1 /* 2 * Driver for Marvell PPv2 network controller for Armada 375 SoC. 3 * 4 * Copyright (C) 2014 Marvell 5 * 6 * Marcin Wojtas <mw@semihalf.com> 7 * 8 * U-Boot version: 9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de> 10 * 11 * This file is licensed under the terms of the GNU General Public 12 * License version 2. This program is licensed "as is" without any 13 * warranty of any kind, whether express or implied. 14 */ 15 16 #include <common.h> 17 #include <dm.h> 18 #include <dm/device-internal.h> 19 #include <dm/lists.h> 20 #include <net.h> 21 #include <netdev.h> 22 #include <config.h> 23 #include <malloc.h> 24 #include <asm/io.h> 25 #include <linux/errno.h> 26 #include <phy.h> 27 #include <miiphy.h> 28 #include <watchdog.h> 29 #include <asm/arch/cpu.h> 30 #include <asm/arch/soc.h> 31 #include <linux/compat.h> 32 #include <linux/mbus.h> 33 34 DECLARE_GLOBAL_DATA_PTR; 35 36 /* Some linux -> U-Boot compatibility stuff */ 37 #define netdev_err(dev, fmt, args...) \ 38 printf(fmt, ##args) 39 #define netdev_warn(dev, fmt, args...) \ 40 printf(fmt, ##args) 41 #define netdev_info(dev, fmt, args...) \ 42 printf(fmt, ##args) 43 #define netdev_dbg(dev, fmt, args...) \ 44 printf(fmt, ##args) 45 46 #define ETH_ALEN 6 /* Octets in one ethernet addr */ 47 48 #define __verify_pcpu_ptr(ptr) \ 49 do { \ 50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ 51 (void)__vpp_verify; \ 52 } while (0) 53 54 #define VERIFY_PERCPU_PTR(__p) \ 55 ({ \ 56 __verify_pcpu_ptr(__p); \ 57 (typeof(*(__p)) __kernel __force *)(__p); \ 58 }) 59 60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) 61 #define smp_processor_id() 0 62 #define num_present_cpus() 1 63 #define for_each_present_cpu(cpu) \ 64 for ((cpu) = 0; (cpu) < 1; (cpu)++) 65 66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE) 67 68 #define CONFIG_NR_CPUS 1 69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */ 70 71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ 72 #define WRAP (2 + ETH_HLEN + 4 + 32) 73 #define MTU 1500 74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) 75 76 #define MVPP2_SMI_TIMEOUT 10000 77 78 /* RX Fifo Registers */ 79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) 80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) 81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 82 #define MVPP2_RX_FIFO_INIT_REG 0x64 83 84 /* RX DMA Top Registers */ 85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) 86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) 87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) 88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) 89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5 90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) 91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff 92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) 93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20 94 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000 95 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000 96 #define MVPP2_RXQ_POOL_LONG_OFFS 24 97 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000 98 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000 99 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 100 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 101 #define MVPP2_RXQ_DISABLE_MASK BIT(31) 102 103 /* Parser Registers */ 104 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 105 #define MVPP2_PRS_PORT_LU_MAX 0xf 106 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) 107 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) 108 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) 109 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) 110 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) 111 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) 112 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) 113 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) 114 #define MVPP2_PRS_TCAM_IDX_REG 0x1100 115 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) 116 #define MVPP2_PRS_TCAM_INV_MASK BIT(31) 117 #define MVPP2_PRS_SRAM_IDX_REG 0x1200 118 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) 119 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230 120 #define MVPP2_PRS_TCAM_EN_MASK BIT(0) 121 122 /* Classifier Registers */ 123 #define MVPP2_CLS_MODE_REG 0x1800 124 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) 125 #define MVPP2_CLS_PORT_WAY_REG 0x1810 126 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) 127 #define MVPP2_CLS_LKP_INDEX_REG 0x1814 128 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 129 #define MVPP2_CLS_LKP_TBL_REG 0x1818 130 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff 131 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) 132 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820 133 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824 134 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828 135 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c 136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) 137 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) 140 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 141 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) 142 143 /* Descriptor Manager Top Registers */ 144 #define MVPP2_RXQ_NUM_REG 0x2040 145 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044 146 #define MVPP22_DESC_ADDR_OFFS 8 147 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048 148 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) 150 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 151 #define MVPP2_RXQ_NUM_NEW_OFFSET 16 152 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) 153 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff 154 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 155 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 156 #define MVPP2_RXQ_THRESH_REG 0x204c 157 #define MVPP2_OCCUPIED_THRESH_OFFSET 0 158 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff 159 #define MVPP2_RXQ_INDEX_REG 0x2050 160 #define MVPP2_TXQ_NUM_REG 0x2080 161 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084 162 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088 163 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 164 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 165 #define MVPP2_TXQ_THRESH_REG 0x2094 166 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16 167 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000 168 #define MVPP2_TXQ_INDEX_REG 0x2098 169 #define MVPP2_TXQ_PREF_BUF_REG 0x209c 170 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) 171 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) 172 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) 173 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) 174 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) 175 #define MVPP2_TXQ_PENDING_REG 0x20a0 176 #define MVPP2_TXQ_PENDING_MASK 0x3fff 177 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4 178 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) 179 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16 180 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 181 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 182 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 183 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 184 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff 185 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 186 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16 187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) 188 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8 189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) 190 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) 192 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff 193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) 194 195 /* MBUS bridge registers */ 196 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) 197 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) 198 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) 199 #define MVPP2_BASE_ADDR_ENABLE 0x4060 200 201 /* AXI Bridge Registers */ 202 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100 203 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104 204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110 205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114 206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118 207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c 208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120 209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130 210 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150 211 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154 212 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160 213 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164 214 215 /* Values for AXI Bridge registers */ 216 #define MVPP22_AXI_ATTR_CACHE_OFFS 0 217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12 218 219 #define MVPP22_AXI_CODE_CACHE_OFFS 0 220 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4 221 222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3 223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7 224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb 225 226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2 227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3 228 229 /* Interrupt Cause and Mask registers */ 230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) 231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) 232 233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400 234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7 237 238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 240 241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404 242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f 243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00 244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8 245 246 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) 247 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) 248 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) 249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) 250 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 251 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 252 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) 253 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) 254 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) 255 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) 256 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) 257 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) 258 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) 259 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc 260 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 261 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 262 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) 263 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 264 265 /* Buffer Manager registers */ 266 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) 267 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 268 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) 269 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0 270 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) 271 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) 273 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) 275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) 276 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff 277 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) 278 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) 279 #define MVPP2_BM_START_MASK BIT(0) 280 #define MVPP2_BM_STOP_MASK BIT(1) 281 #define MVPP2_BM_STATE_MASK BIT(4) 282 #define MVPP2_BM_LOW_THRESH_OFFS 8 283 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00 284 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ 285 MVPP2_BM_LOW_THRESH_OFFS) 286 #define MVPP2_BM_HIGH_THRESH_OFFS 16 287 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 288 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ 289 MVPP2_BM_HIGH_THRESH_OFFS) 290 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) 291 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) 292 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) 293 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) 294 #define MVPP2_BM_BPPE_FULL_MASK BIT(3) 295 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) 296 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) 297 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) 298 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) 299 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440 300 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444 301 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff 302 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00 303 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8 304 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) 305 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) 306 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) 307 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) 308 #define MVPP2_BM_VIRT_RLS_REG 0x64c0 309 #define MVPP21_BM_MC_RLS_REG 0x64c4 310 #define MVPP2_BM_MC_ID_MASK 0xfff 311 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12) 312 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4 313 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff 314 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00 315 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8 316 #define MVPP22_BM_MC_RLS_REG 0x64d4 317 318 /* TX Scheduler registers */ 319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 320 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 321 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff 322 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8 323 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 324 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 325 #define MVPP2_TXP_SCHED_MTU_REG 0x801c 326 #define MVPP2_TXP_MTU_MAX 0x7FFFF 327 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020 328 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff 329 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 330 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) 331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 332 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff 333 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) 334 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff 335 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 336 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) 337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) 338 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff 339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) 340 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff 341 342 /* TX general registers */ 343 #define MVPP2_TX_SNOOP_REG 0x8800 344 #define MVPP2_TX_PORT_FLUSH_REG 0x8810 345 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) 346 347 /* LMS registers */ 348 #define MVPP2_SRC_ADDR_MIDDLE 0x24 349 #define MVPP2_SRC_ADDR_HIGH 0x28 350 #define MVPP2_PHY_AN_CFG0_REG 0x34 351 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) 352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c 353 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 354 355 /* Per-port registers */ 356 #define MVPP2_GMAC_CTRL_0_REG 0x0 357 #define MVPP2_GMAC_PORT_EN_MASK BIT(0) 358 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1) 359 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 360 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc 361 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) 362 #define MVPP2_GMAC_CTRL_1_REG 0x4 363 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) 364 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) 365 #define MVPP2_GMAC_PCS_LB_EN_BIT 6 366 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) 367 #define MVPP2_GMAC_SA_LOW_OFFS 7 368 #define MVPP2_GMAC_CTRL_2_REG 0x8 369 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0) 370 #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0) 371 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) 372 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) 373 #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5) 374 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6) 375 #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9) 376 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc 377 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) 378 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) 379 #define MVPP2_GMAC_EN_PCS_AN BIT(2) 380 #define MVPP2_GMAC_AN_BYPASS_EN BIT(3) 381 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) 382 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) 383 #define MVPP2_GMAC_AN_SPEED_EN BIT(7) 384 #define MVPP2_GMAC_FC_ADV_EN BIT(9) 385 #define MVPP2_GMAC_EN_FC_AN BIT(11) 386 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) 387 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) 388 #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15) 389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c 390 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 391 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 392 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ 393 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) 394 #define MVPP2_GMAC_CTRL_4_REG 0x90 395 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0) 396 #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5) 397 #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6) 398 #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7) 399 400 /* 401 * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0, 402 * relative to port->base. 403 */ 404 405 /* Port Mac Control0 */ 406 #define MVPP22_XLG_CTRL0_REG 0x100 407 #define MVPP22_XLG_PORT_EN BIT(0) 408 #define MVPP22_XLG_MAC_RESETN BIT(1) 409 #define MVPP22_XLG_RX_FC_EN BIT(7) 410 #define MVPP22_XLG_MIBCNT_DIS BIT(13) 411 /* Port Mac Control1 */ 412 #define MVPP22_XLG_CTRL1_REG 0x104 413 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0 414 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff 415 /* Port Interrupt Mask */ 416 #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118 417 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1) 418 /* Port Mac Control3 */ 419 #define MVPP22_XLG_CTRL3_REG 0x11c 420 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13) 421 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13) 422 #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13) 423 /* Port Mac Control4 */ 424 #define MVPP22_XLG_CTRL4_REG 0x184 425 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5) 426 #define MVPP22_XLG_FORWARD_PFC_EN BIT(6) 427 #define MVPP22_XLG_MODE_DMA_1G BIT(12) 428 #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14) 429 430 /* XPCS registers */ 431 432 /* Global Configuration 0 */ 433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0 434 #define MVPP22_XPCS_PCSRESET BIT(0) 435 #define MVPP22_XPCS_PCSMODE_OFFS 3 436 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \ 437 MVPP22_XPCS_PCSMODE_OFFS) 438 #define MVPP22_XPCS_LANEACTIVE_OFFS 5 439 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \ 440 MVPP22_XPCS_LANEACTIVE_OFFS) 441 442 /* MPCS registers */ 443 444 #define PCS40G_COMMON_CONTROL 0x14 445 #define FORWARD_ERROR_CORRECTION_MASK BIT(1) 446 447 #define PCS_CLOCK_RESET 0x14c 448 #define TX_SD_CLK_RESET_MASK BIT(0) 449 #define RX_SD_CLK_RESET_MASK BIT(1) 450 #define MAC_CLK_RESET_MASK BIT(2) 451 #define CLK_DIVISION_RATIO_OFFS 4 452 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS) 453 #define CLK_DIV_PHASE_SET_MASK BIT(11) 454 455 /* System Soft Reset 1 */ 456 #define GOP_SOFT_RESET_1_REG 0x108 457 #define NETC_GOP_SOFT_RESET_OFFS 6 458 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \ 459 NETC_GOP_SOFT_RESET_OFFS) 460 461 /* Ports Control 0 */ 462 #define NETCOMP_PORTS_CONTROL_0_REG 0x110 463 #define NETC_BUS_WIDTH_SELECT_OFFS 1 464 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \ 465 NETC_BUS_WIDTH_SELECT_OFFS) 466 #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29 467 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \ 468 NETC_GIG_RX_DATA_SAMPLE_OFFS) 469 #define NETC_CLK_DIV_PHASE_OFFS 31 470 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS) 471 /* Ports Control 1 */ 472 #define NETCOMP_PORTS_CONTROL_1_REG 0x114 473 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p) 474 #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \ 475 NETC_PORTS_ACTIVE_OFFSET(p)) 476 #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p) 477 #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \ 478 NETC_PORT_GIG_RF_RESET_OFFS(p)) 479 #define NETCOMP_CONTROL_0_REG 0x120 480 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0 481 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \ 482 NETC_GBE_PORT0_SGMII_MODE_OFFS) 483 #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1 484 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \ 485 NETC_GBE_PORT1_SGMII_MODE_OFFS) 486 #define NETC_GBE_PORT1_MII_MODE_OFFS 2 487 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \ 488 NETC_GBE_PORT1_MII_MODE_OFFS) 489 490 #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04) 491 #define MVPP22_SMI_POLLING_EN BIT(10) 492 493 #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \ 494 (0x4 * (port))) 495 496 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 497 498 /* Descriptor ring Macros */ 499 #define MVPP2_QUEUE_NEXT_DESC(q, index) \ 500 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 501 502 /* SMI: 0xc0054 -> offset 0x54 to lms_base */ 503 #define MVPP21_SMI 0x0054 504 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */ 505 #define MVPP22_SMI 0x1200 506 #define MVPP2_PHY_REG_MASK 0x1f 507 /* SMI register fields */ 508 #define MVPP2_SMI_DATA_OFFS 