xref: /rk3399_rockchip-uboot/drivers/net/mvpp2.c (revision 2fe23044cd7e8145dfd995d76cd6b991ad3da2a1)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...)		\
38 	printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 
46 #define ETH_ALEN	6		/* Octets in one ethernet addr	*/
47 
48 #define __verify_pcpu_ptr(ptr)						\
49 do {									\
50 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
51 	(void)__vpp_verify;						\
52 } while (0)
53 
54 #define VERIFY_PERCPU_PTR(__p)						\
55 ({									\
56 	__verify_pcpu_ptr(__p);						\
57 	(typeof(*(__p)) __kernel __force *)(__p);			\
58 })
59 
60 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id()	0
62 #define num_present_cpus()	1
63 #define for_each_present_cpu(cpu)			\
64 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
65 
66 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67 
68 #define CONFIG_NR_CPUS		1
69 #define ETH_HLEN		ETHER_HDR_SIZE	/* Total octets in header */
70 
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP			(2 + ETH_HLEN + 4 + 32)
73 #define MTU			1500
74 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75 
76 #define MVPP2_SMI_TIMEOUT			10000
77 
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
82 #define MVPP2_RX_FIFO_INIT_REG			0x64
83 
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
86 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
87 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
89 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
90 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
91 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
92 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
93 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
94 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
95 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
96 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
97 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
98 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
99 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
100 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
101 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
102 
103 /* Parser Registers */
104 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
105 #define     MVPP2_PRS_PORT_LU_MAX		0xf
106 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
107 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
108 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
109 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
110 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
111 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
112 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
113 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
114 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
115 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
116 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
117 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
118 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
119 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
120 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
121 
122 /* Classifier Registers */
123 #define MVPP2_CLS_MODE_REG			0x1800
124 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
125 #define MVPP2_CLS_PORT_WAY_REG			0x1810
126 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
127 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
128 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
129 #define MVPP2_CLS_LKP_TBL_REG			0x1818
130 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
131 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
132 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
133 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
134 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
135 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
137 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
138 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
140 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
141 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
142 
143 /* Descriptor Manager Top Registers */
144 #define MVPP2_RXQ_NUM_REG			0x2040
145 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
146 #define     MVPP22_DESC_ADDR_OFFS		8
147 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
148 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
150 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
151 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
152 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
153 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
154 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
155 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
156 #define MVPP2_RXQ_THRESH_REG			0x204c
157 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
158 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
159 #define MVPP2_RXQ_INDEX_REG			0x2050
160 #define MVPP2_TXQ_NUM_REG			0x2080
161 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
162 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
163 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
164 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
165 #define MVPP2_TXQ_THRESH_REG			0x2094
166 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
167 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
168 #define MVPP2_TXQ_INDEX_REG			0x2098
169 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
170 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
171 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
172 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
173 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
174 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
175 #define MVPP2_TXQ_PENDING_REG			0x20a0
176 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
177 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
178 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
179 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
180 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
181 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
182 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
183 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
184 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
