xref: /rk3399_rockchip-uboot/drivers/net/mvpp2.c (revision f0e970fd2a5f802f7f2553a13a2f1e4e4bf7d5ee)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 #include <asm-generic/gpio.h>
34 #include <fdt_support.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 /* Some linux -> U-Boot compatibility stuff */
39 #define netdev_err(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_warn(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_info(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 #define netdev_dbg(dev, fmt, args...)		\
46 	printf(fmt, ##args)
47 
48 #define ETH_ALEN	6		/* Octets in one ethernet addr	*/
49 
50 #define __verify_pcpu_ptr(ptr)						\
51 do {									\
52 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
53 	(void)__vpp_verify;						\
54 } while (0)
55 
56 #define VERIFY_PERCPU_PTR(__p)						\
57 ({									\
58 	__verify_pcpu_ptr(__p);						\
59 	(typeof(*(__p)) __kernel __force *)(__p);			\
60 })
61 
62 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
63 #define smp_processor_id()	0
64 #define num_present_cpus()	1
65 #define for_each_present_cpu(cpu)			\
66 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
67 
68 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
69 
70 #define CONFIG_NR_CPUS		1
71 #define ETH_HLEN		ETHER_HDR_SIZE	/* Total octets in header */
72 
73 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
74 #define WRAP			(2 + ETH_HLEN + 4 + 32)
75 #define MTU			1500
76 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
77 
78 #define MVPP2_SMI_TIMEOUT			10000
79 
80 /* RX Fifo Registers */
81 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
82 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
83 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
84 #define MVPP2_RX_FIFO_INIT_REG			0x64
85 
86 /* RX DMA Top Registers */
87 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
88 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
89 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
90 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
91 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
92 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
93 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
94 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
95 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
96 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
97 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
98 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
99 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
100 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
101 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
102 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
103 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
104 
105 /* Parser Registers */
106 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
107 #define     MVPP2_PRS_PORT_LU_MAX		0xf
108 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
109 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
110 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
111 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
112 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
113 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
114 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
115 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
116 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
117 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
118 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
119 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
120 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
121 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
122 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
123 
124 /* Classifier Registers */
125 #define MVPP2_CLS_MODE_REG			0x1800
126 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
127 #define MVPP2_CLS_PORT_WAY_REG			0x1810
128 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
129 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
130 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
131 #define MVPP2_CLS_LKP_TBL_REG			0x1818
132 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
133 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
134 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
135 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
136 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
137 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
139 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
140 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
141 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
142 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
143 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
144 
145 /* Descriptor Manager Top Registers */
146 #define MVPP2_RXQ_NUM_REG			0x2040
147 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
148 #define     MVPP22_DESC_ADDR_OFFS		8
149 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
150 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
151 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
152 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
153 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
154 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
155 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
156 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
157 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
158 #define MVPP2_RXQ_THRESH_REG			0x204c
159 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
160 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
161 #define MVPP2_RXQ_INDEX_REG			0x2050
162 #define MVPP2_TXQ_NUM_REG			0x2080
163 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
164 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
165 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
166 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
167 #define MVPP2_TXQ_THRESH_REG			0x2094
168 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
169 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
170 #define MVPP2_TXQ_INDEX_REG			0x2098
171 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
172 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
173 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
174 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
175 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
176 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
177 #define MVPP2_TXQ_PENDING_REG			0x20a0
178 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
179 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
180 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
181 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
182 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
183 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
184 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
185 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
186 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
187 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
188 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
189 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
190 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
191 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
192 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
193 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
194 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
195 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
196 
197 /* MBUS bridge registers */
198 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
199 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
200 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
201 #define MVPP2_BASE_ADDR_ENABLE			0x4060
202 
203 /* AXI Bridge Registers */
204 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
205 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
206 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
207 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
208 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
209 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
210 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
211 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
212 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
213 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
214 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
215 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
216 
217 /* Values for AXI Bridge registers */
218 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
219 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
220 
221 #define MVPP22_AXI_CODE_CACHE_OFFS		0
222 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
223 
224 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
225 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
226 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
227 
228 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
229 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
230 
231 /* Interrupt Cause and Mask registers */
232 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
233 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
234 
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
237 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
239 
240 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
241 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
242 
243 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
244 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
245 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
246 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
247 
248 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
249 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
250 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
251 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
252 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
253 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
254 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
255 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
256 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
257 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
258 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
259 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
260 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
261 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
262 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
263 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
264 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
265 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
266 
267 /* Buffer Manager registers */
268 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
269 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
270 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
271 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
272 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
273 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
274 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
275 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
276 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
277 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
278 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
279 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
280 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
281 #define     MVPP2_BM_START_MASK			BIT(0)
282 #define     MVPP2_BM_STOP_MASK			BIT(1)
283 #define     MVPP2_BM_STATE_MASK			BIT(4)
284 #define     MVPP2_BM_LOW_THRESH_OFFS		8
285 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
286 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
287 						MVPP2_BM_LOW_THRESH_OFFS)
288 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
289 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
290 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
291 						MVPP2_BM_HIGH_THRESH_OFFS)
292 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
293 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
294 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
295 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
296 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
297 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
298 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
299 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
300 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
301 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
302 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
303 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
304 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
305 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
306 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
307 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
308 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
309 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
310 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
311 #define MVPP21_BM_MC_RLS_REG			0x64c4
312 #define     MVPP2_BM_MC_ID_MASK			0xfff
313 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
314 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
315 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
316 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
317 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
318 #define MVPP22_BM_MC_RLS_REG			0x64d4
319 
320 /* TX Scheduler registers */
321 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
322 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
323 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
324 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
325 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
326 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
327 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
328 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
329 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
330 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
331 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
332 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
333 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
334 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
335 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
336 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
337 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
338 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
339 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
340 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
341 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
342 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
343 
344 /* TX general registers */
345 #define MVPP2_TX_SNOOP_REG			0x8800
346 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
347 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
348 
349 /* LMS registers */
350 #define MVPP2_SRC_ADDR_MIDDLE			0x24
351 #define MVPP2_SRC_ADDR_HIGH			0x28
352 #define MVPP2_PHY_AN_CFG0_REG			0x34
353 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
354 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
355 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
356 
357 /* Per-port registers */
358 #define MVPP2_GMAC_CTRL_0_REG			0x0
359 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
360 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
361 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
362 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
363 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
364 #define MVPP2_GMAC_CTRL_1_REG			0x4
365 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
366 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
367 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
368 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
369 #define      MVPP2_GMAC_SA_LOW_OFFS		7
370 #define MVPP2_GMAC_CTRL_2_REG			0x8
371 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
372 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
373 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
374 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
375 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
376 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
377 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
378 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
379 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
380 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
381 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
382 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
383 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
384 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
385 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
386 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
387 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
388 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
389 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
390 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
391 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
392 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
393 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
394 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
395 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
396 #define MVPP2_GMAC_CTRL_4_REG			0x90
397 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
398 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
399 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
400 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
401 
402 /*
403  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
404  * relative to port->base.
405  */
406 
407 /* Port Mac Control0 */
408 #define MVPP22_XLG_CTRL0_REG			0x100
409 #define      MVPP22_XLG_PORT_EN			BIT(0)
410 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
411 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
412 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
413 /* Port Mac Control1 */
414 #define MVPP22_XLG_CTRL1_REG			0x104
415 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
416 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
417 /* Port Interrupt Mask */
418 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
419 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
420 /* Port Mac Control3 */
421 #define MVPP22_XLG_CTRL3_REG			0x11c
422 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
423 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
424 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
425 /* Port Mac Control4 */
426 #define MVPP22_XLG_CTRL4_REG			0x184
427 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
428 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
429 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
430 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
431 
432 /* XPCS registers */
433 
434 /* Global Configuration 0 */
435 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
436 #define      MVPP22_XPCS_PCSRESET		BIT(0)
437 #define      MVPP22_XPCS_PCSMODE_OFFS		3
438 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
439 						 MVPP22_XPCS_PCSMODE_OFFS)
440 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
441 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
442 						 MVPP22_XPCS_LANEACTIVE_OFFS)
443 
444 /* MPCS registers */
445 
446 #define PCS40G_COMMON_CONTROL			0x14
447 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(10)
448 
449 #define PCS_CLOCK_RESET				0x14c
450 #define      TX_SD_CLK_RESET_MASK		BIT(0)
451 #define      RX_SD_CLK_RESET_MASK		BIT(1)
452 #define      MAC_CLK_RESET_MASK			BIT(2)
453 #define      CLK_DIVISION_RATIO_OFFS		4
454 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
455 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
456 
457 /* System Soft Reset 1 */
458 #define GOP_SOFT_RESET_1_REG			0x108
459 #define     NETC_GOP_SOFT_RESET_OFFS		6
460 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
461 						 NETC_GOP_SOFT_RESET_OFFS)
462 
463 /* Ports Control 0 */
464 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
465 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
466 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
467 						 NETC_BUS_WIDTH_SELECT_OFFS)
468 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
469 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
470 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
471 #define     NETC_CLK_DIV_PHASE_OFFS		31
472 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
473 /* Ports Control 1 */
474 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
475 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
476 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
477 						 NETC_PORTS_ACTIVE_OFFSET(p))
478 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
479 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
480 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
481 #define NETCOMP_CONTROL_0_REG			0x120
482 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
483 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
484 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
485 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
486 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
487 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
488 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
489 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
490 						 NETC_GBE_PORT1_MII_MODE_OFFS)
491 
492 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
493 #define      MVPP22_SMI_POLLING_EN		BIT(10)
494 
495 #define MVPP22_SMI_PHY_ADDR_REG(port)		(MVPP22_SMI + 0x04 + \
496 						 (0x4 * (port)))
497 
498 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
499 
500 /* Descriptor ring Macros */
501 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
502 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
503 
504 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
505 #define MVPP21_SMI				0x0054
506 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
507 #define MVPP22_SMI				0x1200
508 #define     MVPP2_PHY_REG_MASK			0x1f
509 /* SMI register fields */
510 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
511 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
512 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
513 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
514 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
515 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
516 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
517 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
518 
519 #define     MVPP2_PHY_ADDR_MASK			0x1f
520 #define     MVPP2_PHY_REG_MASK			0x1f
521 
522 /* Additional PPv2.2 offsets */
523 #define MVPP22_MPCS				0x007000
524 #define MVPP22_XPCS				0x007400
525 #define MVPP22_PORT_BASE			0x007e00
526 #define MVPP22_PORT_OFFSET			0x001000
527 #define MVPP22_RFU1				0x318000
528 
529 /* Maximum number of ports */
530 #define MVPP22_GOP_MAC_NUM			4
531 
532 /* Sets the field located at the specified in data */
533 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
534 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
535 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
536 
537 /* Net Complex */
538 enum mv_netc_topology {
539 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
540 	MV_NETC_GE_MAC3_SGMII		=	BIT(1),
541 	MV_NETC_GE_MAC3_RGMII		=	BIT(2),
542 };
543 
544 enum mv_netc_phase {
545 	MV_NETC_FIRST_PHASE,
546 	MV_NETC_SECOND_PHASE,
547 };
548 
549 enum mv_netc_sgmii_xmi_mode {
550 	MV_NETC_GBE_SGMII,
551 	MV_NETC_GBE_XMII,
552 };
553 
554 enum mv_netc_mii_mode {
555 	MV_NETC_GBE_RGMII,
556 	MV_NETC_GBE_MII,
557 };
558 
559 enum mv_netc_lanes {
560 	MV_NETC_LANE_23,
561 	MV_NETC_LANE_45,
562 };
563 
564 /* Various constants */
565 
566 /* Coalescing */
567 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
568 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
569 #define MVPP2_RX_COAL_PKTS		32
570 #define MVPP2_RX_COAL_USEC		100
571 
572 /* The two bytes Marvell header. Either contains a special value used
573  * by Marvell switches when a specific hardware mode is enabled (not
574  * supported by this driver) or is filled automatically by zeroes on
575  * the RX side. Those two bytes being at the front of the Ethernet
576  * header, they allow to have the IP header aligned on a 4 bytes
577  * boundary automatically: the hardware skips those two bytes on its
578  * own.
579  */
580 #define MVPP2_MH_SIZE			2
581 #define MVPP2_ETH_TYPE_LEN		2
582 #define MVPP2_PPPOE_HDR_SIZE		8
583 #define MVPP2_VLAN_TAG_LEN		4
584 
585 /* Lbtd 802.3 type */
586 #define MVPP2_IP_LBDT_TYPE		0xfffa
587 
588 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
589 #define MVPP2_TX_CSUM_MAX_SIZE		9800
590 
591 /* Timeout constants */
592 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
593 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
594 
595 #define MVPP2_TX_MTU_MAX		0x7ffff
596 
597 /* Maximum number of T-CONTs of PON port */
598 #define MVPP2_MAX_TCONT			16
599 
600 /* Maximum number of supported ports */
601 #define MVPP2_MAX_PORTS			4
602 
603 /* Maximum number of TXQs used by single port */
604 #define MVPP2_MAX_TXQ			8
605 
606 /* Default number of TXQs in use */
607 #define MVPP2_DEFAULT_TXQ		1
608 
609 /* Dfault number of RXQs in use */
610 #define MVPP2_DEFAULT_RXQ		1
611 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