0 /* Data */ 509 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS) 510 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ 511 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ 512 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ 513 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS) 514 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */ 515 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */ 516 517 #define MVPP2_PHY_ADDR_MASK 0x1f 518 #define MVPP2_PHY_REG_MASK 0x1f 519 520 /* Additional PPv2.2 offsets */ 521 #define MVPP22_MPCS 0x007000 522 #define MVPP22_XPCS 0x007400 523 #define MVPP22_PORT_BASE 0x007e00 524 #define MVPP22_PORT_OFFSET 0x001000 525 #define MVPP22_RFU1 0x318000 526 527 /* Maximum number of ports */ 528 #define MVPP22_GOP_MAC_NUM 4 529 530 /* Sets the field located at the specified in data */ 531 #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41 532 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5 533 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb 534 535 /* Net Complex */ 536 enum mv_netc_topology { 537 MV_NETC_GE_MAC2_SGMII = BIT(0), 538 MV_NETC_GE_MAC3_SGMII = BIT(1), 539 MV_NETC_GE_MAC3_RGMII = BIT(2), 540 }; 541 542 enum mv_netc_phase { 543 MV_NETC_FIRST_PHASE, 544 MV_NETC_SECOND_PHASE, 545 }; 546 547 enum mv_netc_sgmii_xmi_mode { 548 MV_NETC_GBE_SGMII, 549 MV_NETC_GBE_XMII, 550 }; 551 552 enum mv_netc_mii_mode { 553 MV_NETC_GBE_RGMII, 554 MV_NETC_GBE_MII, 555 }; 556 557 enum mv_netc_lanes { 558 MV_NETC_LANE_23, 559 MV_NETC_LANE_45, 560 }; 561 562 /* Various constants */ 563 564 /* Coalescing */ 565 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15 566 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL 567 #define MVPP2_RX_COAL_PKTS 32 568 #define MVPP2_RX_COAL_USEC 100 569 570 /* The two bytes Marvell header. Either contains a special value used 571 * by Marvell switches when a specific hardware mode is enabled (not 572 * supported by this driver) or is filled automatically by zeroes on 573 * the RX side. Those two bytes being at the front of the Ethernet 574 * header, they allow to have the IP header aligned on a 4 bytes 575 * boundary automatically: the hardware skips those two bytes on its 576 * own. 577 */ 578 #define MVPP2_MH_SIZE 2 579 #define MVPP2_ETH_TYPE_LEN 2 580 #define MVPP2_PPPOE_HDR_SIZE 8 581 #define MVPP2_VLAN_TAG_LEN 4 582 583 /* Lbtd 802.3 type */ 584 #define MVPP2_IP_LBDT_TYPE 0xfffa 585 586 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32 587 #define MVPP2_TX_CSUM_MAX_SIZE 9800 588 589 /* Timeout constants */ 590 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 591 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 592 593 #define MVPP2_TX_MTU_MAX 0x7ffff 594 595 /* Maximum number of T-CONTs of PON port */ 596 #define MVPP2_MAX_TCONT 16 597 598 /* Maximum number of supported ports */ 599 #define MVPP2_MAX_PORTS 4 600 601 /* Maximum number of TXQs used by single port */ 602 #define MVPP2_MAX_TXQ 8 603 604 /* Default number of TXQs in use */ 605 #define MVPP2_DEFAULT_TXQ 1 606 607 /* Dfault number of RXQs in use */ 608 #define MVPP2_DEFAULT_RXQ 1 609 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */ 610 611 /* Max number of Rx descriptors */ 612 #define MVPP2_MAX_RXD 16 613 614 /* Max number of Tx descriptors */ 615 #define MVPP2_MAX_TXD 16 616 617 /* Amount of Tx descriptors that can be reserved at once by CPU */ 618 #define MVPP2_CPU_DESC_CHUNK 64 619 620 /* Max number of Tx descriptors in each aggregated queue */ 621 #define MVPP2_AGGR_TXQ_SIZE 256 622 623 /* Descriptor aligned size */ 624 #define MVPP2_DESC_ALIGNED_SIZE 32 625 626 /* Descriptor alignment mask */ 627 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) 628 629 /* RX FIFO constants */ 630 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000 631 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80 632 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000 633 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000 634 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000 635 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200 636 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80 637 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40 638 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 639 640 /* TX general registers */ 641 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2)) 642 #define MVPP22_TX_FIFO_SIZE_MASK 0xf 643 644 /* TX FIFO constants */ 645 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa 646 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3 647 648 /* RX buffer constants */ 649 #define MVPP2_SKB_SHINFO_SIZE \ 650 0 651 652 #define MVPP2_RX_PKT_SIZE(mtu) \ 653 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ 654 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE) 655 656 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 657 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) 658 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \ 659 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) 660 661 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) 662 663 /* IPv6 max L3 address size */ 664 #define MVPP2_MAX_L3_ADDR_SIZE 16 665 666 /* Port flags */ 667 #define MVPP2_F_LOOPBACK BIT(0) 668 669 /* Marvell tag types */ 670 enum mvpp2_tag_type { 671 MVPP2_TAG_TYPE_NONE = 0, 672 MVPP2_TAG_TYPE_MH = 1, 673 MVPP2_TAG_TYPE_DSA = 2, 674 MVPP2_TAG_TYPE_EDSA = 3, 675 MVPP2_TAG_TYPE_VLAN = 4, 676 MVPP2_TAG_TYPE_LAST = 5 677 }; 678 679 /* Parser constants */ 680 #define MVPP2_PRS_TCAM_SRAM_SIZE 256 681 #define MVPP2_PRS_TCAM_WORDS 6 682 #define MVPP2_PRS_SRAM_WORDS 4 683 #define MVPP2_PRS_FLOW_ID_SIZE 64 684 #define MVPP2_PRS_FLOW_ID_MASK 0x3f 685 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1 686 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) 687 #define MVPP2_PRS_IPV4_HEAD 0x40 688 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 689 #define MVPP2_PRS_IPV4_MC 0xe0 690 #define MVPP2_PRS_IPV4_MC_MASK 0xf0 691 #define MVPP2_PRS_IPV4_BC_MASK 0xff 692 #define MVPP2_PRS_IPV4_IHL 0x5 693 #define MVPP2_PRS_IPV4_IHL_MASK 0xf 694 #define MVPP2_PRS_IPV6_MC 0xff 695 #define MVPP2_PRS_IPV6_MC_MASK 0xff 696 #define MVPP2_PRS_IPV6_HOP_MASK 0xff 697 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff 698 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f 699 #define MVPP2_PRS_DBL_VLANS_MAX 100 700 701 /* Tcam structure: 702 * - lookup ID - 4 bits 703 * - port ID - 1 byte 704 * - additional information - 1 byte 705 * - header data - 8 bytes 706 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). 707 */ 708 #define MVPP2_PRS_AI_BITS 8 709 #define MVPP2_PRS_PORT_MASK 0xff 710 #define MVPP2_PRS_LU_MASK 0xf 711 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ 712 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) 713 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ 714 (((offs) * 2) - ((offs) % 2) + 2) 715 #define MVPP2_PRS_TCAM_AI_BYTE 16 716 #define MVPP2_PRS_TCAM_PORT_BYTE 17 717 #define MVPP2_PRS_TCAM_LU_BYTE 20 718 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) 719 #define MVPP2_PRS_TCAM_INV_WORD 5 720 /* Tcam entries ID */ 721 #define MVPP2_PE_DROP_ALL 0 722 #define MVPP2_PE_FIRST_FREE_TID 1 723 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) 724 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) 725 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) 726 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) 727 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) 728 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) 729 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) 730 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) 731 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) 732 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) 733 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) 734 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) 735 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) 736 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) 737 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) 738 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) 739 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) 740 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) 741 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) 742 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) 743 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) 744 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) 745 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) 746 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) 747 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) 748 749 /* Sram structure 750 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). 751 */ 752 #define MVPP2_PRS_SRAM_RI_OFFS 0 753 #define MVPP2_PRS_SRAM_RI_WORD 0 754 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 755 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 756 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 757 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64 758 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 759 #define MVPP2_PRS_SRAM_UDF_OFFS 73 760 #define MVPP2_PRS_SRAM_UDF_BITS 8 761 #define MVPP2_PRS_SRAM_UDF_MASK 0xff 762 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 763 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 764 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 765 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 766 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 767 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 768 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 772 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 773 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 778 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 779 #define MVPP2_PRS_SRAM_AI_OFFS 90 780 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 781 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 782 #define MVPP2_PRS_SRAM_AI_MASK 0xff 783 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 784 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf 785 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110 786 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111 787 788 /* Sram result info bits assignment */ 789 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1 790 #define MVPP2_PRS_RI_DSA_MASK 0x2 791 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3)) 792 #define MVPP2_PRS_RI_VLAN_NONE 0x0 793 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) 794 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) 795 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) 796 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 797 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) 798 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) 799 #define MVPP2_PRS_RI_L2_UCAST 0x0 800 #define MVPP2_PRS_RI_L2_MCAST BIT(9) 801 #define MVPP2_PRS_RI_L2_BCAST BIT(10) 802 #define MVPP2_PRS_RI_PPPOE_MASK 0x800 803 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14)) 804 #define MVPP2_PRS_RI_L3_UN 0x0 805 #define MVPP2_PRS_RI_L3_IP4 BIT(12) 806 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) 807 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) 808 #define MVPP2_PRS_RI_L3_IP6 BIT(14) 809 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) 810 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) 811 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16)) 812 #define MVPP2_PRS_RI_L3_UCAST 0x0 813 #define MVPP2_PRS_RI_L3_MCAST BIT(15) 814 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) 815 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 816 #define MVPP2_PRS_RI_UDF3_MASK 0x300000 817 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) 818 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 819 #define MVPP2_PRS_RI_L4_TCP BIT(22) 820 #define MVPP2_PRS_RI_L4_UDP BIT(23) 821 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) 822 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000 823 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) 824 #define MVPP2_PRS_RI_DROP_MASK 0x80000000 825 826 /* Sram additional info bits assignment */ 827 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) 828 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) 829 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) 830 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) 831 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) 832 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) 833 #define MVPP2_PRS_SINGLE_VLAN_AI 0 834 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) 835 836 /* DSA/EDSA type */ 837 #define MVPP2_PRS_TAGGED true 838 #define MVPP2_PRS_UNTAGGED false 839 #define MVPP2_PRS_EDSA true 840 #define MVPP2_PRS_DSA false 841 842 /* MAC entries, shadow udf */ 843 enum mvpp2_prs_udf { 844 MVPP2_PRS_UDF_MAC_DEF, 845 MVPP2_PRS_UDF_MAC_RANGE, 846 MVPP2_PRS_UDF_L2_DEF, 847 MVPP2_PRS_UDF_L2_DEF_COPY, 848 MVPP2_PRS_UDF_L2_USER, 849 }; 850 851 /* Lookup ID */ 852 enum mvpp2_prs_lookup { 853 MVPP2_PRS_LU_MH, 854 MVPP2_PRS_LU_MAC, 855 MVPP2_PRS_LU_DSA, 856 MVPP2_PRS_LU_VLAN, 857 MVPP2_PRS_LU_L2, 858 MVPP2_PRS_LU_PPPOE, 859 MVPP2_PRS_LU_IP4, 860 MVPP2_PRS_LU_IP6, 861 MVPP2_PRS_LU_FLOWS, 862 MVPP2_PRS_LU_LAST, 863 }; 864 865 /* L3 cast enum */ 866 enum mvpp2_prs_l3_cast { 867 MVPP2_PRS_L3_UNI_CAST, 868 MVPP2_PRS_L3_MULTI_CAST, 869 MVPP2_PRS_L3_BROAD_CAST 870 }; 871 872 /* Classifier constants */ 873 #define MVPP2_CLS_FLOWS_TBL_SIZE 512 874 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 875 #define MVPP2_CLS_LKP_TBL_SIZE 64 876 877 /* BM constants */ 878 #define MVPP2_BM_POOLS_NUM 1 879 #define MVPP2_BM_LONG_BUF_NUM 16 880 #define MVPP2_BM_SHORT_BUF_NUM 16 881 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) 882 #define MVPP2_BM_POOL_PTR_ALIGN 128 883 #define MVPP2_BM_SWF_LONG_POOL(port) 0 884 885 /* BM cookie (32 bits) definition */ 886 #define MVPP2_BM_COOKIE_POOL_OFFS 8 887 #define MVPP2_BM_COOKIE_CPU_OFFS 24 888 889 /* BM short pool packet size 890 * These value assure that for SWF the total number 891 * of bytes allocated for each buffer will be 512 892 */ 893 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) 894 895 enum mvpp2_bm_type { 896 MVPP2_BM_FREE, 897 MVPP2_BM_SWF_LONG, 898 MVPP2_BM_SWF_SHORT 899 }; 900 901 /* Definitions */ 902 903 /* Shared Packet Processor resources */ 904 struct mvpp2 { 905 /* Shared registers' base addresses */ 906 void __iomem *base; 907 void __iomem *lms_base; 908 void __iomem *iface_base; 909 void __iomem *mdio_base; 910 911 void __iomem *mpcs_base; 912 void __iomem *xpcs_base; 913 void __iomem *rfu1_base; 914 915 u32 netc_config; 916 917 /* List of pointers to port structures */ 918 struct mvpp2_port **port_list; 919 920 /* Aggregated TXQs */ 921 struct mvpp2_tx_queue *aggr_txqs; 922 923 /* BM pools */ 924 struct mvpp2_bm_pool *bm_pools; 925 926 /* PRS shadow table */ 927 struct mvpp2_prs_shadow *prs_shadow; 928 /* PRS auxiliary table for double vlan entries control */ 929 bool *prs_double_vlans; 930 931 /* Tclk value */ 932 u32 tclk; 933 934 /* HW version */ 935 enum { MVPP21, MVPP22 } hw_version; 936 937 /* Maximum number of RXQs per port */ 938 unsigned int max_port_rxqs; 939 940 struct mii_dev *bus; 941 942 int probe_done; 943 }; 944 945 struct mvpp2_pcpu_stats { 946 u64 rx_packets; 947 u64 rx_bytes; 948 u64 tx_packets; 949 u64 tx_bytes; 950 }; 951 952 struct mvpp2_port { 953 u8 id; 954 955 /* Index of the port from the "group of ports" complex point 956 * of view 957 */ 958 int gop_id; 959 960 int irq; 961 962 struct mvpp2 *priv; 963 964 /* Per-port registers' base address */ 965 void __iomem *base; 966 967 struct mvpp2_rx_queue **rxqs; 968 struct mvpp2_tx_queue **txqs; 969 970 int pkt_size; 971 972 u32 pending_cause_rx; 973 974 /* Per-CPU port control */ 975 struct mvpp2_port_pcpu __percpu *pcpu; 976 977 /* Flags */ 978 unsigned long flags; 979 980 u16 tx_ring_size; 981 u16 rx_ring_size; 982 struct mvpp2_pcpu_stats __percpu *stats; 983 984 struct phy_device *phy_dev; 985 phy_interface_t phy_interface; 986 int phy_node; 987 int phyaddr; 988 int init; 989 unsigned int link; 990 unsigned int duplex; 991 unsigned int speed; 992 993 unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */ 994 995 struct mvpp2_bm_pool *pool_long; 996 struct mvpp2_bm_pool *pool_short; 997 998 /* Index of first port's physical RXQ */ 999 u8 first_rxq; 1000 1001 u8 dev_addr[ETH_ALEN]; 1002 }; 1003 1004 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the 1005 * layout of the transmit and reception DMA descriptors, and their 1006 * layout is therefore defined by the hardware design 1007 */ 1008 1009 #define MVPP2_TXD_L3_OFF_SHIFT 0 1010 #define MVPP2_TXD_IP_HLEN_SHIFT 8 1011 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13) 1012 #define MVPP2_TXD_L4_CSUM_NOT BIT(14) 1013 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) 1014 #define MVPP2_TXD_PADDING_DISABLE BIT(23) 1015 #define MVPP2_TXD_L4_UDP BIT(24) 1016 #define MVPP2_TXD_L3_IP6 BIT(26) 1017 #define MVPP2_TXD_L_DESC BIT(28) 1018 #define MVPP2_TXD_F_DESC BIT(29) 1019 1020 #define MVPP2_RXD_ERR_SUMMARY BIT(15) 1021 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) 1022 #define MVPP2_RXD_ERR_CRC 0x0 1023 #define MVPP2_RXD_ERR_OVERRUN BIT(13) 1024 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) 1025 #define MVPP2_RXD_BM_POOL_ID_OFFS 16 1026 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) 1027 #define MVPP2_RXD_HWF_SYNC BIT(21) 1028 #define MVPP2_RXD_L4_CSUM_OK BIT(22) 1029 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24) 1030 #define MVPP2_RXD_L4_TCP BIT(25) 1031 #define MVPP2_RXD_L4_UDP BIT(26) 1032 #define MVPP2_RXD_L3_IP4 BIT(28) 1033 #define MVPP2_RXD_L3_IP6 BIT(30) 1034 #define MVPP2_RXD_BUF_HDR BIT(31) 1035 1036 /* HW TX descriptor for PPv2.1 */ 1037 struct mvpp21_tx_desc { 1038 u32 command; /* Options used by HW for packet transmitting.*/ 1039 u8 packet_offset; /* the offset from the buffer beginning */ 1040 u8 phys_txq; /* destination queue ID */ 1041 u16 data_size; /* data size of transmitted packet in bytes */ 1042 u32 buf_dma_addr; /* physical addr of transmitted buffer */ 1043 u32 buf_cookie; /* cookie for access to TX buffer in tx path */ 1044 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ 1045 u32 reserved2; /* reserved (for future use) */ 1046 }; 1047 1048 /* HW RX descriptor for PPv2.1 */ 1049 struct mvpp21_rx_desc { 1050 u32 status; /* info about received packet */ 1051 u16 reserved1; /* parser_info (for future use, PnC) */ 1052 u16 data_size; /* size of received packet in bytes */ 1053 u32 buf_dma_addr; /* physical address of the buffer */ 1054 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 1055 u16 reserved2; /* gem_port_id (for future use, PON) */ 1056 u16 reserved3; /* csum_l4 (for future use, PnC) */ 1057 u8 reserved4; /* bm_qset (for future use, BM) */ 1058 u8 reserved5; 1059 u16 reserved6; /* classify_info (for future use, PnC) */ 1060 u32 reserved7; /* flow_id (for future use, PnC) */ 1061 u32 reserved8; 1062 }; 1063 1064 /* HW TX descriptor for PPv2.2 */ 1065 struct mvpp22_tx_desc { 1066 u32 command; 1067 u8 packet_offset; 1068 u8 phys_txq; 1069 u16 data_size; 1070 u64 reserved1; 1071 u64 buf_dma_addr_ptp; 1072 u64 buf_cookie_misc; 1073 }; 1074 1075 /* HW RX descriptor for PPv2.2 */ 1076 struct mvpp22_rx_desc { 1077 u32 status; 1078 u16 reserved1; 1079 u16 data_size; 1080 u32 reserved2; 1081 u32 reserved3; 1082 u64 buf_dma_addr_key_hash; 1083 u64 buf_cookie_misc; 1084 }; 1085 1086 /* Opaque type used by the driver to manipulate the HW TX and RX 1087 * descriptors 1088 */ 1089 struct mvpp2_tx_desc { 1090 union { 1091 struct mvpp21_tx_desc pp21; 1092 struct mvpp22_tx_desc pp22; 1093 }; 1094 }; 1095 1096 struct mvpp2_rx_desc { 1097 union { 1098 struct mvpp21_rx_desc pp21; 1099 struct mvpp22_rx_desc pp22; 1100 }; 1101 }; 1102 1103 /* Per-CPU Tx queue control */ 1104 struct mvpp2_txq_pcpu { 1105 int cpu; 1106 1107 /* Number of Tx DMA descriptors in the descriptor ring */ 1108 int size; 1109 1110 /* Number of currently used Tx DMA descriptor in the 1111 * descriptor ring 1112 */ 1113 int count; 1114 1115 /* Number of Tx DMA descriptors reserved for each CPU */ 1116 int reserved_num; 1117 1118 /* Index of last TX DMA descriptor that was inserted */ 1119 int txq_put_index; 1120 1121 /* Index of the TX DMA descriptor to be cleaned up */ 1122 int txq_get_index; 1123 }; 1124 1125 struct mvpp2_tx_queue { 1126 /* Physical number of this Tx queue */ 1127 u8 id; 1128 1129 /* Logical number of this Tx queue */ 1130 u8 log_id; 1131 1132 /* Number of Tx DMA descriptors in the descriptor ring */ 1133 int size; 1134 1135 /* Number of currently used Tx DMA descriptor in the descriptor ring */ 1136 int count; 1137 1138 /* Per-CPU control of physical Tx queues */ 1139 struct mvpp2_txq_pcpu __percpu *pcpu; 1140 1141 u32 done_pkts_coal; 1142 1143 /* Virtual address of thex Tx DMA descriptors array */ 1144 struct mvpp2_tx_desc *descs; 1145 1146 /* DMA address of the Tx DMA descriptors array */ 1147 dma_addr_t descs_dma; 1148 1149 /* Index of the last Tx DMA descriptor */ 1150 int last_desc; 1151 1152 /* Index of the next Tx DMA descriptor to process */ 1153 int next_desc_to_proc; 1154 }; 1155 1156 struct mvpp2_rx_queue { 1157 /* RX queue number, in the range 0-31 for physical RXQs */ 1158 u8 id; 1159 1160 /* Num of rx descriptors in the rx descriptor ring */ 1161 int size; 1162 1163 u32 pkts_coal; 1164 u32 time_coal; 1165 1166 /* Virtual address of the RX DMA descriptors array */ 1167 struct mvpp2_rx_desc *descs; 1168 1169 /* DMA address of the RX DMA descriptors array */ 1170 dma_addr_t descs_dma; 1171 1172 /* Index of the last RX DMA descriptor */ 1173 int last_desc; 1174 1175 /* Index of the next RX DMA descriptor to process */ 1176 int next_desc_to_proc; 1177 1178 /* ID of port to which physical RXQ is mapped */ 1179 int port; 1180 1181 /* Port's logic RXQ number to which physical RXQ is mapped */ 1182 int logic_rxq; 1183 }; 1184 1185 union mvpp2_prs_tcam_entry { 1186 u32 word[MVPP2_PRS_TCAM_WORDS]; 1187 u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; 1188 }; 1189 1190 union mvpp2_prs_sram_entry { 1191 u32 word[MVPP2_PRS_SRAM_WORDS]; 1192 u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; 1193 }; 1194 1195 struct mvpp2_prs_entry { 1196 u32 index; 1197 union mvpp2_prs_tcam_entry tcam; 1198 union mvpp2_prs_sram_entry sram; 1199 }; 1200 1201 struct mvpp2_prs_shadow { 1202 bool valid; 1203 bool finish; 1204 1205 /* Lookup ID */ 1206 int lu; 1207 1208 /* User defined offset */ 1209 int udf; 1210 1211 /* Result info */ 1212 u32 ri; 1213 u32 ri_mask; 1214 }; 1215 1216 struct mvpp2_cls_flow_entry { 1217 u32 index; 1218 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; 1219 }; 1220 1221 struct mvpp2_cls_lookup_entry { 1222 u32 lkpid; 1223 u32 way; 1224 u32 data; 1225 }; 1226 1227 struct mvpp2_bm_pool { 1228 /* Pool number in the range 0-7 */ 1229 int id; 1230 enum mvpp2_bm_type type; 1231 1232 /* Buffer Pointers Pool External (BPPE) size */ 1233 int size; 1234 /* Number of buffers for this pool */ 1235 int buf_num; 1236 /* Pool buffer size */ 1237 int buf_size; 1238 /* Packet size */ 1239 int pkt_size; 1240 1241 /* BPPE virtual base address */ 1242 unsigned long *virt_addr; 1243 /* BPPE DMA base address */ 1244 dma_addr_t dma_addr; 1245 1246 /* Ports using BM pool */ 1247 u32 port_map; 1248 1249 /* Occupied buffers indicator */ 1250 int in_use_thresh; 1251 }; 1252 1253 /* Static declaractions */ 1254 1255 /* Number of RXQs used by single port */ 1256 static int rxq_number = MVPP2_DEFAULT_RXQ; 1257 /* Number of TXQs used by single port */ 1258 static int txq_number = MVPP2_DEFAULT_TXQ; 1259 1260 static int base_id; 1261 1262 #define MVPP2_DRIVER_NAME "mvpp2" 1263 #define MVPP2_DRIVER_VERSION "1.0" 1264 1265 /* 1266 * U-Boot internal data, mostly uncached buffers for descriptors and data 1267 */ 1268 struct buffer_location { 1269 struct mvpp2_tx_desc *aggr_tx_descs; 1270 struct mvpp2_tx_desc *tx_descs; 1271 struct mvpp2_rx_desc *rx_descs; 1272 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM]; 1273 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM]; 1274 int first_rxq; 1275 }; 1276 1277 /* 1278 * All 4 interfaces use the same global buffer, since only one interface 1279 * can be enabled at once 1280 */ 1281 static struct buffer_location buffer_loc; 1282 1283 /* 1284 * Page table entries are set to 1MB, or multiples of 1MB 1285 * (not < 1MB). driver uses less bd's so use 1MB bdspace. 