185 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
186 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
188 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
190 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
192 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
194 
195 /* MBUS bridge registers */
196 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
197 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
198 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
199 #define MVPP2_BASE_ADDR_ENABLE			0x4060
200 
201 /* AXI Bridge Registers */
202 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
203 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
210 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
211 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
212 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
213 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
214 
215 /* Values for AXI Bridge registers */
216 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
218 
219 #define MVPP22_AXI_CODE_CACHE_OFFS		0
220 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
221 
222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
225 
226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
228 
229 /* Interrupt Cause and Mask registers */
230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
232 
233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
237 
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
240 
241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
245 
246 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
247 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
248 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
250 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
251 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
252 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
253 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
254 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
255 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
256 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
257 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
258 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
259 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
260 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
261 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
262 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
263 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
264 
265 /* Buffer Manager registers */
266 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
267 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
268 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
269 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
270 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
271 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
273 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
276 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
277 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
278 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
279 #define     MVPP2_BM_START_MASK			BIT(0)
280 #define     MVPP2_BM_STOP_MASK			BIT(1)
281 #define     MVPP2_BM_STATE_MASK			BIT(4)
282 #define     MVPP2_BM_LOW_THRESH_OFFS		8
283 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
284 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
285 						MVPP2_BM_LOW_THRESH_OFFS)
286 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
287 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
288 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
289 						MVPP2_BM_HIGH_THRESH_OFFS)
290 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
291 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
292 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
293 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
294 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
295 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
296 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
297 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
298 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
299 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
300 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
301 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
302 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
303 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
304 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
305 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
306 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
307 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
308 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
309 #define MVPP21_BM_MC_RLS_REG			0x64c4
310 #define     MVPP2_BM_MC_ID_MASK			0xfff
311 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
312 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
313 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
314 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
315 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
316 #define MVPP22_BM_MC_RLS_REG			0x64d4
317 
318 /* TX Scheduler registers */
319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
320 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
321 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
322 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
323 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
324 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
325 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
326 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
327 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
328 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
329 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
330 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
332 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
333 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
334 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
335 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
336 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
338 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
340 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
341 
342 /* TX general registers */
