xref: /rk3399_rockchip-uboot/drivers/timer/tsc_timer.c (revision 07d778382200a05a8b86cc135f79ec48e386f25a)
17030f27eSBin Meng /*
27030f27eSBin Meng  * Copyright (c) 2012 The Chromium OS Authors.
37030f27eSBin Meng  *
47030f27eSBin Meng  * TSC calibration codes are adapted from Linux kernel
57030f27eSBin Meng  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
67030f27eSBin Meng  *
77030f27eSBin Meng  * SPDX-License-Identifier:	GPL-2.0+
87030f27eSBin Meng  */
97030f27eSBin Meng 
107030f27eSBin Meng #include <common.h>
117030f27eSBin Meng #include <dm.h>
127030f27eSBin Meng #include <malloc.h>
137030f27eSBin Meng #include <timer.h>
140b992e49SBin Meng #include <asm/cpu.h>
157030f27eSBin Meng #include <asm/io.h>
167030f27eSBin Meng #include <asm/i8254.h>
177030f27eSBin Meng #include <asm/ibmpc.h>
187030f27eSBin Meng #include <asm/msr.h>
197030f27eSBin Meng #include <asm/u-boot-x86.h>
207030f27eSBin Meng 
217030f27eSBin Meng #define MAX_NUM_FREQS	8
227030f27eSBin Meng 
237030f27eSBin Meng DECLARE_GLOBAL_DATA_PTR;
247030f27eSBin Meng 
257030f27eSBin Meng /*
267030f27eSBin Meng  * According to Intel 64 and IA-32 System Programming Guide,
277030f27eSBin Meng  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
287030f27eSBin Meng  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
297030f27eSBin Meng  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
307030f27eSBin Meng  * so we need manually differentiate SoC families. This is what the
317030f27eSBin Meng  * field msr_plat does.
327030f27eSBin Meng  */
337030f27eSBin Meng struct freq_desc {
347030f27eSBin Meng 	u8 x86_family;	/* CPU family */
357030f27eSBin Meng 	u8 x86_model;	/* model */
367030f27eSBin Meng 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
377030f27eSBin Meng 	u8 msr_plat;
387030f27eSBin Meng 	u32 freqs[MAX_NUM_FREQS];
397030f27eSBin Meng };
407030f27eSBin Meng 
417030f27eSBin Meng static struct freq_desc freq_desc_tables[] = {
427030f27eSBin Meng 	/* PNW */
43c6367748SBin Meng 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200 } },
447030f27eSBin Meng 	/* CLV+ */
45c6367748SBin Meng 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200 } },
46c6367748SBin Meng 	/* TNG - Intel Atom processor Z3400 series */
47f5757154SBin Meng 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0 } },
48c6367748SBin Meng 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
49f5757154SBin Meng 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0 } },
50c6367748SBin Meng 	/* ANN - Intel Atom processor Z3500 series */
51f5757154SBin Meng 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0 } },
527030f27eSBin Meng 	/* Ivybridge */
537030f27eSBin Meng 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
547030f27eSBin Meng };
557030f27eSBin Meng 
match_cpu(u8 family,u8 model)567030f27eSBin Meng static int match_cpu(u8 family, u8 model)
577030f27eSBin Meng {
587030f27eSBin Meng 	int i;
597030f27eSBin Meng 
607030f27eSBin Meng 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
617030f27eSBin Meng 		if ((family == freq_desc_tables[i].x86_family) &&
627030f27eSBin Meng 		    (model == freq_desc_tables[i].x86_model))
637030f27eSBin Meng 			return i;
647030f27eSBin Meng 	}
657030f27eSBin Meng 
667030f27eSBin Meng 	return -1;
677030f27eSBin Meng }
687030f27eSBin Meng 
697030f27eSBin Meng /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
707030f27eSBin Meng #define id_to_freq(cpu_index, freq_id) \
717030f27eSBin Meng 	(freq_desc_tables[cpu_index].freqs[freq_id])
727030f27eSBin Meng 
737030f27eSBin Meng /*
74*167a4016SBin Meng  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
75*167a4016SBin Meng  * reliable and the frequency is known (provided by HW).
767030f27eSBin Meng  *
77*167a4016SBin Meng  * On these platforms PIT/HPET is generally not available so calibration won't
78*167a4016SBin Meng  * work at all and there is no other clocksource to act as a watchdog for the
79*167a4016SBin Meng  * TSC, so we have no other choice than to trust it.
