud LEB %d\n", bud->lnum); 631 list_for_each_entry(idx_gc, &c->idx_gc, list) 632 pr_err("\tGC'ed idx LEB %d unmap %d\n", 633 idx_gc->lnum, idx_gc->unmap); 634 pr_err("\tcommit state %d\n", c->cmt_state); 635 636 /* Print budgeting predictions */ 637 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 638 outstanding = c->bi.data_growth + c->bi.dd_growth; 639 free = ubifs_get_free_space_nolock(c); 640 pr_err("Budgeting predictions:\n"); 641 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 642 available, outstanding, free); 643 out_unlock: 644 spin_unlock(&dbg_lock); 645 spin_unlock(&c->space_lock); 646 } 647 #else 648 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 649 { 650 } 651 #endif 652 653 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 654 { 655 int i, spc, dark = 0, dead = 0; 656 struct rb_node *rb; 657 struct ubifs_bud *bud; 658 659 spc = lp->free + lp->dirty; 660 if (spc < c->dead_wm) 661 dead = spc; 662 else 663 dark = ubifs_calc_dark(c, spc); 664 665 if (lp->flags & LPROPS_INDEX) 666 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 667 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 668 lp->flags); 669 else 670 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 671 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 672 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 673 674 if (lp->flags & LPROPS_TAKEN) { 675 if (lp->flags & LPROPS_INDEX) 676 pr_cont("index, taken"); 677 else 678 pr_cont("taken"); 679 } else { 680 const char *s; 681 682 if (lp->flags & LPROPS_INDEX) { 683 switch (lp->flags & LPROPS_CAT_MASK) { 684 case LPROPS_DIRTY_IDX: 685 s = "dirty index"; 686 break; 687 case LPROPS_FRDI_IDX: 688 s = "freeable index"; 689 break; 690 default: 691 s = "index"; 692 } 693 } else { 694 switch (lp->flags & LPROPS_CAT_MASK) { 695 case LPROPS_UNCAT: 696 s = "not categorized"; 697 break; 698 case LPROPS_DIRTY: 699 s = "dirty"; 700 break; 701 case LPROPS_FREE: 702 s = "free"; 703 break; 704 case LPROPS_EMPTY: 705 s = "empty"; 706 break; 707 case LPROPS_FREEABLE: 708 s = "freeable"; 709 break; 710 default: 711 s = NULL; 712 break; 713 } 714 } 715 pr_cont("%s", s); 716 } 717 718 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 719 bud = rb_entry(rb, struct ubifs_bud, rb); 720 if (bud->lnum == lp->lnum) { 721 int head = 0; 722 for (i = 0; i < c->jhead_cnt; i++) { 723 /* 724 * Note, if we are in R/O mode or in the middle 725 * of mounting/re-mounting, the write-buffers do 726 * not exist. 727 */ 728 if (c->jheads && 729 lp->lnum == c->jheads[i].wbuf.lnum) { 730 pr_cont(", jhead %s", dbg_jhead(i)); 731 head = 1; 732 } 733 } 734 if (!head) 735 pr_cont(", bud of jhead %s", 736 dbg_jhead(bud->jhead)); 737 } 738 } 739 if (lp->lnum == c->gc_lnum) 740 pr_cont(", GC LEB"); 741 pr_cont(")\n"); 742 } 743 744 void ubifs_dump_lprops(struct ubifs_info *c) 745 { 746 int lnum, err; 747 struct ubifs_lprops lp; 748 struct ubifs_lp_stats lst; 749 750 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 751 ubifs_get_lp_stats(c, &lst); 752 ubifs_dump_lstats(&lst); 753 754 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 755 err = ubifs_read_one_lp(c, lnum, &lp); 756 if (err) { 757 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 758 continue; 759 } 760 761 ubifs_dump_lprop(c, &lp); 762 } 763 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 764 } 765 766 void ubifs_dump_lpt_info(struct ubifs_info *c) 767 { 768 int i; 769 770 spin_lock(&dbg_lock); 771 pr_err("(pid %d) dumping LPT information\n", current->pid); 772 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 773 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 774 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 775 pr_err("\tltab_sz: %d\n", c->ltab_sz); 776 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 777 pr_err("\tbig_lpt: %d\n", c->big_lpt); 778 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 779 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 780 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 781 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 782 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 783 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 784 pr_err("\tspace_bits: %d\n", c->space_bits); 785 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 786 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 787 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 788 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 789 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 790 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 791 pr_err("\tLPT head is at %d:%d\n", 792 c->nhead_lnum, c->nhead_offs); 793 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 794 if (c->big_lpt) 795 pr_err("\tLPT lsave is at %d:%d\n", 796 c->lsave_lnum, c->lsave_offs); 797 for (i = 0; i < c->lpt_lebs; i++) 798 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 799 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 800 c->ltab[i].tgc, c->ltab[i].cmt); 801 spin_unlock(&dbg_lock); 802 } 803 804 void ubifs_dump_sleb(const struct ubifs_info *c, 805 const struct ubifs_scan_leb *sleb, int offs) 806 { 807 struct ubifs_scan_node *snod; 808 809 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 810 current->pid, sleb->lnum, offs); 811 812 list_for_each_entry(snod, &sleb->nodes, list) { 813 cond_resched(); 814 pr_err("Dumping node at LEB %d:%d len %d\n", 815 sleb->lnum, snod->offs, snod->len); 816 ubifs_dump_node(c, snod->node); 817 } 818 } 819 820 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 821 { 822 struct ubifs_scan_leb *sleb; 823 struct ubifs_scan_node *snod; 824 void *buf; 825 826 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 827 828 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 829 if (!buf) { 830 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 831 return; 832 } 833 834 sleb = ubifs_scan(c, lnum, 0, buf, 0); 835 if (IS_ERR(sleb)) { 836 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 837 goto out; 838 } 839 840 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 841 sleb->nodes_cnt, sleb->endpt); 842 843 list_for_each_entry(snod, &sleb->nodes, list) { 844 cond_resched(); 845 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 846 snod->offs, snod->len); 847 ubifs_dump_node(c, snod->node); 848 } 849 850 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 851 ubifs_scan_destroy(sleb); 852 853 out: 854 vfree(buf); 855 return; 856 } 857 858 void ubifs_dump_znode(const struct ubifs_info *c, 859 const struct ubifs_znode *znode) 860 { 861 int n; 862 const struct ubifs_zbranch *zbr; 863 char key_buf[DBG_KEY_BUF_LEN]; 864 865 spin_lock(&dbg_lock); 866 if (znode->parent) 867 zbr = &znode->parent->zbranch[znode->iip]; 868 else 869 zbr = &c->zroot; 870 871 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 872 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 873 znode->level, znode->child_cnt, znode->flags); 874 875 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 876 spin_unlock(&dbg_lock); 877 return; 878 } 879 880 pr_err("zbranches:\n"); 881 for (n = 0; n < znode->child_cnt; n++) { 882 zbr = &znode->zbranch[n]; 883 if (znode->level > 0) 884 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 885 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 886 dbg_snprintf_key(c, &zbr->key, key_buf, 887 DBG_KEY_BUF_LEN)); 888 else 889 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 890 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 891 dbg_snprintf_key(c, &zbr->key, key_buf, 892 DBG_KEY_BUF_LEN)); 893 } 894 spin_unlock(&dbg_lock); 895 } 896 897 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 898 { 899 int i; 900 901 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 902 current->pid, cat, heap->cnt); 903 for (i = 0; i < heap->cnt; i++) { 904 struct ubifs_lprops *lprops = heap->arr[i]; 905 906 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 907 i, lprops->lnum, lprops->hpos, lprops->free, 908 lprops->dirty, lprops->flags); 909 } 910 pr_err("(pid %d) finish dumping heap\n", current->pid); 911 } 912 913 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 914 struct ubifs_nnode *parent, int iip) 915 { 916 int i; 917 918 pr_err("(pid %d) dumping pnode:\n", current->pid); 919 pr_err("\taddress %zx parent %zx cnext %zx\n", 920 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 921 pr_err("\tflags %lu iip %d level %d num %d\n", 922 pnode->flags, iip, pnode->level, pnode->num); 923 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 924 struct ubifs_lprops *lp = &pnode->lprops[i]; 925 926 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 927 i, lp->free, lp->dirty, lp->flags, lp->lnum); 928 } 929 } 930 931 void ubifs_dump_tnc(struct ubifs_info *c) 932 { 933 struct ubifs_znode *znode; 934 int level; 935 936 pr_err("\n"); 937 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 938 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 939 level = znode->level; 940 pr_err("== Level %d ==\n", level); 941 while (znode) { 942 if (level != znode->level) { 943 level = znode->level; 944 pr_err("== Level %d ==\n", level); 945 } 946 ubifs_dump_znode(c, znode); 947 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 948 } 949 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 950 } 951 952 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 953 void *priv) 954 { 955 ubifs_dump_znode(c, znode); 956 return 0; 957 } 958 959 /** 960 * ubifs_dump_index - dump the on-flash index. 