343 #define MVPP2_TX_SNOOP_REG			0x8800
344 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
345 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
346 
347 /* LMS registers */
348 #define MVPP2_SRC_ADDR_MIDDLE			0x24
349 #define MVPP2_SRC_ADDR_HIGH			0x28
350 #define MVPP2_PHY_AN_CFG0_REG			0x34
351 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
353 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
354 
355 /* Per-port registers */
356 #define MVPP2_GMAC_CTRL_0_REG			0x0
357 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
358 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
359 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
360 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
361 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
362 #define MVPP2_GMAC_CTRL_1_REG			0x4
363 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
364 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
365 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
366 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
367 #define      MVPP2_GMAC_SA_LOW_OFFS		7
368 #define MVPP2_GMAC_CTRL_2_REG			0x8
369 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
370 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
371 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
372 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
373 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
374 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
375 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
376 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
377 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
378 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
379 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
380 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
381 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
382 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
383 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
384 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
385 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
386 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
387 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
388 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
390 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
391 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
392 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
393 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
394 #define MVPP2_GMAC_CTRL_4_REG			0x90
395 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
396 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
397 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
398 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
399 
400 /*
401  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
402  * relative to port->base.
403  */
404 
405 /* Port Mac Control0 */
406 #define MVPP22_XLG_CTRL0_REG			0x100
407 #define      MVPP22_XLG_PORT_EN			BIT(0)
408 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
409 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
410 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
411 /* Port Mac Control1 */
412 #define MVPP22_XLG_CTRL1_REG			0x104
413 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
414 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
415 /* Port Interrupt Mask */
416 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
417 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
418 /* Port Mac Control3 */
419 #define MVPP22_XLG_CTRL3_REG			0x11c
420 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
421 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
422 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
423 /* Port Mac Control4 */
424 #define MVPP22_XLG_CTRL4_REG			0x184
425 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
426 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
427 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
428 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
429 
430 /* XPCS registers */
431 
432 /* Global Configuration 0 */
433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
434 #define      MVPP22_XPCS_PCSRESET		BIT(0)
435 #define      MVPP22_XPCS_PCSMODE_OFFS		3
436 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
437 						 MVPP22_XPCS_PCSMODE_OFFS)
438 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
439 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
440 						 MVPP22_XPCS_LANEACTIVE_OFFS)
441 
442 /* MPCS registers */
443 
444 #define PCS40G_COMMON_CONTROL			0x14
445 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(1)
446 
447 #define PCS_CLOCK_RESET				0x14c
448 #define      TX_SD_CLK_RESET_MASK		BIT(0)
449 #define      RX_SD_CLK_RESET_MASK		BIT(1)
450 #define      MAC_CLK_RESET_MASK			BIT(2)
451 #define      CLK_DIVISION_RATIO_OFFS		4
452 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
453 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
454 
455 /* System Soft Reset 1 */
456 #define GOP_SOFT_RESET_1_REG			0x108
457 #define     NETC_GOP_SOFT_RESET_OFFS		6
458 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
459 						 NETC_GOP_SOFT_RESET_OFFS)
460 
461 /* Ports Control 0 */
462 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
463 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
464 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
465 						 NETC_BUS_WIDTH_SELECT_OFFS)
466 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
467 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
468 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
469 #define     NETC_CLK_DIV_PHASE_OFFS		31
470 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
471 /* Ports Control 1 */
472 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
473 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
474 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
475 						 NETC_PORTS_ACTIVE_OFFSET(p))
476 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
477 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
478 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
479 #define NETCOMP_CONTROL_0_REG			0x120
480 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
481 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
482 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