80*167a4016SBin Meng  *
81*167a4016SBin Meng  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
827030f27eSBin Meng  */
cpu_mhz_from_msr(void)83*167a4016SBin Meng static unsigned long __maybe_unused cpu_mhz_from_msr(void)
847030f27eSBin Meng {
857030f27eSBin Meng 	u32 lo, hi, ratio, freq_id, freq;
867030f27eSBin Meng 	unsigned long res;
877030f27eSBin Meng 	int cpu_index;
887030f27eSBin Meng 
890b992e49SBin Meng 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
900b992e49SBin Meng 		return 0;
910b992e49SBin Meng 
927030f27eSBin Meng 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
937030f27eSBin Meng 	if (cpu_index < 0)
947030f27eSBin Meng 		return 0;
957030f27eSBin Meng 
967030f27eSBin Meng 	if (freq_desc_tables[cpu_index].msr_plat) {
977030f27eSBin Meng 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
98d92e9c8dSBin Meng 		ratio = (lo >> 8) & 0xff;
997030f27eSBin Meng 	} else {
1007030f27eSBin Meng 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
1017030f27eSBin Meng 		ratio = (hi >> 8) & 0x1f;
1027030f27eSBin Meng 	}
1037030f27eSBin Meng 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
1047030f27eSBin Meng 
1057030f27eSBin Meng 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
1067030f27eSBin Meng 		/* TODO: Figure out how best to deal with this */
107f5757154SBin Meng 		freq = 100000;
1087030f27eSBin Meng 		debug("Using frequency: %u KHz\n", freq);
1097030f27eSBin Meng 	} else {
1107030f27eSBin Meng 		/* Get FSB FREQ ID */
1117030f27eSBin Meng 		rdmsr(MSR_FSB_FREQ, lo, hi);
1127030f27eSBin Meng 		freq_id = lo & 0x7;
1137030f27eSBin Meng 		freq = id_to_freq(cpu_index, freq_id);
1147030f27eSBin Meng 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
1157030f27eSBin Meng 		      freq_id, freq);
1167030f27eSBin Meng 	}
1177030f27eSBin Meng 
1187030f27eSBin Meng 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
1197030f27eSBin Meng 	res = freq * ratio / 1000;
1207030f27eSBin Meng 	debug("TSC runs at %lu MHz\n", res);
1217030f27eSBin Meng 
1227030f27eSBin Meng 	return res;
1237030f27eSBin Meng }
1247030f27eSBin Meng 
1257030f27eSBin Meng /*
1267030f27eSBin Meng  * This reads the current MSB of the PIT counter, and
1277030f27eSBin Meng  * checks if we are running on sufficiently fast and
1287030f27eSBin Meng  * non-virtualized hardware.
1297030f27eSBin Meng  *
1307030f27eSBin Meng  * Our expectations are:
1317030f27eSBin Meng  *
1327030f27eSBin Meng  *  - the PIT is running at roughly 1.19MHz
1337030f27eSBin Meng  *
1347030f27eSBin Meng  *  - each IO is going to take about 1us on real hardware,
1357030f27eSBin Meng  *    but we allow it to be much faster (by a factor of 10) or
1367030f27eSBin Meng  *    _slightly_ slower (ie we allow up to a 2us read+counter
1377030f27eSBin Meng  *    update - anything else implies a unacceptably slow CPU
1387030f27eSBin Meng  *    or PIT for the fast calibration to work.
1397030f27eSBin Meng  *
1407030f27eSBin Meng  *  - with 256 PIT ticks to read the value, we have 214us to
1417030f27eSBin Meng  *    see the same MSB (and overhead like doing a single TSC
1427030f27eSBin Meng  *    read per MSB value etc).
1437030f27eSBin Meng  *
1447030f27eSBin Meng  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
1457030f27eSBin Meng  *    them each to take about a microsecond on real hardware.
1467030f27eSBin Meng  *    So we expect a count value of around 100. But we'll be
1477030f27eSBin Meng  *    generous, and accept anything over 50.
1487030f27eSBin Meng  *
1497030f27eSBin Meng  *  - if the PIT is stuck, and we see *many* more reads, we
1507030f27eSBin Meng  *    return early (and the next caller of pit_expect_msb()
1517030f27eSBin Meng  *    then consider it a failure when they don't see the
1527030f27eSBin Meng  *    next expected value).