961 * @c: UBIFS file-system description object 962 * 963 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 964 * which dumps only in-memory znodes and does not read znodes which from flash. 965 */ 966 void ubifs_dump_index(struct ubifs_info *c) 967 { 968 dbg_walk_index(c, NULL, dump_znode, NULL); 969 } 970 971 #ifndef __UBOOT__ 972 /** 973 * dbg_save_space_info - save information about flash space. 974 * @c: UBIFS file-system description object 975 * 976 * This function saves information about UBIFS free space, dirty space, etc, in 977 * order to check it later. 978 */ 979 void dbg_save_space_info(struct ubifs_info *c) 980 { 981 struct ubifs_debug_info *d = c->dbg; 982 int freeable_cnt; 983 984 spin_lock(&c->space_lock); 985 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 986 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 987 d->saved_idx_gc_cnt = c->idx_gc_cnt; 988 989 /* 990 * We use a dirty hack here and zero out @c->freeable_cnt, because it 991 * affects the free space calculations, and UBIFS might not know about 992 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 993 * only when we read their lprops, and we do this only lazily, upon the 994 * need. So at any given point of time @c->freeable_cnt might be not 995 * exactly accurate. 996 * 997 * Just one example about the issue we hit when we did not zero 998 * @c->freeable_cnt. 999 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1000 * amount of free space in @d->saved_free 1001 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1002 * information from flash, where we cache LEBs from various 1003 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1004 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1005 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1006 * -> 'ubifs_add_to_cat()'). 1007 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1008 * becomes %1. 1009 * 4. We calculate the amount of free space when the re-mount is 1010 * finished in 'dbg_check_space_info()' and it does not match 1011 * @d->saved_free. 1012 */ 1013 freeable_cnt = c->freeable_cnt; 1014 c->freeable_cnt = 0; 1015 d->saved_free = ubifs_get_free_space_nolock(c); 1016 c->freeable_cnt = freeable_cnt; 1017 spin_unlock(&c->space_lock); 1018 } 1019 1020 /** 1021 * dbg_check_space_info - check flash space information. 1022 * @c: UBIFS file-system description object 1023 * 1024 * This function compares current flash space information with the information 1025 * which was saved when the 'dbg_save_space_info()' function was called. 1026 * Returns zero if the information has not changed, and %-EINVAL it it has 1027 * changed. 1028 */ 1029 int dbg_check_space_info(struct ubifs_info *c) 1030 { 1031 struct ubifs_debug_info *d = c->dbg; 1032 struct ubifs_lp_stats lst; 1033 long long free; 1034 int freeable_cnt; 1035 1036 spin_lock(&c->space_lock); 1037 freeable_cnt = c->freeable_cnt; 1038 c->freeable_cnt = 0; 1039 free = ubifs_get_free_space_nolock(c); 1040 c->freeable_cnt = freeable_cnt; 1041 spin_unlock(&c->space_lock); 1042 1043 if (free != d->saved_free) { 1044 ubifs_err(c, "free space changed from %lld to %lld", 1045 d->saved_free, free); 1046 goto out; 1047 } 1048 1049 return 0; 1050 1051 out: 1052 ubifs_msg(c, "saved lprops statistics dump"); 1053 ubifs_dump_lstats(&d->saved_lst); 1054 ubifs_msg(c, "saved budgeting info dump"); 1055 ubifs_dump_budg(c, &d->saved_bi); 1056 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1057 ubifs_msg(c, "current lprops statistics dump"); 1058 ubifs_get_lp_stats(c, &lst); 1059 ubifs_dump_lstats(&lst); 1060 ubifs_msg(c, "current budgeting info dump"); 1061 ubifs_dump_budg(c, &c->bi); 1062 dump_stack(); 1063 return -EINVAL; 1064 } 1065 1066 /** 1067 * dbg_check_synced_i_size - check synchronized inode size. 1068 * @c: UBIFS file-system description object 1069 * @inode: inode to check 1070 * 1071 * If inode is clean, synchronized inode size has to be equivalent to current 1072 * inode size. This function has to be called only for locked inodes (@i_mutex 1073 * has to be locked). Returns %0 if synchronized inode size if correct, and 1074 * %-EINVAL if not. 1075 */ 1076 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1077 { 1078 int err = 0; 1079 struct ubifs_inode *ui = ubifs_inode(inode); 1080 1081 if (!dbg_is_chk_gen(c)) 1082 return 0; 1083 if (!S_ISREG(inode->i_mode)) 1084 return 0; 1085 1086 mutex_lock(&ui->ui_mutex); 1087 spin_lock(&ui->ui_lock); 1088 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1089 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1090 ui->ui_size, ui->synced_i_size); 1091 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1092 inode->i_mode, i_size_read(inode)); 1093 dump_stack(); 1094 err = -EINVAL; 1095 } 1096 spin_unlock(&ui->ui_lock); 1097 mutex_unlock(&ui->ui_mutex); 1098 return err; 1099 } 1100 1101 /* 1102 * dbg_check_dir - check directory inode size and link count. 1103 * @c: UBIFS file-system description object 1104 * @dir: the directory to calculate size for 1105 * @size: the result is returned here 1106 * 1107 * This function makes sure that directory size and link count are correct. 1108 * Returns zero in case of success and a negative error code in case of 1109 * failure. 1110 * 1111 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1112 * calling this function. 1113 */ 1114 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1115 { 1116 unsigned int nlink = 2; 1117 union ubifs_key key; 1118 struct ubifs_dent_node *dent, *pdent = NULL; 1119 struct qstr nm = { .name = NULL }; 1120 loff_t size = UBIFS_INO_NODE_SZ; 1121 1122 if (!dbg_is_chk_gen(c)) 1123 return 0; 1124 1125 if (!S_ISDIR(dir->i_mode)) 1126 return 0; 1127 1128 lowest_dent_key(c, &key, dir->i_ino); 1129 while (1) { 1130 int err; 1131 1132 dent = ubifs_tnc_next_ent(c, &key, &nm); 1133 if (IS_ERR(dent)) { 1134 err = PTR_ERR(dent); 1135 if (err == -ENOENT) 1136 break; 1137 return err; 1138 } 1139 1140 nm.name = dent->name; 1141 nm.len = le16_to_cpu(dent->nlen); 1142 size += CALC_DENT_SIZE(nm.len); 1143 if (dent->type == UBIFS_ITYPE_DIR) 1144 nlink += 1; 1145 kfree(pdent); 1146 pdent = dent; 1147 key_read(c, &dent->key, &key); 1148 } 1149 kfree(pdent); 1150 1151 if (i_size_read(dir) != size) { 1152 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1153 dir->i_ino, (unsigned long long)i_size_read(dir), 1154 (unsigned long long)size); 1155 ubifs_dump_inode(c, dir); 1156 dump_stack(); 1157 return -EINVAL; 1158 } 1159 if (dir->i_nlink != nlink) { 1160 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1161 dir->i_ino, dir->i_nlink, nlink); 1162 ubifs_dump_inode(c, dir); 1163 dump_stack(); 1164 return -EINVAL; 1165 } 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1172 * @c: UBIFS file-system description object 1173 * @zbr1: first zbranch 1174 * @zbr2: following zbranch 1175 * 1176 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1177 * names of the direntries/xentries which are referred by the keys. This 1178 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1179 * sure the name of direntry/xentry referred by @zbr1 is less than 1180 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1181 * and a negative error code in case of failure. 