1286 */ 1287 #define BD_SPACE (1 << 20) 1288 1289 /* Utility/helper methods */ 1290 1291 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) 1292 { 1293 writel(data, priv->base + offset); 1294 } 1295 1296 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) 1297 { 1298 return readl(priv->base + offset); 1299 } 1300 1301 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, 1302 struct mvpp2_tx_desc *tx_desc, 1303 dma_addr_t dma_addr) 1304 { 1305 if (port->priv->hw_version == MVPP21) { 1306 tx_desc->pp21.buf_dma_addr = dma_addr; 1307 } else { 1308 u64 val = (u64)dma_addr; 1309 1310 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0); 1311 tx_desc->pp22.buf_dma_addr_ptp |= val; 1312 } 1313 } 1314 1315 static void mvpp2_txdesc_size_set(struct mvpp2_port *port, 1316 struct mvpp2_tx_desc *tx_desc, 1317 size_t size) 1318 { 1319 if (port->priv->hw_version == MVPP21) 1320 tx_desc->pp21.data_size = size; 1321 else 1322 tx_desc->pp22.data_size = size; 1323 } 1324 1325 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, 1326 struct mvpp2_tx_desc *tx_desc, 1327 unsigned int txq) 1328 { 1329 if (port->priv->hw_version == MVPP21) 1330 tx_desc->pp21.phys_txq = txq; 1331 else 1332 tx_desc->pp22.phys_txq = txq; 1333 } 1334 1335 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, 1336 struct mvpp2_tx_desc *tx_desc, 1337 unsigned int command) 1338 { 1339 if (port->priv->hw_version == MVPP21) 1340 tx_desc->pp21.command = command; 1341 else 1342 tx_desc->pp22.command = command; 1343 } 1344 1345 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port, 1346 struct mvpp2_tx_desc *tx_desc, 1347 unsigned int offset) 1348 { 1349 if (port->priv->hw_version == MVPP21) 1350 tx_desc->pp21.packet_offset = offset; 1351 else 1352 tx_desc->pp22.packet_offset = offset; 1353 } 1354 1355 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, 1356 struct mvpp2_rx_desc *rx_desc) 1357 { 1358 if (port->priv->hw_version == MVPP21) 1359 return rx_desc->pp21.buf_dma_addr; 1360 else 1361 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0); 1362 } 1363 1364 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, 1365 struct mvpp2_rx_desc *rx_desc) 1366 { 1367 if (port->priv->hw_version == MVPP21) 1368 return rx_desc->pp21.buf_cookie; 1369 else 1370 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0); 1371 } 1372 1373 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, 1374 struct mvpp2_rx_desc *rx_desc) 1375 { 1376 if (port->priv->hw_version == MVPP21) 1377 return rx_desc->pp21.data_size; 1378 else 1379 return rx_desc->pp22.data_size; 1380 } 1381 1382 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, 1383 struct mvpp2_rx_desc *rx_desc) 1384 { 1385 if (port->priv->hw_version == MVPP21) 1386 return rx_desc->pp21.status; 1387 else 1388 return rx_desc->pp22.status; 1389 } 1390 1391 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) 1392 { 1393 txq_pcpu->txq_get_index++; 1394 if (txq_pcpu->txq_get_index == txq_pcpu->size) 1395 txq_pcpu->txq_get_index = 0; 1396 } 1397 1398 /* Get number of physical egress port */ 1399 static inline int mvpp2_egress_port(struct mvpp2_port *port) 1400 { 1401 return MVPP2_MAX_TCONT + port->id; 1402 } 1403 1404 /* Get number of physical TXQ */ 1405 static inline int mvpp2_txq_phys(int port, int txq) 1406 { 1407 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; 1408 } 1409 1410 /* Parser configuration routines */ 1411 1412 /* Update parser tcam and sram hw entries */ 1413 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1414 { 1415 int i; 1416 1417 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1418 return -EINVAL; 1419 1420 /* Clear entry invalidation bit */ 1421 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; 1422 1423 /* Write tcam index - indirect access */ 1424 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1425 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1426 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); 1427 1428 /* Write sram index - indirect access */ 1429 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1430 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1431 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); 1432 1433 return 0; 1434 } 1435 1436 /* Read tcam entry from hw */ 1437 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1438 { 1439 int i; 1440 1441 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1442 return -EINVAL; 1443 1444 /* Write tcam index - indirect access */ 1445 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1446 1447 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, 1448 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); 1449 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) 1450 return MVPP2_PRS_TCAM_ENTRY_INVALID; 1451 1452 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1453 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); 1454 1455 /* Write sram index - indirect access */ 1456 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1457 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1458 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); 1459 1460 return 0; 1461 } 1462 1463 /* Invalidate tcam hw entry */ 1464 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) 1465 { 1466 /* Write index - indirect access */ 1467 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 1468 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), 1469 MVPP2_PRS_TCAM_INV_MASK); 1470 } 1471 1472 /* Enable shadow table entry and set its lookup ID */ 1473 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) 1474 { 1475 priv->prs_shadow[index].valid = true; 1476 priv->prs_shadow[index].lu = lu; 1477 } 1478 1479 /* Update ri fields in shadow table entry */ 1480 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, 1481 unsigned int ri, unsigned int ri_mask) 1482 { 1483 priv->prs_shadow[index].ri_mask = ri_mask; 1484 priv->prs_shadow[index].ri = ri; 1485 } 1486 1487 /* Update lookup field in tcam sw entry */ 1488 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) 1489 { 1490 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); 1491 1492 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; 1493 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; 1494 } 1495 1496 /* Update mask for single port in tcam sw entry */ 1497 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, 1498 unsigned int port, bool add) 1499 { 1500 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1501 1502 if (add) 1503 pe->tcam.byte[enable_off] &= ~(1 << port); 1504 else 1505 pe->tcam.byte[enable_off] |= 1 << port; 1506 } 1507 1508 /* Update port map in tcam sw entry */ 1509 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, 1510 unsigned int ports) 1511 { 1512 unsigned char port_mask = MVPP2_PRS_PORT_MASK; 1513 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1514 1515 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; 1516 pe->tcam.byte[enable_off] &= ~port_mask; 1517 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; 1518 } 1519 1520 /* Obtain port map from tcam sw entry */ 1521 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) 1522 { 1523 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1524 1525 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; 1526 } 1527 1528 /* Set byte of data and its enable bits in tcam sw entry */ 1529 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, 1530 unsigned int offs, unsigned char byte, 1531 unsigned char enable) 1532 { 1533 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; 1534 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; 1535 } 1536 1537 /* Get byte of data and its enable bits from tcam sw entry */ 1538 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, 1539 unsigned int offs, unsigned char *byte, 1540 unsigned char *enable) 1541 { 1542 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; 1543 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; 1544 } 1545 1546 /* Set ethertype in tcam sw entry */ 1547 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, 1548 unsigned short ethertype) 1549 { 1550 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); 1551 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); 1552 } 1553 1554 /* Set bits in sram sw entry */ 1555 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, 1556 int val) 1557 { 1558 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); 1559 } 1560 1561 /* Clear bits in sram sw entry */ 1562 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, 1563 int val) 1564 { 1565 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); 1566 } 1567 1568 /* Update ri bits in sram sw entry */ 1569 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, 1570 unsigned int bits, unsigned int mask) 1571 { 1572 unsigned int i; 1573 1574 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { 1575 int ri_off = MVPP2_PRS_SRAM_RI_OFFS; 1576 1577 if (!(mask & BIT(i))) 1578 continue; 1579 1580 if (bits & BIT(i)) 1581 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); 1582 else 1583 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); 1584 1585 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); 1586 } 1587 } 1588 1589 /* Update ai bits in sram sw entry */ 1590 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, 1591 unsigned int bits, unsigned int mask) 1592 { 1593 unsigned int i; 1594 int ai_off = MVPP2_PRS_SRAM_AI_OFFS; 1595 1596 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { 1597 1598 if (!(mask & BIT(i))) 1599 continue; 1600 1601 if (bits & BIT(i)) 1602 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); 1603 else 1604 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); 1605 1606 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); 1607 } 1608 } 1609 1610 /* Read ai bits from sram sw entry */ 1611 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) 1612 { 1613 u8 bits; 1614 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); 1615 int ai_en_off = ai_off + 1; 1616 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; 1617 1618 bits = (pe->sram.byte[ai_off] >> ai_shift) | 1619 (pe->sram.byte[ai_en_off] << (8 - ai_shift)); 1620 1621 return bits; 1622 } 1623 1624 /* In sram sw entry set lookup ID field of the tcam key to be used in the next 1625 * lookup interation 1626 */ 1627 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, 1628 unsigned int lu) 1629 { 1630 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; 1631 1632 mvpp2_prs_sram_bits_clear(pe, sram_next_off, 1633 MVPP2_PRS_SRAM_NEXT_LU_MASK); 1634 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); 1635 } 1636 1637 /* In the sram sw entry set sign and value of the next lookup offset 1638 * and the offset value generated to the classifier 1639 */ 1640 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, 1641 unsigned int op) 1642 { 1643 /* Set sign */ 1644 if (shift < 0) { 1645 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1646 shift = 0 - shift; 1647 } else { 1648 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1649 } 1650 1651 /* Set value */ 1652 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = 1653 (unsigned char)shift; 1654 1655 /* Reset and set operation */ 1656 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, 1657 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); 1658 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); 1659 1660 /* Set base offset as current */ 1661 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1662 } 1663 1664 /* In the sram sw entry set sign and value of the user defined offset 1665 * generated to the classifier 1666 */ 1667 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, 1668 unsigned int type, int offset, 1669 unsigned int op) 1670 { 1671 /* Set sign */ 1672 if (offset < 0) { 1673 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1674 offset = 0 - offset; 1675 } else { 1676 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1677 } 1678 1679 /* Set value */ 1680 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, 1681 MVPP2_PRS_SRAM_UDF_MASK); 1682 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); 1683 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1684 MVPP2_PRS_SRAM_UDF_BITS)] &= 1685 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1686 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1687 MVPP2_PRS_SRAM_UDF_BITS)] |= 1688 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1689 1690 /* Set offset type */ 1691 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, 1692 MVPP2_PRS_SRAM_UDF_TYPE_MASK); 1693 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); 1694 1695 /* Set offset operation */ 1696 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, 1697 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); 1698 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); 1699 1700 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1701 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= 1702 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> 1703 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1704 1705 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1706 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= 1707 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1708 1709 /* Set base offset as current */ 1710 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1711 } 1712 1713 /* Find parser flow entry */ 1714 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) 1715 { 1716 struct mvpp2_prs_entry *pe; 1717 int tid; 1718 1719 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1720 if (!pe) 1721 return NULL; 1722 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 1723 1724 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ 1725 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { 1726 u8 bits; 1727 1728 if (!priv->prs_shadow[tid].valid || 1729 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) 1730 continue; 1731 1732 pe->index = tid; 1733 mvpp2_prs_hw_read(priv, pe); 1734 bits = mvpp2_prs_sram_ai_get(pe); 1735 1736 /* Sram store classification lookup ID in AI bits [5:0] */ 1737 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) 1738 return pe; 1739 } 1740 kfree(pe); 1741 1742 return NULL; 1743 } 1744 1745 /* Return first free tcam index, seeking from start to end */ 1746 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, 1747 unsigned char end) 1748 { 1749 int tid; 1750 1751 if (start > end) 1752 swap(start, end); 1753 1754 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) 1755 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; 1756 1757 for (tid = start; tid <= end; tid++) { 1758 if (!priv->prs_shadow[tid].valid) 1759 return tid; 1760 } 1761 1762 return -EINVAL; 1763 } 1764 1765 /* Enable/disable dropping all mac da's */ 1766 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) 1767 { 1768 struct mvpp2_prs_entry pe; 1769 1770 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { 1771 /* Entry exist - update port only */ 1772 pe.index = MVPP2_PE_DROP_ALL; 1773 mvpp2_prs_hw_read(priv, &pe); 1774 } else { 1775 /* Entry doesn't exist - create new */ 1776 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1777 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1778 pe.index = MVPP2_PE_DROP_ALL; 1779 1780 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1781 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1782 MVPP2_PRS_RI_DROP_MASK); 1783 1784 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1785 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1786 1787 /* Update shadow table */ 1788 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1789 1790 /* Mask all ports */ 1791 mvpp2_prs_tcam_port_map_set(&pe, 0); 1792 } 1793 1794 /* Update port mask */ 1795 mvpp2_prs_tcam_port_set(&pe, port, add); 1796 1797 mvpp2_prs_hw_write(priv, &pe); 1798 } 1799 1800 /* Set port to promiscuous mode */ 1801 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) 1802 { 1803 struct mvpp2_prs_entry pe; 1804 1805 /* Promiscuous mode - Accept unknown packets */ 1806 1807 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { 1808 /* Entry exist - update port only */ 1809 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1810 mvpp2_prs_hw_read(priv, &pe); 1811 } else { 1812 /* Entry doesn't exist - create new */ 1813 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1814 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1815 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1816 1817 /* Continue - set next lookup */ 1818 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1819 1820 /* Set result info bits */ 1821 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, 1822 MVPP2_PRS_RI_L2_CAST_MASK); 1823 1824 /* Shift to ethertype */ 1825 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1826 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1827 1828 /* Mask all ports */ 1829 mvpp2_prs_tcam_port_map_set(&pe, 0); 1830 1831 /* Update shadow table */ 1832 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1833 } 1834 1835 /* Update port mask */ 1836 mvpp2_prs_tcam_port_set(&pe, port, add); 1837 1838 mvpp2_prs_hw_write(priv, &pe); 1839 } 1840 1841 /* Accept multicast */ 1842 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, 1843 bool add) 1844 { 1845 struct mvpp2_prs_entry pe; 1846 unsigned char da_mc; 1847 1848 /* Ethernet multicast address first byte is 1849 * 0x01 for IPv4 and 0x33 for IPv6 1850 */ 1851 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; 1852 1853 if (priv->prs_shadow[index].valid) { 1854 /* Entry exist - update port only */ 1855 pe.index = index; 1856 mvpp2_prs_hw_read(priv, &pe); 1857 } else { 1858 /* Entry doesn't exist - create new */ 1859 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1860 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1861 pe.index = index; 1862 1863 /* Continue - set next lookup */ 1864 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1865 1866 /* Set result info bits */ 1867 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, 1868 MVPP2_PRS_RI_L2_CAST_MASK); 1869 1870 /* Update tcam entry data first byte */ 1871 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); 1872 1873 /* Shift to ethertype */ 1874 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1875 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1876 1877 /* Mask all ports */ 1878 mvpp2_prs_tcam_port_map_set(&pe, 0); 1879 1880 /* Update shadow table */ 1881 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1882 } 1883 1884 /* Update port mask */ 1885 mvpp2_prs_tcam_port_set(&pe, port, add); 1886 1887 mvpp2_prs_hw_write(priv, &pe); 1888 } 1889 1890 /* Parser per-port initialization */ 1891 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, 1892 int lu_max, int offset) 1893 { 1894 u32 val; 1895 1896 /* Set lookup ID */ 1897 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); 1898 val &= ~MVPP2_PRS_PORT_LU_MASK(port); 1899 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); 1900 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); 1901 1902 /* Set maximum number of loops for packet received from port */ 1903 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); 1904 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); 1905 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); 1906 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); 1907 1908 /* Set initial offset for packet header extraction for the first 1909 * searching loop 1910 */ 1911 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); 1912 val &= ~MVPP2_PRS_INIT_OFF_MASK(port); 1913 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); 1914 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); 1915 } 1916 1917 /* Default flow entries initialization for all ports */ 1918 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) 