612 
613 /* Max number of Rx descriptors */
614 #define MVPP2_MAX_RXD			16
615 
616 /* Max number of Tx descriptors */
617 #define MVPP2_MAX_TXD			16
618 
619 /* Amount of Tx descriptors that can be reserved at once by CPU */
620 #define MVPP2_CPU_DESC_CHUNK		16
621 
622 /* Max number of Tx descriptors in each aggregated queue */
623 #define MVPP2_AGGR_TXQ_SIZE		16
624 
625 /* Descriptor aligned size */
626 #define MVPP2_DESC_ALIGNED_SIZE		32
627 
628 /* Descriptor alignment mask */
629 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
630 
631 /* RX FIFO constants */
632 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
633 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
634 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
635 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
636 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
637 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
638 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
639 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
640 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
641 
642 /* TX general registers */
643 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
644 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
645 
646 /* TX FIFO constants */
647 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
648 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
649 
650 /* RX buffer constants */
651 #define MVPP2_SKB_SHINFO_SIZE \
652 	0
653 
654 #define MVPP2_RX_PKT_SIZE(mtu) \
655 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
656 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
657 
658 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
659 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
660 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
661 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
662 
663 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
664 
665 /* IPv6 max L3 address size */
666 #define MVPP2_MAX_L3_ADDR_SIZE		16
667 
668 /* Port flags */
669 #define MVPP2_F_LOOPBACK		BIT(0)
670 
671 /* Marvell tag types */
672 enum mvpp2_tag_type {
673 	MVPP2_TAG_TYPE_NONE = 0,
674 	MVPP2_TAG_TYPE_MH   = 1,
675 	MVPP2_TAG_TYPE_DSA  = 2,
676 	MVPP2_TAG_TYPE_EDSA = 3,
677 	MVPP2_TAG_TYPE_VLAN = 4,
678 	MVPP2_TAG_TYPE_LAST = 5
679 };
680 
681 /* Parser constants */
682 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
683 #define MVPP2_PRS_TCAM_WORDS		6
684 #define MVPP2_PRS_SRAM_WORDS		4
685 #define MVPP2_PRS_FLOW_ID_SIZE		64
686 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
687 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
688 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
689 #define MVPP2_PRS_IPV4_HEAD		0x40
690 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
691 #define MVPP2_PRS_IPV4_MC		0xe0
692 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
693 #define MVPP2_PRS_IPV4_BC_MASK		0xff
694 #define MVPP2_PRS_IPV4_IHL		0x5
695 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
696 #define MVPP2_PRS_IPV6_MC		0xff
697 #define MVPP2_PRS_IPV6_MC_MASK		0xff
698 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
699 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
700 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
701 #define MVPP2_PRS_DBL_VLANS_MAX		100
702 
703 /* Tcam structure:
704  * - lookup ID - 4 bits
705  * - port ID - 1 byte
706  * - additional information - 1 byte
707  * - header data - 8 bytes
708  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
709  */
710 #define MVPP2_PRS_AI_BITS			8
711 #define MVPP2_PRS_PORT_MASK			0xff
712 #define MVPP2_PRS_LU_MASK			0xf
713 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
714 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
715 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
716 					      (((offs) * 2) - ((offs) % 2)  + 2)
717 #define MVPP2_PRS_TCAM_AI_BYTE			16
718 #define MVPP2_PRS_TCAM_PORT_BYTE		17
719 #define MVPP2_PRS_TCAM_LU_BYTE			20
720 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
721 #define MVPP2_PRS_TCAM_INV_WORD			5
722 /* Tcam entries ID */
723 #define MVPP2_PE_DROP_ALL		0
724 #define MVPP2_PE_FIRST_FREE_TID		1
725 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
726 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
727 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
728 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
729 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
730 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
731 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
732 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
733 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
734 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
735 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
736 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
737 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
738 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
739 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
740 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
741 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
742 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
743 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
744 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
745 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
746 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
747 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
748 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
749 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
750 
751 /* Sram structure
752  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
753  */
754 #define MVPP2_PRS_SRAM_RI_OFFS			0
755 #define MVPP2_PRS_SRAM_RI_WORD			0
756 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
757 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
758 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
759 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
760 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
761 #define MVPP2_PRS_SRAM_UDF_OFFS			73
762 #define MVPP2_PRS_SRAM_UDF_BITS			8
763 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
764 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
765 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
766 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
767 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
768 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
772 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
773 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
778 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
779 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
780 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
781 #define MVPP2_PRS_SRAM_AI_OFFS			90
782 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
783 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
784 #define MVPP2_PRS_SRAM_AI_MASK			0xff
785 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
786 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
787 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
788 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
789 
790 /* Sram result info bits assignment */
791 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
792 #define MVPP2_PRS_RI_DSA_MASK			0x2
793 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
794 #define MVPP2_PRS_RI_VLAN_NONE			0x0
795 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
796 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
797 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
798 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
799 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
800 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
801 #define MVPP2_PRS_RI_L2_UCAST			0x0
802 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
803 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
804 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
805 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
806 #define MVPP2_PRS_RI_L3_UN			0x0
807 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
808 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
809 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
810 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
811 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
812 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
813 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
814 #define MVPP2_PRS_RI_L3_UCAST			0x0
815 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
816 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
817 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
818 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
819 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
820 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
821 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
822 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
823 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
824 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
825 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
826 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
827 
828 /* Sram additional info bits assignment */
829 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
830 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
831 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
832 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
833 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
834 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
835 #define MVPP2_PRS_SINGLE_VLAN_AI		0
836 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
837 
838 /* DSA/EDSA type */
839 #define MVPP2_PRS_TAGGED		true
840 #define MVPP2_PRS_UNTAGGED		false
841 #define MVPP2_PRS_EDSA			true
842 #define MVPP2_PRS_DSA			false
843 
844 /* MAC entries, shadow udf */
845 enum mvpp2_prs_udf {
846 	MVPP2_PRS_UDF_MAC_DEF,
847 	MVPP2_PRS_UDF_MAC_RANGE,
848 	MVPP2_PRS_UDF_L2_DEF,
849 	MVPP2_PRS_UDF_L2_DEF_COPY,
850 	MVPP2_PRS_UDF_L2_USER,
851 };
852 
853 /* Lookup ID */
854 enum mvpp2_prs_lookup {
855 	MVPP2_PRS_LU_MH,
856 	MVPP2_PRS_LU_MAC,
857 	MVPP2_PRS_LU_DSA,
858 	MVPP2_PRS_LU_VLAN,
859 	MVPP2_PRS_LU_L2,
860 	MVPP2_PRS_LU_PPPOE,
861 	MVPP2_PRS_LU_IP4,
862 	MVPP2_PRS_LU_IP6,
863 	MVPP2_PRS_LU_FLOWS,
864 	MVPP2_PRS_LU_LAST,
865 };
866 
867 /* L3 cast enum */
868 enum mvpp2_prs_l3_cast {
869 	MVPP2_PRS_L3_UNI_CAST,
870 	MVPP2_PRS_L3_MULTI_CAST,
871 	MVPP2_PRS_L3_BROAD_CAST
872 };
873 
874 /* Classifier constants */
875 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
876 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
877 #define MVPP2_CLS_LKP_TBL_SIZE		64
878 
879 /* BM constants */
880 #define MVPP2_BM_POOLS_NUM		1
881 #define MVPP2_BM_LONG_BUF_NUM		16
882 #define MVPP2_BM_SHORT_BUF_NUM		16
883 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
884 #define MVPP2_BM_POOL_PTR_ALIGN		128
885 #define MVPP2_BM_SWF_LONG_POOL(port)	0
886 
887 /* BM cookie (32 bits) definition */
888 #define MVPP2_BM_COOKIE_POOL_OFFS	8
889 #define MVPP2_BM_COOKIE_CPU_OFFS	24
890 
891 /* BM short pool packet size
892  * These value assure that for SWF the total number
893  * of bytes allocated for each buffer will be 512
894  */
895 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
896 
897 enum mvpp2_bm_type {
898 	MVPP2_BM_FREE,
899 	MVPP2_BM_SWF_LONG,
900 	MVPP2_BM_SWF_SHORT
901 };
902 
903 /* Definitions */
904 
905 /* Shared Packet Processor resources */
906 struct mvpp2 {
907 	/* Shared registers' base addresses */
908 	void __iomem *base;
909 	void __iomem *lms_base;
910 	void __iomem *iface_base;
911 	void __iomem *mdio_base;
912 
913 	void __iomem *mpcs_base;
914 	void __iomem *xpcs_base;
915 	void __iomem *rfu1_base;
916 
917 	u32 netc_config;
918 
919 	/* List of pointers to port structures */
920 	struct mvpp2_port **port_list;
921 
922 	/* Aggregated TXQs */
923 	struct mvpp2_tx_queue *aggr_txqs;
924 
925 	/* BM pools */
926 	struct mvpp2_bm_pool *bm_pools;
927 
928 	/* PRS shadow table */
929 	struct mvpp2_prs_shadow *prs_shadow;
930 	/* PRS auxiliary table for double vlan entries control */
931 	bool *prs_double_vlans;
932 
933 	/* Tclk value */
934 	u32 tclk;
935 
936 	/* HW version */
937 	enum { MVPP21, MVPP22 } hw_version;
938 
939 	/* Maximum number of RXQs per port */
940 	unsigned int max_port_rxqs;
941 
942 	struct mii_dev *bus;
943 
944 	int probe_done;
945 	u8 num_ports;
946 };
947 
948 struct mvpp2_pcpu_stats {
949 	u64	rx_packets;
950 	u64	rx_bytes;
951 	u64	tx_packets;
952 	u64	tx_bytes;
953 };
954 
955 struct mvpp2_port {
956 	u8 id;
957 
958 	/* Index of the port from the "group of ports" complex point
959 	 * of view
960 	 */
961 	int gop_id;
962 
963 	int irq;
964 
965 	struct mvpp2 *priv;
966 
967 	/* Per-port registers' base address */
968 	void __iomem *base;
969 
970 	struct mvpp2_rx_queue **rxqs;
971 	struct mvpp2_tx_queue **txqs;
972 
973 	int pkt_size;
974 
975 	u32 pending_cause_rx;
976 
977 	/* Per-CPU port control */
978 	struct mvpp2_port_pcpu __percpu *pcpu;
979 
980 	/* Flags */
981 	unsigned long flags;
982 
983 	u16 tx_ring_size;
984 	u16 rx_ring_size;
985 	struct mvpp2_pcpu_stats __percpu *stats;
986 
987 	struct phy_device *phy_dev;
988 	phy_interface_t phy_interface;
989 	int phy_node;
990 	int phyaddr;
991 #ifdef CONFIG_DM_GPIO
992 	struct gpio_desc phy_reset_gpio;
993 	struct gpio_desc phy_tx_disable_gpio;
994 #endif
995 	int init;
996 	unsigned int link;
997 	unsigned int duplex;
998 	unsigned int speed;
999 
1000 	unsigned int phy_speed;		/* SGMII 1Gbps vs 2.5Gbps */
1001 
1002 	struct mvpp2_bm_pool *pool_long;
1003 	struct mvpp2_bm_pool *pool_short;
1004 
1005 	/* Index of first port's physical RXQ */
1006 	u8 first_rxq;
1007 
1008 	u8 dev_addr[ETH_ALEN];
1009 };
1010 
1011 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1012  * layout of the transmit and reception DMA descriptors, and their
1013  * layout is therefore defined by the hardware design
1014  */
1015 
1016 #define MVPP2_TXD_L3_OFF_SHIFT		0
1017 #define MVPP2_TXD_IP_HLEN_SHIFT		8
1018 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
1019 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
1020 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
1021 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
1022 #define MVPP2_TXD_L4_UDP		BIT(24)
1023 #define MVPP2_TXD_L3_IP6		BIT(26)
1024 #define MVPP2_TXD_L_DESC		BIT(28)
1025 #define MVPP2_TXD_F_DESC		BIT(29)
1026 
1027 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1028 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1029 #define MVPP2_RXD_ERR_CRC		0x0
1030 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1031 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1032 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1033 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1034 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1035 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1036 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1037 #define MVPP2_RXD_L4_TCP		BIT(25)
1038 #define MVPP2_RXD_L4_UDP		BIT(26)
1039 #define MVPP2_RXD_L3_IP4		BIT(28)
1040 #define MVPP2_RXD_L3_IP6		BIT(30)
1041 #define MVPP2_RXD_BUF_HDR		BIT(31)
1042 
1043 /* HW TX descriptor for PPv2.1 */
1044 struct mvpp21_tx_desc {
1045 	u32 command;		/* Options used by HW for packet transmitting.*/
1046 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1047 	u8  phys_txq;		/* destination queue ID			*/
1048 	u16 data_size;		/* data size of transmitted packet in bytes */
1049 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1050 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1051 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1052 	u32 reserved2;		/* reserved (for future use)		*/
1053 };
1054 
1055 /* HW RX descriptor for PPv2.1 */
1056 struct mvpp21_rx_desc {
1057 	u32 status;		/* info about received packet		*/
1058 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1059 	u16 data_size;		/* size of received packet in bytes	*/
1060 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1061 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1062 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1063 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1064 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1065 	u8  reserved5;
1066 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1067 	u32 reserved7;		/* flow_id (for future use, PnC) */
1068 	u32 reserved8;
1069 };
1070 
1071 /* HW TX descriptor for PPv2.2 */
1072 struct mvpp22_tx_desc {
1073 	u32 command;
1074 	u8  packet_offset;
1075 	u8  phys_txq;
1076 	u16 data_size;
1077 	u64 reserved1;
1078 	u64 buf_dma_addr_ptp;
1079 	u64 buf_cookie_misc;
1080 };
1081 
1082 /* HW RX descriptor for PPv2.2 */
1083 struct mvpp22_rx_desc {
1084 	u32 status;
1085 	u16 reserved1;
1086 	u16 data_size;
1087 	u32 reserved2;
1088 	u32 reserved3;
1089 	u64 buf_dma_addr_key_hash;
1090 	u64 buf_cookie_misc;
1091 };
1092 
1093 /* Opaque type used by the driver to manipulate the HW TX and RX
1094  * descriptors
1095  */
1096 struct mvpp2_tx_desc {
1097 	union {
1098 		struct mvpp21_tx_desc pp21;
1099 		struct mvpp22_tx_desc pp22;
1100 	};
1101 };
1102 
1103 struct mvpp2_rx_desc {
1104 	union {
1105 		struct mvpp21_rx_desc pp21;
1106 		struct mvpp22_rx_desc pp22;
1107 	};
1108 };
1109 
1110 /* Per-CPU Tx queue control */
1111 struct mvpp2_txq_pcpu {
1112 	int cpu;
1113 
1114 	/* Number of Tx DMA descriptors in the descriptor ring */
1115 	int size;
1116 
1117 	/* Number of currently used Tx DMA descriptor in the
1118 	 * descriptor ring
1119 	 */
1120 	int count;
1121 
1122 	/* Number of Tx DMA descriptors reserved for each CPU */
1123 	int reserved_num;
1124 
1125 	/* Index of last TX DMA descriptor that was inserted */
1126 	int txq_put_index;
1127 
1128 	/* Index of the TX DMA descriptor to be cleaned up */
1129 	int txq_get_index;
1130 };
1131 
1132 struct mvpp2_tx_queue {
1133 	/* Physical number of this Tx queue */
1134 	u8 id;
1135 
1136 	/* Logical number of this Tx queue */
1137 	u8 log_id;
1138 
1139 	/* Number of Tx DMA descriptors in the descriptor ring */
1140 	int size;
1141 
1142 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1143 	int count;
1144 
1145 	/* Per-CPU control of physical Tx queues */
1146 	struct mvpp2_txq_pcpu __percpu *pcpu;
1147 
1148 	u32 done_pkts_coal;
1149 
1150 	/* Virtual address of thex Tx DMA descriptors array */
1151 	struct mvpp2_tx_desc *descs;
1152 
1153 	/* DMA address of the Tx DMA descriptors array */
1154 	dma_addr_t descs_dma;
1155 
1156 	/* Index of the last Tx DMA descriptor */
1157 	int last_desc;
1158 
1159 	/* Index of the next Tx DMA descriptor to process */
1160 	int next_desc_to_proc;
1161 };
1162 
1163 struct mvpp2_rx_queue {
1164 	/* RX queue number, in the range 0-31 for physical RXQs */
1165 	u8 id;
1166 
1167 	/* Num of rx descriptors in the rx descriptor ring */
1168 	int size;
1169 
1170 	u32 pkts_coal;
1171 	u32 time_coal;
1172 
1173 	/* Virtual address of the RX DMA descriptors array */
1174 	struct mvpp2_rx_desc *descs;
1175 
1176 	/* DMA address of the RX DMA descriptors array */
1177 	dma_addr_t descs_dma;
1178 
1179 	/* Index of the last RX DMA descriptor */
1180 	int last_desc;
1181 
1182 	/* Index of the next RX DMA descriptor to process */
1183 	int next_desc_to_proc;
1184 
1185 	/* ID of port to which physical RXQ is mapped */
1186 	int port;
1187 
1188 	/* Port's logic RXQ number to which physical RXQ is mapped */
1189 	int logic_rxq;
1190 };
1191 
1192 union mvpp2_prs_tcam_entry {
1193 	u32 word[MVPP2_PRS_TCAM_WORDS];
1194 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1195 };
1196 
1197 union mvpp2_prs_sram_entry {
1198 	u32 word[MVPP2_PRS_SRAM_WORDS];
1199 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1200 };
1201 
1202 struct mvpp2_prs_entry {
1203 	u32 index;
1204 	union mvpp2_prs_tcam_entry tcam;
1205 	union mvpp2_prs_sram_entry sram;
1206 };
1207 
1208 struct mvpp2_prs_shadow {
1209 	bool valid;
1210 	bool finish;
1211 
1212 	/* Lookup ID */
1213 	int lu;
1214 
1215 	/* User defined offset */
1216 	int udf;
1217 
1218 	/* Result info */
1219 	u32 ri;
1220 	u32 ri_mask;
1221 };
1222 
1223 struct mvpp2_cls_flow_entry {
1224 	u32 index;
1225 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1226 };
1227 
1228 struct mvpp2_cls_lookup_entry {
1229 	u32 lkpid;
1230 	u32 way;
1231 	u32 data;
1232 };
1233 
1234 struct mvpp2_bm_pool {
1235 	/* Pool number in the range 0-7 */
1236 	int id;
1237 	enum mvpp2_bm_type type;
1238 
1239 	/* Buffer Pointers Pool External (BPPE) size */
1240 	int size;
1241 	/* Number of buffers for this pool */
1242 	int buf_num;
1243 	/* Pool buffer size */
1244 	int buf_size;
1245 	/* Packet size */
1246 	int pkt_size;
1247 
1248 	/* BPPE virtual base address */
1249 	unsigned long *virt_addr;
1250 	/* BPPE DMA base address */
1251 	dma_addr_t dma_addr;
1252 
1253 	/* Ports using BM pool */
1254 	u32 port_map;
1255 };
1256 
1257 /* Static declaractions */
1258 
1259 /* Number of RXQs used by single port */
1260 static int rxq_number = MVPP2_DEFAULT_RXQ;
1261 /* Number of TXQs used by single port */
1262 static int txq_number = MVPP2_DEFAULT_TXQ;
1263 
1264 static int base_id;
1265 
1266 #define MVPP2_DRIVER_NAME "mvpp2"
1267 #define MVPP2_DRIVER_VERSION "1.0"
1268 
1269 /*
1270  * U-Boot internal data, mostly uncached buffers for descriptors and data
1271  */
1272 struct buffer_location {
1273 	struct mvpp2_tx_desc *aggr_tx_descs;
1274 	struct mvpp2_tx_desc *tx_descs;
1275 	struct mvpp2_rx_desc *rx_descs;
1276 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1277 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1278 	int first_rxq;
1279 };
1280 
1281 /*
1282  * All 4 interfaces use the same global buffer, since only one interface
1283  * can be enabled at once
1284  */
1285 static struct buffer_location buffer_loc;
1286 
1287 /*
1288  * Page table entries are set to 1MB, or multiples of 1MB
1289  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1290  */
1291 #define BD_SPACE	(1 << 20)
1292 
1293 /* Utility/helper methods */
1294 
1295 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1296 {
1297 	writel(data, priv->base + offset);
1298 }
1299 
1300 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1301 {
1302 	return readl(priv->base + offset);
1303 }
1304 
1305 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1306 				      struct mvpp2_tx_desc *tx_desc,
1307 				      dma_addr_t dma_addr)
1308 {
1309 	if (port->priv->hw_version == MVPP21) {
1310 		tx_desc->pp21.buf_dma_addr = dma_addr;
1311 	} else {
1312 		u64 val = (u64)dma_addr;
1313 
1314 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1315 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1316 	}
1317 }
1318 
1319 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1320 				  struct mvpp2_tx_desc *tx_desc,
1321 				  size_t size)
1322 {
1323 	if (port->priv->hw_version == MVPP21)
1324 		tx_desc->pp21.data_size = size;
1325 	else
1326 		tx_desc->pp22.data_size = size;
1327 }
1328 
1329 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1330 				 struct mvpp2_tx_desc *tx_desc,
1331 				 unsigned int txq)
1332 {
1333 	if (port->priv->hw_version == MVPP21)
1334 		tx_desc->pp21.phys_txq = txq;
1335 	else
1336 		tx_desc->pp22.phys_txq = txq;
1337 }
1338 
1339 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1340 				 struct mvpp2_tx_desc *tx_desc,
1341 				 unsigned int command)
1342 {
1343 	if (port->priv->hw_version == MVPP21)
1344 		tx_desc->pp21.command = command;
1345 	else
1346 		tx_desc->pp22.command = command;
1347 }
1348 
1349 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1350 				    struct mvpp2_tx_desc *tx_desc,
1351 				    unsigned int offset)
1352 {
1353 	if (port->priv->hw_version == MVPP21)
1354 		tx_desc->pp21.packet_offset = offset;
1355 	else
1356 		tx_desc->pp22.packet_offset = offset;
1357 }
1358 
1359 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1360 					    struct mvpp2_rx_desc *rx_desc)
1361 {
1362 	if (port->priv->hw_version == MVPP21)
1363 		return rx_desc->pp21.buf_dma_addr;
1364 	else
1365 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1366 }
1367 
1368 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1369 					     struct mvpp2_rx_desc *rx_desc)
1370 {
1371 	if (port->priv->hw_version == MVPP21)
1372 		return rx_desc->pp21.buf_cookie;
1373 	else
1374 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1375 }
1376 
1377 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1378 				    struct mvpp2_rx_desc *rx_desc)
1379 {
1380 	if (port->priv->hw_version == MVPP21)
1381 		return rx_desc->pp21.data_size;
1382 	else
1383 		return rx_desc->pp22.data_size;
1384 }
1385 
1386 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1387 				   struct mvpp2_rx_desc *rx_desc)
1388 {
1389 	if (port->priv->hw_version == MVPP21)
1390 		return rx_desc->pp21.status;
1391 	else
1392 		return rx_desc->pp22.status;
1393 }
1394 
1395 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1396 {
1397 	txq_pcpu->txq_get_index++;
1398 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1399 		txq_pcpu->txq_get_index = 0;
1400 }
1401 
1402 /* Get number of physical egress port */
1403 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1404 {
1405 	return MVPP2_MAX_TCONT + port->id;
1406 }
1407 
1408 /* Get number of physical TXQ */
1409 static inline int mvpp2_txq_phys(int port, int txq)
1410 {
1411 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1412 }
1413 
1414 /* Parser configuration routines */
1415 
1416 /* Update parser tcam and sram hw entries */
1417 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1418 {
1419 	int i;
1420 
1421 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1422 		return -EINVAL;