1537030f27eSBin Meng  *
1547030f27eSBin Meng  * These expectations mean that we know that we have seen the
1557030f27eSBin Meng  * transition from one expected value to another with a fairly
1567030f27eSBin Meng  * high accuracy, and we didn't miss any events. We can thus
1577030f27eSBin Meng  * use the TSC value at the transitions to calculate a pretty
1587030f27eSBin Meng  * good value for the TSC frequencty.
1597030f27eSBin Meng  */
pit_verify_msb(unsigned char val)1607030f27eSBin Meng static inline int pit_verify_msb(unsigned char val)
1617030f27eSBin Meng {
1627030f27eSBin Meng 	/* Ignore LSB */
1637030f27eSBin Meng 	inb(0x42);
1647030f27eSBin Meng 	return inb(0x42) == val;
1657030f27eSBin Meng }
1667030f27eSBin Meng 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)1677030f27eSBin Meng static inline int pit_expect_msb(unsigned char val, u64 *tscp,
1687030f27eSBin Meng 				 unsigned long *deltap)
1697030f27eSBin Meng {
1707030f27eSBin Meng 	int count;
1717030f27eSBin Meng 	u64 tsc = 0, prev_tsc = 0;
1727030f27eSBin Meng 
1737030f27eSBin Meng 	for (count = 0; count < 50000; count++) {
1747030f27eSBin Meng 		if (!pit_verify_msb(val))
1757030f27eSBin Meng 			break;
1767030f27eSBin Meng 		prev_tsc = tsc;
1777030f27eSBin Meng 		tsc = rdtsc();
1787030f27eSBin Meng 	}
1797030f27eSBin Meng 	*deltap = rdtsc() - prev_tsc;
1807030f27eSBin Meng 	*tscp = tsc;
1817030f27eSBin Meng 
1827030f27eSBin Meng 	/*
1837030f27eSBin Meng 	 * We require _some_ success, but the quality control
1847030f27eSBin Meng 	 * will be based on the error terms on the TSC values.
1857030f27eSBin Meng 	 */
1867030f27eSBin Meng 	return count > 5;
1877030f27eSBin Meng }
1887030f27eSBin Meng 
1897030f27eSBin Meng /*
1907030f27eSBin Meng  * How many MSB values do we want to see? We aim for
1917030f27eSBin Meng  * a maximum error rate of 500ppm (in practice the
1927030f27eSBin Meng  * real error is much smaller), but refuse to spend
1937030f27eSBin Meng  * more than 50ms on it.
1947030f27eSBin Meng  */
1957030f27eSBin Meng #define MAX_QUICK_PIT_MS 50
1967030f27eSBin Meng #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
1977030f27eSBin Meng 
quick_pit_calibrate(void)1987030f27eSBin Meng static unsigned long __maybe_unused quick_pit_calibrate(void)
1997030f27eSBin Meng {
2007030f27eSBin Meng 	int i;
2017030f27eSBin Meng 	u64 tsc, delta;
2027030f27eSBin Meng 	unsigned long d1, d2;
2037030f27eSBin Meng 
2047030f27eSBin Meng 	/* Set the Gate high, disable speaker */
2057030f27eSBin Meng 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
2067030f27eSBin Meng 
2077030f27eSBin Meng 	/*
2087030f27eSBin Meng 	 * Counter 2, mode 0 (one-shot), binary count
2097030f27eSBin Meng 	 *
2107030f27eSBin Meng 	 * NOTE! Mode 2 decrements by two (and then the
2117030f27eSBin Meng 	 * output is flipped each time, giving the same
2127030f27eSBin Meng 	 * final output frequency as a decrement-by-one),
2137030f27eSBin Meng 	 * so mode 0 is much better when looking at the
2147030f27eSBin Meng 	 * individual counts.
2157030f27eSBin Meng 	 */
2167030f27eSBin Meng 	outb(0xb0, 0x43);
2177030f27eSBin Meng 
2187030f27eSBin Meng 	/* Start at 0xffff */
2197030f27eSBin Meng 	outb(0xff, 0x42);
2207030f27eSBin Meng 	outb(0xff, 0x42);
2217030f27eSBin Meng 
2227030f27eSBin Meng 	/*
2237030f27eSBin Meng 	 * The PIT starts counting at the next edge, so we
2247030f27eSBin Meng 	 * need to delay for a microsecond. The easiest way
2257030f27eSBin Meng 	 * to do that is to just read back the 16-bit counter
2267030f27eSBin Meng 	 * once from the PIT.