1919 { 1920 struct mvpp2_prs_entry pe; 1921 int port; 1922 1923 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 1924 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1925 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1926 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; 1927 1928 /* Mask all ports */ 1929 mvpp2_prs_tcam_port_map_set(&pe, 0); 1930 1931 /* Set flow ID*/ 1932 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); 1933 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 1934 1935 /* Update shadow table and hw entry */ 1936 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); 1937 mvpp2_prs_hw_write(priv, &pe); 1938 } 1939 } 1940 1941 /* Set default entry for Marvell Header field */ 1942 static void mvpp2_prs_mh_init(struct mvpp2 *priv) 1943 { 1944 struct mvpp2_prs_entry pe; 1945 1946 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1947 1948 pe.index = MVPP2_PE_MH_DEFAULT; 1949 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); 1950 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, 1951 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1952 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); 1953 1954 /* Unmask all ports */ 1955 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1956 1957 /* Update shadow table and hw entry */ 1958 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); 1959 mvpp2_prs_hw_write(priv, &pe); 1960 } 1961 1962 /* Set default entires (place holder) for promiscuous, non-promiscuous and 1963 * multicast MAC addresses 1964 */ 1965 static void mvpp2_prs_mac_init(struct mvpp2 *priv) 1966 { 1967 struct mvpp2_prs_entry pe; 1968 1969 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1970 1971 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1972 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; 1973 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1974 1975 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1976 MVPP2_PRS_RI_DROP_MASK); 1977 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1978 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1979 1980 /* Unmask all ports */ 1981 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1982 1983 /* Update shadow table and hw entry */ 1984 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1985 mvpp2_prs_hw_write(priv, &pe); 1986 1987 /* place holders only - no ports */ 1988 mvpp2_prs_mac_drop_all_set(priv, 0, false); 1989 mvpp2_prs_mac_promisc_set(priv, 0, false); 1990 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); 1991 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); 1992 } 1993 1994 /* Match basic ethertypes */ 1995 static int mvpp2_prs_etype_init(struct mvpp2 *priv) 1996 { 1997 struct mvpp2_prs_entry pe; 1998 int tid; 1999 2000 /* Ethertype: PPPoE */ 2001 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2002 MVPP2_PE_LAST_FREE_TID); 2003 if (tid < 0) 2004 return tid; 2005 2006 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2007 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2008 pe.index = tid; 2009 2010 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES); 2011 2012 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, 2013 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2014 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2015 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, 2016 MVPP2_PRS_RI_PPPOE_MASK); 2017 2018 /* Update shadow table and hw entry */ 2019 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2020 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2021 priv->prs_shadow[pe.index].finish = false; 2022 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, 2023 MVPP2_PRS_RI_PPPOE_MASK); 2024 mvpp2_prs_hw_write(priv, &pe); 2025 2026 /* Ethertype: ARP */ 2027 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2028 MVPP2_PE_LAST_FREE_TID); 2029 if (tid < 0) 2030 return tid; 2031 2032 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2033 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2034 pe.index = tid; 2035 2036 mvpp2_prs_match_etype(&pe, 0, PROT_ARP); 2037 2038 /* Generate flow in the next iteration*/ 2039 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2040 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2041 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, 2042 MVPP2_PRS_RI_L3_PROTO_MASK); 2043 /* Set L3 offset */ 2044 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2045 MVPP2_ETH_TYPE_LEN, 2046 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2047 2048 /* Update shadow table and hw entry */ 2049 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2050 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2051 priv->prs_shadow[pe.index].finish = true; 2052 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, 2053 MVPP2_PRS_RI_L3_PROTO_MASK); 2054 mvpp2_prs_hw_write(priv, &pe); 2055 2056 /* Ethertype: LBTD */ 2057 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2058 MVPP2_PE_LAST_FREE_TID); 2059 if (tid < 0) 2060 return tid; 2061 2062 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2063 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2064 pe.index = tid; 2065 2066 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); 2067 2068 /* Generate flow in the next iteration*/ 2069 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2070 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2071 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2072 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2073 MVPP2_PRS_RI_CPU_CODE_MASK | 2074 MVPP2_PRS_RI_UDF3_MASK); 2075 /* Set L3 offset */ 2076 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2077 MVPP2_ETH_TYPE_LEN, 2078 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2079 2080 /* Update shadow table and hw entry */ 2081 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2082 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2083 priv->prs_shadow[pe.index].finish = true; 2084 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2085 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2086 MVPP2_PRS_RI_CPU_CODE_MASK | 2087 MVPP2_PRS_RI_UDF3_MASK); 2088 mvpp2_prs_hw_write(priv, &pe); 2089 2090 /* Ethertype: IPv4 without options */ 2091 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2092 MVPP2_PE_LAST_FREE_TID); 2093 if (tid < 0) 2094 return tid; 2095 2096 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2097 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2098 pe.index = tid; 2099 2100 mvpp2_prs_match_etype(&pe, 0, PROT_IP); 2101 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2102 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, 2103 MVPP2_PRS_IPV4_HEAD_MASK | 2104 MVPP2_PRS_IPV4_IHL_MASK); 2105 2106 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2107 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, 2108 MVPP2_PRS_RI_L3_PROTO_MASK); 2109 /* Skip eth_type + 4 bytes of IP header */ 2110 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2111 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2112 /* Set L3 offset */ 2113 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2114 MVPP2_ETH_TYPE_LEN, 2115 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2116 2117 /* Update shadow table and hw entry */ 2118 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2119 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2120 priv->prs_shadow[pe.index].finish = false; 2121 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, 2122 MVPP2_PRS_RI_L3_PROTO_MASK); 2123 mvpp2_prs_hw_write(priv, &pe); 2124 2125 /* Ethertype: IPv4 with options */ 2126 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2127 MVPP2_PE_LAST_FREE_TID); 2128 if (tid < 0) 2129 return tid; 2130 2131 pe.index = tid; 2132 2133 /* Clear tcam data before updating */ 2134 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; 2135 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; 2136 2137 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2138 MVPP2_PRS_IPV4_HEAD, 2139 MVPP2_PRS_IPV4_HEAD_MASK); 2140 2141 /* Clear ri before updating */ 2142 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 2143 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 2144 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, 2145 MVPP2_PRS_RI_L3_PROTO_MASK); 2146 2147 /* Update shadow table and hw entry */ 2148 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2149 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2150 priv->prs_shadow[pe.index].finish = false; 2151 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, 2152 MVPP2_PRS_RI_L3_PROTO_MASK); 2153 mvpp2_prs_hw_write(priv, &pe); 2154 2155 /* Ethertype: IPv6 without options */ 2156 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2157 MVPP2_PE_LAST_FREE_TID); 2158 if (tid < 0) 2159 return tid; 2160 2161 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2162 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2163 pe.index = tid; 2164 2165 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6); 2166 2167 /* Skip DIP of IPV6 header */ 2168 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + 2169 MVPP2_MAX_L3_ADDR_SIZE, 2170 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2171 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2172 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, 2173 MVPP2_PRS_RI_L3_PROTO_MASK); 2174 /* Set L3 offset */ 2175 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2176 MVPP2_ETH_TYPE_LEN, 2177 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2178 2179 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2180 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2181 priv->prs_shadow[pe.index].finish = false; 2182 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, 2183 MVPP2_PRS_RI_L3_PROTO_MASK); 2184 mvpp2_prs_hw_write(priv, &pe); 2185 2186 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ 2187 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2188 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2189 pe.index = MVPP2_PE_ETH_TYPE_UN; 2190 2191 /* Unmask all ports */ 2192 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2193 2194 /* Generate flow in the next iteration*/ 2195 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2196 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2197 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, 2198 MVPP2_PRS_RI_L3_PROTO_MASK); 2199 /* Set L3 offset even it's unknown L3 */ 2200 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2201 MVPP2_ETH_TYPE_LEN, 2202 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2203 2204 /* Update shadow table and hw entry */ 2205 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2206 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2207 priv->prs_shadow[pe.index].finish = true; 2208 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, 2209 MVPP2_PRS_RI_L3_PROTO_MASK); 2210 mvpp2_prs_hw_write(priv, &pe); 2211 2212 return 0; 2213 } 2214 2215 /* Parser default initialization */ 2216 static int mvpp2_prs_default_init(struct udevice *dev, 2217 struct mvpp2 *priv) 2218 { 2219 int err, index, i; 2220 2221 /* Enable tcam table */ 2222 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); 2223 2224 /* Clear all tcam and sram entries */ 2225 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { 2226 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 2227 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 2228 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); 2229 2230 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); 2231 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 2232 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); 2233 } 2234 2235 /* Invalidate all tcam entries */ 2236 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) 2237 mvpp2_prs_hw_inv(priv, index); 2238 2239 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE, 2240 sizeof(struct mvpp2_prs_shadow), 2241 GFP_KERNEL); 2242 if (!priv->prs_shadow) 2243 return -ENOMEM; 2244 2245 /* Always start from lookup = 0 */ 2246 for (index = 0; index < MVPP2_MAX_PORTS; index++) 2247 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, 2248 MVPP2_PRS_PORT_LU_MAX, 0); 2249 2250 mvpp2_prs_def_flow_init(priv); 2251 2252 mvpp2_prs_mh_init(priv); 2253 2254 mvpp2_prs_mac_init(priv); 2255 2256 err = mvpp2_prs_etype_init(priv); 2257 if (err) 2258 return err; 2259 2260 return 0; 2261 } 2262 2263 /* Compare MAC DA with tcam entry data */ 2264 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, 2265 const u8 *da, unsigned char *mask) 2266 { 2267 unsigned char tcam_byte, tcam_mask; 2268 int index; 2269 2270 for (index = 0; index < ETH_ALEN; index++) { 2271 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); 2272 if (tcam_mask != mask[index]) 2273 return false; 2274 2275 if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) 2276 return false; 2277 } 2278 2279 return true; 2280 } 2281 2282 /* Find tcam entry with matched pair <MAC DA, port> */ 2283 static struct mvpp2_prs_entry * 2284 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, 2285 unsigned char *mask, int udf_type) 2286 { 2287 struct mvpp2_prs_entry *pe; 2288 int tid; 2289 2290 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2291 if (!pe) 2292 return NULL; 2293 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2294 2295 /* Go through the all entires with MVPP2_PRS_LU_MAC */ 2296 for (tid = MVPP2_PE_FIRST_FREE_TID; 2297 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 2298 unsigned int entry_pmap; 2299 2300 if (!priv->prs_shadow[tid].valid || 2301 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || 2302 (priv->prs_shadow[tid].udf != udf_type)) 2303 continue; 2304 2305 pe->index = tid; 2306 mvpp2_prs_hw_read(priv, pe); 2307 entry_pmap = mvpp2_prs_tcam_port_map_get(pe); 2308 2309 if (mvpp2_prs_mac_range_equals(pe, da, mask) && 2310 entry_pmap == pmap) 2311 return pe; 2312 } 2313 kfree(pe); 2314 2315 return NULL; 2316 } 2317 2318 /* Update parser's mac da entry */ 2319 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, 2320 const u8 *da, bool add) 2321 { 2322 struct mvpp2_prs_entry *pe; 2323 unsigned int pmap, len, ri; 2324 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 2325 int tid; 2326 2327 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ 2328 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, 2329 MVPP2_PRS_UDF_MAC_DEF); 2330 2331 /* No such entry */ 2332 if (!pe) { 2333 if (!add) 2334 return 0; 2335 2336 /* Create new TCAM entry */ 2337 /* Find first range mac entry*/ 2338 for (tid = MVPP2_PE_FIRST_FREE_TID; 2339 tid <= MVPP2_PE_LAST_FREE_TID; tid++) 2340 if (priv->prs_shadow[tid].valid && 2341 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && 2342 (priv->prs_shadow[tid].udf == 2343 MVPP2_PRS_UDF_MAC_RANGE)) 2344 break; 2345 2346 /* Go through the all entries from first to last */ 2347 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2348 tid - 1); 2349 if (tid < 0) 2350 return tid; 2351 2352 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2353 if (!pe) 2354 return -1; 2355 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2356 pe->index = tid; 2357 2358 /* Mask all ports */ 2359 mvpp2_prs_tcam_port_map_set(pe, 0); 2360 } 2361 2362 /* Update port mask */ 2363 mvpp2_prs_tcam_port_set(pe, port, add); 2364 2365 /* Invalidate the entry if no ports are left enabled */ 2366 pmap = mvpp2_prs_tcam_port_map_get(pe); 2367 if (pmap == 0) { 2368 if (add) { 2369 kfree(pe); 2370 return -1; 2371 } 2372 mvpp2_prs_hw_inv(priv, pe->index); 2373 priv->prs_shadow[pe->index].valid = false; 2374 kfree(pe); 2375 return 0; 2376 } 2377 2378 /* Continue - set next lookup */ 2379 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); 2380 2381 /* Set match on DA */ 2382 len = ETH_ALEN; 2383 while (len--) 2384 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); 2385 2386 /* Set result info bits */ 2387 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; 2388 2389 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2390 MVPP2_PRS_RI_MAC_ME_MASK); 2391 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2392 MVPP2_PRS_RI_MAC_ME_MASK); 2393 2394 /* Shift to ethertype */ 2395 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, 2396 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2397 2398 /* Update shadow table and hw entry */ 2399 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; 2400 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); 2401 mvpp2_prs_hw_write(priv, pe); 2402 2403 kfree(pe); 2404 2405 return 0; 2406 } 2407 2408 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da) 2409 { 2410 int err; 2411 2412 /* Remove old parser entry */ 2413 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr, 2414 false); 2415 if (err) 2416 return err; 2417 2418 /* Add new parser entry */ 2419 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); 2420 if (err) 2421 return err; 2422 2423 /* Set addr in the device */ 2424 memcpy(port->dev_addr, da, ETH_ALEN); 2425 2426 return 0; 2427 } 2428 2429 /* Set prs flow for the port */ 2430 static int mvpp2_prs_def_flow(struct mvpp2_port *port) 2431 { 2432 struct mvpp2_prs_entry *pe; 2433 int tid; 2434 2435 pe = mvpp2_prs_flow_find(port->priv, port->id); 2436 2437 /* Such entry not exist */ 2438 if (!pe) { 2439 /* Go through the all entires from last to first */ 2440 tid = mvpp2_prs_tcam_first_free(port->priv, 2441 MVPP2_PE_LAST_FREE_TID, 2442 MVPP2_PE_FIRST_FREE_TID); 2443 if (tid < 0) 2444 return tid; 2445 2446 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2447 if (!pe) 2448 return -ENOMEM; 2449 2450 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 2451 pe->index = tid; 2452 2453 /* Set flow ID*/ 2454 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); 2455 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 2456 2457 /* Update shadow table */ 2458 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); 2459 } 2460 2461 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); 2462 mvpp2_prs_hw_write(port->priv, pe); 2463 kfree(pe); 2464 2465 return 0; 2466 } 2467 2468 /* Classifier configuration routines */ 2469 2470 /* Update classification flow table registers */ 2471 static void mvpp2_cls_flow_write(struct mvpp2 *priv, 2472 struct mvpp2_cls_flow_entry *fe) 2473 { 2474 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); 2475 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); 2476 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); 2477 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); 2478 } 2479 2480 /* Update classification lookup table register */ 2481 static void mvpp2_cls_lookup_write(struct mvpp2 *priv, 2482 struct mvpp2_cls_lookup_entry *le) 2483 { 2484 u32 val; 2485 2486 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; 2487 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 2488 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); 2489 } 2490 2491 /* Classifier default initialization */ 2492 static void mvpp2_cls_init(struct mvpp2 *priv) 2493 { 2494 struct mvpp2_cls_lookup_entry le; 2495 struct mvpp2_cls_flow_entry fe; 2496 int index; 2497 2498 /* Enable classifier */ 2499 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); 2500 2501 /* Clear classifier flow table */ 2502 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS); 2503 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { 2504 fe.index = index; 2505 mvpp2_cls_flow_write(priv, &fe); 2506 } 2507 2508 /* Clear classifier lookup table */ 2509 le.data = 0; 2510 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { 2511 le.lkpid = index; 2512 le.way = 0; 2513 mvpp2_cls_lookup_write(priv, &le); 2514 2515 le.way = 1; 2516 mvpp2_cls_lookup_write(priv, &le); 2517 } 2518 } 2519 2520 static void mvpp2_cls_port_config(struct mvpp2_port *port) 2521 { 2522 struct mvpp2_cls_lookup_entry le; 2523 u32 val; 2524 2525 /* Set way for the port */ 2526 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); 2527 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); 2528 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); 2529 2530 /* Pick the entry to be accessed in lookup ID decoding table 2531 * according to the way and lkpid. 