1423 
1424 	/* Clear entry invalidation bit */
1425 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1426 
1427 	/* Write tcam index - indirect access */
1428 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1429 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1430 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1431 
1432 	/* Write sram index - indirect access */
1433 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1434 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1435 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1436 
1437 	return 0;
1438 }
1439 
1440 /* Read tcam entry from hw */
1441 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1442 {
1443 	int i;
1444 
1445 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1446 		return -EINVAL;
1447 
1448 	/* Write tcam index - indirect access */
1449 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1450 
1451 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1452 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1453 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1454 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1455 
1456 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1457 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1458 
1459 	/* Write sram index - indirect access */
1460 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1461 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1462 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1463 
1464 	return 0;
1465 }
1466 
1467 /* Invalidate tcam hw entry */
1468 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1469 {
1470 	/* Write index - indirect access */
1471 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1472 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1473 		    MVPP2_PRS_TCAM_INV_MASK);
1474 }
1475 
1476 /* Enable shadow table entry and set its lookup ID */
1477 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1478 {
1479 	priv->prs_shadow[index].valid = true;
1480 	priv->prs_shadow[index].lu = lu;
1481 }
1482 
1483 /* Update ri fields in shadow table entry */
1484 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1485 				    unsigned int ri, unsigned int ri_mask)
1486 {
1487 	priv->prs_shadow[index].ri_mask = ri_mask;
1488 	priv->prs_shadow[index].ri = ri;
1489 }
1490 
1491 /* Update lookup field in tcam sw entry */
1492 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1493 {
1494 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1495 
1496 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1497 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1498 }
1499 
1500 /* Update mask for single port in tcam sw entry */
1501 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1502 				    unsigned int port, bool add)
1503 {
1504 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1505 
1506 	if (add)
1507 		pe->tcam.byte[enable_off] &= ~(1 << port);
1508 	else
1509 		pe->tcam.byte[enable_off] |= 1 << port;
1510 }
1511 
1512 /* Update port map in tcam sw entry */
1513 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1514 					unsigned int ports)
1515 {
1516 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1517 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1518 
1519 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1520 	pe->tcam.byte[enable_off] &= ~port_mask;
1521 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1522 }
1523 
1524 /* Obtain port map from tcam sw entry */
1525 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1526 {
1527 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1528 
1529 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1530 }
1531 
1532 /* Set byte of data and its enable bits in tcam sw entry */
1533 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1534 					 unsigned int offs, unsigned char byte,
1535 					 unsigned char enable)
1536 {
1537 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1538 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1539 }
1540 
1541 /* Get byte of data and its enable bits from tcam sw entry */
1542 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1543 					 unsigned int offs, unsigned char *byte,
1544 					 unsigned char *enable)
1545 {
1546 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1547 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1548 }
1549 
1550 /* Set ethertype in tcam sw entry */
1551 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1552 				  unsigned short ethertype)
1553 {
1554 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1555 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1556 }
1557 
1558 /* Set bits in sram sw entry */
1559 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1560 				    int val)
1561 {
1562 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1563 }
1564 
1565 /* Clear bits in sram sw entry */
1566 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1567 				      int val)
1568 {
1569 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1570 }
1571 
1572 /* Update ri bits in sram sw entry */
1573 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1574 				     unsigned int bits, unsigned int mask)
1575 {
1576 	unsigned int i;
1577 
1578 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1579 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1580 
1581 		if (!(mask & BIT(i)))
1582 			continue;
1583 
1584 		if (bits & BIT(i))
1585 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1586 		else
1587 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1588 
1589 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1590 	}
1591 }
1592 
1593 /* Update ai bits in sram sw entry */
1594 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1595 				     unsigned int bits, unsigned int mask)
1596 {
1597 	unsigned int i;
1598 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1599 
1600 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1601 
1602 		if (!(mask & BIT(i)))
1603 			continue;
1604 
1605 		if (bits & BIT(i))
1606 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1607 		else
1608 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1609 
1610 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1611 	}
1612 }
1613 
1614 /* Read ai bits from sram sw entry */
1615 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1616 {
1617 	u8 bits;
1618 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1619 	int ai_en_off = ai_off + 1;
1620 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1621 
1622 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1623 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1624 
1625 	return bits;
1626 }
1627 
1628 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1629  * lookup interation
1630  */
1631 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1632 				       unsigned int lu)
1633 {
1634 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1635 
1636 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1637 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1638 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1639 }
1640 
1641 /* In the sram sw entry set sign and value of the next lookup offset
1642  * and the offset value generated to the classifier
1643  */
1644 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1645 				     unsigned int op)
1646 {
1647 	/* Set sign */
1648 	if (shift < 0) {
1649 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1650 		shift = 0 - shift;
1651 	} else {
1652 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1653 	}
1654 
1655 	/* Set value */
1656 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1657 							   (unsigned char)shift;
1658 
1659 	/* Reset and set operation */
1660 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1661 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1662 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1663 
1664 	/* Set base offset as current */
1665 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1666 }
1667 
1668 /* In the sram sw entry set sign and value of the user defined offset
1669  * generated to the classifier
1670  */
1671 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1672 				      unsigned int type, int offset,
1673 				      unsigned int op)
1674 {
1675 	/* Set sign */
1676 	if (offset < 0) {
1677 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1678 		offset = 0 - offset;
1679 	} else {
1680 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1681 	}
1682 
1683 	/* Set value */
1684 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1685 				  MVPP2_PRS_SRAM_UDF_MASK);
1686 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1687 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1688 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1689 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1690 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1691 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1692 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1693 
1694 	/* Set offset type */
1695 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1696 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1697 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1698 
1699 	/* Set offset operation */
1700 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1701 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1702 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1703 
1704 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1705 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1706 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1707 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1708 
1709 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1710 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1711 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1712 
1713 	/* Set base offset as current */
1714 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1715 }
1716 
1717 /* Find parser flow entry */
1718 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1719 {
1720 	struct mvpp2_prs_entry *pe;
1721 	int tid;
1722 
1723 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1724 	if (!pe)
1725 		return NULL;
1726 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1727 
1728 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1729 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1730 		u8 bits;
1731 
1732 		if (!priv->prs_shadow[tid].valid ||
1733 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1734 			continue;
1735 
1736 		pe->index = tid;
1737 		mvpp2_prs_hw_read(priv, pe);
1738 		bits = mvpp2_prs_sram_ai_get(pe);
1739 
1740 		/* Sram store classification lookup ID in AI bits [5:0] */
1741 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1742 			return pe;
1743 	}
1744 	kfree(pe);
1745 
1746 	return NULL;
1747 }
1748 
1749 /* Return first free tcam index, seeking from start to end */
1750 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1751 				     unsigned char end)
1752 {
1753 	int tid;
1754 
1755 	if (start > end)
1756 		swap(start, end);
1757 
1758 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1759 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1760 
1761 	for (tid = start; tid <= end; tid++) {
1762 		if (!priv->prs_shadow[tid].valid)
1763 			return tid;
1764 	}
1765 
1766 	return -EINVAL;
1767 }
1768 
1769 /* Enable/disable dropping all mac da's */
1770 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1771 {
1772 	struct mvpp2_prs_entry pe;
1773 
1774 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1775 		/* Entry exist - update port only */
1776 		pe.index = MVPP2_PE_DROP_ALL;
1777 		mvpp2_prs_hw_read(priv, &pe);
1778 	} else {
1779 		/* Entry doesn't exist - create new */
1780 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1781 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1782 		pe.index = MVPP2_PE_DROP_ALL;
1783 
1784 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1785 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1786 					 MVPP2_PRS_RI_DROP_MASK);
1787 
1788 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1789 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1790 
1791 		/* Update shadow table */
1792 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1793 
1794 		/* Mask all ports */
1795 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1796 	}
1797 
1798 	/* Update port mask */
1799 	mvpp2_prs_tcam_port_set(&pe, port, add);
1800 
1801 	mvpp2_prs_hw_write(priv, &pe);
1802 }
1803 
1804 /* Set port to promiscuous mode */
1805 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1806 {
1807 	struct mvpp2_prs_entry pe;
1808 
1809 	/* Promiscuous mode - Accept unknown packets */
1810 
1811 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1812 		/* Entry exist - update port only */
1813 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1814 		mvpp2_prs_hw_read(priv, &pe);
1815 	} else {
1816 		/* Entry doesn't exist - create new */
1817 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1818 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1819 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1820 
1821 		/* Continue - set next lookup */
1822 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1823 
1824 		/* Set result info bits */
1825 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1826 					 MVPP2_PRS_RI_L2_CAST_MASK);
1827 
1828 		/* Shift to ethertype */
1829 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1830 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1831 
1832 		/* Mask all ports */
1833 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1834 
1835 		/* Update shadow table */
1836 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1837 	}
1838 
1839 	/* Update port mask */
1840 	mvpp2_prs_tcam_port_set(&pe, port, add);
1841 
1842 	mvpp2_prs_hw_write(priv, &pe);
1843 }
1844 
1845 /* Accept multicast */
1846 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1847 				    bool add)
1848 {
1849 	struct mvpp2_prs_entry pe;
1850 	unsigned char da_mc;
1851 
1852 	/* Ethernet multicast address first byte is
1853 	 * 0x01 for IPv4 and 0x33 for IPv6
1854 	 */
1855 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1856 
1857 	if (priv->prs_shadow[index].valid) {
1858 		/* Entry exist - update port only */
1859 		pe.index = index;
1860 		mvpp2_prs_hw_read(priv, &pe);
1861 	} else {
1862 		/* Entry doesn't exist - create new */
1863 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1864 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1865 		pe.index = index;
1866 
1867 		/* Continue - set next lookup */
1868 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1869 
1870 		/* Set result info bits */
1871 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1872 					 MVPP2_PRS_RI_L2_CAST_MASK);
1873 
1874 		/* Update tcam entry data first byte */
1875 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1876 
1877 		/* Shift to ethertype */
1878 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1879 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1880 
1881 		/* Mask all ports */
1882 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1883 
1884 		/* Update shadow table */
1885 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1886 	}
1887 
1888 	/* Update port mask */
1889 	mvpp2_prs_tcam_port_set(&pe, port, add);
1890 
1891 	mvpp2_prs_hw_write(priv, &pe);
1892 }
1893 
1894 /* Parser per-port initialization */
1895 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1896 				   int lu_max, int offset)
1897 {
1898 	u32 val;
1899 
1900 	/* Set lookup ID */
1901 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1902 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1903 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1904 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1905 
1906 	/* Set maximum number of loops for packet received from port */
1907 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1908 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1909 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1910 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1911 
1912 	/* Set initial offset for packet header extraction for the first
1913 	 * searching loop
1914 	 */
1915 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1916 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1917 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1918 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1919 }
1920 
1921 /* Default flow entries initialization for all ports */
1922 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1923 {
1924 	struct mvpp2_prs_entry pe;
1925 	int port;
1926 
1927 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1928 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1929 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1930 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1931 
1932 		/* Mask all ports */
1933 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1934 
1935 		/* Set flow ID*/
1936 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1937 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1938 
1939 		/* Update shadow table and hw entry */
1940 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1941 		mvpp2_prs_hw_write(priv, &pe);
1942 	}
1943 }
1944 
1945 /* Set default entry for Marvell Header field */
1946 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1947 {
1948 	struct mvpp2_prs_entry pe;
1949 
1950 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1951 
1952 	pe.index = MVPP2_PE_MH_DEFAULT;
1953 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1954 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1955 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1956 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1957 
1958 	/* Unmask all ports */
1959 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1960 
1961 	/* Update shadow table and hw entry */
1962 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1963 	mvpp2_prs_hw_write(priv, &pe);
1964 }
1965 
1966 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1967  * multicast MAC addresses
1968  */
1969 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1970 {
1971 	struct mvpp2_prs_entry pe;
1972 
1973 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1974 
1975 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1976 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1977 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1978 
1979 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1980 				 MVPP2_PRS_RI_DROP_MASK);
1981 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1982 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1983 
1984 	/* Unmask all ports */
1985 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1986 
1987 	/* Update shadow table and hw entry */
1988 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1989 	mvpp2_prs_hw_write(priv, &pe);
1990 
1991 	/* place holders only - no ports */
1992 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1993 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1994 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1995 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1996 }
1997 
1998 /* Match basic ethertypes */
1999 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2000 {
2001 	struct mvpp2_prs_entry pe;
2002 	int tid;
2003 
2004 	/* Ethertype: PPPoE */
2005 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2006 					MVPP2_PE_LAST_FREE_TID);
2007 	if (tid < 0)
2008 		return tid;
2009 
2010 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2011 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2012 	pe.index = tid;
2013 
2014 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2015 
2016 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2017 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2018 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2019 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2020 				 MVPP2_PRS_RI_PPPOE_MASK);
2021 
2022 	/* Update shadow table and hw entry */
2023 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2024 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2025 	priv->prs_shadow[pe.index].finish = false;
2026 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2027 				MVPP2_PRS_RI_PPPOE_MASK);
2028 	mvpp2_prs_hw_write(priv, &pe);
2029 
2030 	/* Ethertype: ARP */
2031 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2032 					MVPP2_PE_LAST_FREE_TID);
2033 	if (tid < 0)
2034 		return tid;
2035 
2036 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2037 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2038 	pe.index = tid;
2039 
2040 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2041 
2042 	/* Generate flow in the next iteration*/
2043 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2044 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2045 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2046 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2047 	/* Set L3 offset */
2048 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2049 				  MVPP2_ETH_TYPE_LEN,
2050 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2051 
2052 	/* Update shadow table and hw entry */
2053 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2054 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2055 	priv->prs_shadow[pe.index].finish = true;
2056 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2057 				MVPP2_PRS_RI_L3_PROTO_MASK);
2058 	mvpp2_prs_hw_write(priv, &pe);
2059 
2060 	/* Ethertype: LBTD */
2061 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2062 					MVPP2_PE_LAST_FREE_TID);
2063 	if (tid < 0)
2064 		return tid;
2065 
2066 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2067 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2068 	pe.index = tid;
2069 
2070 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2071 
2072 	/* Generate flow in the next iteration*/
2073 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2074 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2075 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2076 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2077 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2078 				 MVPP2_PRS_RI_UDF3_MASK);
2079 	/* Set L3 offset */
2080 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2081 				  MVPP2_ETH_TYPE_LEN,
2082 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2083 
2084 	/* Update shadow table and hw entry */
2085 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2086 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2087 	priv->prs_shadow[pe.index].finish = true;
2088 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2089 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2090 				MVPP2_PRS_RI_CPU_CODE_MASK |
2091 				MVPP2_PRS_RI_UDF3_MASK);
2092 	mvpp2_prs_hw_write(priv, &pe);
2093 
2094 	/* Ethertype: IPv4 without options */
2095 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2096 					MVPP2_PE_LAST_FREE_TID);
2097 	if (tid < 0)
2098 		return tid;
2099 
2100 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2101 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2102 	pe.index = tid;
2103 
2104 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2105 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2106 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2107 				     MVPP2_PRS_IPV4_HEAD_MASK |
2108 				     MVPP2_PRS_IPV4_IHL_MASK);
2109 
2110 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2111 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2112 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2113 	/* Skip eth_type + 4 bytes of IP header */
2114 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2115 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2116 	/* Set L3 offset */
2117 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2118 				  MVPP2_ETH_TYPE_LEN,
2119 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2120 
2121 	/* Update shadow table and hw entry */
2122 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2123 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2124 	priv->prs_shadow[pe.index].finish = false;
2125 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2126 				MVPP2_PRS_RI_L3_PROTO_MASK);
2127 	mvpp2_prs_hw_write(priv, &pe);
2128 
2129 	/* Ethertype: IPv4 with options */
2130 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2131 					MVPP2_PE_LAST_FREE_TID);
2132 	if (tid < 0)
2133 		return tid;
2134 
2135 	pe.index = tid;
2136 
2137 	/* Clear tcam data before updating */
2138 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2139 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2140 
2141 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2142 				     MVPP2_PRS_IPV4_HEAD,
2143 				     MVPP2_PRS_IPV4_HEAD_MASK);
2144 
2145 	/* Clear ri before updating */
2146 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2147 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2148 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2149 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2150 
2151 	/* Update shadow table and hw entry */
2152 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2153 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2154 	priv->prs_shadow[pe.index].finish = false;
2155 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2156 				MVPP2_PRS_RI_L3_PROTO_MASK);
2157 	mvpp2_prs_hw_write(priv, &pe);
2158 
2159 	/* Ethertype: IPv6 without options */
2160 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2161 					MVPP2_PE_LAST_FREE_TID);
2162 	if (tid < 0)
2163 		return tid;
2164 
2165 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2166 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2167 	pe.index = tid;
2168 
2169 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2170 