1182 */ 1183 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1184 struct ubifs_zbranch *zbr2) 1185 { 1186 int err, nlen1, nlen2, cmp; 1187 struct ubifs_dent_node *dent1, *dent2; 1188 union ubifs_key key; 1189 char key_buf[DBG_KEY_BUF_LEN]; 1190 1191 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1192 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1193 if (!dent1) 1194 return -ENOMEM; 1195 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1196 if (!dent2) { 1197 err = -ENOMEM; 1198 goto out_free; 1199 } 1200 1201 err = ubifs_tnc_read_node(c, zbr1, dent1); 1202 if (err) 1203 goto out_free; 1204 err = ubifs_validate_entry(c, dent1); 1205 if (err) 1206 goto out_free; 1207 1208 err = ubifs_tnc_read_node(c, zbr2, dent2); 1209 if (err) 1210 goto out_free; 1211 err = ubifs_validate_entry(c, dent2); 1212 if (err) 1213 goto out_free; 1214 1215 /* Make sure node keys are the same as in zbranch */ 1216 err = 1; 1217 key_read(c, &dent1->key, &key); 1218 if (keys_cmp(c, &zbr1->key, &key)) { 1219 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1220 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1221 DBG_KEY_BUF_LEN)); 1222 ubifs_err(c, "but it should have key %s according to tnc", 1223 dbg_snprintf_key(c, &zbr1->key, key_buf, 1224 DBG_KEY_BUF_LEN)); 1225 ubifs_dump_node(c, dent1); 1226 goto out_free; 1227 } 1228 1229 key_read(c, &dent2->key, &key); 1230 if (keys_cmp(c, &zbr2->key, &key)) { 1231 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1232 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1233 DBG_KEY_BUF_LEN)); 1234 ubifs_err(c, "but it should have key %s according to tnc", 1235 dbg_snprintf_key(c, &zbr2->key, key_buf, 1236 DBG_KEY_BUF_LEN)); 1237 ubifs_dump_node(c, dent2); 1238 goto out_free; 1239 } 1240 1241 nlen1 = le16_to_cpu(dent1->nlen); 1242 nlen2 = le16_to_cpu(dent2->nlen); 1243 1244 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1245 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1246 err = 0; 1247 goto out_free; 1248 } 1249 if (cmp == 0 && nlen1 == nlen2) 1250 ubifs_err(c, "2 xent/dent nodes with the same name"); 1251 else 1252 ubifs_err(c, "bad order of colliding key %s", 1253 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1254 1255 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1256 ubifs_dump_node(c, dent1); 1257 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1258 ubifs_dump_node(c, dent2); 1259 1260 out_free: 1261 kfree(dent2); 1262 kfree(dent1); 1263 return err; 1264 } 1265 1266 /** 1267 * dbg_check_znode - check if znode is all right. 1268 * @c: UBIFS file-system description object 1269 * @zbr: zbranch which points to this znode 1270 * 1271 * This function makes sure that znode referred to by @zbr is all right. 1272 * Returns zero if it is, and %-EINVAL if it is not. 1273 */ 1274 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1275 { 1276 struct ubifs_znode *znode = zbr->znode; 1277 struct ubifs_znode *zp = znode->parent; 1278 int n, err, cmp; 1279 1280 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1281 err = 1; 1282 goto out; 1283 } 1284 if (znode->level < 0) { 1285 err = 2; 1286 goto out; 1287 } 1288 if (znode->iip < 0 || znode->iip >= c->fanout) { 1289 err = 3; 1290 goto out; 1291 } 1292 1293 if (zbr->len == 0) 1294 /* Only dirty zbranch may have no on-flash nodes */ 1295 if (!ubifs_zn_dirty(znode)) { 1296 err = 4; 1297 goto out; 1298 } 1299 1300 if (ubifs_zn_dirty(znode)) { 1301 /* 1302 * If znode is dirty, its parent has to be dirty as well. The 1303 * order of the operation is important, so we have to have 1304 * memory barriers. 1305 */ 1306 smp_mb(); 1307 if (zp && !ubifs_zn_dirty(zp)) { 1308 /* 1309 * The dirty flag is atomic and is cleared outside the 1310 * TNC mutex, so znode's dirty flag may now have 1311 * been cleared. The child is always cleared before the 1312 * parent, so we just need to check again. 1313 */ 1314 smp_mb(); 1315 if (ubifs_zn_dirty(znode)) { 1316 err = 5; 1317 goto out; 1318 } 1319 } 1320 } 1321 1322 if (zp) { 1323 const union ubifs_key *min, *max; 1324 1325 if (znode->level != zp->level - 1) { 1326 err = 6; 1327 goto out; 1328 } 1329 1330 /* Make sure the 'parent' pointer in our znode is correct */ 1331 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1332 if (!err) { 1333 /* This zbranch does not exist in the parent */ 1334 err = 7; 1335 goto out; 1336 } 1337 1338 if (znode->iip >= zp->child_cnt) { 1339 err = 8; 1340 goto out; 1341 } 1342 1343 if (znode->iip != n) { 1344 /* This may happen only in case of collisions */ 1345 if (keys_cmp(c, &zp->zbranch[n].key, 1346 &zp->zbranch[znode->iip].key)) { 1347 err = 9; 1348 goto out; 1349 } 1350 n = znode->iip; 1351 } 1352 1353 /* 1354 * Make sure that the first key in our znode is greater than or 1355 * equal to the key in the pointing zbranch. 1356 */ 1357 min = &zbr->key; 1358 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1359 if (cmp == 1) { 1360 err = 10; 1361 goto out; 1362 } 1363 1364 if (n + 1 < zp->child_cnt) { 1365 max = &zp->zbranch[n + 1].key; 1366 1367 /* 1368 * Make sure the last key in our znode is less or 1369 * equivalent than the key in the zbranch which goes 1370 * after our pointing zbranch. 1371 */ 1372 cmp = keys_cmp(c, max, 1373 &znode->zbranch[znode->child_cnt - 1].key); 1374 if (cmp == -1) { 1375 err = 11; 1376 goto out; 1377 } 1378 } 1379 } else { 1380 /* This may only be root znode */ 1381 if (zbr != &c->zroot) { 1382 err = 12; 1383 goto out; 1384 } 1385 } 1386 1387 /* 1388 * Make sure that next key is greater or equivalent then the previous 1389 * one. 1390 */ 1391 for (n = 1; n < znode->child_cnt; n++) { 1392 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1393 &znode->zbranch[n].key); 1394 if (cmp > 0) { 1395 err = 13; 1396 goto out; 1397 } 1398 if (cmp == 0) { 1399 /* This can only be keys with colliding hash */ 1400 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1401 err = 14; 1402 goto out; 1403 } 1404 1405 if (znode->level != 0 || c->replaying) 1406 continue; 1407 1408 /* 1409 * Colliding keys should follow binary order of 1410 * corresponding xentry/dentry names. 1411 */ 1412 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1413 &znode->zbranch[n]); 1414 if (err < 0) 1415 return err; 1416 if (err) { 1417 err = 15; 1418 goto out; 1419 } 1420 } 1421 } 1422 1423 for (n = 0; n < znode->child_cnt; n++) { 1424 if (!znode->zbranch[n].znode && 1425 (znode->zbranch[n].lnum == 0 || 1426 znode->zbranch[n].len == 0)) { 1427 err = 16; 1428 goto out; 1429 } 1430 1431 if (znode->zbranch[n].lnum != 0 && 1432 znode->zbranch[n].len == 0) { 1433 err = 17; 1434 goto out; 1435 } 1436 1437 if (znode->zbranch[n].lnum == 0 && 1438 znode->zbranch[n].len != 0) { 1439 err = 18; 1440 goto out; 1441 } 1442 1443 if (znode->zbranch[n].lnum == 0 && 1444 znode->zbranch[n].offs != 0) { 1445 err = 19; 1446 goto out; 1447 } 1448 1449 if (znode->level != 0 && znode->zbranch[n].znode) 1450 if (znode->zbranch[n].znode->parent != znode) { 1451 err = 20; 1452 goto out; 1453 } 1454 } 1455 1456 return 0; 1457 1458 out: 1459 ubifs_err(c, "failed, error %d", err); 1460 ubifs_msg(c, "dump of the znode"); 1461 ubifs_dump_znode(c, znode); 1462 if (zp) { 1463 ubifs_msg(c, "dump of the parent znode"); 1464 ubifs_dump_znode(c, zp); 1465 } 1466 dump_stack(); 1467 return -EINVAL; 1468 } 1469 #else 1470 1471 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1472 { 1473 return 0; 1474 } 1475 1476 void dbg_debugfs_exit_fs(struct ubifs_info *c) 1477 { 1478 return; 1479 } 1480 1481 int ubifs_debugging_init(struct ubifs_info *c) 1482 { 1483 return 0; 1484 } 1485 void ubifs_debugging_exit(struct ubifs_info *c) 1486 { 1487 } 1488 int dbg_check_filesystem(struct ubifs_info *c) 1489 { 1490 return 0; 1491 } 1492 int dbg_debugfs_init_fs(struct ubifs_info *c) 1493 { 1494 return 0; 1495 } 1496 #endif 1497 1498 #ifndef __UBOOT__ 1499 /** 1500 * dbg_check_tnc - check TNC tree. 1501 * @c: UBIFS file-system description object 1502 * @extra: do extra checks that are possible at start commit 1503 * 1504 * This function traverses whole TNC tree and checks every znode. Returns zero 1505 * if everything is all right and %-EINVAL if something is wrong with TNC. 1506 */ 1507 int dbg_check_tnc(struct ubifs_info *c, int extra) 1508 { 1509 struct ubifs_znode *znode; 1510 long clean_cnt = 0, dirty_cnt = 0; 1511 int err, last; 1512 1513 if (!dbg_is_chk_index(c)) 1514 return 0; 1515 1516 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1517 if (!c->zroot.znode) 1518 return 0; 1519 1520 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1521 while (1) { 1522 struct ubifs_znode *prev; 1523 struct ubifs_zbranch *zbr; 1524 1525 if (!znode->parent) 1526 zbr = &c->zroot; 1527 else 1528 zbr = &znode->parent->zbranch[znode->iip]; 1529 1530 err = dbg_check_znode(c, zbr); 1531 if (err) 1532 return err; 1533 1534 if (extra) { 1535 if (ubifs_zn_dirty(znode)) 1536 dirty_cnt += 1; 1537 else 1538 clean_cnt += 1; 1539 } 1540 1541 prev = znode; 1542 znode = ubifs_tnc_postorder_next(znode); 1543 if (!znode) 1544 break; 1545 1546 /* 1547 * If the last key of this znode is equivalent to the first key 1548 * of the next znode (collision), then check order of the keys. 1549 */ 1550 last = prev->child_cnt - 1; 1551 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1552 !keys_cmp(c, &prev->zbranch[last].key, 1553 &znode->zbranch[0].key)) { 1554 err = dbg_check_key_order(c, &prev->zbranch[last], 1555 &znode->zbranch[0]); 1556 if (err < 0) 1557 return err; 1558 if (err) { 1559 ubifs_msg(c, "first znode"); 1560 ubifs_dump_znode(c, prev); 1561 ubifs_msg(c, "second znode"); 1562 ubifs_dump_znode(c, znode); 1563 return -EINVAL; 1564 } 1565 } 1566 } 1567 1568 if (extra) { 1569 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1570 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1571 atomic_long_read(&c->clean_zn_cnt), 1572 clean_cnt); 1573 return -EINVAL; 1574 } 1575 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1576 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1577 atomic_long_read(&c->dirty_zn_cnt), 1578 dirty_cnt); 1579 return -EINVAL; 1580 } 1581 } 1582 1583 return 0; 1584 } 1585 #else 1586 int dbg_check_tnc(struct ubifs_info *c, int extra) 1587 { 1588 return 0; 1589 } 1590 #endif 1591 1592 /** 1593 * dbg_walk_index - walk the on-flash index. 