2532 */ 2533 le.lkpid = port->id; 2534 le.way = 0; 2535 le.data = 0; 2536 2537 /* Set initial CPU queue for receiving packets */ 2538 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; 2539 le.data |= port->first_rxq; 2540 2541 /* Disable classification engines */ 2542 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 2543 2544 /* Update lookup ID table entry */ 2545 mvpp2_cls_lookup_write(port->priv, &le); 2546 } 2547 2548 /* Set CPU queue number for oversize packets */ 2549 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) 2550 { 2551 u32 val; 2552 2553 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), 2554 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); 2555 2556 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), 2557 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); 2558 2559 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); 2560 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); 2561 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); 2562 } 2563 2564 /* Buffer Manager configuration routines */ 2565 2566 /* Create pool */ 2567 static int mvpp2_bm_pool_create(struct udevice *dev, 2568 struct mvpp2 *priv, 2569 struct mvpp2_bm_pool *bm_pool, int size) 2570 { 2571 u32 val; 2572 2573 /* Number of buffer pointers must be a multiple of 16, as per 2574 * hardware constraints 2575 */ 2576 if (!IS_ALIGNED(size, 16)) 2577 return -EINVAL; 2578 2579 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id]; 2580 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id]; 2581 if (!bm_pool->virt_addr) 2582 return -ENOMEM; 2583 2584 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, 2585 MVPP2_BM_POOL_PTR_ALIGN)) { 2586 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", 2587 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); 2588 return -ENOMEM; 2589 } 2590 2591 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), 2592 lower_32_bits(bm_pool->dma_addr)); 2593 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); 2594 2595 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2596 val |= MVPP2_BM_START_MASK; 2597 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2598 2599 bm_pool->type = MVPP2_BM_FREE; 2600 bm_pool->size = size; 2601 bm_pool->pkt_size = 0; 2602 bm_pool->buf_num = 0; 2603 2604 return 0; 2605 } 2606 2607 /* Set pool buffer size */ 2608 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, 2609 struct mvpp2_bm_pool *bm_pool, 2610 int buf_size) 2611 { 2612 u32 val; 2613 2614 bm_pool->buf_size = buf_size; 2615 2616 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); 2617 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); 2618 } 2619 2620 /* Free all buffers from the pool */ 2621 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv, 2622 struct mvpp2_bm_pool *bm_pool) 2623 { 2624 bm_pool->buf_num = 0; 2625 } 2626 2627 /* Cleanup pool */ 2628 static int mvpp2_bm_pool_destroy(struct udevice *dev, 2629 struct mvpp2 *priv, 2630 struct mvpp2_bm_pool *bm_pool) 2631 { 2632 u32 val; 2633 2634 mvpp2_bm_bufs_free(dev, priv, bm_pool); 2635 if (bm_pool->buf_num) { 2636 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id); 2637 return 0; 2638 } 2639 2640 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2641 val |= MVPP2_BM_STOP_MASK; 2642 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2643 2644 return 0; 2645 } 2646 2647 static int mvpp2_bm_pools_init(struct udevice *dev, 2648 struct mvpp2 *priv) 2649 { 2650 int i, err, size; 2651 struct mvpp2_bm_pool *bm_pool; 2652 2653 /* Create all pools with maximum size */ 2654 size = MVPP2_BM_POOL_SIZE_MAX; 2655 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2656 bm_pool = &priv->bm_pools[i]; 2657 bm_pool->id = i; 2658 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size); 2659 if (err) 2660 goto err_unroll_pools; 2661 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); 2662 } 2663 return 0; 2664 2665 err_unroll_pools: 2666 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); 2667 for (i = i - 1; i >= 0; i--) 2668 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); 2669 return err; 2670 } 2671 2672 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv) 2673 { 2674 int i, err; 2675 2676 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2677 /* Mask BM all interrupts */ 2678 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); 2679 /* Clear BM cause register */ 2680 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); 2681 } 2682 2683 /* Allocate and initialize BM pools */ 2684 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM, 2685 sizeof(struct mvpp2_bm_pool), GFP_KERNEL); 2686 if (!priv->bm_pools) 2687 return -ENOMEM; 2688 2689 err = mvpp2_bm_pools_init(dev, priv); 2690 if (err < 0) 2691 return err; 2692 return 0; 2693 } 2694 2695 /* Attach long pool to rxq */ 2696 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, 2697 int lrxq, int long_pool) 2698 { 2699 u32 val, mask; 2700 int prxq; 2701 2702 /* Get queue physical ID */ 2703 prxq = port->rxqs[lrxq]->id; 2704 2705 if (port->priv->hw_version == MVPP21) 2706 mask = MVPP21_RXQ_POOL_LONG_MASK; 2707 else 2708 mask = MVPP22_RXQ_POOL_LONG_MASK; 2709 2710 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 2711 val &= ~mask; 2712 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; 2713 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 2714 } 2715 2716 /* Set pool number in a BM cookie */ 2717 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) 2718 { 2719 u32 bm; 2720 2721 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); 2722 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); 2723 2724 return bm; 2725 } 2726 2727 /* Get pool number from a BM cookie */ 2728 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie) 2729 { 2730 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF; 2731 } 2732 2733 /* Release buffer to BM */ 2734 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, 2735 dma_addr_t buf_dma_addr, 2736 unsigned long buf_phys_addr) 2737 { 2738 if (port->priv->hw_version == MVPP22) { 2739 u32 val = 0; 2740 2741 if (sizeof(dma_addr_t) == 8) 2742 val |= upper_32_bits(buf_dma_addr) & 2743 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; 2744 2745 if (sizeof(phys_addr_t) == 8) 2746 val |= (upper_32_bits(buf_phys_addr) 2747 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & 2748 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; 2749 2750 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val); 2751 } 2752 2753 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply 2754 * returned in the "cookie" field of the RX 2755 * descriptor. Instead of storing the virtual address, we 2756 * store the physical address 2757 */ 2758 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); 2759 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); 2760 } 2761 2762 /* Refill BM pool */ 2763 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm, 2764 dma_addr_t dma_addr, 2765 phys_addr_t phys_addr) 2766 { 2767 int pool = mvpp2_bm_cookie_pool_get(bm); 2768 2769 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); 2770 } 2771 2772 /* Allocate buffers for the pool */ 2773 static int mvpp2_bm_bufs_add(struct mvpp2_port *port, 2774 struct mvpp2_bm_pool *bm_pool, int buf_num) 2775 { 2776 int i; 2777 2778 if (buf_num < 0 || 2779 (buf_num + bm_pool->buf_num > bm_pool->size)) { 2780 netdev_err(port->dev, 2781 "cannot allocate %d buffers for pool %d\n", 2782 buf_num, bm_pool->id); 2783 return 0; 2784 } 2785 2786 for (i = 0; i < buf_num; i++) { 2787 mvpp2_bm_pool_put(port, bm_pool->id, 2788 (dma_addr_t)buffer_loc.rx_buffer[i], 2789 (unsigned long)buffer_loc.rx_buffer[i]); 2790 2791 } 2792 2793 /* Update BM driver with number of buffers added to pool */ 2794 bm_pool->buf_num += i; 2795 bm_pool->in_use_thresh = bm_pool->buf_num / 4; 2796 2797 return i; 2798 } 2799 2800 /* Notify the driver that BM pool is being used as specific type and return the 2801 * pool pointer on success 2802 */ 2803 static struct mvpp2_bm_pool * 2804 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, 2805 int pkt_size) 2806 { 2807 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; 2808 int num; 2809 2810 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { 2811 netdev_err(port->dev, "mixing pool types is forbidden\n"); 2812 return NULL; 2813 } 2814 2815 if (new_pool->type == MVPP2_BM_FREE) 2816 new_pool->type = type; 2817 2818 /* Allocate buffers in case BM pool is used as long pool, but packet 2819 * size doesn't match MTU or BM pool hasn't being used yet 2820 */ 2821 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || 2822 (new_pool->pkt_size == 0)) { 2823 int pkts_num; 2824 2825 /* Set default buffer number or free all the buffers in case 2826 * the pool is not empty 2827 */ 2828 pkts_num = new_pool->buf_num; 2829 if (pkts_num == 0) 2830 pkts_num = type == MVPP2_BM_SWF_LONG ? 2831 MVPP2_BM_LONG_BUF_NUM : 2832 MVPP2_BM_SHORT_BUF_NUM; 2833 else 2834 mvpp2_bm_bufs_free(NULL, 2835 port->priv, new_pool); 2836 2837 new_pool->pkt_size = pkt_size; 2838 2839 /* Allocate buffers for this pool */ 2840 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); 2841 if (num != pkts_num) { 2842 dev_err(dev, "pool %d: %d of %d allocated\n", 2843 new_pool->id, num, pkts_num); 2844 return NULL; 2845 } 2846 } 2847 2848 mvpp2_bm_pool_bufsize_set(port->priv, new_pool, 2849 MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); 2850 2851 return new_pool; 2852 } 2853 2854 /* Initialize pools for swf */ 2855 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) 2856 { 2857 int rxq; 2858 2859 if (!port->pool_long) { 2860 port->pool_long = 2861 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), 2862 MVPP2_BM_SWF_LONG, 2863 port->pkt_size); 2864 if (!port->pool_long) 2865 return -ENOMEM; 2866 2867 port->pool_long->port_map |= (1 << port->id); 2868 2869 for (rxq = 0; rxq < rxq_number; rxq++) 2870 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); 2871 } 2872 2873 return 0; 2874 } 2875 2876 /* Port configuration routines */ 2877 2878 static void mvpp2_port_mii_set(struct mvpp2_port *port) 2879 { 2880 u32 val; 2881 2882 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2883 2884 switch (port->phy_interface) { 2885 case PHY_INTERFACE_MODE_SGMII: 2886 val |= MVPP2_GMAC_INBAND_AN_MASK; 2887 break; 2888 case PHY_INTERFACE_MODE_RGMII: 2889 case PHY_INTERFACE_MODE_RGMII_ID: 2890 val |= MVPP2_GMAC_PORT_RGMII_MASK; 2891 default: 2892 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 2893 } 2894 2895 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2896 } 2897 2898 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) 2899 { 2900 u32 val; 2901 2902 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2903 val |= MVPP2_GMAC_FC_ADV_EN; 2904 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2905 } 2906 2907 static void mvpp2_port_enable(struct mvpp2_port *port) 2908 { 2909 u32 val; 2910 2911 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2912 val |= MVPP2_GMAC_PORT_EN_MASK; 2913 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; 2914 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2915 } 2916 2917 static void mvpp2_port_disable(struct mvpp2_port *port) 2918 { 2919 u32 val; 2920 2921 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2922 val &= ~(MVPP2_GMAC_PORT_EN_MASK); 2923 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2924 } 2925 2926 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ 2927 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) 2928 { 2929 u32 val; 2930 2931 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & 2932 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 2933 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2934 } 2935 2936 /* Configure loopback port */ 2937 static void mvpp2_port_loopback_set(struct mvpp2_port *port) 2938 { 2939 u32 val; 2940 2941 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 2942 2943 if (port->speed == 1000) 2944 val |= MVPP2_GMAC_GMII_LB_EN_MASK; 2945 else 2946 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; 2947 2948 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) 2949 val |= MVPP2_GMAC_PCS_LB_EN_MASK; 2950 else 2951 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; 2952 2953 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2954 } 2955 2956 static void mvpp2_port_reset(struct mvpp2_port *port) 2957 { 2958 u32 val; 2959 2960 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2961 ~MVPP2_GMAC_PORT_RESET_MASK; 2962 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2963 2964 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2965 MVPP2_GMAC_PORT_RESET_MASK) 2966 continue; 2967 } 2968 2969 /* Change maximum receive size of the port */ 2970 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) 2971 { 2972 u32 val; 2973 2974 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2975 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 2976 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << 2977 MVPP2_GMAC_MAX_RX_SIZE_OFFS); 2978 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2979 } 2980 2981 /* PPv2.2 GoP/GMAC config */ 2982 2983 /* Set the MAC to reset or exit from reset */ 2984 static int gop_gmac_reset(struct mvpp2_port *port, int reset) 2985 { 2986 u32 val; 2987 2988 /* read - modify - write */ 2989 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2990 if (reset) 2991 val |= MVPP2_GMAC_PORT_RESET_MASK; 2992 else 2993 val &= ~MVPP2_GMAC_PORT_RESET_MASK; 2994 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * gop_gpcs_mode_cfg 3001 * 3002 * Configure port to working with Gig PCS or don't. 3003 */ 3004 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en) 3005 { 3006 u32 val; 3007 3008 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3009 if (en) 3010 val |= MVPP2_GMAC_PCS_ENABLE_MASK; 3011 else 3012 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 3013 /* enable / disable PCS on this port */ 3014 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3015 3016 return 0; 3017 } 3018 3019 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en) 3020 { 3021 u32 val; 3022 3023 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3024 if (en) 3025 val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3026 else 3027 val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3028 /* enable / disable PCS on this port */ 3029 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3030 3031 return 0; 3032 } 3033 3034 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port) 3035 { 3036 u32 val, thresh; 3037 3038 /* 3039 * Configure minimal level of the Tx FIFO before the lower part 3040 * starts to read a packet 3041 */ 3042 thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH; 3043 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3044 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3045 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3046 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3047 3048 /* Disable bypass of sync module */ 3049 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3050 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3051 /* configure DP clock select according to mode */ 3052 val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3053 /* configure QSGMII bypass according to mode */ 3054 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3055 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3056 3057 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3058 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3059 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3060 3061 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3062 /* 3063 * Configure GIG MAC to 1000Base-X mode connected to a fiber 3064 * transceiver 3065 */ 3066 val |= MVPP2_GMAC_PORT_TYPE_MASK; 3067 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3068 3069 /* configure AN 0x9268 */ 3070 val = MVPP2_GMAC_EN_PCS_AN | 3071 MVPP2_GMAC_AN_BYPASS_EN | 3072 MVPP2_GMAC_CONFIG_MII_SPEED | 3073 MVPP2_GMAC_CONFIG_GMII_SPEED | 3074 MVPP2_GMAC_FC_ADV_EN | 3075 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 3076 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3077 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3078 } 3079 3080 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port) 3081 { 3082 u32 val, thresh; 3083 3084 /* 3085 * Configure minimal level of the Tx FIFO before the lower part 3086 * starts to read a packet 3087 */ 3088 thresh = MVPP2_SGMII_TX_FIFO_MIN_TH; 3089 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3090 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3091 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3092 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3093 3094 /* Disable bypass of sync module */ 3095 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3096 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3097 /* configure DP clock select according to mode */ 3098 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3099 /* configure QSGMII bypass according to mode */ 3100 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3101 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3102 3103 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3104 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3105 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3106 3107 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3108 /* configure GIG MAC to SGMII mode */ 3109 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3110 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3111 3112 /* configure AN */ 3113 val = MVPP2_GMAC_EN_PCS_AN | 3114 MVPP2_GMAC_AN_BYPASS_EN | 3115 MVPP2_GMAC_AN_SPEED_EN | 3116 MVPP2_GMAC_EN_FC_AN | 3117 MVPP2_GMAC_AN_DUPLEX_EN | 3118 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3119 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3120 } 3121 3122 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port) 3123 { 3124 u32 val, thresh; 3125 3126 /* 3127 * Configure minimal level of the Tx FIFO before the lower part 3128 * starts to read a packet 3129 */ 3130 thresh = MVPP2_RGMII_TX_FIFO_MIN_TH; 3131 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3132 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3133 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3134 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3135 3136 /* Disable bypass of sync module */ 3137 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3138 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3139 /* configure DP clock select according to mode */ 3140 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3141 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3142 val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK; 3143 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3144 3145 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3146 val &= ~MVPP2_GMAC_PORT_DIS_PADING_MASK; 3147 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3148 3149 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3150 /* configure GIG MAC to SGMII mode */ 3151 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3152 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3153 3154 /* configure AN 0xb8e8 */ 3155 val = MVPP2_GMAC_AN_BYPASS_EN | 3156 MVPP2_GMAC_AN_SPEED_EN | 3157 MVPP2_GMAC_EN_FC_AN | 3158 MVPP2_GMAC_AN_DUPLEX_EN | 3159 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3160 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3161 } 3162 3163 /* Set the internal mux's to the required MAC in the GOP */ 3164 static int gop_gmac_mode_cfg(struct mvpp2_port *port) 3165 { 3166 u32 val; 3167 3168 /* Set TX FIFO thresholds */ 3169 switch (port->phy_interface) { 3170 case PHY_INTERFACE_MODE_SGMII: 3171 if (port->phy_speed == 2500) 3172 gop_gmac_sgmii2_5_cfg(port); 3173 else 3174 gop_gmac_sgmii_cfg(port); 3175 break; 3176 3177 case PHY_INTERFACE_MODE_RGMII: 3178 case PHY_INTERFACE_MODE_RGMII_ID: 3179 gop_gmac_rgmii_cfg(port); 3180 break; 3181 3182 default: 3183 return -1; 3184 } 3185 3186 /* Jumbo frame support - 0x1400*2= 0x2800 bytes */ 3187 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3188 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 3189 val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS; 3190 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3191 3192 /* PeriodicXonEn disable */ 3193 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 3194 val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 3195 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 3196 3197 return 0; 3198 } 3199 3200 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port) 3201 { 3202 u32 val; 3203 3204 /* relevant only for MAC0 (XLG0 and GMAC0) */ 3205 if (port->gop_id > 0) 3206 return; 3207 3208 /* configure 1Gig MAC mode */ 3209 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3210 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3211 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; 3212 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3213 } 3214 3215 static int gop_gpcs_reset(struct mvpp2_port *port, int reset) 3216 { 3217 u32 val; 3218 3219 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3220 if (reset) 3221 val &= ~MVPP2_GMAC_SGMII_MODE_MASK; 3222 else 3223 val |= MVPP2_GMAC_SGMII_MODE_MASK; 3224 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3225 3226 return 0; 3227 } 3228 3229 /* Set the internal mux's to the required PCS in the PI */ 3230 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes) 3231 { 3232 u32 val; 3233 int lane; 3234 3235 switch (num_of_lanes) { 3236 case 1: 3237 lane = 0; 3238 break; 3239 case 2: 3240 lane = 1; 3241 break; 3242 case 4: 3243 lane = 2; 3244 break; 3245 default: 3246 return -1; 3247 } 3248 3249 /* configure XG MAC mode */ 3250 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3251 val &= ~MVPP22_XPCS_PCSMODE_OFFS; 3252 val &= ~MVPP22_XPCS_LANEACTIVE_MASK; 3253 val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS; 3254 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3255 3256 return 0; 3257 } 3258 3259 static int gop_mpcs_mode(struct mvpp2_port *port) 3260 { 3261 u32 val; 3262 3263 /* configure PCS40G COMMON CONTROL */ 3264 val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3265 val &= ~FORWARD_ERROR_CORRECTION_MASK; 3266 writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3267 3268 /* configure PCS CLOCK RESET */ 3269 val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET); 3270 val &= ~CLK_DIVISION_RATIO_MASK; 3271 val |= 1 << CLK_DIVISION_RATIO_OFFS; 3272 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3273 3274 val &= ~CLK_DIV_PHASE_SET_MASK; 3275 val |= MAC_CLK_RESET_MASK; 3276 val |= RX_SD_CLK_RESET_MASK; 3277 val |= TX_SD_CLK_RESET_MASK; 3278 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3279 3280 return 0; 3281 } 3282 3283 /* Set the internal mux's to the required MAC in the GOP */ 3284 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes) 3285 { 3286 u32 val; 3287 3288 /* configure 10G MAC mode */ 3289 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3290 val |= MVPP22_XLG_RX_FC_EN; 3291 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3292 3293 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3294 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3295 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC; 3296 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3297 3298 /* read - modify - write */ 3299 val = readl(port->base + MVPP22_XLG_CTRL4_REG); 3300 val &= ~MVPP22_XLG_MODE_DMA_1G; 3301 val |= MVPP22_XLG_FORWARD_PFC_EN; 3302 val |= MVPP22_XLG_FORWARD_802_3X_FC_EN; 3303 val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK; 3304 writel(val, port->base + MVPP22_XLG_CTRL4_REG); 3305 3306 /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */ 3307 val = readl(port->base + MVPP22_XLG_CTRL1_REG); 3308 val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK; 3309 val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS; 3310 writel(val, port->base + MVPP22_XLG_CTRL1_REG); 3311 3312 /* unmask link change interrupt */ 3313 val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3314 val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE; 3315 val |= 1; /* unmask summary bit */ 3316 writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3317 3318 return 0; 3319 } 3320 3321 /* Set PCS to reset or exit from reset */ 3322 static int gop_xpcs_reset(struct mvpp2_port *port, int reset) 3323 { 3324 u32 val; 3325 3326 /* read - modify - write */ 3327 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3328 if (reset) 3329 val &= ~MVPP22_XPCS_PCSRESET; 3330 else 3331 val |= MVPP22_XPCS_PCSRESET; 3332 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3333 3334 return 0; 3335 } 3336 3337 /* Set the MAC to reset or exit from reset */ 3338 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset) 3339 { 3340 u32 val; 3341 3342 /* read - modify - write */ 3343 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3344 if (reset) 3345 val &= ~MVPP22_XLG_MAC_RESETN; 3346 else 3347 val |= MVPP22_XLG_MAC_RESETN; 3348 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3349 3350 return 0; 3351 } 3352 3353 /* 3354 * gop_port_init 3355 * 3356 * Init physical port. Configures the port mode and all it's elements 3357 * accordingly. 