483 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
484 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
485 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
486 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
487 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
488 						 NETC_GBE_PORT1_MII_MODE_OFFS)
489 
490 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
491 #define      MVPP22_SMI_POLLING_EN		BIT(10)
492 
493 #define MVPP22_SMI_PHY_ADDR_REG(port)		(MVPP22_SMI + 0x04 + \
494 						 (0x4 * (port)))
495 
496 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
497 
498 /* Descriptor ring Macros */
499 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
500 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
501 
502 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
503 #define MVPP21_SMI				0x0054
504 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
505 #define MVPP22_SMI				0x1200
506 #define     MVPP2_PHY_REG_MASK			0x1f
507 /* SMI register fields */
508 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
509 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
510 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
511 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
512 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
513 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
514 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
515 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
516 
517 #define     MVPP2_PHY_ADDR_MASK			0x1f
518 #define     MVPP2_PHY_REG_MASK			0x1f
519 
520 /* Additional PPv2.2 offsets */
521 #define MVPP22_MPCS				0x007000
522 #define MVPP22_XPCS				0x007400
523 #define MVPP22_PORT_BASE			0x007e00
524 #define MVPP22_PORT_OFFSET			0x001000
525 #define MVPP22_RFU1				0x318000
526 
527 /* Maximum number of ports */
528 #define MVPP22_GOP_MAC_NUM			4
529 
530 /* Sets the field located at the specified in data */
531 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
532 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
533 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
534 
535 /* Net Complex */
536 enum mv_netc_topology {
537 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
538 	MV_NETC_GE_MAC3_SGMII		=	BIT(1),
539 	MV_NETC_GE_MAC3_RGMII		=	BIT(2),
540 };
541 
542 enum mv_netc_phase {
543 	MV_NETC_FIRST_PHASE,
544 	MV_NETC_SECOND_PHASE,
545 };
546 
547 enum mv_netc_sgmii_xmi_mode {
548 	MV_NETC_GBE_SGMII,
549 	MV_NETC_GBE_XMII,
550 };
551 
552 enum mv_netc_mii_mode {
553 	MV_NETC_GBE_RGMII,
554 	MV_NETC_GBE_MII,
555 };
556 
557 enum mv_netc_lanes {
558 	MV_NETC_LANE_23,
559 	MV_NETC_LANE_45,
560 };
561 
562 /* Various constants */
563 
564 /* Coalescing */
565 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
566 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
567 #define MVPP2_RX_COAL_PKTS		32
568 #define MVPP2_RX_COAL_USEC		100
569 
570 /* The two bytes Marvell header. Either contains a special value used
571  * by Marvell switches when a specific hardware mode is enabled (not
572  * supported by this driver) or is filled automatically by zeroes on
573  * the RX side. Those two bytes being at the front of the Ethernet
574  * header, they allow to have the IP header aligned on a 4 bytes
575  * boundary automatically: the hardware skips those two bytes on its
576  * own.
577  */
578 #define MVPP2_MH_SIZE			2
579 #define MVPP2_ETH_TYPE_LEN		2
580 #define MVPP2_PPPOE_HDR_SIZE		8
581 #define MVPP2_VLAN_TAG_LEN		4
582 
583 /* Lbtd 802.3 type */
584 #define MVPP2_IP_LBDT_TYPE		0xfffa
585 
586 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
587 #define MVPP2_TX_CSUM_MAX_SIZE		9800
588 
589 /* Timeout constants */
590 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
591 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
592 
593 #define MVPP2_TX_MTU_MAX		0x7ffff
594 
595 /* Maximum number of T-CONTs of PON port */
596 #define MVPP2_MAX_TCONT			16
597 
598 /* Maximum number of supported ports */
599 #define MVPP2_MAX_PORTS			4
600 
601 /* Maximum number of TXQs used by single port */
602 #define MVPP2_MAX_TXQ			8
603 
604 /* Default number of TXQs in use */
605 #define MVPP2_DEFAULT_TXQ		1
606 
607 /* Dfault number of RXQs in use */
608 #define MVPP2_DEFAULT_RXQ		1
609 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
610 
611 /* Max number of Rx descriptors */
612 #define MVPP2_MAX_RXD			16
613 
614 /* Max number of Tx descriptors */
615 #define MVPP2_MAX_TXD			16
616 
617 /* Amount of Tx descriptors that can be reserved at once by CPU */
618 #define MVPP2_CPU_DESC_CHUNK		64
619 
620 /* Max number of Tx descriptors in each aggregated queue */
621 #define MVPP2_AGGR_TXQ_SIZE		256
622 
623 /* Descriptor aligned size */
624 #define MVPP2_DESC_ALIGNED_SIZE		32
625 
626 /* Descriptor alignment mask */
627 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
628 
629 /* RX FIFO constants */
630 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
631 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
632 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
633 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
634 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
635 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
636 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
637 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
638 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
639 
640 /* TX general registers */
641 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
642 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
643 
644 /* TX FIFO constants */
645 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
646 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
647 
648 /* RX buffer constants */
649 #define MVPP2_SKB_SHINFO_SIZE \
650 	0
651 
652 #define MVPP2_RX_PKT_SIZE(mtu) \
653 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
654 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
655 
656 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
657 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
658 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
659 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
660 
661 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
662 
663 /* IPv6 max L3 address size */
664 #define MVPP2_MAX_L3_ADDR_SIZE		16
665 
666 /* Port flags */
667 #define MVPP2_F_LOOPBACK		BIT(0)