1594 * @c: UBIFS file-system description object 1595 * @leaf_cb: called for each leaf node 1596 * @znode_cb: called for each indexing node 1597 * @priv: private data which is passed to callbacks 1598 * 1599 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1600 * node and @znode_cb for each indexing node. Returns zero in case of success 1601 * and a negative error code in case of failure. 1602 * 1603 * It would be better if this function removed every znode it pulled to into 1604 * the TNC, so that the behavior more closely matched the non-debugging 1605 * behavior. 1606 */ 1607 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1608 dbg_znode_callback znode_cb, void *priv) 1609 { 1610 int err; 1611 struct ubifs_zbranch *zbr; 1612 struct ubifs_znode *znode, *child; 1613 1614 mutex_lock(&c->tnc_mutex); 1615 /* If the root indexing node is not in TNC - pull it */ 1616 if (!c->zroot.znode) { 1617 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1618 if (IS_ERR(c->zroot.znode)) { 1619 err = PTR_ERR(c->zroot.znode); 1620 c->zroot.znode = NULL; 1621 goto out_unlock; 1622 } 1623 } 1624 1625 /* 1626 * We are going to traverse the indexing tree in the postorder manner. 1627 * Go down and find the leftmost indexing node where we are going to 1628 * start from. 1629 */ 1630 znode = c->zroot.znode; 1631 while (znode->level > 0) { 1632 zbr = &znode->zbranch[0]; 1633 child = zbr->znode; 1634 if (!child) { 1635 child = ubifs_load_znode(c, zbr, znode, 0); 1636 if (IS_ERR(child)) { 1637 err = PTR_ERR(child); 1638 goto out_unlock; 1639 } 1640 zbr->znode = child; 1641 } 1642 1643 znode = child; 1644 } 1645 1646 /* Iterate over all indexing nodes */ 1647 while (1) { 1648 int idx; 1649 1650 cond_resched(); 1651 1652 if (znode_cb) { 1653 err = znode_cb(c, znode, priv); 1654 if (err) { 1655 ubifs_err(c, "znode checking function returned error %d", 1656 err); 1657 ubifs_dump_znode(c, znode); 1658 goto out_dump; 1659 } 1660 } 1661 if (leaf_cb && znode->level == 0) { 1662 for (idx = 0; idx < znode->child_cnt; idx++) { 1663 zbr = &znode->zbranch[idx]; 1664 err = leaf_cb(c, zbr, priv); 1665 if (err) { 1666 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1667 err, zbr->lnum, zbr->offs); 1668 goto out_dump; 1669 } 1670 } 1671 } 1672 1673 if (!znode->parent) 1674 break; 1675 1676 idx = znode->iip + 1; 1677 znode = znode->parent; 1678 if (idx < znode->child_cnt) { 1679 /* Switch to the next index in the parent */ 1680 zbr = &znode->zbranch[idx]; 1681 child = zbr->znode; 1682 if (!child) { 1683 child = ubifs_load_znode(c, zbr, znode, idx); 1684 if (IS_ERR(child)) { 1685 err = PTR_ERR(child); 1686 goto out_unlock; 1687 } 1688 zbr->znode = child; 1689 } 1690 znode = child; 1691 } else 1692 /* 1693 * This is the last child, switch to the parent and 1694 * continue. 1695 */ 1696 continue; 1697 1698 /* Go to the lowest leftmost znode in the new sub-tree */ 1699 while (znode->level > 0) { 1700 zbr = &znode->zbranch[0]; 1701 child = zbr->znode; 1702 if (!child) { 1703 child = ubifs_load_znode(c, zbr, znode, 0); 1704 if (IS_ERR(child)) { 1705 err = PTR_ERR(child); 1706 goto out_unlock; 1707 } 1708 zbr->znode = child; 1709 } 1710 znode = child; 1711 } 1712 } 1713 1714 mutex_unlock(&c->tnc_mutex); 1715 return 0; 1716 1717 out_dump: 1718 if (znode->parent) 1719 zbr = &znode->parent->zbranch[znode->iip]; 1720 else 1721 zbr = &c->zroot; 1722 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1723 ubifs_dump_znode(c, znode); 1724 out_unlock: 1725 mutex_unlock(&c->tnc_mutex); 1726 return err; 1727 } 1728 1729 /** 1730 * add_size - add znode size to partially calculated index size. 1731 * @c: UBIFS file-system description object 1732 * @znode: znode to add size for 1733 * @priv: partially calculated index size 1734 * 1735 * This is a helper function for 'dbg_check_idx_size()' which is called for 1736 * every indexing node and adds its size to the 'long long' variable pointed to 1737 * by @priv. 1738 */ 1739 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1740 { 1741 long long *idx_size = priv; 1742 int add; 1743 1744 add = ubifs_idx_node_sz(c, znode->child_cnt); 1745 add = ALIGN(add, 8); 1746 *idx_size += add; 1747 return 0; 1748 } 1749 1750 /** 1751 * dbg_check_idx_size - check index size. 1752 * @c: UBIFS file-system description object 1753 * @idx_size: size to check 1754 * 1755 * This function walks the UBIFS index, calculates its size and checks that the 1756 * size is equivalent to @idx_size. Returns zero in case of success and a 1757 * negative error code in case of failure. 1758 */ 1759 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1760 { 1761 int err; 1762 long long calc = 0; 1763 1764 if (!dbg_is_chk_index(c)) 1765 return 0; 1766 1767 err = dbg_walk_index(c, NULL, add_size, &calc); 1768 if (err) { 1769 ubifs_err(c, "error %d while walking the index", err); 1770 return err; 1771 } 1772 1773 if (calc != idx_size) { 1774 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1775 calc, idx_size); 1776 dump_stack(); 1777 return -EINVAL; 1778 } 1779 1780 return 0; 1781 } 1782 1783 #ifndef __UBOOT__ 1784 /** 1785 * struct fsck_inode - information about an inode used when checking the file-system. 1786 * @rb: link in the RB-tree of inodes 1787 * @inum: inode number 1788 * @mode: inode type, permissions, etc 1789 * @nlink: inode link count 1790 * @xattr_cnt: count of extended attributes 1791 * @references: how many directory/xattr entries refer this inode (calculated 1792 * while walking the index) 1793 * @calc_cnt: for directory inode count of child directories 1794 * @size: inode size (read from on-flash inode) 1795 * @xattr_sz: summary size of all extended attributes (read from on-flash 1796 * inode) 1797 * @calc_sz: for directories calculated directory size 1798 * @calc_xcnt: count of extended attributes 1799 * @calc_xsz: calculated summary size of all extended attributes 1800 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1801 * inode (read from on-flash inode) 1802 * @calc_xnms: calculated sum of lengths of all extended attribute names 1803 */ 1804 struct fsck_inode { 1805 struct rb_node rb; 1806 ino_t inum; 1807 umode_t mode; 1808 unsigned int nlink; 1809 unsigned int xattr_cnt; 1810 int references; 1811 int calc_cnt; 1812 long long size; 1813 unsigned int xattr_sz; 1814 long long calc_sz; 1815 long long calc_xcnt; 1816 long long calc_xsz; 1817 unsigned int xattr_nms; 1818 long long calc_xnms; 1819 }; 1820 1821 /** 1822 * struct fsck_data - private FS checking information. 1823 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1824 */ 1825 struct fsck_data { 1826 struct rb_root inodes; 1827 }; 1828 1829 /** 1830 * add_inode - add inode information to RB-tree of inodes. 1831 * @c: UBIFS file-system description object 1832 * @fsckd: FS checking information 1833 * @ino: raw UBIFS inode to add 1834 * 1835 * This is a helper function for 'check_leaf()' which adds information about 1836 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1837 * case of success and a negative error code in case of failure. 1838 */ 1839 static struct fsck_inode *add_inode(struct ubifs_info *c, 1840 struct fsck_data *fsckd, 1841 struct ubifs_ino_node *ino) 1842 { 1843 struct rb_node **p, *parent = NULL; 1844 struct fsck_inode *fscki; 1845 ino_t inum = key_inum_flash(c, &ino->key); 1846 struct inode *inode; 1847 struct ubifs_inode *ui; 1848 1849 p = &fsckd->inodes.rb_node; 1850 while (*p) { 1851 parent = *p; 1852 fscki = rb_entry(parent, struct fsck_inode, rb); 1853 if (inum < fscki->inum) 1854 p = &(*p)->rb_left; 1855 else if (inum > fscki->inum) 1856 p = &(*p)->rb_right; 1857 else 1858 return fscki; 1859 } 1860 1861 if (inum > c->highest_inum) { 1862 ubifs_err(c, "too high inode number, max. is %lu", 1863 (unsigned long)c->highest_inum); 1864 return ERR_PTR(-EINVAL); 1865 } 1866 1867 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1868 if (!fscki) 1869 return ERR_PTR(-ENOMEM); 1870 1871 inode = ilookup(c->vfs_sb, inum); 1872 1873 fscki->inum = inum; 1874 /* 1875 * If the inode is present in the VFS inode cache, use it instead of 1876 * the on-flash inode which might be out-of-date. E.g., the size might 1877 * be out-of-date. If we do not do this, the following may happen, for 1878 * example: 1879 * 1. A power cut happens 1880 * 2. We mount the file-system R/O, the replay process fixes up the 1881 * inode size in the VFS cache, but on on-flash. 