3358 * Does not verify that the selected mode/port number is valid at the 3359 * core level. 3360 */ 3361 static int gop_port_init(struct mvpp2_port *port) 3362 { 3363 int mac_num = port->gop_id; 3364 int num_of_act_lanes; 3365 3366 if (mac_num >= MVPP22_GOP_MAC_NUM) { 3367 netdev_err(NULL, "%s: illegal port number %d", __func__, 3368 mac_num); 3369 return -1; 3370 } 3371 3372 switch (port->phy_interface) { 3373 case PHY_INTERFACE_MODE_RGMII: 3374 case PHY_INTERFACE_MODE_RGMII_ID: 3375 gop_gmac_reset(port, 1); 3376 3377 /* configure PCS */ 3378 gop_gpcs_mode_cfg(port, 0); 3379 gop_bypass_clk_cfg(port, 1); 3380 3381 /* configure MAC */ 3382 gop_gmac_mode_cfg(port); 3383 /* pcs unreset */ 3384 gop_gpcs_reset(port, 0); 3385 3386 /* mac unreset */ 3387 gop_gmac_reset(port, 0); 3388 break; 3389 3390 case PHY_INTERFACE_MODE_SGMII: 3391 /* configure PCS */ 3392 gop_gpcs_mode_cfg(port, 1); 3393 3394 /* configure MAC */ 3395 gop_gmac_mode_cfg(port); 3396 /* select proper Mac mode */ 3397 gop_xlg_2_gig_mac_cfg(port); 3398 3399 /* pcs unreset */ 3400 gop_gpcs_reset(port, 0); 3401 /* mac unreset */ 3402 gop_gmac_reset(port, 0); 3403 break; 3404 3405 case PHY_INTERFACE_MODE_SFI: 3406 num_of_act_lanes = 2; 3407 mac_num = 0; 3408 /* configure PCS */ 3409 gop_xpcs_mode(port, num_of_act_lanes); 3410 gop_mpcs_mode(port); 3411 /* configure MAC */ 3412 gop_xlg_mac_mode_cfg(port, num_of_act_lanes); 3413 3414 /* pcs unreset */ 3415 gop_xpcs_reset(port, 0); 3416 3417 /* mac unreset */ 3418 gop_xlg_mac_reset(port, 0); 3419 break; 3420 3421 default: 3422 netdev_err(NULL, "%s: Requested port mode (%d) not supported\n", 3423 __func__, port->phy_interface); 3424 return -1; 3425 } 3426 3427 return 0; 3428 } 3429 3430 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable) 3431 { 3432 u32 val; 3433 3434 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3435 if (enable) { 3436 /* Enable port and MIB counters update */ 3437 val |= MVPP22_XLG_PORT_EN; 3438 val &= ~MVPP22_XLG_MIBCNT_DIS; 3439 } else { 3440 /* Disable port */ 3441 val &= ~MVPP22_XLG_PORT_EN; 3442 } 3443 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3444 } 3445 3446 static void gop_port_enable(struct mvpp2_port *port, int enable) 3447 { 3448 switch (port->phy_interface) { 3449 case PHY_INTERFACE_MODE_RGMII: 3450 case PHY_INTERFACE_MODE_RGMII_ID: 3451 case PHY_INTERFACE_MODE_SGMII: 3452 if (enable) 3453 mvpp2_port_enable(port); 3454 else 3455 mvpp2_port_disable(port); 3456 break; 3457 3458 case PHY_INTERFACE_MODE_SFI: 3459 gop_xlg_mac_port_enable(port, enable); 3460 3461 break; 3462 default: 3463 netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__, 3464 port->phy_interface); 3465 return; 3466 } 3467 } 3468 3469 /* RFU1 functions */ 3470 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset) 3471 { 3472 return readl(priv->rfu1_base + offset); 3473 } 3474 3475 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data) 3476 { 3477 writel(data, priv->rfu1_base + offset); 3478 } 3479 3480 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type) 3481 { 3482 u32 val = 0; 3483 3484 if (gop_id == 2) { 3485 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3486 val |= MV_NETC_GE_MAC2_SGMII; 3487 } 3488 3489 if (gop_id == 3) { 3490 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3491 val |= MV_NETC_GE_MAC3_SGMII; 3492 else if (phy_type == PHY_INTERFACE_MODE_RGMII || 3493 phy_type == PHY_INTERFACE_MODE_RGMII_ID) 3494 val |= MV_NETC_GE_MAC3_RGMII; 3495 } 3496 3497 return val; 3498 } 3499 3500 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val) 3501 { 3502 u32 reg; 3503 3504 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3505 reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id)); 3506 3507 val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id); 3508 val &= NETC_PORTS_ACTIVE_MASK(gop_id); 3509 3510 reg |= val; 3511 3512 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3513 } 3514 3515 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val) 3516 { 3517 u32 reg; 3518 3519 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3520 reg &= ~NETC_GBE_PORT1_MII_MODE_MASK; 3521 3522 val <<= NETC_GBE_PORT1_MII_MODE_OFFS; 3523 val &= NETC_GBE_PORT1_MII_MODE_MASK; 3524 3525 reg |= val; 3526 3527 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3528 } 3529 3530 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val) 3531 { 3532 u32 reg; 3533 3534 reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG); 3535 reg &= ~NETC_GOP_SOFT_RESET_MASK; 3536 3537 val <<= NETC_GOP_SOFT_RESET_OFFS; 3538 val &= NETC_GOP_SOFT_RESET_MASK; 3539 3540 reg |= val; 3541 3542 gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg); 3543 } 3544 3545 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val) 3546 { 3547 u32 reg; 3548 3549 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3550 reg &= ~NETC_CLK_DIV_PHASE_MASK; 3551 3552 val <<= NETC_CLK_DIV_PHASE_OFFS; 3553 val &= NETC_CLK_DIV_PHASE_MASK; 3554 3555 reg |= val; 3556 3557 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3558 } 3559 3560 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val) 3561 { 3562 u32 reg; 3563 3564 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3565 reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id)); 3566 3567 val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id); 3568 val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id); 3569 3570 reg |= val; 3571 3572 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3573 } 3574 3575 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id, 3576 u32 val) 3577 { 3578 u32 reg, mask, offset; 3579 3580 if (gop_id == 2) { 3581 mask = NETC_GBE_PORT0_SGMII_MODE_MASK; 3582 offset = NETC_GBE_PORT0_SGMII_MODE_OFFS; 3583 } else { 3584 mask = NETC_GBE_PORT1_SGMII_MODE_MASK; 3585 offset = NETC_GBE_PORT1_SGMII_MODE_OFFS; 3586 } 3587 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3588 reg &= ~mask; 3589 3590 val <<= offset; 3591 val &= mask; 3592 3593 reg |= val; 3594 3595 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3596 } 3597 3598 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val) 3599 { 3600 u32 reg; 3601 3602 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3603 reg &= ~NETC_BUS_WIDTH_SELECT_MASK; 3604 3605 val <<= NETC_BUS_WIDTH_SELECT_OFFS; 3606 val &= NETC_BUS_WIDTH_SELECT_MASK; 3607 3608 reg |= val; 3609 3610 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3611 } 3612 3613 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val) 3614 { 3615 u32 reg; 3616 3617 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3618 reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK; 3619 3620 val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS; 3621 val &= NETC_GIG_RX_DATA_SAMPLE_MASK; 3622 3623 reg |= val; 3624 3625 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3626 } 3627 3628 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id, 3629 enum mv_netc_phase phase) 3630 { 3631 switch (phase) { 3632 case MV_NETC_FIRST_PHASE: 3633 /* Set Bus Width to HB mode = 1 */ 3634 gop_netc_bus_width_select(priv, 1); 3635 /* Select RGMII mode */ 3636 gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII); 3637 break; 3638 3639 case MV_NETC_SECOND_PHASE: 3640 /* De-assert the relevant port HB reset */ 3641 gop_netc_port_rf_reset(priv, gop_id, 1); 3642 break; 3643 } 3644 } 3645 3646 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id, 3647 enum mv_netc_phase phase) 3648 { 3649 switch (phase) { 3650 case MV_NETC_FIRST_PHASE: 3651 /* Set Bus Width to HB mode = 1 */ 3652 gop_netc_bus_width_select(priv, 1); 3653 /* Select SGMII mode */ 3654 if (gop_id >= 1) { 3655 gop_netc_gbe_sgmii_mode_select(priv, gop_id, 3656 MV_NETC_GBE_SGMII); 3657 } 3658 3659 /* Configure the sample stages */ 3660 gop_netc_sample_stages_timing(priv, 0); 3661 /* Configure the ComPhy Selector */ 3662 /* gop_netc_com_phy_selector_config(netComplex); */ 3663 break; 3664 3665 case MV_NETC_SECOND_PHASE: 3666 /* De-assert the relevant port HB reset */ 3667 gop_netc_port_rf_reset(priv, gop_id, 1); 3668 break; 3669 } 3670 } 3671 3672 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase) 3673 { 3674 u32 c = priv->netc_config; 3675 3676 if (c & MV_NETC_GE_MAC2_SGMII) 3677 gop_netc_mac_to_sgmii(priv, 2, phase); 3678 else 3679 gop_netc_mac_to_xgmii(priv, 2, phase); 3680 3681 if (c & MV_NETC_GE_MAC3_SGMII) { 3682 gop_netc_mac_to_sgmii(priv, 3, phase); 3683 } else { 3684 gop_netc_mac_to_xgmii(priv, 3, phase); 3685 if (c & MV_NETC_GE_MAC3_RGMII) 3686 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII); 3687 else 3688 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII); 3689 } 3690 3691 /* Activate gop ports 0, 2, 3 */ 3692 gop_netc_active_port(priv, 0, 1); 3693 gop_netc_active_port(priv, 2, 1); 3694 gop_netc_active_port(priv, 3, 1); 3695 3696 if (phase == MV_NETC_SECOND_PHASE) { 3697 /* Enable the GOP internal clock logic */ 3698 gop_netc_gop_clock_logic_set(priv, 1); 3699 /* De-assert GOP unit reset */ 3700 gop_netc_gop_reset(priv, 1); 3701 } 3702 3703 return 0; 3704 } 3705 3706 /* Set defaults to the MVPP2 port */ 3707 static void mvpp2_defaults_set(struct mvpp2_port *port) 3708 { 3709 int tx_port_num, val, queue, ptxq, lrxq; 3710 3711 if (port->priv->hw_version == MVPP21) { 3712 /* Configure port to loopback if needed */ 3713 if (port->flags & MVPP2_F_LOOPBACK) 3714 mvpp2_port_loopback_set(port); 3715 3716 /* Update TX FIFO MIN Threshold */ 3717 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3718 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3719 /* Min. TX threshold must be less than minimal packet length */ 3720 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); 3721 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3722 } 3723 3724 /* Disable Legacy WRR, Disable EJP, Release from reset */ 3725 tx_port_num = mvpp2_egress_port(port); 3726 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, 3727 tx_port_num); 3728 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); 3729 3730 /* Close bandwidth for all queues */ 3731 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { 3732 ptxq = mvpp2_txq_phys(port->id, queue); 3733 mvpp2_write(port->priv, 3734 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); 3735 } 3736 3737 /* Set refill period to 1 usec, refill tokens 3738 * and bucket size to maximum 3739 */ 3740 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8); 3741 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); 3742 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; 3743 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); 3744 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; 3745 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); 3746 val = MVPP2_TXP_TOKEN_SIZE_MAX; 3747 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 3748 3749 /* Set MaximumLowLatencyPacketSize value to 256 */ 3750 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), 3751 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | 3752 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); 3753 3754 /* Enable Rx cache snoop */ 3755 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3756 queue = port->rxqs[lrxq]->id; 3757 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3758 val |= MVPP2_SNOOP_PKT_SIZE_MASK | 3759 MVPP2_SNOOP_BUF_HDR_MASK; 3760 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3761 } 3762 } 3763 3764 /* Enable/disable receiving packets */ 3765 static void mvpp2_ingress_enable(struct mvpp2_port *port) 3766 { 3767 u32 val; 3768 int lrxq, queue; 3769 3770 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3771 queue = port->rxqs[lrxq]->id; 3772 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3773 val &= ~MVPP2_RXQ_DISABLE_MASK; 3774 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3775 } 3776 } 3777 3778 static void mvpp2_ingress_disable(struct mvpp2_port *port) 3779 { 3780 u32 val; 3781 int lrxq, queue; 3782 3783 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3784 queue = port->rxqs[lrxq]->id; 3785 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3786 val |= MVPP2_RXQ_DISABLE_MASK; 3787 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3788 } 3789 } 3790 3791 /* Enable transmit via physical egress queue 3792 * - HW starts take descriptors from DRAM 3793 */ 3794 static void mvpp2_egress_enable(struct mvpp2_port *port) 3795 { 3796 u32 qmap; 3797 int queue; 3798 int tx_port_num = mvpp2_egress_port(port); 3799 3800 /* Enable all initialized TXs. */ 3801 qmap = 0; 3802 for (queue = 0; queue < txq_number; queue++) { 3803 struct mvpp2_tx_queue *txq = port->txqs[queue]; 3804 3805 if (txq->descs != NULL) 3806 qmap |= (1 << queue); 3807 } 3808 3809 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3810 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); 3811 } 3812 3813 /* Disable transmit via physical egress queue 3814 * - HW doesn't take descriptors from DRAM 3815 */ 3816 static void mvpp2_egress_disable(struct mvpp2_port *port) 3817 { 3818 u32 reg_data; 3819 int delay; 3820 int tx_port_num = mvpp2_egress_port(port); 3821 3822 /* Issue stop command for active channels only */ 3823 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3824 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & 3825 MVPP2_TXP_SCHED_ENQ_MASK; 3826 if (reg_data != 0) 3827 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, 3828 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); 3829 3830 /* Wait for all Tx activity to terminate. */ 3831 delay = 0; 3832 do { 3833 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { 3834 netdev_warn(port->dev, 3835 "Tx stop timed out, status=0x%08x\n", 3836 reg_data); 3837 break; 3838 } 3839 mdelay(1); 3840 delay++; 3841 3842 /* Check port TX Command register that all 3843 * Tx queues are stopped 3844 */ 3845 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); 3846 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); 3847 } 3848 3849 /* Rx descriptors helper methods */ 3850 3851 /* Get number of Rx descriptors occupied by received packets */ 3852 static inline int 3853 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) 3854 { 3855 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); 3856 3857 return val & MVPP2_RXQ_OCCUPIED_MASK; 3858 } 3859 3860 /* Update Rx queue status with the number of occupied and available 3861 * Rx descriptor slots. 3862 */ 3863 static inline void 3864 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, 3865 int used_count, int free_count) 3866 { 3867 /* Decrement the number of used descriptors and increment count 3868 * increment the number of free descriptors. 3869 */ 3870 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); 3871 3872 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); 3873 } 3874 3875 /* Get pointer to next RX descriptor to be processed by SW */ 3876 static inline struct mvpp2_rx_desc * 3877 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) 3878 { 3879 int rx_desc = rxq->next_desc_to_proc; 3880 3881 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); 3882 prefetch(rxq->descs + rxq->next_desc_to_proc); 3883 return rxq->descs + rx_desc; 3884 } 3885 3886 /* Set rx queue offset */ 3887 static void mvpp2_rxq_offset_set(struct mvpp2_port *port, 3888 int prxq, int offset) 3889 { 3890 u32 val; 3891 3892 /* Convert offset from bytes to units of 32 bytes */ 3893 offset = offset >> 5; 3894 3895 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 3896 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; 3897 3898 /* Offset is in */ 3899 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & 3900 MVPP2_RXQ_PACKET_OFFSET_MASK); 3901 3902 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 3903 } 3904 3905 /* Obtain BM cookie information from descriptor */ 3906 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port, 3907 struct mvpp2_rx_desc *rx_desc) 3908 { 3909 int cpu = smp_processor_id(); 3910 int pool; 3911 3912 pool = (mvpp2_rxdesc_status_get(port, rx_desc) & 3913 MVPP2_RXD_BM_POOL_ID_MASK) >> 3914 MVPP2_RXD_BM_POOL_ID_OFFS; 3915 3916 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) | 3917 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS); 3918 } 3919 3920 /* Tx descriptors helper methods */ 3921 3922 /* Get number of Tx descriptors waiting to be transmitted by HW */ 3923 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port, 3924 struct mvpp2_tx_queue *txq) 3925 { 3926 u32 val; 3927 3928 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 3929 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 3930 3931 return val & MVPP2_TXQ_PENDING_MASK; 3932 } 3933 3934 /* Get pointer to next Tx descriptor to be processed (send) by HW */ 3935 static struct mvpp2_tx_desc * 3936 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) 3937 { 3938 int tx_desc = txq->next_desc_to_proc; 3939 3940 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); 3941 return txq->descs + tx_desc; 3942 } 3943 3944 /* Update HW with number of aggregated Tx descriptors to be sent */ 3945 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) 3946 { 3947 /* aggregated access - relevant TXQ number is written in TX desc */ 3948 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending); 3949 } 3950 3951 /* Get number of sent descriptors and decrement counter. 3952 * The number of sent descriptors is returned. 3953 * Per-CPU access 3954 */ 3955 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, 3956 struct mvpp2_tx_queue *txq) 3957 { 3958 u32 val; 3959 3960 /* Reading status reg resets transmitted descriptor counter */ 3961 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id)); 3962 3963 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> 3964 MVPP2_TRANSMITTED_COUNT_OFFSET; 3965 } 3966 3967 static void mvpp2_txq_sent_counter_clear(void *arg) 3968 { 3969 struct mvpp2_port *port = arg; 3970 int queue; 3971 3972 for (queue = 0; queue < txq_number; queue++) { 3973 int id = port->txqs[queue]->id; 3974 3975 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id)); 3976 } 3977 } 3978 3979 /* Set max sizes for Tx queues */ 3980 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) 3981 { 3982 u32 val, size, mtu; 3983 int txq, tx_port_num; 3984 3985 mtu = port->pkt_size * 8; 3986 if (mtu > MVPP2_TXP_MTU_MAX) 3987 mtu = MVPP2_TXP_MTU_MAX; 3988 3989 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ 3990 mtu = 3 * mtu; 3991 3992 /* Indirect access to registers */ 3993 tx_port_num = mvpp2_egress_port(port); 3994 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3995 3996 /* Set MTU */ 3997 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); 3998 val &= ~MVPP2_TXP_MTU_MAX; 3999 val |= mtu; 4000 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); 4001 4002 /* TXP token size and all TXQs token size must be larger that MTU */ 4003 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); 4004 size = val & MVPP2_TXP_TOKEN_SIZE_MAX; 4005 if (size < mtu) { 4006 size = mtu; 4007 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; 4008 val |= size; 4009 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 4010 } 4011 4012 for (txq = 0; txq < txq_number; txq++) { 4013 val = mvpp2_read(port->priv, 4014 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); 4015 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; 4016 4017 if (size < mtu) { 4018 size = mtu; 4019 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; 4020 val |= size; 4021 mvpp2_write(port->priv, 4022 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), 4023 val); 4024 } 4025 } 4026 } 4027 4028 /* Free Tx queue skbuffs */ 4029 static void mvpp2_txq_bufs_free(struct mvpp2_port *port, 4030 struct mvpp2_tx_queue *txq, 4031 struct mvpp2_txq_pcpu *txq_pcpu, int num) 4032 { 4033 int i; 4034 4035 for (i = 0; i < num; i++) 4036 mvpp2_txq_inc_get(txq_pcpu); 4037 } 4038 4039 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, 4040 u32 cause) 4041 { 4042 int queue = fls(cause) - 1; 4043 4044 return port->rxqs[queue]; 4045 } 4046 4047 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, 4048 u32 cause) 4049 { 4050 int queue = fls(cause) - 1; 4051 4052 return port->txqs[queue]; 4053 } 4054 4055 /* Rx/Tx queue initialization/cleanup methods */ 4056 4057 /* Allocate and initialize descriptors for aggr TXQ */ 4058 static int mvpp2_aggr_txq_init(struct udevice *dev, 4059 struct mvpp2_tx_queue *aggr_txq, 4060 int desc_num, int cpu, 4061 struct mvpp2 *priv) 4062 { 4063 u32 txq_dma; 4064 4065 /* Allocate memory for TX descriptors */ 4066 aggr_txq->descs = buffer_loc.aggr_tx_descs; 4067 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs; 4068 if (!aggr_txq->descs) 4069 return -ENOMEM; 4070 4071 /* Make sure descriptor address is cache line size aligned */ 4072 BUG_ON(aggr_txq->descs != 4073 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4074 4075 aggr_txq->last_desc = aggr_txq->size - 1; 4076 4077 /* Aggr TXQ no reset WA */ 4078 aggr_txq->next_desc_to_proc = mvpp2_read(priv, 4079 MVPP2_AGGR_TXQ_INDEX_REG(cpu)); 4080 4081 /* Set Tx descriptors queue starting address indirect 4082 * access 4083 */ 4084 if (priv->hw_version == MVPP21) 4085 txq_dma = aggr_txq->descs_dma; 4086 else 4087 txq_dma = aggr_txq->descs_dma >> 4088 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; 4089 4090 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma); 4091 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); 4092 4093 return 0; 4094 } 4095 4096 /* Create a specified Rx queue */ 4097 static int mvpp2_rxq_init(struct mvpp2_port *port, 4098 struct mvpp2_rx_queue *rxq) 4099 4100 { 4101 u32 rxq_dma; 4102 4103 rxq->size = port->rx_ring_size; 4104 4105 /* Allocate memory for RX descriptors */ 4106 rxq->descs = buffer_loc.rx_descs; 4107 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs; 4108 if (!rxq->descs) 4109 return -ENOMEM; 4110 4111 BUG_ON(rxq->descs != 4112 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4113 4114 rxq->last_desc = rxq->size - 1; 4115 4116 /* Zero occupied and non-occupied counters - direct access */ 4117 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4118 4119 /* Set Rx descriptors queue starting address - indirect access */ 4120 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4121 if (port->priv->hw_version == MVPP21) 4122 rxq_dma = rxq->descs_dma; 4123 else 4124 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; 4125 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); 4126 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); 4127 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0); 4128 4129 /* Set Offset */ 4130 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); 4131 4132 /* Add number of descriptors ready for receiving packets */ 4133 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); 4134 4135 return 0; 4136 } 4137 4138 /* Push packets received by the RXQ to BM pool */ 4139 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, 4140 struct mvpp2_rx_queue *rxq) 4141 { 4142 int rx_received, i; 4143 4144 rx_received = mvpp2_rxq_received(port, rxq->id); 4145 if (!rx_received) 4146 return; 4147 4148 for (i = 0; i < rx_received; i++) { 4149 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); 4150 u32 bm = mvpp2_bm_cookie_build(port, rx_desc); 4151 4152 mvpp2_pool_refill(port, bm, 4153 mvpp2_rxdesc_dma_addr_get(port, rx_desc), 4154 mvpp2_rxdesc_cookie_get(port, rx_desc)); 4155 } 4156 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); 4157 } 4158 4159 /* Cleanup Rx queue */ 4160 static void mvpp2_rxq_deinit(struct mvpp2_port *port, 4161 struct mvpp2_rx_queue *rxq) 4162 { 4163 mvpp2_rxq_drop_pkts(port, rxq); 4164 4165 rxq->descs = NULL; 4166 rxq->last_desc = 0; 4167 rxq->next_desc_to_proc = 0; 4168 rxq->descs_dma = 0; 4169 4170 /* Clear Rx descriptors queue starting address and size; 4171 * free descriptor number 4172 */ 4173 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4174 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4175 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0); 4176 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0); 4177 } 4178 4179 /* Create and initialize a Tx queue */ 4180 static int mvpp2_txq_init(struct mvpp2_port *port, 4181 struct mvpp2_tx_queue *txq) 4182 { 4183 u32 val; 4184 int cpu, desc, desc_per_txq, tx_port_num; 4185 struct mvpp2_txq_pcpu *txq_pcpu; 4186 4187 txq->size = port->tx_ring_size; 4188 4189 /* Allocate memory for Tx descriptors */ 4190 txq->descs = buffer_loc.tx_descs; 4191 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs; 4192 if (!txq->descs) 4193 return -ENOMEM; 4194 4195 /* Make sure descriptor address is cache line size aligned */ 4196 BUG_ON(txq->descs != 4197 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4198 4199 txq->last_desc = txq->size - 1; 4200 4201 /* Set Tx descriptors queue starting address - indirect access */ 4202 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4203 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma); 4204 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size & 4205 MVPP2_TXQ_DESC_SIZE_MASK); 4206 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0); 4207 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG, 4208 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); 4209 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 4210 val &= ~MVPP2_TXQ_PENDING_MASK; 4211 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val); 4212 4213 /* Calculate base address in prefetch buffer. We reserve 16 descriptors 4214 * for each existing TXQ. 4215 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT 4216 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS 4217 */ 4218 desc_per_txq = 16; 4219 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + 4220 (txq->log_id * desc_per_txq); 4221 4222 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, 4223 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | 4224 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); 4225 4226 /* WRR / EJP configuration - indirect access */ 4227 tx_port_num = mvpp2_egress_port(port); 4228 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4229 4230 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); 4231 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; 4232 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); 4233 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; 4234 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); 4235 4236 val = MVPP2_TXQ_TOKEN_SIZE_MAX; 4237 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), 4238 val); 4239 4240 for_each_present_cpu(cpu) { 4241 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4242 txq_pcpu->size = txq->size; 4243 } 4244 4245 return 0; 4246 } 4247 4248 /* Free allocated TXQ resources */ 4249 static void mvpp2_txq_deinit(struct mvpp2_port *port, 4250 struct mvpp2_tx_queue *txq) 4251 { 4252 txq->descs = NULL; 4253 txq->last_desc = 0; 4254 txq->next_desc_to_proc = 0; 4255 txq->descs_dma = 0; 4256 4257 /* Set minimum bandwidth for disabled TXQs */ 4258 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); 4259 4260 /* Set Tx descriptors queue starting address and size */ 4261 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4262 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0); 4263 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0); 4264 } 4265 4266 /* Cleanup Tx ports */ 4267 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) 4268 { 4269 struct mvpp2_txq_pcpu *txq_pcpu; 4270 int delay, pending, cpu; 4271 u32 val; 4272 4273 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4274 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 4275 val |= MVPP2_TXQ_DRAIN_EN_MASK; 4276 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4277 4278 /* The napi queue has been stopped so wait for all packets 4279 * to be transmitted. 4280 */ 4281 delay = 0; 4282 do { 4283 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { 4284 netdev_warn(port->dev, 4285 "port %d: cleaning queue %d timed out\n", 4286 port->id, txq->log_id); 4287 break; 4288 } 4289 mdelay(1); 4290 delay++; 4291 4292 pending = mvpp2_txq_pend_desc_num_get(port, txq); 4293 } while (pending); 4294 4295 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 4296 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4297 4298 for_each_present_cpu(cpu) { 4299 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4300 4301 /* Release all packets */ 4302 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); 4303 4304 /* Reset queue */ 4305 txq_pcpu->count = 0; 4306 txq_pcpu->txq_put_index = 0; 4307 txq_pcpu->txq_get_index = 0; 4308 } 4309 } 4310 4311 /* Cleanup all Tx queues */ 4312 static void mvpp2_cleanup_txqs(struct mvpp2_port *port) 4313 { 4314 struct mvpp2_tx_queue *txq; 4315 int queue; 4316 u32 val; 4317 4318 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); 4319 4320 /* Reset Tx ports and delete Tx queues */ 4321 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); 4322 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4323 4324 for (queue = 0; queue < txq_number; queue++) { 4325 txq = port->txqs[queue]; 4326 mvpp2_txq_clean(port, txq); 4327 mvpp2_txq_deinit(port, txq); 4328 } 4329 4330 mvpp2_txq_sent_counter_clear(port); 4331 4332 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); 4333 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4334 } 4335 4336 /* Cleanup all Rx queues */ 4337 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) 4338 { 4339 int queue; 4340 4341 for (queue = 0; queue < rxq_number; queue++) 4342 mvpp2_rxq_deinit(port, port->rxqs[queue]); 4343 } 4344 4345 /* Init all Rx queues for port */ 4346 static int mvpp2_setup_rxqs(struct mvpp2_port *port) 4347 { 4348 int queue, err; 4349 4350 for (queue = 0; queue < rxq_number; queue++) { 4351 err = mvpp2_rxq_init(port, port->rxqs[queue]); 4352 if (err) 4353 goto err_cleanup; 4354 } 4355 return 0; 4356 4357 err_cleanup: 4358 mvpp2_cleanup_rxqs(port); 4359 return err; 4360 } 4361 4362 /* Init all tx queues for port */ 4363 static int mvpp2_setup_txqs(struct mvpp2_port *port) 4364 { 4365 struct mvpp2_tx_queue *txq; 4366 int queue, err; 4367 4368 for (queue = 0; queue < txq_number; queue++) { 4369 txq = port->txqs[queue]; 4370 err = mvpp2_txq_init(port, txq); 4371 if (err) 4372 goto err_cleanup; 4373 } 4374 4375 mvpp2_txq_sent_counter_clear(port); 4376 return 0; 4377 4378 err_cleanup: 4379 mvpp2_cleanup_txqs(port); 4380 return err; 4381 } 4382 4383 /* Adjust link */ 4384 static void mvpp2_link_event(struct mvpp2_port *port) 4385 { 4386 struct phy_device *phydev = port->phy_dev; 4387 int status_change = 0; 4388 u32 val; 4389 4390 if (phydev->link) { 4391 if ((port->speed != phydev->speed) || 4392 (port->duplex != phydev->duplex)) { 4393 u32 val; 4394 4395 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4396 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | 4397 MVPP2_GMAC_CONFIG_GMII_SPEED | 4398 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 4399 MVPP2_GMAC_AN_SPEED_EN | 4400 MVPP2_GMAC_AN_DUPLEX_EN); 4401 4402 if (phydev->duplex) 4403 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; 4404 4405 if (phydev->speed == SPEED_1000) 4406 val |= MVPP2_GMAC_CONFIG_GMII_SPEED; 4407 else if (phydev->speed == SPEED_100) 4408 val |= MVPP2_GMAC_CONFIG_MII_SPEED; 4409 4410 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4411 4412 port->duplex = phydev->duplex; 4413 port->speed = phydev->speed; 4414 } 4415 } 4416 4417 if (phydev->link != port->link) { 4418 if (!phydev->link) { 4419 port->duplex = -1; 4420 port->speed = 0; 4421 } 4422 4423 port->link = phydev->link; 4424 status_change = 1; 4425 } 4426 4427 if (status_change) { 4428 if (phydev->link) { 4429 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4430 val |= (MVPP2_GMAC_FORCE_LINK_PASS | 4431 MVPP2_GMAC_FORCE_LINK_DOWN); 4432 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4433 mvpp2_egress_enable(port); 4434 mvpp2_ingress_enable(port); 4435 } else { 4436 mvpp2_ingress_disable(port); 4437 mvpp2_egress_disable(port); 4438 } 4439 } 4440 } 4441 4442 /* Main RX/TX processing routines */ 4443 4444 /* Display more error info */ 4445 static void mvpp2_rx_error(struct mvpp2_port *port, 4446 struct mvpp2_rx_desc *rx_desc) 4447 { 4448 u32 status = mvpp2_rxdesc_status_get(port, rx_desc); 4449 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); 4450 4451 switch (status & MVPP2_RXD_ERR_CODE_MASK) { 4452 case MVPP2_RXD_ERR_CRC: 4453 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n", 4454 status, sz); 4455 break; 4456 case MVPP2_RXD_ERR_OVERRUN: 4457 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n", 4458 status, sz); 4459 break; 4460 case MVPP2_RXD_ERR_RESOURCE: 4461 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n", 4462 status, sz); 4463 break; 4464 } 4465 } 4466 4467 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */ 4468 static int mvpp2_rx_refill(struct mvpp2_port *port, 4469 struct mvpp2_bm_pool *bm_pool, 4470 u32 bm, dma_addr_t dma_addr) 4471 { 4472 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr); 4473 return 0; 4474 } 4475 4476 /* Set hw internals when starting port */ 4477 static void mvpp2_start_dev(struct mvpp2_port *port) 4478 { 4479 mvpp2_gmac_max_rx_size_set(port); 4480 mvpp2_txp_max_tx_size_set(port); 4481 4482 if (port->priv->hw_version == MVPP21) 4483 mvpp2_port_enable(port); 4484 else 4485 gop_port_enable(port, 1); 4486 } 4487 4488 /* Set hw internals when stopping port */ 4489 static void mvpp2_stop_dev(struct mvpp2_port *port) 4490 { 4491 /* Stop new packets from arriving to RXQs */ 4492 mvpp2_ingress_disable(port); 4493 4494 mvpp2_egress_disable(port); 4495 4496 if (port->priv->hw_version == MVPP21) 4497 mvpp2_port_disable(port); 4498 else 4499 gop_port_enable(port, 0); 4500 } 4501 4502 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port) 4503 { 4504 struct phy_device *phy_dev; 4505 4506 if (!port->init || port->link == 0) { 4507 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev, 4508 port->phy_interface); 4509 port->phy_dev = phy_dev; 4510 if (!phy_dev) { 4511 netdev_err(port->dev, "cannot connect to phy\n"); 4512 return -ENODEV; 4513 } 4514 phy_dev->supported &= PHY_GBIT_FEATURES; 4515 phy_dev->advertising = phy_dev->supported; 4516 4517 port->phy_dev = phy_dev; 4518 port->link = 0; 4519 port->duplex = 0; 4520 port->speed = 0; 4521 4522 phy_config(phy_dev); 4523 phy_startup(phy_dev); 4524 if (!phy_dev->link) { 4525 printf("%s: No link\n", phy_dev->dev->name); 4526 return -1; 4527 } 4528 4529 port->init = 1; 4530 } else { 4531 mvpp2_egress_enable(port); 4532 mvpp2_ingress_enable(port); 4533 } 4534 4535 return 0; 4536 } 4537 4538 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port) 4539 { 4540 unsigned char mac_bcast[ETH_ALEN] = { 4541 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 4542 int err; 4543 4544 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); 4545 if (err) { 4546 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); 4547 return err; 4548 } 4549 err = mvpp2_prs_mac_da_accept(port->priv, port->id, 4550 port->dev_addr, true); 4551 if (err) { 4552 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); 4553 return err; 4554 } 4555 err = mvpp2_prs_def_flow(port); 4556 if (err) { 4557 netdev_err(dev, "mvpp2_prs_def_flow failed\n"); 4558 return err; 4559 } 4560 4561 /* Allocate the Rx/Tx queues */ 4562 err = mvpp2_setup_rxqs(port); 4563 if (err) { 4564 netdev_err(port->dev, "cannot allocate Rx queues\n"); 4565 return err; 4566 } 4567 4568 err = mvpp2_setup_txqs(port); 4569 if (err) { 4570 netdev_err(port->dev, "cannot allocate Tx queues\n"); 4571 return err; 4572 } 4573 4574 err = mvpp2_phy_connect(dev, port); 4575 if (err < 0) 4576 return err; 4577 4578 mvpp2_link_event(port); 4579 4580 mvpp2_start_dev(port); 4581 4582 return 0; 4583 } 4584 4585 /* No Device ops here in U-Boot */ 4586 4587 /* Driver initialization */ 4588 4589 static void mvpp2_port_power_up(struct mvpp2_port *port) 4590 { 4591 struct mvpp2 *priv = port->priv; 4592 4593 /* On PPv2.2 the GoP / interface configuration has already been done */ 4594 if (priv->hw_version == MVPP21) 4595 mvpp2_port_mii_set(port); 4596 mvpp2_port_periodic_xon_disable(port); 4597 if (priv->hw_version == MVPP21) 4598 mvpp2_port_fc_adv_enable(port); 4599 mvpp2_port_reset(port); 4600 } 4601 4602 /* Initialize port HW */ 4603 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port) 4604 { 4605 struct mvpp2 *priv = port->priv; 4606 struct mvpp2_txq_pcpu *txq_pcpu; 4607 int queue, cpu, err; 4608 4609 if (port->first_rxq + rxq_number > 4610 MVPP2_MAX_PORTS * priv->max_port_rxqs) 4611 return -EINVAL; 4612 4613 /* Disable port */ 4614 mvpp2_egress_disable(port); 4615 if (priv->hw_version == MVPP21) 4616 mvpp2_port_disable(port); 4617 else 4618 gop_port_enable(port, 0); 4619 4620 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), 4621 GFP_KERNEL); 4622 if (!port->txqs) 4623 return -ENOMEM; 4624 4625 /* Associate physical Tx queues to this port and initialize. 4626 * The mapping is predefined. 4627 */ 4628 for (queue = 0; queue < txq_number; queue++) { 4629 int queue_phy_id = mvpp2_txq_phys(port->id, queue); 4630 struct mvpp2_tx_queue *txq; 4631 4632 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); 4633 if (!txq) 4634 return -ENOMEM; 4635 4636 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu), 4637 GFP_KERNEL); 4638 if (!txq->pcpu) 4639 return -ENOMEM; 4640 4641 txq->id = queue_phy_id; 4642 txq->log_id = queue; 4643 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; 4644 for_each_present_cpu(cpu) { 4645 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4646 txq_pcpu->cpu = cpu; 4647 } 4648 4649 port->txqs[queue] = txq; 4650 } 4651 4652 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), 4653 GFP_KERNEL); 4654 if (!port->rxqs) 4655 return -ENOMEM; 4656 4657 /* Allocate and initialize Rx queue for this port */ 4658 for (queue = 0; queue < rxq_number; queue++) { 4659 struct mvpp2_rx_queue *rxq; 4660 4661 /* Map physical Rx queue to port's logical Rx queue */ 4662 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); 4663 if (!rxq) 4664 return -ENOMEM; 4665 /* Map this Rx queue to a physical queue */ 4666 rxq->id = port->first_rxq + queue; 4667 rxq->port = port->id; 4668 rxq->logic_rxq = queue; 4669 4670 port->rxqs[queue] = rxq; 4671 } 4672 4673 /* Configure Rx queue group interrupt for this port */ 4674 if (priv->hw_version == MVPP21) { 4675 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id), 4676 CONFIG_MV_ETH_RXQ); 4677 } else { 4678 u32 val; 4679 4680 val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 4681 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 4682 4683 val = (CONFIG_MV_ETH_RXQ << 4684 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 4685 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 4686 } 4687 4688 /* Create Rx descriptor rings */ 4689 for (queue = 0; queue < rxq_number; queue++) { 4690 struct mvpp2_rx_queue *rxq = port->rxqs[queue]; 4691 4692 rxq->size = port->rx_ring_size; 4693 rxq->pkts_coal = MVPP2_RX_COAL_PKTS; 4694 rxq->time_coal = MVPP2_RX_COAL_USEC; 4695 } 4696 4697 mvpp2_ingress_disable(port); 4698 4699 /* Port default configuration */ 4700 mvpp2_defaults_set(port); 4701 4702 /* Port's classifier configuration */ 4703 mvpp2_cls_oversize_rxq_set(port); 4704 mvpp2_cls_port_config(port); 4705 4706 /* Provide an initial Rx packet size */ 4707 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN); 4708 4709 /* Initialize pools for swf */ 4710 err = mvpp2_swf_bm_pool_init(port); 4711 if (err) 4712 return err; 4713 4714 return 0; 4715 } 4716 4717 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port) 4718 { 4719 int port_node = dev_of_offset(dev); 4720 const char *phy_mode_str; 4721 int phy_node; 4722 u32 id; 4723 u32 phyaddr; 4724 int phy_mode = -1; 4725 4726 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy"); 4727 if (phy_node < 0) { 4728 dev_err(&pdev->dev, "missing phy\n"); 4729 return -ENODEV; 4730 } 4731 4732 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL); 4733 if (phy_mode_str) 4734 phy_mode = phy_get_interface_by_name(phy_mode_str); 4735 if (phy_mode == -1) { 4736 dev_err(&pdev->dev, "incorrect phy mode\n"); 4737 return -EINVAL; 4738 } 4739 4740 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1); 4741 if (id == -1) { 4742 dev_err(&pdev->dev, "missing port-id value\n"); 4743 return -EINVAL; 4744 } 4745 4746 /* 4747 * ToDo: 4748 * Not sure if this DT property "phy-speed" will get accepted, so 4749 * this might change later 4750 */ 4751 /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */ 4752 port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node, 4753 "phy-speed", 1000); 4754 4755 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0); 4756 4757 port->id = id; 4758 if (port->priv->hw_version == MVPP21) 4759 port->first_rxq = port->id * rxq_number; 4760 else 4761 port->first_rxq = port->id * port->priv->max_port_rxqs; 4762 port->phy_node = phy_node; 4763 port->phy_interface = phy_mode; 4764 port->phyaddr = phyaddr; 4765 4766 return 0; 4767 } 4768 4769 /* Ports initialization */ 4770 static int mvpp2_port_probe(struct udevice *dev, 4771 struct mvpp2_port *port, 4772 int port_node, 4773 struct mvpp2 *priv) 4774 { 4775 int err; 4776 4777 port->tx_ring_size = MVPP2_MAX_TXD; 4778 port->rx_ring_size = MVPP2_MAX_RXD; 4779 4780 err = mvpp2_port_init(dev, port); 4781 if (err < 0) { 4782 dev_err(&pdev->dev, "failed to init port %d\n", port->id); 4783 return err; 4784 } 4785 mvpp2_port_power_up(port); 4786 4787 priv->port_list[port->id] = port; 4788 return 0; 4789 } 4790 4791 /* Initialize decoding windows */ 4792 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, 4793 struct mvpp2 *priv) 4794 { 4795 u32 win_enable; 4796 int i; 4797 4798 for (i = 0; i < 6; i++) { 4799 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); 4800 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); 4801 4802 if (i < 4) 4803 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); 4804 } 4805 4806 win_enable = 0; 4807 4808 for (i = 0; i < dram->num_cs; i++) { 4809 const struct mbus_dram_window *cs = dram->cs + i; 4810 4811 mvpp2_write(priv, MVPP2_WIN_BASE(i), 4812 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | 4813 dram->mbus_dram_target_id); 4814 4815 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 4816 (cs->size - 1) & 0xffff0000); 4817 4818 win_enable |= (1 << i); 4819 } 4820 4821 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); 4822 } 4823 4824 /* Initialize Rx FIFO's */ 4825 static void mvpp2_rx_fifo_init(struct mvpp2 *priv) 4826 { 4827 int port; 4828 4829 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4830 if (priv->hw_version == MVPP22) { 4831 if (port == 0) { 4832 mvpp2_write(priv, 4833 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4834 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE); 4835 mvpp2_write(priv, 4836 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4837 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE); 4838 } else if (port == 1) { 4839 mvpp2_write(priv, 4840 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4841 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE); 4842 mvpp2_write(priv, 4843 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4844 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE); 4845 } else { 4846 mvpp2_write(priv, 