2171 	/* Skip DIP of IPV6 header */
2172 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2173 				 MVPP2_MAX_L3_ADDR_SIZE,
2174 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2175 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2176 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2177 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2178 	/* Set L3 offset */
2179 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2180 				  MVPP2_ETH_TYPE_LEN,
2181 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2182 
2183 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2184 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2185 	priv->prs_shadow[pe.index].finish = false;
2186 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2187 				MVPP2_PRS_RI_L3_PROTO_MASK);
2188 	mvpp2_prs_hw_write(priv, &pe);
2189 
2190 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2191 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2192 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2193 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2194 
2195 	/* Unmask all ports */
2196 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2197 
2198 	/* Generate flow in the next iteration*/
2199 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2200 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2201 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2202 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2203 	/* Set L3 offset even it's unknown L3 */
2204 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2205 				  MVPP2_ETH_TYPE_LEN,
2206 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2207 
2208 	/* Update shadow table and hw entry */
2209 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2210 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2211 	priv->prs_shadow[pe.index].finish = true;
2212 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2213 				MVPP2_PRS_RI_L3_PROTO_MASK);
2214 	mvpp2_prs_hw_write(priv, &pe);
2215 
2216 	return 0;
2217 }
2218 
2219 /* Parser default initialization */
2220 static int mvpp2_prs_default_init(struct udevice *dev,
2221 				  struct mvpp2 *priv)
2222 {
2223 	int err, index, i;
2224 
2225 	/* Enable tcam table */
2226 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2227 
2228 	/* Clear all tcam and sram entries */
2229 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2230 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2231 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2232 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2233 
2234 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2235 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2236 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2237 	}
2238 
2239 	/* Invalidate all tcam entries */
2240 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2241 		mvpp2_prs_hw_inv(priv, index);
2242 
2243 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2244 					sizeof(struct mvpp2_prs_shadow),
2245 					GFP_KERNEL);
2246 	if (!priv->prs_shadow)
2247 		return -ENOMEM;
2248 
2249 	/* Always start from lookup = 0 */
2250 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2251 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2252 				       MVPP2_PRS_PORT_LU_MAX, 0);
2253 
2254 	mvpp2_prs_def_flow_init(priv);
2255 
2256 	mvpp2_prs_mh_init(priv);
2257 
2258 	mvpp2_prs_mac_init(priv);
2259 
2260 	err = mvpp2_prs_etype_init(priv);
2261 	if (err)
2262 		return err;
2263 
2264 	return 0;
2265 }
2266 
2267 /* Compare MAC DA with tcam entry data */
2268 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2269 				       const u8 *da, unsigned char *mask)
2270 {
2271 	unsigned char tcam_byte, tcam_mask;
2272 	int index;
2273 
2274 	for (index = 0; index < ETH_ALEN; index++) {
2275 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2276 		if (tcam_mask != mask[index])
2277 			return false;
2278 
2279 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2280 			return false;
2281 	}
2282 
2283 	return true;
2284 }
2285 
2286 /* Find tcam entry with matched pair <MAC DA, port> */
2287 static struct mvpp2_prs_entry *
2288 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2289 			    unsigned char *mask, int udf_type)
2290 {
2291 	struct mvpp2_prs_entry *pe;
2292 	int tid;
2293 
2294 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2295 	if (!pe)
2296 		return NULL;
2297 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2298 
2299 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2300 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2301 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2302 		unsigned int entry_pmap;
2303 
2304 		if (!priv->prs_shadow[tid].valid ||
2305 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2306 		    (priv->prs_shadow[tid].udf != udf_type))
2307 			continue;
2308 
2309 		pe->index = tid;
2310 		mvpp2_prs_hw_read(priv, pe);
2311 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2312 
2313 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2314 		    entry_pmap == pmap)
2315 			return pe;
2316 	}
2317 	kfree(pe);
2318 
2319 	return NULL;
2320 }
2321 
2322 /* Update parser's mac da entry */
2323 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2324 				   const u8 *da, bool add)
2325 {
2326 	struct mvpp2_prs_entry *pe;
2327 	unsigned int pmap, len, ri;
2328 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2329 	int tid;
2330 
2331 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2332 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2333 					 MVPP2_PRS_UDF_MAC_DEF);
2334 
2335 	/* No such entry */
2336 	if (!pe) {
2337 		if (!add)
2338 			return 0;
2339 
2340 		/* Create new TCAM entry */
2341 		/* Find first range mac entry*/
2342 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2343 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2344 			if (priv->prs_shadow[tid].valid &&
2345 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2346 			    (priv->prs_shadow[tid].udf ==
2347 						       MVPP2_PRS_UDF_MAC_RANGE))
2348 				break;
2349 
2350 		/* Go through the all entries from first to last */
2351 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2352 						tid - 1);
2353 		if (tid < 0)
2354 			return tid;
2355 
2356 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2357 		if (!pe)
2358 			return -1;
2359 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2360 		pe->index = tid;
2361 
2362 		/* Mask all ports */
2363 		mvpp2_prs_tcam_port_map_set(pe, 0);
2364 	}
2365 
2366 	/* Update port mask */
2367 	mvpp2_prs_tcam_port_set(pe, port, add);
2368 
2369 	/* Invalidate the entry if no ports are left enabled */
2370 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2371 	if (pmap == 0) {
2372 		if (add) {
2373 			kfree(pe);
2374 			return -1;
2375 		}
2376 		mvpp2_prs_hw_inv(priv, pe->index);
2377 		priv->prs_shadow[pe->index].valid = false;
2378 		kfree(pe);
2379 		return 0;
2380 	}
2381 
2382 	/* Continue - set next lookup */
2383 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2384 
2385 	/* Set match on DA */
2386 	len = ETH_ALEN;
2387 	while (len--)
2388 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2389 
2390 	/* Set result info bits */
2391 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2392 
2393 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2394 				 MVPP2_PRS_RI_MAC_ME_MASK);
2395 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2396 				MVPP2_PRS_RI_MAC_ME_MASK);
2397 
2398 	/* Shift to ethertype */
2399 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2400 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2401 
2402 	/* Update shadow table and hw entry */
2403 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2404 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2405 	mvpp2_prs_hw_write(priv, pe);
2406 
2407 	kfree(pe);
2408 
2409 	return 0;
2410 }
2411 
2412 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2413 {
2414 	int err;
2415 
2416 	/* Remove old parser entry */
2417 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2418 				      false);
2419 	if (err)
2420 		return err;
2421 
2422 	/* Add new parser entry */
2423 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2424 	if (err)
2425 		return err;
2426 
2427 	/* Set addr in the device */
2428 	memcpy(port->dev_addr, da, ETH_ALEN);
2429 
2430 	return 0;
2431 }
2432 
2433 /* Set prs flow for the port */
2434 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2435 {
2436 	struct mvpp2_prs_entry *pe;
2437 	int tid;
2438 
2439 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2440 
2441 	/* Such entry not exist */
2442 	if (!pe) {
2443 		/* Go through the all entires from last to first */
2444 		tid = mvpp2_prs_tcam_first_free(port->priv,
2445 						MVPP2_PE_LAST_FREE_TID,
2446 					       MVPP2_PE_FIRST_FREE_TID);
2447 		if (tid < 0)
2448 			return tid;
2449 
2450 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2451 		if (!pe)
2452 			return -ENOMEM;
2453 
2454 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2455 		pe->index = tid;
2456 
2457 		/* Set flow ID*/
2458 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2459 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2460 
2461 		/* Update shadow table */
2462 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2463 	}
2464 
2465 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2466 	mvpp2_prs_hw_write(port->priv, pe);
2467 	kfree(pe);
2468 
2469 	return 0;
2470 }
2471 
2472 /* Classifier configuration routines */
2473 
2474 /* Update classification flow table registers */
2475 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2476 				 struct mvpp2_cls_flow_entry *fe)
2477 {
2478 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2479 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2480 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2481 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2482 }
2483 
2484 /* Update classification lookup table register */
2485 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2486 				   struct mvpp2_cls_lookup_entry *le)
2487 {
2488 	u32 val;
2489 
2490 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2491 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2492 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2493 }
2494 
2495 /* Classifier default initialization */
2496 static void mvpp2_cls_init(struct mvpp2 *priv)
2497 {
2498 	struct mvpp2_cls_lookup_entry le;
2499 	struct mvpp2_cls_flow_entry fe;
2500 	int index;
2501 
2502 	/* Enable classifier */
2503 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2504 
2505 	/* Clear classifier flow table */
2506 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2507 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2508 		fe.index = index;
2509 		mvpp2_cls_flow_write(priv, &fe);
2510 	}
2511 
2512 	/* Clear classifier lookup table */
2513 	le.data = 0;
2514 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2515 		le.lkpid = index;
2516 		le.way = 0;
2517 		mvpp2_cls_lookup_write(priv, &le);
2518 
2519 		le.way = 1;
2520 		mvpp2_cls_lookup_write(priv, &le);
2521 	}
2522 }
2523 
2524 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2525 {
2526 	struct mvpp2_cls_lookup_entry le;
2527 	u32 val;
2528 
2529 	/* Set way for the port */
2530 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2531 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2532 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2533 
2534 	/* Pick the entry to be accessed in lookup ID decoding table
2535 	 * according to the way and lkpid.
2536 	 */
2537 	le.lkpid = port->id;
2538 	le.way = 0;
2539 	le.data = 0;
2540 
2541 	/* Set initial CPU queue for receiving packets */
2542 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2543 	le.data |= port->first_rxq;
2544 
2545 	/* Disable classification engines */
2546 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2547 
2548 	/* Update lookup ID table entry */
2549 	mvpp2_cls_lookup_write(port->priv, &le);
2550 }
2551 
2552 /* Set CPU queue number for oversize packets */
2553 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2554 {
2555 	u32 val;
2556 
2557 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2558 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2559 
2560 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2561 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2562 
2563 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2564 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2565 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2566 }
2567 
2568 /* Buffer Manager configuration routines */
2569 
2570 /* Create pool */
2571 static int mvpp2_bm_pool_create(struct udevice *dev,
2572 				struct mvpp2 *priv,
2573 				struct mvpp2_bm_pool *bm_pool, int size)
2574 {
2575 	u32 val;
2576 
2577 	/* Number of buffer pointers must be a multiple of 16, as per
2578 	 * hardware constraints
2579 	 */
2580 	if (!IS_ALIGNED(size, 16))
2581 		return -EINVAL;
2582 
2583 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2584 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2585 	if (!bm_pool->virt_addr)
2586 		return -ENOMEM;
2587 
2588 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2589 			MVPP2_BM_POOL_PTR_ALIGN)) {
2590 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2591 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2592 		return -ENOMEM;
2593 	}
2594 
2595 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2596 		    lower_32_bits(bm_pool->dma_addr));
2597 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2598 
2599 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2600 	val |= MVPP2_BM_START_MASK;
2601 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2602 
2603 	bm_pool->type = MVPP2_BM_FREE;
2604 	bm_pool->size = size;
2605 	bm_pool->pkt_size = 0;
2606 	bm_pool->buf_num = 0;
2607 
2608 	return 0;
2609 }
2610 
2611 /* Set pool buffer size */
2612 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2613 				      struct mvpp2_bm_pool *bm_pool,
2614 				      int buf_size)
2615 {
2616 	u32 val;
2617 
2618 	bm_pool->buf_size = buf_size;
2619 
2620 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2621 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2622 }
2623 
2624 /* Free all buffers from the pool */
2625 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2626 			       struct mvpp2_bm_pool *bm_pool)
2627 {
2628 	int i;
2629 
2630 	for (i = 0; i < bm_pool->buf_num; i++) {
2631 		/* Allocate buffer back from the buffer manager */
2632 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2633 	}
2634 
2635 	bm_pool->buf_num = 0;
2636 }
2637 
2638 /* Cleanup pool */
2639 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2640 				 struct mvpp2 *priv,
2641 				 struct mvpp2_bm_pool *bm_pool)
2642 {
2643 	u32 val;
2644 
2645 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2646 	if (bm_pool->buf_num) {
2647 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2648 		return 0;
2649 	}
2650 
2651 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2652 	val |= MVPP2_BM_STOP_MASK;
2653 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2654 
2655 	return 0;
2656 }
2657 
2658 static int mvpp2_bm_pools_init(struct udevice *dev,
2659 			       struct mvpp2 *priv)
2660 {
2661 	int i, err, size;
2662 	struct mvpp2_bm_pool *bm_pool;
2663 
2664 	/* Create all pools with maximum size */
2665 	size = MVPP2_BM_POOL_SIZE_MAX;
2666 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2667 		bm_pool = &priv->bm_pools[i];
2668 		bm_pool->id = i;
2669 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2670 		if (err)
2671 			goto err_unroll_pools;
2672 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2673 	}
2674 	return 0;
2675 
2676 err_unroll_pools:
2677 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2678 	for (i = i - 1; i >= 0; i--)
2679 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2680 	return err;
2681 }
2682 
2683 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2684 {
2685 	int i, err;
2686 
2687 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2688 		/* Mask BM all interrupts */
2689 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2690 		/* Clear BM cause register */
2691 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2692 	}
2693 
2694 	/* Allocate and initialize BM pools */
2695 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2696 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2697 	if (!priv->bm_pools)
2698 		return -ENOMEM;
2699 
2700 	err = mvpp2_bm_pools_init(dev, priv);
2701 	if (err < 0)
2702 		return err;
2703 	return 0;
2704 }
2705 
2706 /* Attach long pool to rxq */
2707 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2708 				    int lrxq, int long_pool)
2709 {
2710 	u32 val, mask;
2711 	int prxq;
2712 
2713 	/* Get queue physical ID */
2714 	prxq = port->rxqs[lrxq]->id;
2715 
2716 	if (port->priv->hw_version == MVPP21)
2717 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2718 	else
2719 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2720 
2721 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2722 	val &= ~mask;
2723 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2724 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2725 }
2726 
2727 /* Set pool number in a BM cookie */
2728 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2729 {
2730 	u32 bm;
2731 
2732 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2733 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2734 
2735 	return bm;
2736 }
2737 
2738 /* Get pool number from a BM cookie */
2739 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2740 {
2741 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2742 }
2743 
2744 /* Release buffer to BM */
2745 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2746 				     dma_addr_t buf_dma_addr,
2747 				     unsigned long buf_phys_addr)
2748 {
2749 	if (port->priv->hw_version == MVPP22) {
2750 		u32 val = 0;
2751 
2752 		if (sizeof(dma_addr_t) == 8)
2753 			val |= upper_32_bits(buf_dma_addr) &
2754 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2755 
2756 		if (sizeof(phys_addr_t) == 8)
2757 			val |= (upper_32_bits(buf_phys_addr)
2758 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2759 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2760 
2761 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2762 	}
2763 
2764 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2765 	 * returned in the "cookie" field of the RX
2766 	 * descriptor. Instead of storing the virtual address, we
2767 	 * store the physical address
2768 	 */
2769 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2770 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2771 }
2772 
2773 /* Refill BM pool */
2774 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2775 			      dma_addr_t dma_addr,
2776 			      phys_addr_t phys_addr)
2777 {
2778 	int pool = mvpp2_bm_cookie_pool_get(bm);
2779 
2780 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2781 }
2782 
2783 /* Allocate buffers for the pool */
2784 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2785 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2786 {
2787 	int i;
2788 
2789 	if (buf_num < 0 ||
2790 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2791 		netdev_err(port->dev,
2792 			   "cannot allocate %d buffers for pool %d\n",
2793 			   buf_num, bm_pool->id);
2794 		return 0;
2795 	}
2796 
2797 	for (i = 0; i < buf_num; i++) {
2798 		mvpp2_bm_pool_put(port, bm_pool->id,
2799 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2800 				  (unsigned long)buffer_loc.rx_buffer[i]);
2801 
2802 	}
2803 
2804 	/* Update BM driver with number of buffers added to pool */
2805 	bm_pool->buf_num += i;
2806 
2807 	return i;
2808 }
2809 
2810 /* Notify the driver that BM pool is being used as specific type and return the
2811  * pool pointer on success
2812  */
2813 static struct mvpp2_bm_pool *
2814 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2815 		  int pkt_size)
2816 {
2817 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2818 	int num;
2819 
2820 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2821 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2822 		return NULL;
2823 	}
2824 
2825 	if (new_pool->type == MVPP2_BM_FREE)
2826 		new_pool->type = type;
2827 
2828 	/* Allocate buffers in case BM pool is used as long pool, but packet
2829 	 * size doesn't match MTU or BM pool hasn't being used yet
2830 	 */
2831 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2832 	    (new_pool->pkt_size == 0)) {
2833 		int pkts_num;
2834 
2835 		/* Set default buffer number or free all the buffers in case
2836 		 * the pool is not empty
2837 		 */
2838 		pkts_num = new_pool->buf_num;
2839 		if (pkts_num == 0)
2840 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2841 				   MVPP2_BM_LONG_BUF_NUM :
2842 				   MVPP2_BM_SHORT_BUF_NUM;
2843 		else
2844 			mvpp2_bm_bufs_free(NULL,
2845 					   port->priv, new_pool);
2846 
2847 		new_pool->pkt_size = pkt_size;
2848 
2849 		/* Allocate buffers for this pool */
2850 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2851 		if (num != pkts_num) {
2852 			dev_err(dev, "pool %d: %d of %d allocated\n",
2853 				new_pool->id, num, pkts_num);
2854 			return NULL;
2855 		}
2856 	}
2857 
2858 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2859 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2860 
2861 	return new_pool;
2862 }
2863 
2864 /* Initialize pools for swf */
2865 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2866 {
2867 	int rxq;
2868 
2869 	if (!port->pool_long) {
2870 		port->pool_long =
2871 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2872 					 MVPP2_BM_SWF_LONG,
2873 					 port->pkt_size);
2874 		if (!port->pool_long)
2875 			return -ENOMEM;
2876 
2877 		port->pool_long->port_map |= (1 << port->id);
2878 
2879 		for (rxq = 0; rxq < rxq_number; rxq++)
2880 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2881 	}
2882 
2883 	return 0;
2884 }
2885 
2886 /* Port configuration routines */
2887 
2888 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2889 {
2890 	u32 val;
2891 
2892 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2893 
2894 	switch (port->phy_interface) {
2895 	case PHY_INTERFACE_MODE_SGMII:
2896 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2897 		break;
2898 	case PHY_INTERFACE_MODE_RGMII:
2899 	case PHY_INTERFACE_MODE_RGMII_ID:
2900 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2901 	default:
2902 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2903 	}
2904 
2905 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2906 }
2907 
2908 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2909 {
2910 	u32 val;
2911 
2912 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2913 	val |= MVPP2_GMAC_FC_ADV_EN;
2914 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2915 }
2916 
2917 static void mvpp2_port_enable(struct mvpp2_port *port)
2918 {
2919 	u32 val;
2920 
2921 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2922 	val |= MVPP2_GMAC_PORT_EN_MASK;
2923 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2924 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2925 }
2926 
2927 static void mvpp2_port_disable(struct mvpp2_port *port)
2928 {
2929 	u32 val;
2930 
2931 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2932 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2933 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2934 }
2935 
2936 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2937 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2938 {
2939 	u32 val;
2940 
2941 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2942 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2943 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2944 }
2945 
2946 /* Configure loopback port */
2947 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2948 {
2949 	u32 val;
2950 
2951 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2952 
2953 	if (port->speed == 1000)
2954 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2955 	else
2956 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2957 
2958 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2959 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2960 	else
2961 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2962 
2963 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2964 }
2965 
2966 static void mvpp2_port_reset(struct mvpp2_port *port)
2967 {
2968 	u32 val;
2969 
2970 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2971 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2972 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2973 
2974 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2975 	       MVPP2_GMAC_PORT_RESET_MASK)
2976 		continue;
2977 }
2978 
2979 /* Change maximum receive size of the port */
2980 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2981 {
2982 	u32 val;
2983 
2984 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2985 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2986 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2987 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2988 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2989 }
2990 
2991 /* PPv2.2 GoP/GMAC config */
2992 
2993 /* Set the MAC to reset or exit from reset */
2994 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2995 {
2996 	u32 val;
2997 
2998 	/* read - modify - write */
2999 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3000 	if (reset)
3001 		val |= MVPP2_GMAC_PORT_RESET_MASK;
3002 	else
3003 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
3004 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3005 
3006 	return 0;
3007 }
3008 
3009 /*
3010  * gop_gpcs_mode_cfg
3011  *
3012  * Configure port to working with Gig PCS or don't.