2277030f27eSBin Meng 	 */
2287030f27eSBin Meng 	pit_verify_msb(0);
2297030f27eSBin Meng 
2307030f27eSBin Meng 	if (pit_expect_msb(0xff, &tsc, &d1)) {
2317030f27eSBin Meng 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
2327030f27eSBin Meng 			if (!pit_expect_msb(0xff-i, &delta, &d2))
2337030f27eSBin Meng 				break;
2347030f27eSBin Meng 
2357030f27eSBin Meng 			/*
2367030f27eSBin Meng 			 * Iterate until the error is less than 500 ppm
2377030f27eSBin Meng 			 */
2387030f27eSBin Meng 			delta -= tsc;
2397030f27eSBin Meng 			if (d1+d2 >= delta >> 11)
2407030f27eSBin Meng 				continue;
2417030f27eSBin Meng 
2427030f27eSBin Meng 			/*
2437030f27eSBin Meng 			 * Check the PIT one more time to verify that
2447030f27eSBin Meng 			 * all TSC reads were stable wrt the PIT.
2457030f27eSBin Meng 			 *
2467030f27eSBin Meng 			 * This also guarantees serialization of the
2477030f27eSBin Meng 			 * last cycle read ('d2') in pit_expect_msb.
2487030f27eSBin Meng 			 */
2497030f27eSBin Meng 			if (!pit_verify_msb(0xfe - i))
2507030f27eSBin Meng 				break;
2517030f27eSBin Meng 			goto success;
2527030f27eSBin Meng 		}
2537030f27eSBin Meng 	}
2547030f27eSBin Meng 	debug("Fast TSC calibration failed\n");
2557030f27eSBin Meng 	return 0;
2567030f27eSBin Meng 
2577030f27eSBin Meng success:
2587030f27eSBin Meng 	/*
2597030f27eSBin Meng 	 * Ok, if we get here, then we've seen the
2607030f27eSBin Meng 	 * MSB of the PIT decrement 'i' times, and the
2617030f27eSBin Meng 	 * error has shrunk to less than 500 ppm.
2627030f27eSBin Meng 	 *
2637030f27eSBin Meng 	 * As a result, we can depend on there not being
2647030f27eSBin Meng 	 * any odd delays anywhere, and the TSC reads are
2657030f27eSBin Meng 	 * reliable (within the error).
2667030f27eSBin Meng 	 *
2677030f27eSBin Meng 	 * kHz = ticks / time-in-seconds / 1000;
2687030f27eSBin Meng 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
2697030f27eSBin Meng 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
2707030f27eSBin Meng 	 */
2717030f27eSBin Meng 	delta *= PIT_TICK_RATE;
2727030f27eSBin Meng 	delta /= (i*256*1000);
2737030f27eSBin Meng 	debug("Fast TSC calibration using PIT\n");
2747030f27eSBin Meng 	return delta / 1000;
2757030f27eSBin Meng }
2767030f27eSBin Meng 
2777030f27eSBin Meng /* Get the speed of the TSC timer in MHz */
get_tbclk_mhz(void)2787030f27eSBin Meng unsigned notrace long get_tbclk_mhz(void)
2797030f27eSBin Meng {
2807030f27eSBin Meng 	return get_tbclk() / 1000000;
2817030f27eSBin Meng }
2827030f27eSBin Meng 
get_ms_timer(void)2837030f27eSBin Meng static ulong get_ms_timer(void)
2847030f27eSBin Meng {
2857030f27eSBin Meng 	return (get_ticks() * 1000) / get_tbclk();
2867030f27eSBin Meng }
2877030f27eSBin Meng 
get_timer(ulong base)2887030f27eSBin Meng ulong get_timer(ulong base)
2897030f27eSBin Meng {
2907030f27eSBin Meng 	return get_ms_timer() - base;
2917030f27eSBin Meng }
2927030f27eSBin Meng 
timer_get_us(void)2937030f27eSBin Meng ulong notrace timer_get_us(void)
2947030f27eSBin Meng {
2957030f27eSBin Meng 	return get_ticks() / get_tbclk_mhz();
2967030f27eSBin Meng }
2977030f27eSBin Meng 
timer_get_boot_us(void)2987030f27eSBin Meng ulong timer_get_boot_us(void)
2997030f27eSBin Meng {
3007030f27eSBin Meng 	return timer_get_us();
3017030f27eSBin Meng }
3027030f27eSBin Meng 
__udelay(unsigned long usec)3037030f27eSBin Meng void __udelay(unsigned long usec)
3047030f27eSBin Meng {
3057030f27eSBin Meng 	u64 now = get_ticks();
3067030f27eSBin Meng 	u64 stop;
3077030f27eSBin Meng 
3087030f27eSBin Meng 	stop = now + usec * get_tbclk_mhz();
3097030f27eSBin Meng 
3107030f27eSBin Meng 	while ((int64_t)(stop - get_ticks()) > 0)
3117030f27eSBin Meng #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
3127030f27eSBin Meng 		/*
3137030f27eSBin Meng 		 * Add a 'pause' instruction on qemu target,
3147030f27eSBin Meng 		 * to give other VCPUs a chance to run.