4847 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4848 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE); 4849 mvpp2_write(priv, 4850 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4851 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE); 4852 } 4853 } else { 4854 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4855 MVPP21_RX_FIFO_PORT_DATA_SIZE); 4856 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4857 MVPP21_RX_FIFO_PORT_ATTR_SIZE); 4858 } 4859 } 4860 4861 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, 4862 MVPP2_RX_FIFO_PORT_MIN_PKT); 4863 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); 4864 } 4865 4866 /* Initialize Tx FIFO's */ 4867 static void mvpp2_tx_fifo_init(struct mvpp2 *priv) 4868 { 4869 int port, val; 4870 4871 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4872 /* Port 0 supports 10KB TX FIFO */ 4873 if (port == 0) { 4874 val = MVPP2_TX_FIFO_DATA_SIZE_10KB & 4875 MVPP22_TX_FIFO_SIZE_MASK; 4876 } else { 4877 val = MVPP2_TX_FIFO_DATA_SIZE_3KB & 4878 MVPP22_TX_FIFO_SIZE_MASK; 4879 } 4880 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val); 4881 } 4882 } 4883 4884 static void mvpp2_axi_init(struct mvpp2 *priv) 4885 { 4886 u32 val, rdval, wrval; 4887 4888 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); 4889 4890 /* AXI Bridge Configuration */ 4891 4892 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE 4893 << MVPP22_AXI_ATTR_CACHE_OFFS; 4894 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4895 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4896 4897 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE 4898 << MVPP22_AXI_ATTR_CACHE_OFFS; 4899 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4900 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4901 4902 /* BM */ 4903 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); 4904 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); 4905 4906 /* Descriptors */ 4907 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); 4908 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); 4909 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); 4910 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); 4911 4912 /* Buffer Data */ 4913 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); 4914 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); 4915 4916 val = MVPP22_AXI_CODE_CACHE_NON_CACHE 4917 << MVPP22_AXI_CODE_CACHE_OFFS; 4918 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM 4919 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4920 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); 4921 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); 4922 4923 val = MVPP22_AXI_CODE_CACHE_RD_CACHE 4924 << MVPP22_AXI_CODE_CACHE_OFFS; 4925 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4926 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4927 4928 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); 4929 4930 val = MVPP22_AXI_CODE_CACHE_WR_CACHE 4931 << MVPP22_AXI_CODE_CACHE_OFFS; 4932 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4933 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4934 4935 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); 4936 } 4937 4938 /* Initialize network controller common part HW */ 4939 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv) 4940 { 4941 const struct mbus_dram_target_info *dram_target_info; 4942 int err, i; 4943 u32 val; 4944 4945 /* Checks for hardware constraints (U-Boot uses only one rxq) */ 4946 if ((rxq_number > priv->max_port_rxqs) || 4947 (txq_number > MVPP2_MAX_TXQ)) { 4948 dev_err(&pdev->dev, "invalid queue size parameter\n"); 4949 return -EINVAL; 4950 } 4951 4952 /* MBUS windows configuration */ 4953 dram_target_info = mvebu_mbus_dram_info(); 4954 if (dram_target_info) 4955 mvpp2_conf_mbus_windows(dram_target_info, priv); 4956 4957 if (priv->hw_version == MVPP22) 4958 mvpp2_axi_init(priv); 4959 4960 if (priv->hw_version == MVPP21) { 4961 /* Disable HW PHY polling */ 4962 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4963 val |= MVPP2_PHY_AN_STOP_SMI0_MASK; 4964 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4965 } else { 4966 /* Enable HW PHY polling */ 4967 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4968 val |= MVPP22_SMI_POLLING_EN; 4969 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4970 } 4971 4972 /* Allocate and initialize aggregated TXQs */ 4973 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(), 4974 sizeof(struct mvpp2_tx_queue), 4975 GFP_KERNEL); 4976 if (!priv->aggr_txqs) 4977 return -ENOMEM; 4978 4979 for_each_present_cpu(i) { 4980 priv->aggr_txqs[i].id = i; 4981 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; 4982 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i], 4983 MVPP2_AGGR_TXQ_SIZE, i, priv); 4984 if (err < 0) 4985 return err; 4986 } 4987 4988 /* Rx Fifo Init */ 4989 mvpp2_rx_fifo_init(priv); 4990 4991 /* Tx Fifo Init */ 4992 if (priv->hw_version == MVPP22) 4993 mvpp2_tx_fifo_init(priv); 4994 4995 /* Reset Rx queue group interrupt configuration */ 4996 for (i = 0; i < MVPP2_MAX_PORTS; i++) { 4997 if (priv->hw_version == MVPP21) { 4998 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i), 4999 CONFIG_MV_ETH_RXQ); 5000 continue; 5001 } else { 5002 u32 val; 5003 5004 val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 5005 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 5006 5007 val = (CONFIG_MV_ETH_RXQ << 5008 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 5009 mvpp2_write(priv, 5010 MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 5011 } 5012 } 5013 5014 if (priv->hw_version == MVPP21) 5015 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, 5016 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); 5017 5018 /* Allow cache snoop when transmiting packets */ 5019 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); 5020 5021 /* Buffer Manager initialization */ 5022 err = mvpp2_bm_init(dev, priv); 5023 if (err < 0) 5024 return err; 5025 5026 /* Parser default initialization */ 5027 err = mvpp2_prs_default_init(dev, priv); 5028 if (err < 0) 5029 return err; 5030 5031 /* Classifier default initialization */ 5032 mvpp2_cls_init(priv); 5033 5034 return 0; 5035 } 5036 5037 /* SMI / MDIO functions */ 5038 5039 static int smi_wait_ready(struct mvpp2 *priv) 5040 { 5041 u32 timeout = MVPP2_SMI_TIMEOUT; 5042 u32 smi_reg; 5043 5044 /* wait till the SMI is not busy */ 5045 do { 5046 /* read smi register */ 5047 smi_reg = readl(priv->mdio_base); 5048 if (timeout-- == 0) { 5049 printf("Error: SMI busy timeout\n"); 5050 return -EFAULT; 5051 } 5052 } while (smi_reg & MVPP2_SMI_BUSY); 5053 5054 return 0; 5055 } 5056 5057 /* 5058 * mpp2_mdio_read - miiphy_read callback function. 5059 * 5060 * Returns 16bit phy register value, or 0xffff on error 5061 */ 5062 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) 5063 { 5064 struct mvpp2 *priv = bus->priv; 5065 u32 smi_reg; 5066 u32 timeout; 5067 5068 /* check parameters */ 5069 if (addr > MVPP2_PHY_ADDR_MASK) { 5070 printf("Error: Invalid PHY address %d\n", addr); 5071 return -EFAULT; 5072 } 5073 5074 if (reg > MVPP2_PHY_REG_MASK) { 5075 printf("Err: Invalid register offset %d\n", reg); 5076 return -EFAULT; 5077 } 5078 5079 /* wait till the SMI is not busy */ 5080 if (smi_wait_ready(priv) < 0) 5081 return -EFAULT; 5082 5083 /* fill the phy address and regiser offset and read opcode */ 5084 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5085 | (reg << MVPP2_SMI_REG_ADDR_OFFS) 5086 | MVPP2_SMI_OPCODE_READ; 5087 5088 /* write the smi register */ 5089 writel(smi_reg, priv->mdio_base); 5090 5091 /* wait till read value is ready */ 5092 timeout = MVPP2_SMI_TIMEOUT; 5093 5094 do { 5095 /* read smi register */ 5096 smi_reg = readl(priv->mdio_base); 5097 if (timeout-- == 0) { 5098 printf("Err: SMI read ready timeout\n"); 5099 return -EFAULT; 5100 } 5101 } while (!(smi_reg & MVPP2_SMI_READ_VALID)); 5102 5103 /* Wait for the data to update in the SMI register */ 5104 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++) 5105 ; 5106 5107 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK; 5108 } 5109 5110 /* 5111 * mpp2_mdio_write - miiphy_write callback function. 5112 * 5113 * Returns 0 if write succeed, -EINVAL on bad parameters 5114 * -ETIME on timeout 5115 */ 5116 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, 5117 u16 value) 5118 { 5119 struct mvpp2 *priv = bus->priv; 5120 u32 smi_reg; 5121 5122 /* check parameters */ 5123 if (addr > MVPP2_PHY_ADDR_MASK) { 5124 printf("Error: Invalid PHY address %d\n", addr); 5125 return -EFAULT; 5126 } 5127 5128 if (reg > MVPP2_PHY_REG_MASK) { 5129 printf("Err: Invalid register offset %d\n", reg); 5130 return -EFAULT; 5131 } 5132 5133 /* wait till the SMI is not busy */ 5134 if (smi_wait_ready(priv) < 0) 5135 return -EFAULT; 5136 5137 /* fill the phy addr and reg offset and write opcode and data */ 5138 smi_reg = value << MVPP2_SMI_DATA_OFFS; 5139 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5140 | (reg << MVPP2_SMI_REG_ADDR_OFFS); 5141 smi_reg &= ~MVPP2_SMI_OPCODE_READ; 5142 5143 /* write the smi register */ 5144 writel(smi_reg, priv->mdio_base); 5145 5146 return 0; 5147 } 5148 5149 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp) 5150 { 5151 struct mvpp2_port *port = dev_get_priv(dev); 5152 struct mvpp2_rx_desc *rx_desc; 5153 struct mvpp2_bm_pool *bm_pool; 5154 dma_addr_t dma_addr; 5155 u32 bm, rx_status; 5156 int pool, rx_bytes, err; 5157 int rx_received; 5158 struct mvpp2_rx_queue *rxq; 5159 u32 cause_rx_tx, cause_rx, cause_misc; 5160 u8 *data; 5161 5162 cause_rx_tx = mvpp2_read(port->priv, 5163 MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); 5164 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; 5165 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; 5166 if (!cause_rx_tx && !cause_misc) 5167 return 0; 5168 5169 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK; 5170 5171 /* Process RX packets */ 5172 cause_rx |= port->pending_cause_rx; 5173 rxq = mvpp2_get_rx_queue(port, cause_rx); 5174 5175 /* Get number of received packets and clamp the to-do */ 5176 rx_received = mvpp2_rxq_received(port, rxq->id); 5177 5178 /* Return if no packets are received */ 5179 if (!rx_received) 5180 return 0; 5181 5182 rx_desc = mvpp2_rxq_next_desc_get(rxq); 5183 rx_status = mvpp2_rxdesc_status_get(port, rx_desc); 5184 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); 5185 rx_bytes -= MVPP2_MH_SIZE; 5186 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); 5187 5188 bm = mvpp2_bm_cookie_build(port, rx_desc); 5189 pool = mvpp2_bm_cookie_pool_get(bm); 5190 bm_pool = &port->priv->bm_pools[pool]; 5191 5192 /* In case of an error, release the requested buffer pointer 5193 * to the Buffer Manager. This request process is controlled 5194 * by the hardware, and the information about the buffer is 5195 * comprised by the RX descriptor. 5196 */ 5197 if (rx_status & MVPP2_RXD_ERR_SUMMARY) { 5198 mvpp2_rx_error(port, rx_desc); 5199 /* Return the buffer to the pool */ 5200 mvpp2_pool_refill(port, bm, dma_addr, dma_addr); 5201 return 0; 5202 } 5203 5204 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr); 5205 if (err) { 5206 netdev_err(port->dev, "failed to refill BM pools\n"); 5207 return 0; 5208 } 5209 5210 /* Update Rx queue management counters */ 5211 mb(); 5212 mvpp2_rxq_status_update(port, rxq->id, 1, 1); 5213 5214 /* give packet to stack - skip on first n bytes */ 5215 data = (u8 *)dma_addr + 2 + 32; 5216 5217 if (rx_bytes <= 0) 5218 return 0; 5219 5220 /* 5221 * No cache invalidation needed here, since the rx_buffer's are 5222 * located in a uncached memory region 5223 */ 5224 *packetp = data; 5225 5226 return rx_bytes; 5227 } 5228 5229 /* Drain Txq */ 5230 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, 5231 int enable) 5232 { 5233 u32 val; 5234 5235 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5236 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 5237 if (enable) 5238 val |= MVPP2_TXQ_DRAIN_EN_MASK; 5239 else 5240 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 5241 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 5242 } 5243 5244 static int mvpp2_send(struct udevice *dev, void *packet, int length) 5245 { 5246 struct mvpp2_port *port = dev_get_priv(dev); 5247 struct mvpp2_tx_queue *txq, *aggr_txq; 5248 struct mvpp2_tx_desc *tx_desc; 5249 int tx_done; 5250 int timeout; 5251 5252 txq = port->txqs[0]; 5253 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; 5254 5255 /* Get a descriptor for the first part of the packet */ 5256 tx_desc = mvpp2_txq_next_desc_get(aggr_txq); 5257 mvpp2_txdesc_txq_set(port, tx_desc, txq->id); 5258 mvpp2_txdesc_size_set(port, tx_desc, length); 5259 mvpp2_txdesc_offset_set(port, tx_desc, 5260 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN); 5261 mvpp2_txdesc_dma_addr_set(port, tx_desc, 5262 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN); 5263 /* First and Last descriptor */ 5264 mvpp2_txdesc_cmd_set(port, tx_desc, 5265 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE 5266 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC); 5267 5268 /* Flush tx data */ 5269 flush_dcache_range((unsigned long)packet, 5270 (unsigned long)packet + ALIGN(length, PKTALIGN)); 5271 5272 /* Enable transmit */ 5273 mb(); 5274 mvpp2_aggr_txq_pend_desc_add(port, 1); 5275 5276 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5277 5278 timeout = 0; 5279 do { 5280 if (timeout++ > 10000) { 5281 printf("timeout: packet not sent from aggregated to phys TXQ\n"); 5282 return 0; 5283 } 5284 tx_done = mvpp2_txq_pend_desc_num_get(port, txq); 5285 } while (tx_done); 5286 5287 /* Enable TXQ drain */ 5288 mvpp2_txq_drain(port, txq, 1); 5289 5290 timeout = 0; 5291 do { 5292 if (timeout++ > 10000) { 5293 printf("timeout: packet not sent\n"); 5294 return 0; 5295 } 5296 tx_done = mvpp2_txq_sent_desc_proc(port, txq); 5297 } while (!tx_done); 5298 5299 /* Disable TXQ drain */ 5300 mvpp2_txq_drain(port, txq, 0); 5301 5302 return 0; 5303 } 5304 5305 static int mvpp2_start(struct udevice *dev) 5306 { 5307 struct eth_pdata *pdata = dev_get_platdata(dev); 5308 struct mvpp2_port *port = dev_get_priv(dev); 5309 5310 /* Load current MAC address */ 5311 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN); 5312 5313 /* Reconfigure parser accept the original MAC address */ 5314 mvpp2_prs_update_mac_da(port, port->dev_addr); 5315 5316 mvpp2_port_power_up(port); 5317 5318 mvpp2_open(dev, port); 5319 5320 return 0; 5321 } 5322 5323 static void mvpp2_stop(struct udevice *dev) 5324 { 5325 struct mvpp2_port *port = dev_get_priv(dev); 5326 5327 mvpp2_stop_dev(port); 5328 mvpp2_cleanup_rxqs(port); 5329 mvpp2_cleanup_txqs(port); 5330 } 5331 5332 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port) 5333 { 5334 writel(port->phyaddr, port->priv->iface_base + 5335 MVPP22_SMI_PHY_ADDR_REG(port->gop_id)); 5336 5337 return 0; 5338 } 5339 5340 static int mvpp2_base_probe(struct udevice *dev) 5341 { 5342 struct mvpp2 *priv = dev_get_priv(dev); 5343 struct mii_dev *bus; 5344 void *bd_space; 5345 u32 size = 0; 5346 int i; 5347 5348 /* Save hw-version */ 5349 priv->hw_version = dev_get_driver_data(dev); 5350 5351 /* 5352 * U-Boot special buffer handling: 5353 * 5354 * Allocate buffer area for descs and rx_buffers. This is only 5355 * done once for all interfaces. As only one interface can 5356 * be active. Make this area DMA-safe by disabling the D-cache 5357 */ 5358 5359 /* Align buffer area for descs and rx_buffers to 1MiB */ 5360 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); 5361 mmu_set_region_dcache_behaviour((unsigned long)bd_space, 5362 BD_SPACE, DCACHE_OFF); 5363 5364 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space; 5365 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE; 5366 5367 buffer_loc.tx_descs = 5368 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size); 5369 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE; 5370 5371 buffer_loc.rx_descs = 5372 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size); 5373 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE; 5374 5375 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 5376 buffer_loc.bm_pool[i] = 5377 (unsigned long *)((unsigned long)bd_space + size); 5378 if (priv->hw_version == MVPP21) 5379 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32); 5380 else 5381 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64); 5382 } 5383 5384 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) { 5385 buffer_loc.rx_buffer[i] = 5386 (unsigned long *)((unsigned long)bd_space + size); 5387 size += RX_BUFFER_SIZE; 5388 } 5389 5390 /* Clear the complete area so that all descriptors are cleared */ 5391 memset(bd_space, 0, size); 5392 5393 /* Save base addresses for later use */ 5394 priv->base = (void *)dev_get_addr_index(dev, 0); 5395 if (IS_ERR(priv->base)) 5396 return PTR_ERR(priv->base); 5397 5398 if (priv->hw_version == MVPP21) { 5399 priv->lms_base = (void *)dev_get_addr_index(dev, 1); 5400 if (IS_ERR(priv->lms_base)) 5401 return PTR_ERR(priv->lms_base); 5402 5403 priv->mdio_base = priv->lms_base + MVPP21_SMI; 5404 } else { 5405 priv->iface_base = (void *)dev_get_addr_index(dev, 1); 5406 if (IS_ERR(priv->iface_base)) 5407 return PTR_ERR(priv->iface_base); 5408 5409 priv->mdio_base = priv->iface_base + MVPP22_SMI; 5410 5411 /* Store common base addresses for all ports */ 5412 priv->mpcs_base = priv->iface_base + MVPP22_MPCS; 5413 priv->xpcs_base = priv->iface_base + MVPP22_XPCS; 5414 priv->rfu1_base = priv->iface_base + MVPP22_RFU1; 5415 } 5416 5417 if (priv->hw_version == MVPP21) 5418 priv->max_port_rxqs = 8; 5419 else 5420 priv->max_port_rxqs = 32; 5421 5422 /* Finally create and register the MDIO bus driver */ 5423 bus = mdio_alloc(); 5424 if (!bus) { 5425 printf("Failed to allocate MDIO bus\n"); 5426 return -ENOMEM; 5427 } 5428 5429 bus->read = mpp2_mdio_read; 5430 bus->write = mpp2_mdio_write; 5431 snprintf(bus->name, sizeof(bus->name), dev->name); 5432 bus->priv = (void *)priv; 5433 priv->bus = bus; 5434 5435 return mdio_register(bus); 5436 } 5437 5438 static int mvpp2_probe(struct udevice *dev) 5439 { 5440 struct mvpp2_port *port = dev_get_priv(dev); 5441 struct mvpp2 *priv = dev_get_priv(dev->parent); 5442 int err; 5443 5444 /* Only call the probe function for the parent once */ 5445 if (!priv->probe_done) { 5446 err = mvpp2_base_probe(dev->parent); 5447 priv->probe_done = 1; 5448 } 5449 5450 port->priv = dev_get_priv(dev->parent); 5451 5452 err = phy_info_parse(dev, port); 5453 if (err) 5454 return err; 5455 5456 /* 5457 * We need the port specific io base addresses at this stage, since 5458 * gop_port_init() accesses these registers 5459 */ 5460 if (priv->hw_version == MVPP21) { 5461 int priv_common_regs_num = 2; 5462 5463 port->base = (void __iomem *)dev_get_addr_index( 5464 dev->parent, priv_common_regs_num + port->id); 5465 if (IS_ERR(port->base)) 5466 return PTR_ERR(port->base); 5467 } else { 5468 port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), 5469 "gop-port-id", -1); 5470 if (port->id == -1) { 5471 dev_err(&pdev->dev, "missing gop-port-id value\n"); 5472 return -EINVAL; 5473 } 5474 5475 port->base = priv->iface_base + MVPP22_PORT_BASE + 5476 port->gop_id * MVPP22_PORT_OFFSET; 5477 5478 /* Set phy address of the port */ 5479 mvpp22_smi_phy_addr_cfg(port); 5480 5481 /* GoP Init */ 5482 gop_port_init(port); 5483 } 5484 5485 /* Initialize network controller */ 5486 err = mvpp2_init(dev, priv); 5487 if (err < 0) { 5488 dev_err(&pdev->dev, "failed to initialize controller\n"); 5489 return err; 5490 } 5491 5492 err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv); 5493 if (err) 5494 return err; 5495 5496 if (priv->hw_version == MVPP22) { 5497 priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id, 5498 port->phy_interface); 5499 5500 /* Netcomplex configurations for all ports */ 5501 gop_netc_init(priv, MV_NETC_FIRST_PHASE); 5502 gop_netc_init(priv, MV_NETC_SECOND_PHASE); 5503 } 5504 5505 return 0; 5506 } 5507 5508 static const struct eth_ops mvpp2_ops = { 5509 .start = mvpp2_start, 5510 .send = mvpp2_send, 5511 .recv = mvpp2_recv, 5512 .stop = mvpp2_stop, 5513 }; 5514 5515 static struct driver mvpp2_driver = { 5516 .name = "mvpp2", 5517 .id = UCLASS_ETH, 5518 .probe = mvpp2_probe, 5519 .ops = &mvpp2_ops, 5520 .priv_auto_alloc_size = sizeof(struct mvpp2_port), 5521 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 5522 }; 5523 5524 /* 5525 * Use a MISC device to bind the n instances (child nodes) of the 5526 * network base controller in UCLASS_ETH. 5527 */ 5528 static int mvpp2_base_bind(struct udevice *parent) 5529 { 5530 const void *blob = gd->fdt_blob; 5531 int node = dev_of_offset(parent); 5532 struct uclass_driver *drv; 5533 struct udevice *dev; 5534 struct eth_pdata *plat; 5535 char *name; 5536 int subnode; 5537 u32 id; 5538 int base_id_add; 5539 5540 /* Lookup eth driver */ 5541 drv = lists_uclass_lookup(UCLASS_ETH); 5542 if (!drv) { 5543 puts("Cannot find eth driver\n"); 5544 return -ENOENT; 5545 } 5546 5547 base_id_add = base_id; 5548 5549 fdt_for_each_subnode(subnode, blob, node) { 5550 /* Increment base_id for all subnodes, also the disabled ones */ 5551 base_id++; 5552 5553 /* Skip disabled ports */ 5554 if (!fdtdec_get_is_enabled(blob, subnode)) 5555 continue; 5556 5557 plat = calloc(1, sizeof(*plat)); 5558 if (!plat) 5559 return -ENOMEM; 5560 5561 id = fdtdec_get_int(blob, subnode, "port-id", -1); 5562 id += base_id_add; 5563 5564 name = calloc(1, 16); 5565 sprintf(name, "mvpp2-%d", id); 5566 5567 /* Create child device UCLASS_ETH and bind it */ 5568 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev); 5569 dev_set_of_offset(dev, subnode); 5570 } 5571 5572 return 0; 5573 } 5574 5575 static const struct udevice_id mvpp2_ids[] = { 5576 { 5577 .compatible = "marvell,armada-375-pp2", 5578 .data = MVPP21, 5579 }, 5580 { 5581 .compatible = "marvell,armada-7k-pp22", 5582 .data = MVPP22, 5583 }, 5584 { } 5585 }; 5586 5587 U_BOOT_DRIVER(mvpp2_base) = { 5588 .name = "mvpp2_base", 5589 .id = UCLASS_MISC, 5590 .of_match = mvpp2_ids, 5591 .bind = mvpp2_base_bind, 5592 .priv_auto_alloc_size = sizeof(struct mvpp2), 5593 }; 5594