1882 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1883 * size. 1884 */ 1885 if (!inode) { 1886 fscki->nlink = le32_to_cpu(ino->nlink); 1887 fscki->size = le64_to_cpu(ino->size); 1888 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1889 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1890 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1891 fscki->mode = le32_to_cpu(ino->mode); 1892 } else { 1893 ui = ubifs_inode(inode); 1894 fscki->nlink = inode->i_nlink; 1895 fscki->size = inode->i_size; 1896 fscki->xattr_cnt = ui->xattr_cnt; 1897 fscki->xattr_sz = ui->xattr_size; 1898 fscki->xattr_nms = ui->xattr_names; 1899 fscki->mode = inode->i_mode; 1900 iput(inode); 1901 } 1902 1903 if (S_ISDIR(fscki->mode)) { 1904 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1905 fscki->calc_cnt = 2; 1906 } 1907 1908 rb_link_node(&fscki->rb, parent, p); 1909 rb_insert_color(&fscki->rb, &fsckd->inodes); 1910 1911 return fscki; 1912 } 1913 1914 /** 1915 * search_inode - search inode in the RB-tree of inodes. 1916 * @fsckd: FS checking information 1917 * @inum: inode number to search 1918 * 1919 * This is a helper function for 'check_leaf()' which searches inode @inum in 1920 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1921 * the inode was not found. 1922 */ 1923 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1924 { 1925 struct rb_node *p; 1926 struct fsck_inode *fscki; 1927 1928 p = fsckd->inodes.rb_node; 1929 while (p) { 1930 fscki = rb_entry(p, struct fsck_inode, rb); 1931 if (inum < fscki->inum) 1932 p = p->rb_left; 1933 else if (inum > fscki->inum) 1934 p = p->rb_right; 1935 else 1936 return fscki; 1937 } 1938 return NULL; 1939 } 1940 1941 /** 1942 * read_add_inode - read inode node and add it to RB-tree of inodes. 1943 * @c: UBIFS file-system description object 1944 * @fsckd: FS checking information 1945 * @inum: inode number to read 1946 * 1947 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1948 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1949 * information pointer in case of success and a negative error code in case of 1950 * failure. 1951 */ 1952 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1953 struct fsck_data *fsckd, ino_t inum) 1954 { 1955 int n, err; 1956 union ubifs_key key; 1957 struct ubifs_znode *znode; 1958 struct ubifs_zbranch *zbr; 1959 struct ubifs_ino_node *ino; 1960 struct fsck_inode *fscki; 1961 1962 fscki = search_inode(fsckd, inum); 1963 if (fscki) 1964 return fscki; 1965 1966 ino_key_init(c, &key, inum); 1967 err = ubifs_lookup_level0(c, &key, &znode, &n); 1968 if (!err) { 1969 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1970 return ERR_PTR(-ENOENT); 1971 } else if (err < 0) { 1972 ubifs_err(c, "error %d while looking up inode %lu", 1973 err, (unsigned long)inum); 1974 return ERR_PTR(err); 1975 } 1976 1977 zbr = &znode->zbranch[n]; 1978 if (zbr->len < UBIFS_INO_NODE_SZ) { 1979 ubifs_err(c, "bad node %lu node length %d", 1980 (unsigned long)inum, zbr->len); 1981 return ERR_PTR(-EINVAL); 1982 } 1983 1984 ino = kmalloc(zbr->len, GFP_NOFS); 1985 if (!ino) 1986 return ERR_PTR(-ENOMEM); 1987 1988 err = ubifs_tnc_read_node(c, zbr, ino); 1989 if (err) { 1990 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1991 zbr->lnum, zbr->offs, err); 1992 kfree(ino); 1993 return ERR_PTR(err); 1994 } 1995 1996 fscki = add_inode(c, fsckd, ino); 1997 kfree(ino); 1998 if (IS_ERR(fscki)) { 1999 ubifs_err(c, "error %ld while adding inode %lu node", 2000 PTR_ERR(fscki), (unsigned long)inum); 2001 return fscki; 2002 } 2003 2004 return fscki; 2005 } 2006 2007 /** 2008 * check_leaf - check leaf node. 2009 * @c: UBIFS file-system description object 2010 * @zbr: zbranch of the leaf node to check 2011 * @priv: FS checking information 2012 * 2013 * This is a helper function for 'dbg_check_filesystem()' which is called for 2014 * every single leaf node while walking the indexing tree. It checks that the 2015 * leaf node referred from the indexing tree exists, has correct CRC, and does 2016 * some other basic validation. This function is also responsible for building 2017 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2018 * calculates reference count, size, etc for each inode in order to later 2019 * compare them to the information stored inside the inodes and detect possible 2020 * inconsistencies. Returns zero in case of success and a negative error code 2021 * in case of failure. 2022 */ 2023 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2024 void *priv) 2025 { 2026 ino_t inum; 2027 void *node; 2028 struct ubifs_ch *ch; 2029 int err, type = key_type(c, &zbr->key); 2030 struct fsck_inode *fscki; 2031 2032 if (zbr->len < UBIFS_CH_SZ) { 2033 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2034 zbr->len, zbr->lnum, zbr->offs); 2035 return -EINVAL; 2036 } 2037 2038 node = kmalloc(zbr->len, GFP_NOFS); 2039 if (!node) 2040 return -ENOMEM; 2041 2042 err = ubifs_tnc_read_node(c, zbr, node); 2043 if (err) { 2044 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2045 zbr->lnum, zbr->offs, err); 2046 goto out_free; 2047 } 2048 2049 /* If this is an inode node, add it to RB-tree of inodes */ 2050 if (type == UBIFS_INO_KEY) { 2051 fscki = add_inode(c, priv, node); 2052 if (IS_ERR(fscki)) { 2053 err = PTR_ERR(fscki); 2054 ubifs_err(c, "error %d while adding inode node", err); 2055 goto out_dump; 2056 } 2057 goto out; 2058 } 2059 2060 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2061 type != UBIFS_DATA_KEY) { 2062 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2063 type, zbr->lnum, zbr->offs); 2064 err = -EINVAL; 2065 goto out_free; 2066 } 2067 2068 ch = node; 2069 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2070 ubifs_err(c, "too high sequence number, max. is %llu", 2071 c->max_sqnum); 2072 err = -EINVAL; 2073 goto out_dump; 2074 } 2075 2076 if (type == UBIFS_DATA_KEY) { 2077 long long blk_offs; 2078 struct ubifs_data_node *dn = node; 2079 2080 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2081 2082 /* 2083 * Search the inode node this data node belongs to and insert 2084 * it to the RB-tree of inodes. 2085 */ 2086 inum = key_inum_flash(c, &dn->key); 2087 fscki = read_add_inode(c, priv, inum); 2088 if (IS_ERR(fscki)) { 2089 err = PTR_ERR(fscki); 2090 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2091 err, (unsigned long)inum); 2092 goto out_dump; 2093 } 2094 2095 /* Make sure the data node is within inode size */ 2096 blk_offs = key_block_flash(c, &dn->key); 2097 blk_offs <<= UBIFS_BLOCK_SHIFT; 2098 blk_offs += le32_to_cpu(dn->size); 2099 if (blk_offs > fscki->size) { 2100 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2101 zbr->lnum, zbr->offs, fscki->size); 2102 err = -EINVAL; 2103 goto out_dump; 2104 } 2105 } else { 2106 int nlen; 2107 struct ubifs_dent_node *dent = node; 2108 struct fsck_inode *fscki1; 2109 2110 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2111 2112 err = ubifs_validate_entry(c, dent); 2113 if (err) 2114 goto out_dump; 2115 2116 /* 2117 * Search the inode node this entry refers to and the parent 2118 * inode node and insert them to the RB-tree of inodes. 2119 */ 2120 inum = le64_to_cpu(dent->inum); 2121 fscki = read_add_inode(c, priv, inum); 2122 if (IS_ERR(fscki)) { 2123 err = PTR_ERR(fscki); 2124 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2125 err, (unsigned long)inum); 2126 goto out_dump; 2127 } 2128 2129 /* Count how many direntries or xentries refers this inode */ 2130 fscki->references += 1; 2131 2132 inum = key_inum_flash(c, &dent->key); 2133 fscki1 = read_add_inode(c, priv, inum); 2134 if (IS_ERR(fscki1)) { 2135 err = PTR_ERR(fscki1); 2136 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2137 err, (unsigned long)inum); 2138 goto out_dump; 2139 } 2140 2141 nlen = le16_to_cpu(dent->nlen); 2142 if (type == UBIFS_XENT_KEY) { 2143 fscki1->calc_xcnt += 1; 2144 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2145 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2146 fscki1->calc_xnms += nlen; 2147 } else { 2148 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2149 if (dent->type == UBIFS_ITYPE_DIR) 2150 fscki1->calc_cnt += 1; 2151 } 2152 } 2153 2154 out: 2155 kfree(node); 2156 return 0; 2157 2158 out_dump: 2159 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2160 ubifs_dump_node(c, node); 2161 out_free: 2162 kfree(node); 2163 return err; 2164 } 2165 2166 /** 2167 * free_inodes - free RB-tree of inodes. 2168 * @fsckd: FS checking information 2169 */ 2170 static void free_inodes(struct fsck_data *fsckd) 2171 { 2172 struct fsck_inode *fscki, *n; 2173 2174 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2175 kfree(fscki); 2176 } 2177 2178 /** 2179 * check_inodes - checks all inodes. 2180 * @c: UBIFS file-system description object 2181 * @fsckd: FS checking information 2182 * 2183 * This is a helper function for 'dbg_check_filesystem()' which walks the 2184 * RB-tree of inodes after the index scan has been finished, and checks that 2185 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2186 * %-EINVAL if not, and a negative error code in case of failure. 