668 
669 /* Marvell tag types */
670 enum mvpp2_tag_type {
671 	MVPP2_TAG_TYPE_NONE = 0,
672 	MVPP2_TAG_TYPE_MH   = 1,
673 	MVPP2_TAG_TYPE_DSA  = 2,
674 	MVPP2_TAG_TYPE_EDSA = 3,
675 	MVPP2_TAG_TYPE_VLAN = 4,
676 	MVPP2_TAG_TYPE_LAST = 5
677 };
678 
679 /* Parser constants */
680 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
681 #define MVPP2_PRS_TCAM_WORDS		6
682 #define MVPP2_PRS_SRAM_WORDS		4
683 #define MVPP2_PRS_FLOW_ID_SIZE		64
684 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
685 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
686 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
687 #define MVPP2_PRS_IPV4_HEAD		0x40
688 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
689 #define MVPP2_PRS_IPV4_MC		0xe0
690 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
691 #define MVPP2_PRS_IPV4_BC_MASK		0xff
692 #define MVPP2_PRS_IPV4_IHL		0x5
693 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
694 #define MVPP2_PRS_IPV6_MC		0xff
695 #define MVPP2_PRS_IPV6_MC_MASK		0xff
696 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
697 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
698 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
699 #define MVPP2_PRS_DBL_VLANS_MAX		100
700 
701 /* Tcam structure:
702  * - lookup ID - 4 bits
703  * - port ID - 1 byte
704  * - additional information - 1 byte
705  * - header data - 8 bytes
706  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
707  */
708 #define MVPP2_PRS_AI_BITS			8
709 #define MVPP2_PRS_PORT_MASK			0xff
710 #define MVPP2_PRS_LU_MASK			0xf
711 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
712 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
713 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
714 					      (((offs) * 2) - ((offs) % 2)  + 2)
715 #define MVPP2_PRS_TCAM_AI_BYTE			16
716 #define MVPP2_PRS_TCAM_PORT_BYTE		17
717 #define MVPP2_PRS_TCAM_LU_BYTE			20
718 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
719 #define MVPP2_PRS_TCAM_INV_WORD			5
720 /* Tcam entries ID */
721 #define MVPP2_PE_DROP_ALL		0
722 #define MVPP2_PE_FIRST_FREE_TID		1
723 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
724 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
725 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
726 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
727 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
728 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
729 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
730 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
731 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
732 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
733 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
734 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
735 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
736 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
737 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
738 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
739 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
740 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
741 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
742 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
743 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
744 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
745 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
746 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
747 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
748 
749 /* Sram structure
750  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
751  */
752 #define MVPP2_PRS_SRAM_RI_OFFS			0
753 #define MVPP2_PRS_SRAM_RI_WORD			0
754 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
755 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
756 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
757 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
758 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
759 #define MVPP2_PRS_SRAM_UDF_OFFS			73
760 #define MVPP2_PRS_SRAM_UDF_BITS			8
761 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
762 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
763 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
764 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
765 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
766 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
767 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
768 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
772 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
773 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
778 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
779 #define MVPP2_PRS_SRAM_AI_OFFS			90
780 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
781 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
782 #define MVPP2_PRS_SRAM_AI_MASK			0xff
783 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
784 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
785 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
786 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
787 
788 /* Sram result info bits assignment */
789 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
790 #define MVPP2_PRS_RI_DSA_MASK			0x2
791 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
792 #define MVPP2_PRS_RI_VLAN_NONE			0x0
793 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
794 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
795 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
796 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
797 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
798 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
799 #define MVPP2_PRS_RI_L2_UCAST			0x0
800 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
801 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
802 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
803 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
804 #define MVPP2_PRS_RI_L3_UN			0x0
805 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
806 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
807 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
808 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
809 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
810 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