3157030f27eSBin Meng 		 */
3167030f27eSBin Meng 		asm volatile("pause");
3177030f27eSBin Meng #else
3187030f27eSBin Meng 		;
3197030f27eSBin Meng #endif
3207030f27eSBin Meng }
3217030f27eSBin Meng 
tsc_timer_get_count(struct udevice * dev,u64 * count)3227030f27eSBin Meng static int tsc_timer_get_count(struct udevice *dev, u64 *count)
3237030f27eSBin Meng {
3247030f27eSBin Meng 	u64 now_tick = rdtsc();
3257030f27eSBin Meng 
3267030f27eSBin Meng 	*count = now_tick - gd->arch.tsc_base;
3277030f27eSBin Meng 
3287030f27eSBin Meng 	return 0;
3297030f27eSBin Meng }
3307030f27eSBin Meng 
tsc_timer_probe(struct udevice * dev)3317030f27eSBin Meng static int tsc_timer_probe(struct udevice *dev)
3327030f27eSBin Meng {
3337030f27eSBin Meng 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
3347030f27eSBin Meng 
3357030f27eSBin Meng 	gd->arch.tsc_base = rdtsc();
3367030f27eSBin Meng 
3377030f27eSBin Meng 	/*
3387030f27eSBin Meng 	 * If there is no clock frequency specified in the device tree,
3397030f27eSBin Meng 	 * calibrate it by ourselves.
3407030f27eSBin Meng 	 */
3417030f27eSBin Meng 	if (!uc_priv->clock_rate) {
3427030f27eSBin Meng 		unsigned long fast_calibrate;
3437030f27eSBin Meng 
344*167a4016SBin Meng 		fast_calibrate = cpu_mhz_from_msr();
3457030f27eSBin Meng 		if (!fast_calibrate) {
3467030f27eSBin Meng 			fast_calibrate = quick_pit_calibrate();
3477030f27eSBin Meng 			if (!fast_calibrate)
3487030f27eSBin Meng 				panic("TSC frequency is ZERO");
3497030f27eSBin Meng 		}
3507030f27eSBin Meng 
3517030f27eSBin Meng 		uc_priv->clock_rate = fast_calibrate * 1000000;
3527030f27eSBin Meng 	}
3537030f27eSBin Meng 
3547030f27eSBin Meng 	return 0;
3557030f27eSBin Meng }
3567030f27eSBin Meng 
3577030f27eSBin Meng static const struct timer_ops tsc_timer_ops = {
3587030f27eSBin Meng 	.get_count = tsc_timer_get_count,
3597030f27eSBin Meng };
3607030f27eSBin Meng 
3617030f27eSBin Meng static const struct udevice_id tsc_timer_ids[] = {
3627030f27eSBin Meng 	{ .compatible = "x86,tsc-timer", },
3637030f27eSBin Meng 	{ }
3647030f27eSBin Meng };
3657030f27eSBin Meng 
3667030f27eSBin Meng U_BOOT_DRIVER(tsc_timer) = {
3677030f27eSBin Meng 	.name	= "tsc_timer",
3687030f27eSBin Meng 	.id	= UCLASS_TIMER,
3697030f27eSBin Meng 	.of_match = tsc_timer_ids,
3707030f27eSBin Meng 	.probe = tsc_timer_probe,
3717030f27eSBin Meng 	.ops	= &tsc_timer_ops,
3727030f27eSBin Meng 	.flags = DM_FLAG_PRE_RELOC,
3737030f27eSBin Meng };
374