2187 */ 2188 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2189 { 2190 int n, err; 2191 union ubifs_key key; 2192 struct ubifs_znode *znode; 2193 struct ubifs_zbranch *zbr; 2194 struct ubifs_ino_node *ino; 2195 struct fsck_inode *fscki; 2196 struct rb_node *this = rb_first(&fsckd->inodes); 2197 2198 while (this) { 2199 fscki = rb_entry(this, struct fsck_inode, rb); 2200 this = rb_next(this); 2201 2202 if (S_ISDIR(fscki->mode)) { 2203 /* 2204 * Directories have to have exactly one reference (they 2205 * cannot have hardlinks), although root inode is an 2206 * exception. 2207 */ 2208 if (fscki->inum != UBIFS_ROOT_INO && 2209 fscki->references != 1) { 2210 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2211 (unsigned long)fscki->inum, 2212 fscki->references); 2213 goto out_dump; 2214 } 2215 if (fscki->inum == UBIFS_ROOT_INO && 2216 fscki->references != 0) { 2217 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2218 (unsigned long)fscki->inum, 2219 fscki->references); 2220 goto out_dump; 2221 } 2222 if (fscki->calc_sz != fscki->size) { 2223 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2224 (unsigned long)fscki->inum, 2225 fscki->size, fscki->calc_sz); 2226 goto out_dump; 2227 } 2228 if (fscki->calc_cnt != fscki->nlink) { 2229 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2230 (unsigned long)fscki->inum, 2231 fscki->nlink, fscki->calc_cnt); 2232 goto out_dump; 2233 } 2234 } else { 2235 if (fscki->references != fscki->nlink) { 2236 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2237 (unsigned long)fscki->inum, 2238 fscki->nlink, fscki->references); 2239 goto out_dump; 2240 } 2241 } 2242 if (fscki->xattr_sz != fscki->calc_xsz) { 2243 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2244 (unsigned long)fscki->inum, fscki->xattr_sz, 2245 fscki->calc_xsz); 2246 goto out_dump; 2247 } 2248 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2249 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2250 (unsigned long)fscki->inum, 2251 fscki->xattr_cnt, fscki->calc_xcnt); 2252 goto out_dump; 2253 } 2254 if (fscki->xattr_nms != fscki->calc_xnms) { 2255 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2256 (unsigned long)fscki->inum, fscki->xattr_nms, 2257 fscki->calc_xnms); 2258 goto out_dump; 2259 } 2260 } 2261 2262 return 0; 2263 2264 out_dump: 2265 /* Read the bad inode and dump it */ 2266 ino_key_init(c, &key, fscki->inum); 2267 err = ubifs_lookup_level0(c, &key, &znode, &n); 2268 if (!err) { 2269 ubifs_err(c, "inode %lu not found in index", 2270 (unsigned long)fscki->inum); 2271 return -ENOENT; 2272 } else if (err < 0) { 2273 ubifs_err(c, "error %d while looking up inode %lu", 2274 err, (unsigned long)fscki->inum); 2275 return err; 2276 } 2277 2278 zbr = &znode->zbranch[n]; 2279 ino = kmalloc(zbr->len, GFP_NOFS); 2280 if (!ino) 2281 return -ENOMEM; 2282 2283 err = ubifs_tnc_read_node(c, zbr, ino); 2284 if (err) { 2285 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2286 zbr->lnum, zbr->offs, err); 2287 kfree(ino); 2288 return err; 2289 } 2290 2291 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2292 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2293 ubifs_dump_node(c, ino); 2294 kfree(ino); 2295 return -EINVAL; 2296 } 2297 2298 /** 2299 * dbg_check_filesystem - check the file-system. 2300 * @c: UBIFS file-system description object 2301 * 2302 * This function checks the file system, namely: 2303 * o makes sure that all leaf nodes exist and their CRCs are correct; 2304 * o makes sure inode nlink, size, xattr size/count are correct (for all 2305 * inodes). 2306 * 2307 * The function reads whole indexing tree and all nodes, so it is pretty 2308 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2309 * not, and a negative error code in case of failure. 2310 */ 2311 int dbg_check_filesystem(struct ubifs_info *c) 2312 { 2313 int err; 2314 struct fsck_data fsckd; 2315 2316 if (!dbg_is_chk_fs(c)) 2317 return 0; 2318 2319 fsckd.inodes = RB_ROOT; 2320 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2321 if (err) 2322 goto out_free; 2323 2324 err = check_inodes(c, &fsckd); 2325 if (err) 2326 goto out_free; 2327 2328 free_inodes(&fsckd); 2329 return 0; 2330 2331 out_free: 2332 ubifs_err(c, "file-system check failed with error %d", err); 2333 dump_stack(); 2334 free_inodes(&fsckd); 2335 return err; 2336 } 2337 2338 /** 2339 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2340 * @c: UBIFS file-system description object 2341 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2342 * 2343 * This function returns zero if the list of data nodes is sorted correctly, 2344 * and %-EINVAL if not. 2345 */ 2346 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2347 { 2348 struct list_head *cur; 2349 struct ubifs_scan_node *sa, *sb; 2350 2351 if (!dbg_is_chk_gen(c)) 2352 return 0; 2353 2354 for (cur = head->next; cur->next != head; cur = cur->next) { 2355 ino_t inuma, inumb; 2356 uint32_t blka, blkb; 2357 2358 cond_resched(); 2359 sa = container_of(cur, struct ubifs_scan_node, list); 2360 sb = container_of(cur->next, struct ubifs_scan_node, list); 2361 2362 if (sa->type != UBIFS_DATA_NODE) { 2363 ubifs_err(c, "bad node type %d", sa->type); 2364 ubifs_dump_node(c, sa->node); 2365 return -EINVAL; 2366 } 2367 if (sb->type != UBIFS_DATA_NODE) { 2368 ubifs_err(c, "bad node type %d", sb->type); 2369 ubifs_dump_node(c, sb->node); 2370 return -EINVAL; 2371 } 2372 2373 inuma = key_inum(c, &sa->key); 2374 inumb = key_inum(c, &sb->key); 2375 2376 if (inuma < inumb) 2377 continue; 2378 if (inuma > inumb) { 2379 ubifs_err(c, "larger inum %lu goes before inum %lu", 2380 (unsigned long)inuma, (unsigned long)inumb); 2381 goto error_dump; 2382 } 2383 2384 blka = key_block(c, &sa->key); 2385 blkb = key_block(c, &sb->key); 2386 2387 if (blka > blkb) { 2388 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2389 goto error_dump; 2390 } 2391 if (blka == blkb) { 2392 ubifs_err(c, "two data nodes for the same block"); 2393 goto error_dump; 2394 } 2395 } 2396 2397 return 0; 2398 2399 error_dump: 2400 ubifs_dump_node(c, sa->node); 2401 ubifs_dump_node(c, sb->node); 2402 return -EINVAL; 2403 } 2404 2405 /** 2406 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2407 * @c: UBIFS file-system description object 2408 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2409 * 2410 * This function returns zero if the list of non-data nodes is sorted correctly, 2411 * and %-EINVAL if not. 2412 */ 2413 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2414 { 2415 struct list_head *cur; 2416 struct ubifs_scan_node *sa, *sb; 2417 2418 if (!dbg_is_chk_gen(c)) 2419 return 0; 2420 2421 for (cur = head->next; cur->next != head; cur = cur->next) { 2422 ino_t inuma, inumb; 2423 uint32_t hasha, hashb; 2424 2425 cond_resched(); 2426 sa = container_of(cur, struct ubifs_scan_node, list); 2427 sb = container_of(cur->next, struct ubifs_scan_node, list); 2428 2429 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2430 sa->type != UBIFS_XENT_NODE) { 2431 ubifs_err(c, "bad node type %d", sa->type); 2432 ubifs_dump_node(c, sa->node); 2433 return -EINVAL; 2434 } 2435 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2436 sa->type != UBIFS_XENT_NODE) { 2437 ubifs_err(c, "bad node type %d", sb->type); 2438 ubifs_dump_node(c, sb->node); 2439 return -EINVAL; 2440 } 2441 2442 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2443 ubifs_err(c, "non-inode node goes before inode node"); 2444 goto error_dump; 2445 } 2446 2447 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2448 continue; 2449 2450 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2451 /* Inode nodes are sorted in descending size order */ 2452 if (sa->len < sb->len) { 2453 ubifs_err(c, "smaller inode node goes first"); 2454 goto error_dump; 2455 } 2456 continue; 2457 } 2458 2459 /* 2460 * This is either a dentry or xentry, which should be sorted in 2461 * ascending (parent ino, hash) order. 2462 */ 2463 inuma = key_inum(c, &sa->key); 2464 inumb = key_inum(c, &sb->key); 2465 2466 if (inuma < inumb) 2467 continue; 2468 if (inuma > inumb) { 2469 ubifs_err(c, "larger inum %lu goes before inum %lu", 2470 (unsigned long)inuma, (unsigned long)inumb); 2471 goto error_dump; 2472 } 2473 2474 hasha = key_block(c, &sa->key); 2475 hashb = key_block(c, &sb->key); 2476 2477 if (hasha > hashb) { 2478 ubifs_err(c, "larger hash %u goes before %u", 2479 hasha, hashb); 2480 goto error_dump; 2481 } 2482 } 2483 2484 return 0; 2485 2486 error_dump: 2487 ubifs_msg(c, "dumping first node"); 2488 ubifs_dump_node(c, sa->node); 2489 ubifs_msg(c, "dumping second node"); 2490 ubifs_dump_node(c, sb->node); 2491 return -EINVAL; 2492 return 0; 2493 } 2494 2495 static inline int chance(unsigned int n, unsigned int out_of) 2496 { 2497 return !!