811 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
812 #define MVPP2_PRS_RI_L3_UCAST			0x0
813 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
814 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
815 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
816 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
817 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
818 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
819 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
820 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
821 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
822 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
823 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
824 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
825 
826 /* Sram additional info bits assignment */
827 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
828 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
829 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
830 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
831 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
832 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
833 #define MVPP2_PRS_SINGLE_VLAN_AI		0
834 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
835 
836 /* DSA/EDSA type */
837 #define MVPP2_PRS_TAGGED		true
838 #define MVPP2_PRS_UNTAGGED		false
839 #define MVPP2_PRS_EDSA			true
840 #define MVPP2_PRS_DSA			false
841 
842 /* MAC entries, shadow udf */
843 enum mvpp2_prs_udf {
844 	MVPP2_PRS_UDF_MAC_DEF,
845 	MVPP2_PRS_UDF_MAC_RANGE,
846 	MVPP2_PRS_UDF_L2_DEF,
847 	MVPP2_PRS_UDF_L2_DEF_COPY,
848 	MVPP2_PRS_UDF_L2_USER,
849 };
850 
851 /* Lookup ID */
852 enum mvpp2_prs_lookup {
853 	MVPP2_PRS_LU_MH,
854 	MVPP2_PRS_LU_MAC,
855 	MVPP2_PRS_LU_DSA,
856 	MVPP2_PRS_LU_VLAN,
857 	MVPP2_PRS_LU_L2,
858 	MVPP2_PRS_LU_PPPOE,
859 	MVPP2_PRS_LU_IP4,
860 	MVPP2_PRS_LU_IP6,
861 	MVPP2_PRS_LU_FLOWS,
862 	MVPP2_PRS_LU_LAST,
863 };
864 
865 /* L3 cast enum */
866 enum mvpp2_prs_l3_cast {
867 	MVPP2_PRS_L3_UNI_CAST,
868 	MVPP2_PRS_L3_MULTI_CAST,
869 	MVPP2_PRS_L3_BROAD_CAST
870 };
871 
872 /* Classifier constants */
873 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
874 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
875 #define MVPP2_CLS_LKP_TBL_SIZE		64
876 
877 /* BM constants */
878 #define MVPP2_BM_POOLS_NUM		1
879 #define MVPP2_BM_LONG_BUF_NUM		16
880 #define MVPP2_BM_SHORT_BUF_NUM		16
881 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
882 #define MVPP2_BM_POOL_PTR_ALIGN		128
883 #define MVPP2_BM_SWF_LONG_POOL(port)	0
884 
885 /* BM cookie (32 bits) definition */
886 #define MVPP2_BM_COOKIE_POOL_OFFS	8
887 #define MVPP2_BM_COOKIE_CPU_OFFS	24
888 
889 /* BM short pool packet size
890  * These value assure that for SWF the total number
891  * of bytes allocated for each buffer will be 512
892  */
893 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
894 
895 enum mvpp2_bm_type {
896 	MVPP2_BM_FREE,
897 	MVPP2_BM_SWF_LONG,
898 	MVPP2_BM_SWF_SHORT
899 };
900 
901 /* Definitions */
902 
903 /* Shared Packet Processor resources */
904 struct mvpp2 {
905 	/* Shared registers' base addresses */
906 	void __iomem *base;
907 	void __iomem *lms_base;
908 	void __iomem *iface_base;
909 	void __iomem *mdio_base;
910 
911 	void __iomem *mpcs_base;
912 	void __iomem *xpcs_base;
913 	void __iomem *rfu1_base;
914 
915 	u32 netc_config;
916 
917 	/* List of pointers to port structures */
918 	struct mvpp2_port **port_list;
919 
920 	/* Aggregated TXQs */
921 	struct mvpp2_tx_queue *aggr_txqs;
922 
923 	/* BM pools */
924 	struct mvpp2_bm_pool *bm_pools;
925 
926 	/* PRS shadow table */
927 	struct mvpp2_prs_shadow *prs_shadow;
928 	/* PRS auxiliary table for double vlan entries control */
929 	bool *prs_double_vlans;
930 
931 	/* Tclk value */
932 	u32 tclk;
933 
934 	/* HW version */
935 	enum { MVPP21, MVPP22 } hw_version;
936 
937 	/* Maximum number of RXQs per port */
938 	unsigned int max_port_rxqs;
939 
940 	struct mii_dev *bus;
941 
942 	int probe_done;
943 };
944 
945 struct mvpp2_pcpu_stats {
946 	u64	rx_packets;
947 	u64	rx_bytes;
948 	u64	tx_packets;
949 	u64	tx_bytes;
950 };
951 
952 struct mvpp2_port {
953 	u8 id;
954 
955 	/* Index of the port from the "group of ports" complex point
956 	 * of view
957 	 */
958 	int gop_id;
959 
960 	int irq;
961 
962 	struct mvpp2 *priv;
963 
964 	/* Per-port registers' base address */
965 	void __iomem *base;
966 
967 	struct mvpp2_rx_queue **rxqs;
968 	struct mvpp2_tx_queue **txqs;
969 
970 	int pkt_size;
971 
972 	u32 pending_cause_rx;
973 
974 	/* Per-CPU port control */
975 	struct mvpp2_port_pcpu __percpu *pcpu;
976 
977 	/* Flags */
978 	unsigned long flags;
979 
980 	u16 tx_ring_size;
981 	u16 rx_ring_size;
982 	struct mvpp2_pcpu_stats __percpu *stats;
983 
984 	struct phy_device *phy_dev;
985 	phy_interface_t phy_interface;
986 	int phy_node;
987 	int phyaddr;
988 	int init;
989 	unsigned int link;
990 	unsigned int duplex;
991 	unsigned int speed;
992 
993 	unsigned int phy_speed;		/* SGMII 1Gbps vs 2.5Gbps */
994 
995 	struct mvpp2_bm_pool *pool_long;
996 	struct mvpp2_bm_pool *pool_short;
997 
998 	/* Index of first port's physical RXQ */
999 	u8 first_rxq;
1000 
1001 	u8 dev_addr[ETH_ALEN];
1002 };
1003 
1004 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1005  * layout of the transmit and reception DMA descriptors, and their
1006  * layout is therefore defined by the hardware design
1007  */
1008 
1009 #define MVPP2_TXD_L3_OFF_SHIFT		0
1010 #define MVPP2_TXD_IP_HLEN_SHIFT		8
1011 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
1012 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
1013 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
1014 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
1015 #define MVPP2_TXD_L4_UDP		BIT(24)
1016 #define MVPP2_TXD_L3_IP6		BIT(26)
1017 #define MVPP2_TXD_L_DESC		BIT(28)
1018 #define MVPP2_TXD_F_DESC		BIT(29)
1019 
1020 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1021 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1022 #define MVPP2_RXD_ERR_CRC		0x0
1023 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1024 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1025 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1026 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1027 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1028 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1029 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1030 #define MVPP2_RXD_L4_TCP		BIT(25)