3013  */
3014 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3015 {
3016 	u32 val;
3017 
3018 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3019 	if (en)
3020 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3021 	else
3022 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3023 	/* enable / disable PCS on this port */
3024 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3025 
3026 	return 0;
3027 }
3028 
3029 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3030 {
3031 	u32 val;
3032 
3033 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3034 	if (en)
3035 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3036 	else
3037 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3038 	/* enable / disable PCS on this port */
3039 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3040 
3041 	return 0;
3042 }
3043 
3044 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3045 {
3046 	u32 val, thresh;
3047 
3048 	/*
3049 	 * Configure minimal level of the Tx FIFO before the lower part
3050 	 * starts to read a packet
3051 	 */
3052 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3053 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3054 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3055 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3056 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3057 
3058 	/* Disable bypass of sync module */
3059 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3060 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3061 	/* configure DP clock select according to mode */
3062 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3063 	/* configure QSGMII bypass according to mode */
3064 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3065 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3066 
3067 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3068 	/*
3069 	 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3070 	 * transceiver
3071 	 */
3072 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3073 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3074 
3075 	/* configure AN 0x9268 */
3076 	val = MVPP2_GMAC_EN_PCS_AN |
3077 		MVPP2_GMAC_AN_BYPASS_EN |
3078 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3079 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3080 		MVPP2_GMAC_FC_ADV_EN    |
3081 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3082 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3083 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3084 }
3085 
3086 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3087 {
3088 	u32 val, thresh;
3089 
3090 	/*
3091 	 * Configure minimal level of the Tx FIFO before the lower part
3092 	 * starts to read a packet
3093 	 */
3094 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3095 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3096 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3097 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3098 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3099 
3100 	/* Disable bypass of sync module */
3101 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3102 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3103 	/* configure DP clock select according to mode */
3104 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3105 	/* configure QSGMII bypass according to mode */
3106 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3107 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3108 
3109 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3110 	/* configure GIG MAC to SGMII mode */
3111 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3112 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3113 
3114 	/* configure AN */
3115 	val = MVPP2_GMAC_EN_PCS_AN |
3116 		MVPP2_GMAC_AN_BYPASS_EN |
3117 		MVPP2_GMAC_AN_SPEED_EN  |
3118 		MVPP2_GMAC_EN_FC_AN     |
3119 		MVPP2_GMAC_AN_DUPLEX_EN |
3120 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3121 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3122 }
3123 
3124 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3125 {
3126 	u32 val, thresh;
3127 
3128 	/*
3129 	 * Configure minimal level of the Tx FIFO before the lower part
3130 	 * starts to read a packet
3131 	 */
3132 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3133 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3134 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3135 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3136 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3137 
3138 	/* Disable bypass of sync module */
3139 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3140 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3141 	/* configure DP clock select according to mode */
3142 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3143 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3144 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3145 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3146 
3147 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3148 	/* configure GIG MAC to SGMII mode */
3149 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3150 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3151 
3152 	/* configure AN 0xb8e8 */
3153 	val = MVPP2_GMAC_AN_BYPASS_EN |
3154 		MVPP2_GMAC_AN_SPEED_EN   |
3155 		MVPP2_GMAC_EN_FC_AN      |
3156 		MVPP2_GMAC_AN_DUPLEX_EN  |
3157 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3158 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3159 }
3160 
3161 /* Set the internal mux's to the required MAC in the GOP */
3162 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3163 {
3164 	u32 val;
3165 
3166 	/* Set TX FIFO thresholds */
3167 	switch (port->phy_interface) {
3168 	case PHY_INTERFACE_MODE_SGMII:
3169 		if (port->phy_speed == 2500)
3170 			gop_gmac_sgmii2_5_cfg(port);
3171 		else
3172 			gop_gmac_sgmii_cfg(port);
3173 		break;
3174 
3175 	case PHY_INTERFACE_MODE_RGMII:
3176 	case PHY_INTERFACE_MODE_RGMII_ID:
3177 		gop_gmac_rgmii_cfg(port);
3178 		break;
3179 
3180 	default:
3181 		return -1;
3182 	}
3183 
3184 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3185 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3186 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3187 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3188 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3189 
3190 	/* PeriodicXonEn disable */
3191 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3192 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3193 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3194 
3195 	return 0;
3196 }
3197 
3198 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3199 {
3200 	u32 val;
3201 
3202 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3203 	if (port->gop_id > 0)
3204 		return;
3205 
3206 	/* configure 1Gig MAC mode */
3207 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3208 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3209 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3210 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3211 }
3212 
3213 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3214 {
3215 	u32 val;
3216 
3217 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3218 	if (reset)
3219 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3220 	else
3221 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3222 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3223 
3224 	return 0;
3225 }
3226 
3227 /* Set the internal mux's to the required PCS in the PI */
3228 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3229 {
3230 	u32 val;
3231 	int lane;
3232 
3233 	switch (num_of_lanes) {
3234 	case 1:
3235 		lane = 0;
3236 		break;
3237 	case 2:
3238 		lane = 1;
3239 		break;
3240 	case 4:
3241 		lane = 2;
3242 		break;
3243 	default:
3244 		return -1;
3245 	}
3246 
3247 	/* configure XG MAC mode */
3248 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3249 	val &= ~MVPP22_XPCS_PCSMODE_MASK;
3250 	val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3251 	val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3252 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3253 
3254 	return 0;
3255 }
3256 
3257 static int gop_mpcs_mode(struct mvpp2_port *port)
3258 {
3259 	u32 val;
3260 
3261 	/* configure PCS40G COMMON CONTROL */
3262 	val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3263 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3264 	writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3265 
3266 	/* configure PCS CLOCK RESET */
3267 	val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3268 	val &= ~CLK_DIVISION_RATIO_MASK;
3269 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3270 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3271 
3272 	val &= ~CLK_DIV_PHASE_SET_MASK;
3273 	val |= MAC_CLK_RESET_MASK;
3274 	val |= RX_SD_CLK_RESET_MASK;
3275 	val |= TX_SD_CLK_RESET_MASK;
3276 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3277 
3278 	return 0;
3279 }
3280 
3281 /* Set the internal mux's to the required MAC in the GOP */
3282 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3283 {
3284 	u32 val;
3285 
3286 	/* configure 10G MAC mode */
3287 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3288 	val |= MVPP22_XLG_RX_FC_EN;
3289 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3290 
3291 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3292 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3293 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3294 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3295 
3296 	/* read - modify - write */
3297 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3298 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3299 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3300 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3301 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3302 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3303 
3304 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3305 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3306 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3307 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3308 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3309 
3310 	/* unmask link change interrupt */
3311 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3312 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3313 	val |= 1; /* unmask summary bit */
3314 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3315 
3316 	return 0;
3317 }
3318 
3319 /* Set PCS to reset or exit from reset */
3320 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3321 {
3322 	u32 val;
3323 
3324 	/* read - modify - write */
3325 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3326 	if (reset)
3327 		val &= ~MVPP22_XPCS_PCSRESET;
3328 	else
3329 		val |= MVPP22_XPCS_PCSRESET;
3330 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3331 
3332 	return 0;
3333 }
3334 
3335 /* Set the MAC to reset or exit from reset */
3336 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3337 {
3338 	u32 val;
3339 
3340 	/* read - modify - write */
3341 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3342 	if (reset)
3343 		val &= ~MVPP22_XLG_MAC_RESETN;
3344 	else
3345 		val |= MVPP22_XLG_MAC_RESETN;
3346 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3347 
3348 	return 0;
3349 }
3350 
3351 /*
3352  * gop_port_init
3353  *
3354  * Init physical port. Configures the port mode and all it's elements
3355  * accordingly.
3356  * Does not verify that the selected mode/port number is valid at the
3357  * core level.
3358  */
3359 static int gop_port_init(struct mvpp2_port *port)
3360 {
3361 	int mac_num = port->gop_id;
3362 	int num_of_act_lanes;
3363 
3364 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3365 		netdev_err(NULL, "%s: illegal port number %d", __func__,
3366 			   mac_num);
3367 		return -1;
3368 	}
3369 
3370 	switch (port->phy_interface) {
3371 	case PHY_INTERFACE_MODE_RGMII:
3372 	case PHY_INTERFACE_MODE_RGMII_ID:
3373 		gop_gmac_reset(port, 1);
3374 
3375 		/* configure PCS */
3376 		gop_gpcs_mode_cfg(port, 0);
3377 		gop_bypass_clk_cfg(port, 1);
3378 
3379 		/* configure MAC */
3380 		gop_gmac_mode_cfg(port);
3381 		/* pcs unreset */
3382 		gop_gpcs_reset(port, 0);
3383 
3384 		/* mac unreset */
3385 		gop_gmac_reset(port, 0);
3386 		break;
3387 
3388 	case PHY_INTERFACE_MODE_SGMII:
3389 		/* configure PCS */
3390 		gop_gpcs_mode_cfg(port, 1);
3391 
3392 		/* configure MAC */
3393 		gop_gmac_mode_cfg(port);
3394 		/* select proper Mac mode */
3395 		gop_xlg_2_gig_mac_cfg(port);
3396 
3397 		/* pcs unreset */
3398 		gop_gpcs_reset(port, 0);
3399 		/* mac unreset */
3400 		gop_gmac_reset(port, 0);
3401 		break;
3402 
3403 	case PHY_INTERFACE_MODE_SFI:
3404 		num_of_act_lanes = 2;
3405 		mac_num = 0;
3406 		/* configure PCS */
3407 		gop_xpcs_mode(port, num_of_act_lanes);
3408 		gop_mpcs_mode(port);
3409 		/* configure MAC */
3410 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3411 
3412 		/* pcs unreset */
3413 		gop_xpcs_reset(port, 0);
3414 
3415 		/* mac unreset */
3416 		gop_xlg_mac_reset(port, 0);
3417 		break;
3418 
3419 	default:
3420 		netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3421 			   __func__, port->phy_interface);
3422 		return -1;
3423 	}
3424 
3425 	return 0;
3426 }
3427 
3428 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3429 {
3430 	u32 val;
3431 
3432 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3433 	if (enable) {
3434 		/* Enable port and MIB counters update */
3435 		val |= MVPP22_XLG_PORT_EN;
3436 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3437 	} else {
3438 		/* Disable port */
3439 		val &= ~MVPP22_XLG_PORT_EN;
3440 	}
3441 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3442 }
3443 
3444 static void gop_port_enable(struct mvpp2_port *port, int enable)
3445 {
3446 	switch (port->phy_interface) {
3447 	case PHY_INTERFACE_MODE_RGMII:
3448 	case PHY_INTERFACE_MODE_RGMII_ID:
3449 	case PHY_INTERFACE_MODE_SGMII:
3450 		if (enable)
3451 			mvpp2_port_enable(port);
3452 		else
3453 			mvpp2_port_disable(port);
3454 		break;
3455 
3456 	case PHY_INTERFACE_MODE_SFI:
3457 		gop_xlg_mac_port_enable(port, enable);
3458 
3459 		break;
3460 	default:
3461 		netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3462 			   port->phy_interface);
3463 		return;
3464 	}
3465 }
3466 
3467 /* RFU1 functions */
3468 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3469 {
3470 	return readl(priv->rfu1_base + offset);
3471 }
3472 
3473 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3474 {
3475 	writel(data, priv->rfu1_base + offset);
3476 }
3477 
3478 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3479 {
3480 	u32 val = 0;
3481 
3482 	if (gop_id == 2) {
3483 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3484 			val |= MV_NETC_GE_MAC2_SGMII;
3485 	}
3486 
3487 	if (gop_id == 3) {
3488 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3489 			val |= MV_NETC_GE_MAC3_SGMII;
3490 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3491 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3492 			val |= MV_NETC_GE_MAC3_RGMII;
3493 	}
3494 
3495 	return val;
3496 }
3497 
3498 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3499 {
3500 	u32 reg;
3501 
3502 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3503 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3504 
3505 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3506 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3507 
3508 	reg |= val;
3509 
3510 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3511 }
3512 
3513 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3514 {
3515 	u32 reg;
3516 
3517 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3518 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3519 
3520 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3521 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3522 
3523 	reg |= val;
3524 
3525 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3526 }
3527 
3528 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3529 {
3530 	u32 reg;
3531 
3532 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3533 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3534 
3535 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3536 	val &= NETC_GOP_SOFT_RESET_MASK;
3537 
3538 	reg |= val;
3539 
3540 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3541 }
3542 
3543 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3544 {
3545 	u32 reg;
3546 
3547 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3548 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3549 
3550 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3551 	val &= NETC_CLK_DIV_PHASE_MASK;
3552 
3553 	reg |= val;
3554 
3555 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3556 }
3557 
3558 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3559 {
3560 	u32 reg;
3561 
3562 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3563 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3564 
3565 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3566 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3567 
3568 	reg |= val;
3569 
3570 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3571 }
3572 
3573 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3574 					   u32 val)
3575 {
3576 	u32 reg, mask, offset;
3577 
3578 	if (gop_id == 2) {
3579 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3580 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3581 	} else {
3582 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3583 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3584 	}
3585 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3586 	reg &= ~mask;
3587 
3588 	val <<= offset;
3589 	val &= mask;
3590 
3591 	reg |= val;
3592 
3593 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3594 }
3595 
3596 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3597 {
3598 	u32 reg;
3599 
3600 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3601 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3602 
3603 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3604 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3605 
3606 	reg |= val;
3607 
3608 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3609 }
3610 
3611 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3612 {
3613 	u32 reg;
3614 
3615 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3616 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3617 
3618 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3619 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3620 
3621 	reg |= val;
3622 
3623 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3624 }
3625 
3626 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3627 				  enum mv_netc_phase phase)
3628 {
3629 	switch (phase) {
3630 	case MV_NETC_FIRST_PHASE:
3631 		/* Set Bus Width to HB mode = 1 */
3632 		gop_netc_bus_width_select(priv, 1);
3633 		/* Select RGMII mode */
3634 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3635 		break;
3636 
3637 	case MV_NETC_SECOND_PHASE:
3638 		/* De-assert the relevant port HB reset */
3639 		gop_netc_port_rf_reset(priv, gop_id, 1);
3640 		break;
3641 	}
3642 }
3643 
3644 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3645 				  enum mv_netc_phase phase)
3646 {
3647 	switch (phase) {
3648 	case MV_NETC_FIRST_PHASE:
3649 		/* Set Bus Width to HB mode = 1 */
3650 		gop_netc_bus_width_select(priv, 1);
3651 		/* Select SGMII mode */
3652 		if (gop_id >= 1) {
3653 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3654 						       MV_NETC_GBE_SGMII);
3655 		}
3656 
3657 		/* Configure the sample stages */
3658 		gop_netc_sample_stages_timing(priv, 0);
3659 		/* Configure the ComPhy Selector */
3660 		/* gop_netc_com_phy_selector_config(netComplex); */
3661 		break;
3662 
3663 	case MV_NETC_SECOND_PHASE:
3664 		/* De-assert the relevant port HB reset */
3665 		gop_netc_port_rf_reset(priv, gop_id, 1);
3666 		break;
3667 	}
3668 }
3669 
3670 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3671 {
3672 	u32 c = priv->netc_config;
3673 
3674 	if (c & MV_NETC_GE_MAC2_SGMII)
3675 		gop_netc_mac_to_sgmii(priv, 2, phase);
3676 	else
3677 		gop_netc_mac_to_xgmii(priv, 2, phase);
3678 
3679 	if (c & MV_NETC_GE_MAC3_SGMII) {
3680 		gop_netc_mac_to_sgmii(priv, 3, phase);
3681 	} else {
3682 		gop_netc_mac_to_xgmii(priv, 3, phase);
3683 		if (c & MV_NETC_GE_MAC3_RGMII)
3684 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3685 		else
3686 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3687 	}
3688 
3689 	/* Activate gop ports 0, 2, 3 */
3690 	gop_netc_active_port(priv, 0, 1);
3691 	gop_netc_active_port(priv, 2, 1);
3692 	gop_netc_active_port(priv, 3, 1);
3693 
3694 	if (phase == MV_NETC_SECOND_PHASE) {
3695 		/* Enable the GOP internal clock logic */
3696 		gop_netc_gop_clock_logic_set(priv, 1);
3697 		/* De-assert GOP unit reset */
3698 		gop_netc_gop_reset(priv, 1);
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 /* Set defaults to the MVPP2 port */
3705 static void mvpp2_defaults_set(struct mvpp2_port *port)
3706 {
3707 	int tx_port_num, val, queue, ptxq, lrxq;
3708 
3709 	if (port->priv->hw_version == MVPP21) {
3710 		/* Configure port to loopback if needed */
3711 		if (port->flags & MVPP2_F_LOOPBACK)
3712 			mvpp2_port_loopback_set(port);
3713 
3714 		/* Update TX FIFO MIN Threshold */
3715 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3716 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3717 		/* Min. TX threshold must be less than minimal packet length */
3718 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3719 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3720 	}
3721 
3722 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3723 	tx_port_num = mvpp2_egress_port(port);
3724 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3725 		    tx_port_num);
3726 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3727 
3728 	/* Close bandwidth for all queues */
3729 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3730 		ptxq = mvpp2_txq_phys(port->id, queue);
3731 		mvpp2_write(port->priv,
3732 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3733 	}
3734 
3735 	/* Set refill period to 1 usec, refill tokens
3736 	 * and bucket size to maximum
3737 	 */
3738 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3739 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3740 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3741 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3742 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3743 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3744 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3745 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3746 
3747 	/* Set MaximumLowLatencyPacketSize value to 256 */
3748 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3749 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3750 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3751 
3752 	/* Enable Rx cache snoop */
3753 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3754 		queue = port->rxqs[lrxq]->id;
3755 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3756 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3757 			   MVPP2_SNOOP_BUF_HDR_MASK;
3758 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3759 	}
3760 }
3761 
3762 /* Enable/disable receiving packets */
3763 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3764 {
3765 	u32 val;
3766 	int lrxq, queue;
3767 
3768 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3769 		queue = port->rxqs[lrxq]->id;
3770 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3771 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3772 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3773 	}
3774 }
3775 
3776 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3777 {
3778 	u32 val;
3779 	int lrxq, queue;
3780 
3781 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3782 		queue = port->rxqs[lrxq]->id;
3783 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3784 		val |= MVPP2_RXQ_DISABLE_MASK;
3785 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3786 	}
3787 }
3788 
3789 /* Enable transmit via physical egress queue
3790  * - HW starts take descriptors from DRAM
3791  */
3792 static void mvpp2_egress_enable(struct mvpp2_port *port)
3793 {
3794 	u32 qmap;
3795 	int queue;
3796 	int tx_port_num = mvpp2_egress_port(port);
3797 
3798 	/* Enable all initialized TXs. */
3799 	qmap = 0;
3800 	for (queue = 0; queue < txq_number; queue++) {
3801 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3802 
3803 		if (txq->descs != NULL)
3804 			qmap |= (1 << queue);
3805 	}
3806 
3807 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3808 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3809 }
3810 
3811 /* Disable transmit via physical egress queue
3812  * - HW doesn't take descriptors from DRAM
3813  */
3814 static void mvpp2_egress_disable(struct mvpp2_port *port)
3815 {
3816 	u32 reg_data;
3817 	int delay;
3818 	int tx_port_num = mvpp2_egress_port(port);
3819 
3820 	/* Issue stop command for active channels only */
3821 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3822 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3823 		    MVPP2_TXP_SCHED_ENQ_MASK;
3824 	if (reg_data != 0)
3825 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3826 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3827 
3828 	/* Wait for all Tx activity to terminate. */
3829 	delay = 0;
3830 	do {
3831 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3832 			netdev_warn(port->dev,
3833 				    "Tx stop timed out, status=0x%08x\n",
3834 				    reg_data);
3835 			break;
3836 		}
3837 		mdelay(1);
3838 		delay++;
3839 
3840 		/* Check port TX Command register that all
3841 		 * Tx queues are stopped
3842 		 */
3843 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3844 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3845 }
3846 
3847 /* Rx descriptors helper methods */
3848 
3849 /* Get number of Rx descriptors occupied by received packets */
3850 static inline int
3851 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3852 {
3853 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3854 
3855 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3856 }
3857 
3858 /* Update Rx queue status with the number of occupied and available
3859  * Rx descriptor slots.