((prandom_u32() % out_of) + 1 <= n); 2498 2499 } 2500 2501 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2502 { 2503 struct ubifs_debug_info *d = c->dbg; 2504 2505 ubifs_assert(dbg_is_tst_rcvry(c)); 2506 2507 if (!d->pc_cnt) { 2508 /* First call - decide delay to the power cut */ 2509 if (chance(1, 2)) { 2510 unsigned long delay; 2511 2512 if (chance(1, 2)) { 2513 d->pc_delay = 1; 2514 /* Fail within 1 minute */ 2515 delay = prandom_u32() % 60000; 2516 d->pc_timeout = jiffies; 2517 d->pc_timeout += msecs_to_jiffies(delay); 2518 ubifs_warn(c, "failing after %lums", delay); 2519 } else { 2520 d->pc_delay = 2; 2521 delay = prandom_u32() % 10000; 2522 /* Fail within 10000 operations */ 2523 d->pc_cnt_max = delay; 2524 ubifs_warn(c, "failing after %lu calls", delay); 2525 } 2526 } 2527 2528 d->pc_cnt += 1; 2529 } 2530 2531 /* Determine if failure delay has expired */ 2532 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2533 return 0; 2534 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2535 return 0; 2536 2537 if (lnum == UBIFS_SB_LNUM) { 2538 if (write && chance(1, 2)) 2539 return 0; 2540 if (chance(19, 20)) 2541 return 0; 2542 ubifs_warn(c, "failing in super block LEB %d", lnum); 2543 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2544 if (chance(19, 20)) 2545 return 0; 2546 ubifs_warn(c, "failing in master LEB %d", lnum); 2547 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2548 if (write && chance(99, 100)) 2549 return 0; 2550 if (chance(399, 400)) 2551 return 0; 2552 ubifs_warn(c, "failing in log LEB %d", lnum); 2553 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2554 if (write && chance(7, 8)) 2555 return 0; 2556 if (chance(19, 20)) 2557 return 0; 2558 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2559 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2560 if (write && chance(1, 2)) 2561 return 0; 2562 if (chance(9, 10)) 2563 return 0; 2564 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2565 } else if (lnum == c->ihead_lnum) { 2566 if (chance(99, 100)) 2567 return 0; 2568 ubifs_warn(c, "failing in index head LEB %d", lnum); 2569 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2570 if (chance(9, 10)) 2571 return 0; 2572 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2573 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2574 !ubifs_search_bud(c, lnum)) { 2575 if (chance(19, 20)) 2576 return 0; 2577 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2578 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2579 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2580 if (chance(999, 1000)) 2581 return 0; 2582 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2583 } else { 2584 if (chance(9999, 10000)) 2585 return 0; 2586 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2587 } 2588 2589 d->pc_happened = 1; 2590 ubifs_warn(c, "========== Power cut emulated =========="); 2591 dump_stack(); 2592 return 1; 2593 } 2594 2595 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2596 unsigned int len) 2597 { 2598 unsigned int from, to, ffs = chance(1, 2); 2599 unsigned char *p = (void *)buf; 2600 2601 from = prandom_u32() % len; 2602 /* Corruption span max to end of write unit */ 2603 to = min(len, ALIGN(from + 1, c->max_write_size)); 2604 2605 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2606 ffs ? "0xFFs" : "random data"); 2607 2608 if (ffs) 2609 memset(p + from, 0xFF, to - from); 2610 else 2611 prandom_bytes(p + from, to - from); 2612 2613 return to; 2614 } 2615 2616 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2617 int offs, int len) 2618 { 2619 int err, failing; 2620 2621 if (c->dbg->pc_happened) 2622 return -EROFS; 2623 2624 failing = power_cut_emulated(c, lnum, 1); 2625 if (failing) { 2626 len = corrupt_data(c, buf, len); 2627 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2628 len, lnum, offs); 2629 } 2630 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2631 if (err) 2632 return err; 2633 if (failing) 2634 return -EROFS; 2635 return 0; 2636 } 2637 2638 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2639 int len) 2640 { 2641 int err; 2642 2643 if (c->dbg->pc_happened) 2644 return -EROFS; 2645 if (power_cut_emulated(c, lnum, 1)) 2646 return -EROFS; 2647 err = ubi_leb_change(c->ubi, lnum, buf, len); 2648 if (err) 2649 return err; 2650 if (power_cut_emulated(c, lnum, 1)) 2651 return -EROFS; 2652 return 0; 2653 } 2654 2655 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2656 { 2657 int err; 2658 2659 if (c->dbg->pc_happened) 2660 return -EROFS; 2661 if (power_cut_emulated(c, lnum, 0)) 2662 return -EROFS; 2663 err = ubi_leb_unmap(c->ubi, lnum); 2664 if (err) 2665 return err; 2666 if (power_cut_emulated(c, lnum, 0)) 2667 return -EROFS; 2668 return 0; 2669 } 2670 2671 int dbg_leb_map(struct ubifs_info *c, int lnum) 2672 { 2673 int err; 2674 2675 if (c->dbg->pc_happened) 2676 return -EROFS; 2677 if (power_cut_emulated(c, lnum, 0)) 2678 return -EROFS; 2679 err = ubi_leb_map(c->ubi, lnum); 2680 if (err) 2681 return err; 2682 if (power_cut_emulated(c, lnum, 0)) 2683 return -EROFS; 2684 return 0; 2685 } 2686 2687 /* 2688 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2689 * contain the stuff specific to particular file-system mounts. 2690 */ 2691 static struct dentry *dfs_rootdir; 2692 2693 static int dfs_file_open(struct inode *inode, struct file *file) 2694 { 2695 file->private_data = inode->i_private; 2696 return nonseekable_open(inode, file); 2697 } 2698 2699 /** 2700 * provide_user_output - provide output to the user reading a debugfs file. 2701 * @val: boolean value for the answer 2702 * @u: the buffer to store the answer at 2703 * @count: size of the buffer 2704 * @ppos: position in the @u output buffer 2705 * 2706 * This is a simple helper function which stores @val boolean value in the user 2707 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2708 * bytes written to @u in case of success and a negative error code in case of 2709 * failure. 2710 */ 2711 static int provide_user_output(int val, char __user *u, size_t count, 2712 loff_t *ppos) 2713 { 2714 char buf[3]; 2715 2716 if (val) 2717 buf[0] = '1'; 2718 else 2719 buf[0] = '0'; 2720 buf[1] = '\n'; 2721 buf[2] = 0x00; 2722 2723 return simple_read_from_buffer(u, count, ppos, buf, 2); 2724 } 2725 2726 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2727 loff_t *ppos) 2728 { 2729 struct dentry *dent = file->f_path.dentry; 2730 struct ubifs_info *c = file->private_data; 2731 struct ubifs_debug_info *d = c->dbg; 2732 int val; 2733 2734 if (dent == d->dfs_chk_gen) 2735 val = d->chk_gen; 2736 else if (dent == d->dfs_chk_index) 2737 val = d->chk_index; 2738 else if (dent == d->dfs_chk_orph) 2739 val = d->chk_orph; 2740 else if (dent == d->dfs_chk_lprops) 2741 val = d->chk_lprops; 2742 else if (dent == d->dfs_chk_fs) 2743 val = d->chk_fs; 2744 else if (dent == d->dfs_tst_rcvry) 2745 val = d->tst_rcvry; 2746 else if (dent == d->dfs_ro_error) 2747 val = c->ro_error; 2748 else 2749 return -EINVAL; 2750 2751 return provide_user_output(val, u, count, ppos); 2752 } 2753 2754 /** 2755 * interpret_user_input - interpret user debugfs file input. 2756 * @u: user-provided buffer with the input 2757 * @count: buffer size 2758 * 2759 * This is a helper function which interpret user input to a boolean UBIFS 2760 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2761 * in case of failure. 2762 */ 2763 static int interpret_user_input(const char __user *u, size_t count) 2764 { 2765 size_t buf_size; 2766 char buf[8]; 2767 2768 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2769 if (copy_from_user(buf, u, buf_size)) 2770 return -EFAULT; 2771 2772 if (buf[0] == '1') 2773 return 1; 2774 else if (buf[0] == '0') 2775 return 0; 2776 2777 return -EINVAL; 2778 } 2779 2780 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2781 size_t count, loff_t *ppos) 2782 { 2783 struct ubifs_info *c = file->private_data; 2784 struct ubifs_debug_info *d = c->dbg; 2785 struct dentry *dent = file->f_path.dentry; 2786 int val; 2787 2788 /* 2789 * TODO: this is racy - the file-system might have already been 2790 * unmounted and we'd oops in this case. The plan is to fix it with 2791 * help of 'iterate_supers_type()' which we should have in v3.0: when 2792 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2793 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2794 * superblocks and fine the one with the same UUID, and take the 2795 * locking right. 2796 * 2797 * The other way to go suggested by Al Viro is to create a separate 2798 * 'ubifs-debug' file-system instead. 2799 */ 2800 if (file->f_path.dentry == d->dfs_dump_lprops) { 2801 ubifs_dump_lprops(c); 2802 return count; 2803 } 2804 if (file->f_path.dentry == d->dfs_dump_budg) { 2805 ubifs_dump_budg(c, &c->bi); 2806 return count; 2807 } 2808 if (file->f_path.dentry == d->dfs_dump_tnc) { 2809 mutex_lock(&c->tnc_mutex); 2810 ubifs_dump_tnc(c); 2811 mutex_unlock(&c->tnc_mutex); 2812 return count; 2813 } 2814 2815 val = interpret_user_input(u, count); 2816 if (val < 0) 2817 return val; 2818 2819 if (dent == d->dfs_chk_gen) 2820 d->chk_gen = val; 2821 else if (dent == d->dfs_chk_index) 2822 d->chk_index = val; 2823 else if (dent == d->dfs_chk_orph) 2824 d->chk_orph = val; 2825 else if (dent == d->dfs_chk_lprops) 2826 d->chk_lprops = val; 2827 else if (dent == d->dfs_chk_fs) 2828 d->chk_fs = val; 2829 else if (dent == d->dfs_tst_rcvry) 2830 d->tst_rcvry = val; 2831 else if (dent == d->dfs_ro_error) 2832 c->ro_error = !!val; 2833 else 2834 return -EINVAL; 2835 2836 return count; 2837 } 2838 2839 static const struct file_operations dfs_fops = { 2840 .open = dfs_file_open, 2841 .read = dfs_file_read, 2842 .write = dfs_file_write, 2843 .owner = THIS_MODULE, 2844 .llseek = no_llseek, 2845 }; 2846 2847 /** 2848 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2849 * @c: UBIFS file-system description object 2850 * 2851 * This function creates all debugfs files for this instance of UBIFS. Returns 2852 * zero in case of success and a negative error code in case of failure. 