1031 #define MVPP2_RXD_L4_UDP		BIT(26)
1032 #define MVPP2_RXD_L3_IP4		BIT(28)
1033 #define MVPP2_RXD_L3_IP6		BIT(30)
1034 #define MVPP2_RXD_BUF_HDR		BIT(31)
1035 
1036 /* HW TX descriptor for PPv2.1 */
1037 struct mvpp21_tx_desc {
1038 	u32 command;		/* Options used by HW for packet transmitting.*/
1039 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1040 	u8  phys_txq;		/* destination queue ID			*/
1041 	u16 data_size;		/* data size of transmitted packet in bytes */
1042 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1043 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1044 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1045 	u32 reserved2;		/* reserved (for future use)		*/
1046 };
1047 
1048 /* HW RX descriptor for PPv2.1 */
1049 struct mvpp21_rx_desc {
1050 	u32 status;		/* info about received packet		*/
1051 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1052 	u16 data_size;		/* size of received packet in bytes	*/
1053 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1054 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1055 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1056 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1057 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1058 	u8  reserved5;
1059 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1060 	u32 reserved7;		/* flow_id (for future use, PnC) */
1061 	u32 reserved8;
1062 };
1063 
1064 /* HW TX descriptor for PPv2.2 */
1065 struct mvpp22_tx_desc {
1066 	u32 command;
1067 	u8  packet_offset;
1068 	u8  phys_txq;
1069 	u16 data_size;
1070 	u64 reserved1;
1071 	u64 buf_dma_addr_ptp;
1072 	u64 buf_cookie_misc;
1073 };
1074 
1075 /* HW RX descriptor for PPv2.2 */
1076 struct mvpp22_rx_desc {
1077 	u32 status;
1078 	u16 reserved1;
1079 	u16 data_size;
1080 	u32 reserved2;
1081 	u32 reserved3;
1082 	u64 buf_dma_addr_key_hash;
1083 	u64 buf_cookie_misc;
1084 };
1085 
1086 /* Opaque type used by the driver to manipulate the HW TX and RX
1087  * descriptors
1088  */
1089 struct mvpp2_tx_desc {
1090 	union {
1091 		struct mvpp21_tx_desc pp21;
1092 		struct mvpp22_tx_desc pp22;
1093 	};
1094 };
1095 
1096 struct mvpp2_rx_desc {
1097 	union {
1098 		struct mvpp21_rx_desc pp21;
1099 		struct mvpp22_rx_desc pp22;
1100 	};
1101 };
1102 
1103 /* Per-CPU Tx queue control */
1104 struct mvpp2_txq_pcpu {
1105 	int cpu;
1106 
1107 	/* Number of Tx DMA descriptors in the descriptor ring */
1108 	int size;
1109 
1110 	/* Number of currently used Tx DMA descriptor in the
1111 	 * descriptor ring
1112 	 */
1113 	int count;
1114 
1115 	/* Number of Tx DMA descriptors reserved for each CPU */
1116 	int reserved_num;
1117 
1118 	/* Index of last TX DMA descriptor that was inserted */
1119 	int txq_put_index;
1120 
1121 	/* Index of the TX DMA descriptor to be cleaned up */
1122 	int txq_get_index;
1123 };
1124 
1125 struct mvpp2_tx_queue {
1126 	/* Physical number of this Tx queue */
1127 	u8 id;
1128 
1129 	/* Logical number of this Tx queue */
1130 	u8 log_id;
1131 
1132 	/* Number of Tx DMA descriptors in the descriptor ring */
1133 	int size;
1134 
1135 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1136 	int count;
1137 
1138 	/* Per-CPU control of physical Tx queues */
1139 	struct mvpp2_txq_pcpu __percpu *pcpu;
1140 
1141 	u32 done_pkts_coal;
1142 
1143 	/* Virtual address of thex Tx DMA descriptors array */
1144 	struct mvpp2_tx_desc *descs;
1145 
1146 	/* DMA address of the Tx DMA descriptors array */
1147 	dma_addr_t descs_dma;
1148 
1149 	/* Index of the last Tx DMA descriptor */
1150 	int last_desc;
1151 
1152 	/* Index of the next Tx DMA descriptor to process */
1153 	int next_desc_to_proc;
1154 };
1155 
1156 struct mvpp2_rx_queue {
1157 	/* RX queue number, in the range 0-31 for physical RXQs */
1158 	u8 id;
1159 
1160 	/* Num of rx descriptors in the rx descriptor ring */
1161 	int size;
1162 
1163 	u32 pkts_coal;
1164 	u32 time_coal;
1165 
1166 	/* Virtual address of the RX DMA descriptors array */
1167 	struct mvpp2_rx_desc *descs;
1168 
1169 	/* DMA address of the RX DMA descriptors array */
1170 	dma_addr_t descs_dma;
1171 
1172 	/* Index of the last RX DMA descriptor */
1173 	int last_desc;
1174 
1175 	/* Index of the next RX DMA descriptor to process */
1176 	int next_desc_to_proc;
1177 
1178 	/* ID of port to which physical RXQ is mapped */
1179 	int port;
1180 
1181 	/* Port's logic RXQ number to which physical RXQ is mapped */
1182 	int logic_rxq;
1183 };
1184 
1185 union mvpp2_prs_tcam_entry {
1186 	u32 word[MVPP2_PRS_TCAM_WORDS];
1187 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1188 };
1189 
1190 union mvpp2_prs_sram_entry {
1191 	u32 word[MVPP2_PRS_SRAM_WORDS];
1192 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1193 };
1194 
1195 struct mvpp2_prs_entry {
1196 	u32 index;
1197 	union mvpp2_prs_tcam_entry tcam;
1198 	union mvpp2_prs_sram_entry sram;
1199 };
1200 
1201 struct mvpp2_prs_shadow {
1202 	bool valid;
1203 	bool finish;
1204 
1205 	/* Lookup ID */
1206 	int lu;
1207 
1208 	/* User defined offset */
1209 	int udf;
1210 
1211 	/* Result info */
1212 	u32 ri;
1213 	u32 ri_mask;
1214 };
1215 
1216 struct mvpp2_cls_flow_entry {
1217 	u32 index;
1218 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1219 };
1220 
1221 struct mvpp2_cls_lookup_entry {
1222 	u32 lkpid;
1223 	u32 way;
1224 	u32 data;
1225 };
1226 
1227 struct mvpp2_bm_pool {
1228 	/* Pool number in the range 0-7 */
1229 	int id;
1230 	enum mvpp2_bm_type type;
1231 
1232 	/* Buffer Pointers Pool External (BPPE) size */
1233 	int size;
1234 	/* Number of buffers for this pool */
1235 	int buf_num;
1236 	/* Pool buffer size */
1237 	int buf_size;
1238 	/* Packet size */
1239 	int pkt_size;
1240 
1241 	/* BPPE virtual base address */
1242 	unsigned long *virt_addr;
1243 	/* BPPE DMA base address */
1244 	dma_addr_t dma_addr;
1245 
1246 	/* Ports using BM pool */
1247 	u32 port_map;
1248 
1249 	/* Occupied buffers indicator */
1250 	int in_use_thresh;
1251 };
1252 
1253 /* Static declaractions */
1254 
1255 /* Number of RXQs used by single port */
1256 static int rxq_number = MVPP2_DEFAULT_RXQ;
1257 /* Number of TXQs used by single port */
1258 static int txq_number = MVPP2_DEFAULT_TXQ;