3860  */
3861 static inline void
3862 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3863 			int used_count, int free_count)
3864 {
3865 	/* Decrement the number of used descriptors and increment count
3866 	 * increment the number of free descriptors.
3867 	 */
3868 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3869 
3870 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3871 }
3872 
3873 /* Get pointer to next RX descriptor to be processed by SW */
3874 static inline struct mvpp2_rx_desc *
3875 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3876 {
3877 	int rx_desc = rxq->next_desc_to_proc;
3878 
3879 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3880 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3881 	return rxq->descs + rx_desc;
3882 }
3883 
3884 /* Set rx queue offset */
3885 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3886 				 int prxq, int offset)
3887 {
3888 	u32 val;
3889 
3890 	/* Convert offset from bytes to units of 32 bytes */
3891 	offset = offset >> 5;
3892 
3893 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3894 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3895 
3896 	/* Offset is in */
3897 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3898 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3899 
3900 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3901 }
3902 
3903 /* Obtain BM cookie information from descriptor */
3904 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3905 				 struct mvpp2_rx_desc *rx_desc)
3906 {
3907 	int cpu = smp_processor_id();
3908 	int pool;
3909 
3910 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3911 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3912 		MVPP2_RXD_BM_POOL_ID_OFFS;
3913 
3914 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3915 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3916 }
3917 
3918 /* Tx descriptors helper methods */
3919 
3920 /* Get number of Tx descriptors waiting to be transmitted by HW */
3921 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3922 				       struct mvpp2_tx_queue *txq)
3923 {
3924 	u32 val;
3925 
3926 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3927 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3928 
3929 	return val & MVPP2_TXQ_PENDING_MASK;
3930 }
3931 
3932 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3933 static struct mvpp2_tx_desc *
3934 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3935 {
3936 	int tx_desc = txq->next_desc_to_proc;
3937 
3938 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3939 	return txq->descs + tx_desc;
3940 }
3941 
3942 /* Update HW with number of aggregated Tx descriptors to be sent */
3943 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3944 {
3945 	/* aggregated access - relevant TXQ number is written in TX desc */
3946 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3947 }
3948 
3949 /* Get number of sent descriptors and decrement counter.
3950  * The number of sent descriptors is returned.
3951  * Per-CPU access
3952  */
3953 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3954 					   struct mvpp2_tx_queue *txq)
3955 {
3956 	u32 val;
3957 
3958 	/* Reading status reg resets transmitted descriptor counter */
3959 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3960 
3961 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3962 		MVPP2_TRANSMITTED_COUNT_OFFSET;
3963 }
3964 
3965 static void mvpp2_txq_sent_counter_clear(void *arg)
3966 {
3967 	struct mvpp2_port *port = arg;
3968 	int queue;
3969 
3970 	for (queue = 0; queue < txq_number; queue++) {
3971 		int id = port->txqs[queue]->id;
3972 
3973 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3974 	}
3975 }
3976 
3977 /* Set max sizes for Tx queues */
3978 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3979 {
3980 	u32	val, size, mtu;
3981 	int	txq, tx_port_num;
3982 
3983 	mtu = port->pkt_size * 8;
3984 	if (mtu > MVPP2_TXP_MTU_MAX)
3985 		mtu = MVPP2_TXP_MTU_MAX;
3986 
3987 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3988 	mtu = 3 * mtu;
3989 
3990 	/* Indirect access to registers */
3991 	tx_port_num = mvpp2_egress_port(port);
3992 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3993 
3994 	/* Set MTU */
3995 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3996 	val &= ~MVPP2_TXP_MTU_MAX;
3997 	val |= mtu;
3998 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
3999 
4000 	/* TXP token size and all TXQs token size must be larger that MTU */
4001 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4002 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4003 	if (size < mtu) {
4004 		size = mtu;
4005 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4006 		val |= size;
4007 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4008 	}
4009 
4010 	for (txq = 0; txq < txq_number; txq++) {
4011 		val = mvpp2_read(port->priv,
4012 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4013 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4014 
4015 		if (size < mtu) {
4016 			size = mtu;
4017 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4018 			val |= size;
4019 			mvpp2_write(port->priv,
4020 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4021 				    val);
4022 		}
4023 	}
4024 }
4025 
4026 /* Free Tx queue skbuffs */
4027 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4028 				struct mvpp2_tx_queue *txq,
4029 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4030 {
4031 	int i;
4032 
4033 	for (i = 0; i < num; i++)
4034 		mvpp2_txq_inc_get(txq_pcpu);
4035 }
4036 
4037 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4038 							u32 cause)
4039 {
4040 	int queue = fls(cause) - 1;
4041 
4042 	return port->rxqs[queue];
4043 }
4044 
4045 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4046 							u32 cause)
4047 {
4048 	int queue = fls(cause) - 1;
4049 
4050 	return port->txqs[queue];
4051 }
4052 
4053 /* Rx/Tx queue initialization/cleanup methods */
4054 
4055 /* Allocate and initialize descriptors for aggr TXQ */
4056 static int mvpp2_aggr_txq_init(struct udevice *dev,
4057 			       struct mvpp2_tx_queue *aggr_txq,
4058 			       int desc_num, int cpu,
4059 			       struct mvpp2 *priv)
4060 {
4061 	u32 txq_dma;
4062 
4063 	/* Allocate memory for TX descriptors */
4064 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4065 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4066 	if (!aggr_txq->descs)
4067 		return -ENOMEM;
4068 
4069 	/* Make sure descriptor address is cache line size aligned  */
4070 	BUG_ON(aggr_txq->descs !=
4071 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4072 
4073 	aggr_txq->last_desc = aggr_txq->size - 1;
4074 
4075 	/* Aggr TXQ no reset WA */
4076 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4077 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4078 
4079 	/* Set Tx descriptors queue starting address indirect
4080 	 * access
4081 	 */
4082 	if (priv->hw_version == MVPP21)
4083 		txq_dma = aggr_txq->descs_dma;
4084 	else
4085 		txq_dma = aggr_txq->descs_dma >>
4086 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4087 
4088 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4089 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4090 
4091 	return 0;
4092 }
4093 
4094 /* Create a specified Rx queue */
4095 static int mvpp2_rxq_init(struct mvpp2_port *port,
4096 			  struct mvpp2_rx_queue *rxq)
4097 
4098 {
4099 	u32 rxq_dma;
4100 
4101 	rxq->size = port->rx_ring_size;
4102 
4103 	/* Allocate memory for RX descriptors */
4104 	rxq->descs = buffer_loc.rx_descs;
4105 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4106 	if (!rxq->descs)
4107 		return -ENOMEM;
4108 
4109 	BUG_ON(rxq->descs !=
4110 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4111 
4112 	rxq->last_desc = rxq->size - 1;
4113 
4114 	/* Zero occupied and non-occupied counters - direct access */
4115 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4116 
4117 	/* Set Rx descriptors queue starting address - indirect access */
4118 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4119 	if (port->priv->hw_version == MVPP21)
4120 		rxq_dma = rxq->descs_dma;
4121 	else
4122 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4123 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4124 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4125 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4126 
4127 	/* Set Offset */
4128 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4129 
4130 	/* Add number of descriptors ready for receiving packets */
4131 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4132 
4133 	return 0;
4134 }
4135 
4136 /* Push packets received by the RXQ to BM pool */
4137 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4138 				struct mvpp2_rx_queue *rxq)
4139 {
4140 	int rx_received, i;
4141 
4142 	rx_received = mvpp2_rxq_received(port, rxq->id);
4143 	if (!rx_received)
4144 		return;
4145 
4146 	for (i = 0; i < rx_received; i++) {
4147 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4148 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4149 
4150 		mvpp2_pool_refill(port, bm,
4151 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4152 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4153 	}
4154 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4155 }
4156 
4157 /* Cleanup Rx queue */
4158 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4159 			     struct mvpp2_rx_queue *rxq)
4160 {
4161 	mvpp2_rxq_drop_pkts(port, rxq);
4162 
4163 	rxq->descs             = NULL;
4164 	rxq->last_desc         = 0;
4165 	rxq->next_desc_to_proc = 0;
4166 	rxq->descs_dma         = 0;
4167 
4168 	/* Clear Rx descriptors queue starting address and size;
4169 	 * free descriptor number
4170 	 */
4171 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4172 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4173 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4174 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4175 }
4176 
4177 /* Create and initialize a Tx queue */
4178 static int mvpp2_txq_init(struct mvpp2_port *port,
4179 			  struct mvpp2_tx_queue *txq)
4180 {
4181 	u32 val;
4182 	int cpu, desc, desc_per_txq, tx_port_num;
4183 	struct mvpp2_txq_pcpu *txq_pcpu;
4184 
4185 	txq->size = port->tx_ring_size;
4186 
4187 	/* Allocate memory for Tx descriptors */
4188 	txq->descs = buffer_loc.tx_descs;
4189 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4190 	if (!txq->descs)
4191 		return -ENOMEM;
4192 
4193 	/* Make sure descriptor address is cache line size aligned  */
4194 	BUG_ON(txq->descs !=
4195 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4196 
4197 	txq->last_desc = txq->size - 1;
4198 
4199 	/* Set Tx descriptors queue starting address - indirect access */
4200 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4201 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4202 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4203 					     MVPP2_TXQ_DESC_SIZE_MASK);
4204 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4205 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4206 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4207 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4208 	val &= ~MVPP2_TXQ_PENDING_MASK;
4209 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4210 
4211 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4212 	 * for each existing TXQ.
4213 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4214 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4215 	 */
4216 	desc_per_txq = 16;
4217 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4218 	       (txq->log_id * desc_per_txq);
4219 
4220 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4221 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4222 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4223 
4224 	/* WRR / EJP configuration - indirect access */
4225 	tx_port_num = mvpp2_egress_port(port);
4226 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4227 
4228 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4229 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4230 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4231 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4232 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4233 
4234 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4235 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4236 		    val);
4237 
4238 	for_each_present_cpu(cpu) {
4239 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4240 		txq_pcpu->size = txq->size;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 /* Free allocated TXQ resources */
4247 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4248 			     struct mvpp2_tx_queue *txq)
4249 {
4250 	txq->descs             = NULL;
4251 	txq->last_desc         = 0;
4252 	txq->next_desc_to_proc = 0;
4253 	txq->descs_dma         = 0;
4254 
4255 	/* Set minimum bandwidth for disabled TXQs */
4256 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4257 
4258 	/* Set Tx descriptors queue starting address and size */
4259 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4260 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4261 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4262 }
4263 
4264 /* Cleanup Tx ports */
4265 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4266 {
4267 	struct mvpp2_txq_pcpu *txq_pcpu;
4268 	int delay, pending, cpu;
4269 	u32 val;
4270 
4271 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4272 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4273 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4274 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4275 
4276 	/* The napi queue has been stopped so wait for all packets
4277 	 * to be transmitted.