2853 * 2854 * Note, the only reason we have not merged this function with the 2855 * 'ubifs_debugging_init()' function is because it is better to initialize 2856 * debugfs interfaces at the very end of the mount process, and remove them at 2857 * the very beginning of the mount process. 2858 */ 2859 int dbg_debugfs_init_fs(struct ubifs_info *c) 2860 { 2861 int err, n; 2862 const char *fname; 2863 struct dentry *dent; 2864 struct ubifs_debug_info *d = c->dbg; 2865 2866 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2867 return 0; 2868 2869 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2870 c->vi.ubi_num, c->vi.vol_id); 2871 if (n == UBIFS_DFS_DIR_LEN) { 2872 /* The array size is too small */ 2873 fname = UBIFS_DFS_DIR_NAME; 2874 dent = ERR_PTR(-EINVAL); 2875 goto out; 2876 } 2877 2878 fname = d->dfs_dir_name; 2879 dent = debugfs_create_dir(fname, dfs_rootdir); 2880 if (IS_ERR_OR_NULL(dent)) 2881 goto out; 2882 d->dfs_dir = dent; 2883 2884 fname = "dump_lprops"; 2885 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2886 if (IS_ERR_OR_NULL(dent)) 2887 goto out_remove; 2888 d->dfs_dump_lprops = dent; 2889 2890 fname = "dump_budg"; 2891 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2892 if (IS_ERR_OR_NULL(dent)) 2893 goto out_remove; 2894 d->dfs_dump_budg = dent; 2895 2896 fname = "dump_tnc"; 2897 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2898 if (IS_ERR_OR_NULL(dent)) 2899 goto out_remove; 2900 d->dfs_dump_tnc = dent; 2901 2902 fname = "chk_general"; 2903 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2904 &dfs_fops); 2905 if (IS_ERR_OR_NULL(dent)) 2906 goto out_remove; 2907 d->dfs_chk_gen = dent; 2908 2909 fname = "chk_index"; 2910 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2911 &dfs_fops); 2912 if (IS_ERR_OR_NULL(dent)) 2913 goto out_remove; 2914 d->dfs_chk_index = dent; 2915 2916 fname = "chk_orphans"; 2917 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2918 &dfs_fops); 2919 if (IS_ERR_OR_NULL(dent)) 2920 goto out_remove; 2921 d->dfs_chk_orph = dent; 2922 2923 fname = "chk_lprops"; 2924 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2925 &dfs_fops); 2926 if (IS_ERR_OR_NULL(dent)) 2927 goto out_remove; 2928 d->dfs_chk_lprops = dent; 2929 2930 fname = "chk_fs"; 2931 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2932 &dfs_fops); 2933 if (IS_ERR_OR_NULL(dent)) 2934 goto out_remove; 2935 d->dfs_chk_fs = dent; 2936 2937 fname = "tst_recovery"; 2938 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2939 &dfs_fops); 2940 if (IS_ERR_OR_NULL(dent)) 2941 goto out_remove; 2942 d->dfs_tst_rcvry = dent; 2943 2944 fname = "ro_error"; 2945 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2946 &dfs_fops); 2947 if (IS_ERR_OR_NULL(dent)) 2948 goto out_remove; 2949 d->dfs_ro_error = dent; 2950 2951 return 0; 2952 2953 out_remove: 2954 debugfs_remove_recursive(d->dfs_dir); 2955 out: 2956 err = dent ? PTR_ERR(dent) : -ENODEV; 2957 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2958 fname, err); 2959 return err; 2960 } 2961 2962 /** 2963 * dbg_debugfs_exit_fs - remove all debugfs files. 2964 * @c: UBIFS file-system description object 2965 */ 2966 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2967 { 2968 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2969 debugfs_remove_recursive(c->dbg->dfs_dir); 2970 } 2971 2972 struct ubifs_global_debug_info ubifs_dbg; 2973 2974 static struct dentry *dfs_chk_gen; 2975 static struct dentry *dfs_chk_index; 2976 static struct dentry *dfs_chk_orph; 2977 static struct dentry *dfs_chk_lprops; 2978 static struct dentry *dfs_chk_fs; 2979 static struct dentry *dfs_tst_rcvry; 2980 2981 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2982 size_t count, loff_t *ppos) 2983 { 2984 struct dentry *dent = file->f_path.dentry; 2985 int val; 2986 2987 if (dent == dfs_chk_gen) 2988 val = ubifs_dbg.chk_gen; 2989 else if (dent == dfs_chk_index) 2990 val = ubifs_dbg.chk_index; 2991 else if (dent == dfs_chk_orph) 2992 val = ubifs_dbg.chk_orph; 2993 else if (dent == dfs_chk_lprops) 2994 val = ubifs_dbg.chk_lprops; 2995 else if (dent == dfs_chk_fs) 2996 val = ubifs_dbg.chk_fs; 2997 else if (dent == dfs_tst_rcvry) 2998 val = ubifs_dbg.tst_rcvry; 2999 else 3000 return -EINVAL; 3001 3002 return provide_user_output(val, u, count, ppos); 3003 } 3004 3005 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3006 size_t count, loff_t *ppos) 3007 { 3008 struct dentry *dent = file->f_path.dentry; 3009 int val; 3010 3011 val = interpret_user_input(u, count); 3012 if (val < 0) 3013 return val; 3014 3015 if (dent == dfs_chk_gen) 3016 ubifs_dbg.chk_gen = val; 3017 else if (dent == dfs_chk_index) 3018 ubifs_dbg.chk_index = val; 3019 else if (dent == dfs_chk_orph) 3020 ubifs_dbg.chk_orph = val; 3021 else if (dent == dfs_chk_lprops) 3022 ubifs_dbg.chk_lprops = val; 3023 else if (dent == dfs_chk_fs) 3024 ubifs_dbg.chk_fs = val; 3025 else if (dent == dfs_tst_rcvry) 3026 ubifs_dbg.tst_rcvry = val; 3027 else 3028 return -EINVAL; 3029 3030 return count; 3031 } 3032 3033 static const struct file_operations dfs_global_fops = { 3034 .read = dfs_global_file_read, 3035 .write = dfs_global_file_write, 3036 .owner = THIS_MODULE, 3037 .llseek = no_llseek, 3038 }; 3039 3040 /** 3041 * dbg_debugfs_init - initialize debugfs file-system. 3042 * 3043 * UBIFS uses debugfs file-system to expose various debugging knobs to 3044 * user-space. This function creates "ubifs" directory in the debugfs 3045 * file-system. Returns zero in case of success and a negative error code in 3046 * case of failure. 3047 */ 3048 int dbg_debugfs_init(void) 3049 { 3050 int err; 3051 const char *fname; 3052 struct dentry *dent; 3053 3054 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3055 return 0; 3056 3057 fname = "ubifs"; 3058 dent = debugfs_create_dir(fname, NULL); 3059 if (IS_ERR_OR_NULL(dent)) 3060 goto out; 3061 dfs_rootdir = dent; 3062 3063 fname = "chk_general"; 3064 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3065 &dfs_global_fops); 3066 if (IS_ERR_OR_NULL(dent)) 3067 goto out_remove; 3068 dfs_chk_gen = dent; 3069 3070 fname = "chk_index"; 3071 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3072 &dfs_global_fops); 3073 if (IS_ERR_OR_NULL(dent)) 3074 goto out_remove; 3075 dfs_chk_index = dent; 3076 3077 fname = "chk_orphans"; 3078 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3079 &dfs_global_fops); 3080 if (IS_ERR_OR_NULL(dent)) 3081 goto out_remove; 3082 dfs_chk_orph = dent; 3083 3084 fname = "chk_lprops"; 3085 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3086 &dfs_global_fops); 3087 if (IS_ERR_OR_NULL(dent)) 3088 goto out_remove; 3089 dfs_chk_lprops = dent; 3090 3091 fname = "chk_fs"; 3092 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3093 &dfs_global_fops); 3094 if (IS_ERR_OR_NULL(dent)) 3095 goto out_remove; 3096 dfs_chk_fs = dent; 3097 3098 fname = "tst_recovery"; 3099 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3100 &dfs_global_fops); 3101 if (IS_ERR_OR_NULL(dent)) 3102 goto out_remove; 3103 dfs_tst_rcvry = dent; 3104 3105 return 0; 3106 3107 out_remove: 3108 debugfs_remove_recursive(dfs_rootdir); 3109 out: 3110 err = dent ? PTR_ERR(dent) : -ENODEV; 3111 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3112 current->pid, fname, err); 3113 return err; 3114 } 3115 3116 /** 3117 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3118 */ 3119 void dbg_debugfs_exit(void) 3120 { 3121 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3122 debugfs_remove_recursive(dfs_rootdir); 3123 } 3124 3125 /** 3126 * ubifs_debugging_init - initialize UBIFS debugging. 3127 * @c: UBIFS file-system description object 3128 * 3129 * This function initializes debugging-related data for the file system. 3130 * Returns zero in case of success and a negative error code in case of 3131 * failure. 3132 */ 3133 int ubifs_debugging_init(struct ubifs_info *c) 3134 { 3135 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3136 if (!c->dbg) 3137 return -ENOMEM; 3138 3139 return 0; 3140 } 3141 3142 /** 3143 * ubifs_debugging_exit - free debugging data. 3144 * @c: UBIFS file-system description object 3145 */ 3146 void ubifs_debugging_exit(struct ubifs_info *c) 3147 { 3148 kfree(c->dbg); 3149 } 3150 #endif 3151