4278 	 */
4279 	delay = 0;
4280 	do {
4281 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4282 			netdev_warn(port->dev,
4283 				    "port %d: cleaning queue %d timed out\n",
4284 				    port->id, txq->log_id);
4285 			break;
4286 		}
4287 		mdelay(1);
4288 		delay++;
4289 
4290 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4291 	} while (pending);
4292 
4293 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4294 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4295 
4296 	for_each_present_cpu(cpu) {
4297 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4298 
4299 		/* Release all packets */
4300 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4301 
4302 		/* Reset queue */
4303 		txq_pcpu->count = 0;
4304 		txq_pcpu->txq_put_index = 0;
4305 		txq_pcpu->txq_get_index = 0;
4306 	}
4307 }
4308 
4309 /* Cleanup all Tx queues */
4310 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4311 {
4312 	struct mvpp2_tx_queue *txq;
4313 	int queue;
4314 	u32 val;
4315 
4316 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4317 
4318 	/* Reset Tx ports and delete Tx queues */
4319 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4320 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4321 
4322 	for (queue = 0; queue < txq_number; queue++) {
4323 		txq = port->txqs[queue];
4324 		mvpp2_txq_clean(port, txq);
4325 		mvpp2_txq_deinit(port, txq);
4326 	}
4327 
4328 	mvpp2_txq_sent_counter_clear(port);
4329 
4330 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4331 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4332 }
4333 
4334 /* Cleanup all Rx queues */
4335 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4336 {
4337 	int queue;
4338 
4339 	for (queue = 0; queue < rxq_number; queue++)
4340 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4341 }
4342 
4343 /* Init all Rx queues for port */
4344 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4345 {
4346 	int queue, err;
4347 
4348 	for (queue = 0; queue < rxq_number; queue++) {
4349 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4350 		if (err)
4351 			goto err_cleanup;
4352 	}
4353 	return 0;
4354 
4355 err_cleanup:
4356 	mvpp2_cleanup_rxqs(port);
4357 	return err;
4358 }
4359 
4360 /* Init all tx queues for port */
4361 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4362 {
4363 	struct mvpp2_tx_queue *txq;
4364 	int queue, err;
4365 
4366 	for (queue = 0; queue < txq_number; queue++) {
4367 		txq = port->txqs[queue];
4368 		err = mvpp2_txq_init(port, txq);
4369 		if (err)
4370 			goto err_cleanup;
4371 	}
4372 
4373 	mvpp2_txq_sent_counter_clear(port);
4374 	return 0;
4375 
4376 err_cleanup:
4377 	mvpp2_cleanup_txqs(port);
4378 	return err;
4379 }
4380 
4381 /* Adjust link */
4382 static void mvpp2_link_event(struct mvpp2_port *port)
4383 {
4384 	struct phy_device *phydev = port->phy_dev;
4385 	int status_change = 0;
4386 	u32 val;
4387 
4388 	if (phydev->link) {
4389 		if ((port->speed != phydev->speed) ||
4390 		    (port->duplex != phydev->duplex)) {
4391 			u32 val;
4392 
4393 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4394 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4395 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4396 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4397 				 MVPP2_GMAC_AN_SPEED_EN |
4398 				 MVPP2_GMAC_AN_DUPLEX_EN);
4399 
4400 			if (phydev->duplex)
4401 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4402 
4403 			if (phydev->speed == SPEED_1000)
4404 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4405 			else if (phydev->speed == SPEED_100)
4406 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4407 
4408 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4409 
4410 			port->duplex = phydev->duplex;
4411 			port->speed  = phydev->speed;
4412 		}
4413 	}
4414 
4415 	if (phydev->link != port->link) {
4416 		if (!phydev->link) {
4417 			port->duplex = -1;
4418 			port->speed = 0;
4419 		}
4420 
4421 		port->link = phydev->link;
4422 		status_change = 1;
4423 	}
4424 
4425 	if (status_change) {
4426 		if (phydev->link) {
4427 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4428 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4429 				MVPP2_GMAC_FORCE_LINK_DOWN);
4430 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4431 			mvpp2_egress_enable(port);
4432 			mvpp2_ingress_enable(port);
4433 		} else {
4434 			mvpp2_ingress_disable(port);
4435 			mvpp2_egress_disable(port);
4436 		}
4437 	}
4438 }
4439 
4440 /* Main RX/TX processing routines */
4441 
4442 /* Display more error info */
4443 static void mvpp2_rx_error(struct mvpp2_port *port,
4444 			   struct mvpp2_rx_desc *rx_desc)
4445 {
4446 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4447 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4448 
4449 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4450 	case MVPP2_RXD_ERR_CRC:
4451 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4452 			   status, sz);
4453 		break;
4454 	case MVPP2_RXD_ERR_OVERRUN:
4455 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4456 			   status, sz);
4457 		break;
4458 	case MVPP2_RXD_ERR_RESOURCE:
4459 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4460 			   status, sz);
4461 		break;
4462 	}
4463 }
4464 
4465 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4466 static int mvpp2_rx_refill(struct mvpp2_port *port,
4467 			   struct mvpp2_bm_pool *bm_pool,
4468 			   u32 bm, dma_addr_t dma_addr)
4469 {
4470 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4471 	return 0;
4472 }
4473 
4474 /* Set hw internals when starting port */
4475 static void mvpp2_start_dev(struct mvpp2_port *port)
4476 {
4477 	switch (port->phy_interface) {
4478 	case PHY_INTERFACE_MODE_RGMII:
4479 	case PHY_INTERFACE_MODE_RGMII_ID:
4480 	case PHY_INTERFACE_MODE_SGMII:
4481 		mvpp2_gmac_max_rx_size_set(port);
4482 	default:
4483 		break;
4484 	}
4485 
4486 	mvpp2_txp_max_tx_size_set(port);
4487 
4488 	if (port->priv->hw_version == MVPP21)
4489 		mvpp2_port_enable(port);
4490 	else
4491 		gop_port_enable(port, 1);
4492 }
4493 
4494 /* Set hw internals when stopping port */
4495 static void mvpp2_stop_dev(struct mvpp2_port *port)
4496 {
4497 	/* Stop new packets from arriving to RXQs */
4498 	mvpp2_ingress_disable(port);
4499 
4500 	mvpp2_egress_disable(port);
4501 
4502 	if (port->priv->hw_version == MVPP21)
4503 		mvpp2_port_disable(port);
4504 	else
4505 		gop_port_enable(port, 0);
4506 }
4507 
4508 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4509 {
4510 	struct phy_device *phy_dev;
4511 
4512 	if (!port->init || port->link == 0) {
4513 		phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
4514 				      port->phy_interface);
4515 		port->phy_dev = phy_dev;
4516 		if (!phy_dev) {
4517 			netdev_err(port->dev, "cannot connect to phy\n");
4518 			return -ENODEV;
4519 		}
4520 		phy_dev->supported &= PHY_GBIT_FEATURES;
4521 		phy_dev->advertising = phy_dev->supported;
4522 
4523 		port->phy_dev = phy_dev;
4524 		port->link    = 0;
4525 		port->duplex  = 0;
4526 		port->speed   = 0;
4527 
4528 		phy_config(phy_dev);
4529 		phy_startup(phy_dev);
4530 		if (!phy_dev->link) {
4531 			printf("%s: No link\n", phy_dev->dev->name);
4532 			return -1;
4533 		}
4534 
4535 		port->init = 1;
4536 	} else {
4537 		mvpp2_egress_enable(port);
4538 		mvpp2_ingress_enable(port);
4539 	}
4540 
4541 	return 0;
4542 }
4543 
4544 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4545 {
4546 	unsigned char mac_bcast[ETH_ALEN] = {
4547 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4548 	int err;
4549 
4550 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4551 	if (err) {
4552 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4553 		return err;
4554 	}
4555 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4556 				      port->dev_addr, true);
4557 	if (err) {
4558 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4559 		return err;
4560 	}
4561 	err = mvpp2_prs_def_flow(port);
4562 	if (err) {
4563 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4564 		return err;
4565 	}
4566 
4567 	/* Allocate the Rx/Tx queues */
4568 	err = mvpp2_setup_rxqs(port);
4569 	if (err) {
4570 		netdev_err(port->dev, "cannot allocate Rx queues\n");
4571 		return err;
4572 	}
4573 
4574 	err = mvpp2_setup_txqs(port);
4575 	if (err) {
4576 		netdev_err(port->dev, "cannot allocate Tx queues\n");
4577 		return err;
4578 	}
4579 
4580 	if (port->phy_node) {
4581 		err = mvpp2_phy_connect(dev, port);
4582 		if (err < 0)
4583 			return err;
4584 
4585 		mvpp2_link_event(port);
4586 	} else {
4587 		mvpp2_egress_enable(port);
4588 		mvpp2_ingress_enable(port);
4589 	}
4590 
4591 	mvpp2_start_dev(port);
4592 
4593 	return 0;
4594 }
4595 
4596 /* No Device ops here in U-Boot */
4597 
4598 /* Driver initialization */
4599 
4600 static void mvpp2_port_power_up(struct mvpp2_port *port)
4601 {
4602 	struct mvpp2 *priv = port->priv;
4603 
4604 	/* On PPv2.2 the GoP / interface configuration has already been done */
4605 	if (priv->hw_version == MVPP21)
4606 		mvpp2_port_mii_set(port);
4607 	mvpp2_port_periodic_xon_disable(port);
4608 	if (priv->hw_version == MVPP21)
4609 		mvpp2_port_fc_adv_enable(port);
4610 	mvpp2_port_reset(port);
4611 }
4612 
4613 /* Initialize port HW */
4614 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4615 {
4616 	struct mvpp2 *priv = port->priv;
4617 	struct mvpp2_txq_pcpu *txq_pcpu;
4618 	int queue, cpu, err;
4619 
4620 	if (port->first_rxq + rxq_number >
4621 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4622 		return -EINVAL;
4623 
4624 	/* Disable port */
4625 	mvpp2_egress_disable(port);
4626 	if (priv->hw_version == MVPP21)
4627 		mvpp2_port_disable(port);
4628 	else
4629 		gop_port_enable(port, 0);
4630 
4631 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4632 				  GFP_KERNEL);
4633 	if (!port->txqs)
4634 		return -ENOMEM;
4635 
4636 	/* Associate physical Tx queues to this port and initialize.
4637 	 * The mapping is predefined.
4638 	 */
4639 	for (queue = 0; queue < txq_number; queue++) {
4640 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4641 		struct mvpp2_tx_queue *txq;
4642 
4643 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4644 		if (!txq)
4645 			return -ENOMEM;
4646 
4647 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4648 					 GFP_KERNEL);
4649 		if (!txq->pcpu)
4650 			return -ENOMEM;
4651 
4652 		txq->id = queue_phy_id;
4653 		txq->log_id = queue;
4654 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4655 		for_each_present_cpu(cpu) {
4656 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4657 			txq_pcpu->cpu = cpu;
4658 		}
4659 
4660 		port->txqs[queue] = txq;
4661 	}
4662 
4663 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4664 				  GFP_KERNEL);
4665 	if (!port->rxqs)
4666 		return -ENOMEM;
4667 
4668 	/* Allocate and initialize Rx queue for this port */
4669 	for (queue = 0; queue < rxq_number; queue++) {
4670 		struct mvpp2_rx_queue *rxq;
4671 
4672 		/* Map physical Rx queue to port's logical Rx queue */
4673 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4674 		if (!rxq)
4675 			return -ENOMEM;
4676 		/* Map this Rx queue to a physical queue */
4677 		rxq->id = port->first_rxq + queue;
4678 		rxq->port = port->id;
4679 		rxq->logic_rxq = queue;
4680 
4681 		port->rxqs[queue] = rxq;
4682 	}
4683 
4684 	/* Configure Rx queue group interrupt for this port */
4685 	if (priv->hw_version == MVPP21) {
4686 		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
4687 			    CONFIG_MV_ETH_RXQ);
4688 	} else {
4689 		u32 val;
4690 
4691 		val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
4692 		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
4693 
4694 		val = (CONFIG_MV_ETH_RXQ <<
4695 		       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
4696 		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
4697 	}
4698 
4699 	/* Create Rx descriptor rings */
4700 	for (queue = 0; queue < rxq_number; queue++) {
4701 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4702 
4703 		rxq->size = port->rx_ring_size;
4704 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4705 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4706 	}
4707 
4708 	mvpp2_ingress_disable(port);
4709 
4710 	/* Port default configuration */
4711 	mvpp2_defaults_set(port);
4712 
4713 	/* Port's classifier configuration */
4714 	mvpp2_cls_oversize_rxq_set(port);
4715 	mvpp2_cls_port_config(port);
4716 
4717 	/* Provide an initial Rx packet size */
4718 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4719 
4720 	/* Initialize pools for swf */
4721 	err = mvpp2_swf_bm_pool_init(port);
4722 	if (err)
4723 		return err;
4724 
4725 	return 0;
4726 }
4727 
4728 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4729 {
4730 	int port_node = dev_of_offset(dev);
4731 	const char *phy_mode_str;
4732 	int phy_node, mdio_off, cp_node;
4733 	u32 id;
4734 	u32 phyaddr = 0;
4735 	int phy_mode = -1;
4736 	u64 mdio_addr;
4737 
4738 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4739 
4740 	if (phy_node > 0) {
4741 		phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4742 		if (phyaddr < 0) {
4743 			dev_err(&pdev->dev, "could not find phy address\n");
4744 			return -1;
4745 		}
4746 		mdio_off = fdt_parent_offset(gd->fdt_blob, phy_node);
4747 
4748 		/* TODO: This WA for mdio issue. U-boot 2017 don't have
4749 		 * mdio driver and on MACHIATOBin board ports from CP1
4750 		 * connected to mdio on CP0.
4751 		 * WA is to get mdio address from phy handler parent
4752 		 * base address. WA should be removed after
4753 		 * mdio driver implementation.
4754 		 */
4755 		mdio_addr = fdtdec_get_uint(gd->fdt_blob,
4756 					    mdio_off, "reg", 0);
4757 
4758 		cp_node = fdt_parent_offset(gd->fdt_blob, mdio_off);
4759 		mdio_addr |= fdt_get_base_address((void *)gd->fdt_blob,
4760 						  cp_node);
4761 
4762 		port->priv->mdio_base = (void *)mdio_addr;
4763 
4764 		if (port->priv->mdio_base < 0) {
4765 			dev_err(&pdev->dev, "could not find mdio base address\n");
4766 			return -1;
4767 		}
4768 	} else {
4769 		phy_node = 0;
4770 	}
4771 
4772 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4773 	if (phy_mode_str)
4774 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4775 	if (phy_mode == -1) {
4776 		dev_err(&pdev->dev, "incorrect phy mode\n");
4777 		return -EINVAL;
4778 	}
4779 
4780 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4781 	if (id == -1) {
4782 		dev_err(&pdev->dev, "missing port-id value\n");
4783 		return -EINVAL;
4784 	}
4785 
4786 #ifdef CONFIG_DM_GPIO
4787 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
4788 			     &port->phy_reset_gpio, GPIOD_IS_OUT);
4789 	gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4790 			     &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4791 #endif
4792 
4793 	/*
4794 	 * ToDo:
4795 	 * Not sure if this DT property "phy-speed" will get accepted, so
4796 	 * this might change later
4797 	 */
4798 	/* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4799 	port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4800 					 "phy-speed", 1000);
4801 
4802 	port->id = id;
4803 	if (port->priv->hw_version == MVPP21)
4804 		port->first_rxq = port->id * rxq_number;
4805 	else
4806 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4807 	port->phy_node = phy_node;
4808 	port->phy_interface = phy_mode;
4809 	port->phyaddr = phyaddr;
4810 
4811 	return 0;
4812 }
4813 
4814 #ifdef CONFIG_DM_GPIO
4815 /* Port GPIO initialization */
4816 static void mvpp2_gpio_init(struct mvpp2_port *port)
4817 {
4818 	if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4819 		dm_gpio_set_value(&port->phy_reset_gpio, 0);
4820 		udelay(1000);
4821 		dm_gpio_set_value(&port->phy_reset_gpio, 1);
4822 	}
4823 
4824 	if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4825 		dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4826 }
4827 #endif
4828 
4829 /* Ports initialization */
4830 static int mvpp2_port_probe(struct udevice *dev,
4831 			    struct mvpp2_port *port,
4832 			    int port_node,
4833 			    struct mvpp2 *priv)
4834 {
4835 	int err;
4836 
4837 	port->tx_ring_size = MVPP2_MAX_TXD;
4838 	port->rx_ring_size = MVPP2_MAX_RXD;
4839 
4840 	err = mvpp2_port_init(dev, port);
4841 	if (err < 0) {
4842 		dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4843 		return err;
4844 	}
4845 	mvpp2_port_power_up(port);
4846 
4847 #ifdef CONFIG_DM_GPIO
4848 	mvpp2_gpio_init(port);
4849 #endif
4850 
4851 	priv->port_list[port->id] = port;
4852 	priv->num_ports++;
4853 	return 0;
4854 }
4855 
4856 /* Initialize decoding windows */
4857 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4858 				    struct mvpp2 *priv)
4859 {
4860 	u32 win_enable;
4861 	int i;
4862 
4863 	for (i = 0; i < 6; i++) {
4864 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4865 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4866 
4867 		if (i < 4)
4868 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4869 	}
4870 
4871 	win_enable = 0;
4872 
4873 	for (i = 0; i < dram->num_cs; i++) {
4874 		const struct mbus_dram_window *cs = dram->cs + i;
4875 
4876 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4877 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4878 			    dram->mbus_dram_target_id);
4879 
4880 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4881 			    (cs->size - 1) & 0xffff0000);
4882 
4883 		win_enable |= (1 << i);
4884 	}
4885 
4886 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4887 }
4888 
4889 /* Initialize Rx FIFO's */
4890 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4891 {
4892 	int port;
4893 
4894 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4895 		if (priv->hw_version == MVPP22) {
4896 			if (port == 0) {
4897 				mvpp2_write(priv,
4898 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4899 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4900 				mvpp2_write(priv,
4901 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4902 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4903 			} else if (port == 1) {
4904 				mvpp2_write(priv,
4905 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4906 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4907 				mvpp2_write(priv,
4908 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4909 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4910 			} else {
4911 				mvpp2_write(priv,
4912 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4913 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4914 				mvpp2_write(priv,
4915 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4916 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4917 			}
4918 		} else {
4919 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4920 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4921 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4922 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4923 		}
4924 	}
4925 
4926 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4927 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4928 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4929 }
4930 
4931 /* Initialize Tx FIFO's */
4932 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4933 {
4934 	int port, val;
4935 
4936 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4937 		/* Port 0 supports 10KB TX FIFO */
4938 		if (port == 0) {
4939 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4940 				MVPP22_TX_FIFO_SIZE_MASK;
4941 		} else {
4942 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4943 				MVPP22_TX_FIFO_SIZE_MASK;
4944 		}
4945 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4946 	}
4947 }
4948 
4949 static void mvpp2_axi_init(struct mvpp2 *priv)
4950 {
4951 	u32 val, rdval, wrval;
4952 
4953 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4954 
4955 	/* AXI Bridge Configuration */
4956 
4957 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4958 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4959 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4960 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4961 
4962 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4963 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4964 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4965 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4966 
4967 	/* BM */
4968 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4969 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4970 
4971 	/* Descriptors */
4972 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4973 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4974 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4975 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4976 
4977 	/* Buffer Data */
4978 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4979 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4980 
4981 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4982 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4983 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4984 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4985 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4986 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4987 
4988 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4989 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4990 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4991 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4992 
4993 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4994 
4995 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4996 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4997 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4998 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4999 
5000 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
5001 }
5002 
5003 /* Initialize network controller common part HW */
5004 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
5005 {
5006 	const struct mbus_dram_target_info *dram_target_info;
5007 	int err, i;
5008 	u32 val;
5009 
5010 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
5011 	if ((rxq_number > priv->max_port_rxqs) ||
5012 	    (txq_number > MVPP2_MAX_TXQ)) {
5013 		dev_err(&pdev->dev, "invalid queue size parameter\n");
5014 		return -EINVAL;
5015 	}
5016 
5017 	/* MBUS windows configuration */
5018 	dram_target_info = mvebu_mbus_dram_info();
5019 	if (dram_target_info)
5020 		mvpp2_conf_mbus_windows(dram_target_info, priv);
5021 
5022 	if (priv->hw_version == MVPP22)
5023 		mvpp2_axi_init(priv);
5024 
5025 	if (priv->hw_version == MVPP21) {
5026 		/* Disable HW PHY polling */
5027 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5028 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5029 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5030 	} else {
5031 		/* Enable HW PHY polling */
5032 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5033 		val |= MVPP22_SMI_POLLING_EN;
5034 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5035 	}
5036 
5037 	/* Allocate and initialize aggregated TXQs */
5038 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5039 				       sizeof(struct mvpp2_tx_queue),
5040 				       GFP_KERNEL);
5041 	if (!priv->aggr_txqs)
5042 		return -ENOMEM;
5043 
5044 	for_each_present_cpu(i) {
5045 		priv->aggr_txqs[i].id = i;
5046 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5047 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5048 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
5049 		if (err < 0)
5050 			return err;
5051 	}
5052 
5053 	/* Rx Fifo Init */
5054 	mvpp2_rx_fifo_init(priv);
5055 
5056 	/* Tx Fifo Init */
5057 	if (priv->hw_version == MVPP22)
5058 		mvpp2_tx_fifo_init(priv);
5059 
5060 	/* Reset Rx queue group interrupt configuration */
5061 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
5062 		if (priv->hw_version == MVPP21) {
5063 			mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
5064 				    CONFIG_MV_ETH_RXQ);
5065 			continue;
5066 		} else {
5067 			u32 val;
5068 
5069 			val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
5070 			mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
5071 
5072 			val = (CONFIG_MV_ETH_RXQ <<
5073 			       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
5074 			mvpp2_write(priv,
5075 				    MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
5076 		}
5077 	}
5078 
5079 	if (priv->hw_version == MVPP21)
5080 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5081 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5082 
5083 	/* Allow cache snoop when transmiting packets */
5084 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5085 
5086 	/* Buffer Manager initialization */
5087 	err = mvpp2_bm_init(dev, priv);
5088 	if (err < 0)
5089 		return err;
5090 
5091 	/* Parser default initialization */
5092 	err = mvpp2_prs_default_init(dev, priv);
5093 	if (err < 0)
5094 		return err;
5095 
5096 	/* Classifier default initialization */
5097 	mvpp2_cls_init(priv);
5098 
5099 	return 0;
5100 }
5101 
5102 /* SMI / MDIO functions */
5103 
5104 static int smi_wait_ready(struct mvpp2 *priv)
5105 {
5106 	u32 timeout = MVPP2_SMI_TIMEOUT;
5107 	u32 smi_reg;
5108 
5109 	/* wait till the SMI is not busy */
5110 	do {
5111 		/* read smi register */
5112 		smi_reg = readl(priv->mdio_base);
5113 		if (timeout-- == 0) {
5114 			printf("Error: SMI busy timeout\n");
5115 			return -EFAULT;
5116 		}
5117 	} while (smi_reg & MVPP2_SMI_BUSY);
5118 
5119 	return 0;
5120 }
5121 
5122 /*
5123  * mpp2_mdio_read - miiphy_read callback function.
5124  *
5125  * Returns 16bit phy register value, or 0xffff on error
5126  */
5127 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5128 {
5129 	struct mvpp2 *priv = bus->priv;
5130 	u32 smi_reg;
5131 	u32 timeout;
5132 
5133 	/* check parameters */
5134 	if (addr > MVPP2_PHY_ADDR_MASK) {
5135 		printf("Error: Invalid PHY address %d\n", addr);
5136 		return -EFAULT;
5137 	}
5138 
5139 	if (reg > MVPP2_PHY_REG_MASK) {
5140 		printf("Err: Invalid register offset %d\n", reg);
5141 		return -EFAULT;
5142 	}
5143 
5144 	/* wait till the SMI is not busy */
5145 	if (smi_wait_ready(priv) < 0)
5146 		return -EFAULT;
5147 
5148 	/* fill the phy address and regiser offset and read opcode */
5149 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5150 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
5151 		| MVPP2_SMI_OPCODE_READ;
5152 
5153 	/* write the smi register */
5154 	writel(smi_reg, priv->mdio_base);
5155 
5156 	/* wait till read value is ready */
5157 	timeout = MVPP2_SMI_TIMEOUT;
5158 
5159 	do {
5160 		/* read smi register */
5161 		smi_reg = readl(priv->mdio_base);
5162 		if (timeout-- == 0) {
5163 			printf("Err: SMI read ready timeout\n");
5164 			return -EFAULT;
5165 		}
5166 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
5167 
5168 	/* Wait for the data to update in the SMI register */
5169 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5170 		;
5171 
5172 	return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5173 }
5174 
5175 /*
5176  * mpp2_mdio_write - miiphy_write callback function.
5177  *
5178  * Returns 0 if write succeed, -EINVAL on bad parameters
5179  * -ETIME on timeout
5180  */
5181 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5182 			   u16 value)
5183 {
5184 	struct mvpp2 *priv = bus->priv;
5185 	u32 smi_reg;
5186 
5187 	/* check parameters */
5188 	if (addr > MVPP2_PHY_ADDR_MASK) {
5189 		printf("Error: Invalid PHY address %d\n", addr);
5190 		return -EFAULT;
5191 	}
5192 
5193 	if (reg > MVPP2_PHY_REG_MASK) {
5194 		printf("Err: Invalid register offset %d\n", reg);
5195 		return -EFAULT;
5196 	}
5197 
5198 	/* wait till the SMI is not busy */
5199 	if (smi_wait_ready(priv) < 0)
5200 		return -EFAULT;
5201 
5202 	/* fill the phy addr and reg offset and write opcode and data */
5203 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
5204 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5205 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
5206 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5207 
5208 	/* write the smi register */
5209 	writel(smi_reg, priv->mdio_base);
5210 
5211 	return 0;
5212 }
5213 
5214 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5215 {
5216 	struct mvpp2_port *port = dev_get_priv(dev);
5217 	struct mvpp2_rx_desc *rx_desc;
5218 	struct mvpp2_bm_pool *bm_pool;
5219 	dma_addr_t dma_addr;
5220 	u32 bm, rx_status;
5221 	int pool, rx_bytes, err;
5222 	int rx_received;
5223 	struct mvpp2_rx_queue *rxq;
5224 	u32 cause_rx_tx, cause_rx, cause_misc;
5225 	u8 *data;
5226 
5227 	cause_rx_tx = mvpp2_read(port->priv,
5228 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5229 	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5230 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5231 	if (!cause_rx_tx && !cause_misc)
5232 		return 0;
5233 
5234 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5235 
5236 	/* Process RX packets */
5237 	cause_rx |= port->pending_cause_rx;
5238 	rxq = mvpp2_get_rx_queue(port, cause_rx);
5239 
5240 	/* Get number of received packets and clamp the to-do */
5241 	rx_received = mvpp2_rxq_received(port, rxq->id);
5242 
5243 	/* Return if no packets are received */
5244 	if (!rx_received)
5245 		return 0;
5246 
5247 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5248 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5249 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5250 	rx_bytes -= MVPP2_MH_SIZE;
5251 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5252 
5253 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5254 	pool = mvpp2_bm_cookie_pool_get(bm);
5255 	bm_pool = &port->priv->bm_pools[pool];
5256 
5257 	/* In case of an error, release the requested buffer pointer
5258 	 * to the Buffer Manager. This request process is controlled
5259 	 * by the hardware, and the information about the buffer is
5260 	 * comprised by the RX descriptor.
5261 	 */
5262 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5263 		mvpp2_rx_error(port, rx_desc);
5264 		/* Return the buffer to the pool */
5265 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5266 		return 0;
5267 	}
5268 
5269 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5270 	if (err) {
5271 		netdev_err(port->dev, "failed to refill BM pools\n");
5272 		return 0;
5273 	}
5274 
5275 	/* Update Rx queue management counters */
5276 	mb();
5277 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5278 
5279 	/* give packet to stack - skip on first n bytes */
5280 	data = (u8 *)dma_addr + 2 + 32;
5281 
5282 	if (rx_bytes <= 0)
5283 		return 0;
5284 
5285 	/*
5286 	 * No cache invalidation needed here, since the rx_buffer's are
5287 	 * located in a uncached memory region
5288 	 */
5289 	*packetp = data;
5290 
5291 	return rx_bytes;
5292 }
5293 
5294 /* Drain Txq */
5295 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5296 			    int enable)
5297 {
5298 	u32 val;
5299 
5300 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5301 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
5302 	if (enable)
5303 		val |= MVPP2_TXQ_DRAIN_EN_MASK;
5304 	else
5305 		val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5306 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
5307 }
5308 
5309 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5310 {
5311 	struct mvpp2_port *port = dev_get_priv(dev);
5312 	struct mvpp2_tx_queue *txq, *aggr_txq;
5313 	struct mvpp2_tx_desc *tx_desc;
5314 	int tx_done;
5315 	int timeout;
5316 
5317 	txq = port->txqs[0];
5318 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5319 
5320 	/* Get a descriptor for the first part of the packet */
5321 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5322 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5323 	mvpp2_txdesc_size_set(port, tx_desc, length);
5324 	mvpp2_txdesc_offset_set(port, tx_desc,
5325 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5326 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5327 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5328 	/* First and Last descriptor */
5329 	mvpp2_txdesc_cmd_set(port, tx_desc,
5330 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5331 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5332 
5333 	/* Flush tx data */
5334 	flush_dcache_range((unsigned long)packet,
5335 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5336 
5337 	/* Enable transmit */
5338 	mb();
5339 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5340 
5341 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5342 
5343 	timeout = 0;
5344 	do {
5345 		if (timeout++ > 10000) {
5346 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5347 			return 0;
5348 		}
5349 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5350 	} while (tx_done);
5351 
5352 	/* Enable TXQ drain */
5353 	mvpp2_txq_drain(port, txq, 1);
5354 
5355 	timeout = 0;
5356 	do {
5357 		if (timeout++ > 10000) {
5358 			printf("timeout: packet not sent\n");
5359 			return 0;
5360 		}
5361 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5362 	} while (!tx_done);
5363 
5364 	/* Disable TXQ drain */
5365 	mvpp2_txq_drain(port, txq, 0);
5366 
5367 	return 0;
5368 }
5369 
5370 static int mvpp2_start(struct udevice *dev)
5371 {
5372 	struct eth_pdata *pdata = dev_get_platdata(dev);
5373 	struct mvpp2_port *port = dev_get_priv(dev);
5374 
5375 	/* Load current MAC address */
5376 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5377 
5378 	/* Reconfigure parser accept the original MAC address */
5379 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5380 
5381 	switch (port->phy_interface) {
5382 	case PHY_INTERFACE_MODE_RGMII:
5383 	case PHY_INTERFACE_MODE_RGMII_ID:
5384 	case PHY_INTERFACE_MODE_SGMII:
5385 		mvpp2_port_power_up(port);
5386 	default:
5387 		break;
5388 	}
5389 
5390 	mvpp2_open(dev, port);
5391 
5392 	return 0;
5393 }
5394 
5395 static void mvpp2_stop(struct udevice *dev)
5396 {
5397 	struct mvpp2_port *port = dev_get_priv(dev);
5398 
5399 	mvpp2_stop_dev(port);
5400 	mvpp2_cleanup_rxqs(port);
5401 	mvpp2_cleanup_txqs(port);
5402 }
5403 
5404 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5405 {
5406 	writel(port->phyaddr, port->priv->iface_base +
5407 	       MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5408 
5409 	return 0;
5410 }
5411 
5412 static int mvpp2_base_probe(struct udevice *dev)
5413 {
5414 	struct mvpp2 *priv = dev_get_priv(dev);
5415 	struct mii_dev *bus;
5416 	void *bd_space;
5417 	u32 size = 0;
5418 	int i;
5419 
5420 	/* Save hw-version */
5421 	priv->hw_version = dev_get_driver_data(dev);
5422 
5423 	/*
5424 	 * U-Boot special buffer handling:
5425 	 *
5426 	 * Allocate buffer area for descs and rx_buffers. This is only
5427 	 * done once for all interfaces. As only one interface can
5428 	 * be active. Make this area DMA-safe by disabling the D-cache
5429 	 */
5430 
5431 	/* Align buffer area for descs and rx_buffers to 1MiB */
5432 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5433 	mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5434 					BD_SPACE, DCACHE_OFF);
5435 
5436 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5437 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5438 
5439 	buffer_loc.tx_descs =
5440 		(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5441 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5442 
5443 	buffer_loc.rx_descs =
5444 		(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5445 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5446 
5447 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5448 		buffer_loc.bm_pool[i] =
5449 			(unsigned long *)((unsigned long)bd_space + size);
5450 		if (priv->hw_version == MVPP21)
5451 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5452 		else
5453 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5454 	}
5455 
5456 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5457 		buffer_loc.rx_buffer[i] =
5458 			(unsigned long *)((unsigned long)bd_space + size);
5459 		size += RX_BUFFER_SIZE;
5460 	}
5461 
5462 	/* Clear the complete area so that all descriptors are cleared */
5463 	memset(bd_space, 0, size);
5464 
5465 	/* Save base addresses for later use */
5466 	priv->base = (void *)devfdt_get_addr_index(dev, 0);
5467 	if (IS_ERR(priv->base))
5468 		return PTR_ERR(priv->base);
5469 
5470 	if (priv->hw_version == MVPP21) {
5471 		priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5472 		if (IS_ERR(priv->lms_base))
5473 			return PTR_ERR(priv->lms_base);
5474 
5475 		priv->mdio_base = priv->lms_base + MVPP21_SMI;
5476 	} else {
5477 		priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5478 		if (IS_ERR(priv->iface_base))
5479 			return PTR_ERR(priv->iface_base);
5480 
5481 		priv->mdio_base = priv->iface_base + MVPP22_SMI;
5482 
5483 		/* Store common base addresses for all ports */
5484 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5485 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5486 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5487 	}
5488 
5489 	if (priv->hw_version == MVPP21)
5490 		priv->max_port_rxqs = 8;
5491 	else
5492 		priv->max_port_rxqs = 32;
5493 
5494 	/* Finally create and register the MDIO bus driver */
5495 	bus = mdio_alloc();
5496 	if (!bus) {
5497 		printf("Failed to allocate MDIO bus\n");
5498 		return -ENOMEM;
5499 	}
5500 
5501 	bus->read = mpp2_mdio_read;
5502 	bus->write = mpp2_mdio_write;
5503 	snprintf(bus->name, sizeof(bus->name), dev->name);
5504 	bus->priv = (void *)priv;
5505 	priv->bus = bus;
5506 
5507 	return mdio_register(bus);
5508 }
5509 
5510 static int mvpp2_probe(struct udevice *dev)
5511 {
5512 	struct mvpp2_port *port = dev_get_priv(dev);
5513 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5514 	int err;
5515 
5516 	/* Only call the probe function for the parent once */
5517 	if (!priv->probe_done)
5518 		err = mvpp2_base_probe(dev->parent);
5519 
5520 	port->priv = dev_get_priv(dev->parent);
5521 
5522 	err = phy_info_parse(dev, port);
5523 	if (err)
5524 		return err;
5525 
5526 	/*
5527 	 * We need the port specific io base addresses at this stage, since
5528 	 * gop_port_init() accesses these registers
5529 	 */
5530 	if (priv->hw_version == MVPP21) {
5531 		int priv_common_regs_num = 2;
5532 
5533 		port->base = (void __iomem *)devfdt_get_addr_index(
5534 			dev->parent, priv_common_regs_num + port->id);
5535 		if (IS_ERR(port->base))
5536 			return PTR_ERR(port->base);
5537 	} else {
5538 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5539 					      "gop-port-id", -1);
5540 		if (port->id == -1) {
5541 			dev_err(&pdev->dev, "missing gop-port-id value\n");
5542 			return -EINVAL;
5543 		}
5544 
5545 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5546 			port->gop_id * MVPP22_PORT_OFFSET;
5547 
5548 		/* Set phy address of the port */
5549 		if(port->phy_node)
5550 			mvpp22_smi_phy_addr_cfg(port);
5551 
5552 		/* GoP Init */
5553 		gop_port_init(port);
5554 	}
5555 
5556 	if (!priv->probe_done) {
5557 		/* Initialize network controller */
5558 		err = mvpp2_init(dev, priv);
5559 		if (err < 0) {
5560 			dev_err(&pdev->dev, "failed to initialize controller\n");
5561 			return err;
5562 		}
5563 		priv->num_ports = 0;
5564 		priv->probe_done = 1;
5565 	}
5566 
5567 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5568 	if (err)
5569 		return err;
5570 
5571 	if (priv->hw_version == MVPP22) {
5572 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5573 							   port->phy_interface);
5574 
5575 		/* Netcomplex configurations for all ports */
5576 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5577 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5578 	}
5579 
5580 	return 0;
5581 }
5582 
5583 /*
5584  * Empty BM pool and stop its activity before the OS is started
5585  */
5586 static int mvpp2_remove(struct udevice *dev)
5587 {
5588 	struct mvpp2_port *port = dev_get_priv(dev);
5589 	struct mvpp2 *priv = port->priv;
5590 	int i;
5591 
5592 	priv->num_ports--;
5593 
5594 	if (priv->num_ports)
5595 		return 0;
5596 
5597 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5598 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5599 
5600 	return 0;
5601 }
5602 
5603 static const struct eth_ops mvpp2_ops = {
5604 	.start		= mvpp2_start,
5605 	.send		= mvpp2_send,
5606 	.recv		= mvpp2_recv,
5607 	.stop		= mvpp2_stop,
5608 };
5609 
5610 static struct driver mvpp2_driver = {
5611 	.name	= "mvpp2",
5612 	.id	= UCLASS_ETH,
5613 	.probe	= mvpp2_probe,
5614 	.remove = mvpp2_remove,
5615 	.ops	= &mvpp2_ops,
5616 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
5617 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5618 	.flags	= DM_FLAG_ACTIVE_DMA,
5619 };
5620 
5621 /*
5622  * Use a MISC device to bind the n instances (child nodes) of the
5623  * network base controller in UCLASS_ETH.
5624  */
5625 static int mvpp2_base_bind(struct udevice *parent)
5626 {
5627 	const void *blob = gd->fdt_blob;
5628 	int node = dev_of_offset(parent);
5629 	struct uclass_driver *drv;
5630 	struct udevice *dev;
5631 	struct eth_pdata *plat;
5632 	char *name;
5633 	int subnode;
5634 	u32 id;
5635 	int base_id_add;
5636 
5637 	/* Lookup eth driver */
5638 	drv = lists_uclass_lookup(UCLASS_ETH);
5639 	if (!drv) {
5640 		puts("Cannot find eth driver\n");
5641 		return -ENOENT;
5642 	}
5643 
5644 	base_id_add = base_id;
5645 
5646 	fdt_for_each_subnode(subnode, blob, node) {
5647 		/* Increment base_id for all subnodes, also the disabled ones */
5648 		base_id++;
5649 
5650 		/* Skip disabled ports */
5651 		if (!fdtdec_get_is_enabled(blob, subnode))
5652 			continue;
5653 
5654 		plat = calloc(1, sizeof(*plat));
5655 		if (!plat)
5656 			return -ENOMEM;
5657 
5658 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5659 		id += base_id_add;
5660 
5661 		name = calloc(1, 16);
5662 		sprintf(name, "mvpp2-%d", id);
5663 
5664 		/* Create child device UCLASS_ETH and bind it */
5665 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5666 		dev_set_of_offset(dev, subnode);
5667 	}
5668 
5669 	return 0;
5670 }
5671 
5672 static const struct udevice_id mvpp2_ids[] = {
5673 	{
5674 		.compatible = "marvell,armada-375-pp2",
5675 		.data = MVPP21,
5676 	},
5677 	{
5678 		.compatible = "marvell,armada-7k-pp22",
5679 		.data = MVPP22,
5680 	},
5681 	{ }
5682 };
5683 
5684 U_BOOT_DRIVER(mvpp2_base) = {
5685 	.name	= "mvpp2_base",
5686 	.id	= UCLASS_MISC,
5687 	.of_match = mvpp2_ids,
5688 	.bind	= mvpp2_base_bind,
5689 	.priv_auto_alloc_size = sizeof(struct mvpp2),
5690 };
5691