1259 
1260 static int base_id;
1261 
1262 #define MVPP2_DRIVER_NAME "mvpp2"
1263 #define MVPP2_DRIVER_VERSION "1.0"
1264 
1265 /*
1266  * U-Boot internal data, mostly uncached buffers for descriptors and data
1267  */
1268 struct buffer_location {
1269 	struct mvpp2_tx_desc *aggr_tx_descs;
1270 	struct mvpp2_tx_desc *tx_descs;
1271 	struct mvpp2_rx_desc *rx_descs;
1272 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1273 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1274 	int first_rxq;
1275 };
1276 
1277 /*
1278  * All 4 interfaces use the same global buffer, since only one interface
1279  * can be enabled at once
1280  */
1281 static struct buffer_location buffer_loc;
1282 
1283 /*
1284  * Page table entries are set to 1MB, or multiples of 1MB
1285  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1286  */
1287 #define BD_SPACE	(1 << 20)
1288 
1289 /* Utility/helper methods */
1290 
1291 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1292 {
1293 	writel(data, priv->base + offset);
1294 }
1295 
1296 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1297 {
1298 	return readl(priv->base + offset);
1299 }
1300 
1301 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1302 				      struct mvpp2_tx_desc *tx_desc,
1303 				      dma_addr_t dma_addr)
1304 {
1305 	if (port->priv->hw_version == MVPP21) {
1306 		tx_desc->pp21.buf_dma_addr = dma_addr;
1307 	} else {
1308 		u64 val = (u64)dma_addr;
1309 
1310 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1311 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1312 	}
1313 }
1314 
1315 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1316 				  struct mvpp2_tx_desc *tx_desc,
1317 				  size_t size)
1318 {
1319 	if (port->priv->hw_version == MVPP21)
1320 		tx_desc->pp21.data_size = size;
1321 	else
1322 		tx_desc->pp22.data_size = size;
1323 }
1324 
1325 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1326 				 struct mvpp2_tx_desc *tx_desc,
1327 				 unsigned int txq)
1328 {
1329 	if (port->priv->hw_version == MVPP21)
1330 		tx_desc->pp21.phys_txq = txq;
1331 	else
1332 		tx_desc->pp22.phys_txq = txq;
1333 }
1334 
1335 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1336 				 struct mvpp2_tx_desc *tx_desc,
1337 				 unsigned int command)
1338 {
1339 	if (port->priv->hw_version == MVPP21)
1340 		tx_desc->pp21.command = command;
1341 	else
1342 		tx_desc->pp22.command = command;
1343 }
1344 
1345 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1346 				    struct mvpp2_tx_desc *tx_desc,
1347 				    unsigned int offset)
1348 {
1349 	if (port->priv->hw_version == MVPP21)
1350 		tx_desc->pp21.packet_offset = offset;
1351 	else
1352 		tx_desc->pp22.packet_offset = offset;
1353 }
1354 
1355 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1356 					    struct mvpp2_rx_desc *rx_desc)
1357 {
1358 	if (port->priv->hw_version == MVPP21)
1359 		return rx_desc->pp21.buf_dma_addr;
1360 	else
1361 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1362 }
1363 
1364 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1365 					     struct mvpp2_rx_desc *rx_desc)
1366 {
1367 	if (port->priv->hw_version == MVPP21)
1368 		return rx_desc->pp21.buf_cookie;
1369 	else
1370 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1371 }
1372 
1373 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1374 				    struct mvpp2_rx_desc *rx_desc)
1375 {
1376 	if (port->priv->hw_version == MVPP21)
1377 		return rx_desc->pp21.data_size;
1378 	else
1379 		return rx_desc->pp22.data_size;
1380 }
1381 
1382 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1383 				   struct mvpp2_rx_desc *rx_desc)
1384 {
1385 	if (port->priv->hw_version == MVPP21)
1386 		return rx_desc->pp21.status;
1387 	else
1388 		return rx_desc->pp22.status;
1389 }
1390 
1391 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1392 {
1393 	txq_pcpu->txq_get_index++;
1394 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1395 		txq_pcpu->txq_get_index = 0;
1396 }
1397 
1398 /* Get number of physical egress port */
1399 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1400 {
1401 	return MVPP2_MAX_TCONT + port->id;
1402 }
1403 
1404 /* Get number of physical TXQ */
1405 static inline int mvpp2_txq_phys(int port, int txq)
1406 {
1407 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1408 }
1409 
1410 /* Parser configuration routines */
1411 
1412 /* Update parser tcam and sram hw entries */
1413 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1414 {
1415 	int i;
1416 
1417 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1418 		return -EINVAL;
1419 
1420 	/* Clear entry invalidation bit */
1421 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1422 
1423 	/* Write tcam index - indirect access */
1424 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1425 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1426 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1427 
1428 	/* Write sram index - indirect access */
1429 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1430 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1431 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1432 
1433 	return 0;
1434 }
1435 
1436 /* Read tcam entry from hw */
1437 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1438 {
1439 	int i;
1440 
1441 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1442 		return -EINVAL;
1443 
1444 	/* Write tcam index - indirect access */
1445 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1446 
1447 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1448 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1449 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1450 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1451 
1452 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1453 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1454 
1455 	/* Write sram index - indirect access */
1456 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1457 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1458 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1459 
1460 	return 0;
1461 }
1462 
1463 /* Invalidate tcam hw entry */
1464 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1465 {
1466 	/* Write index - indirect access */
1467 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1468 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1469 		    MVPP2_PRS_TCAM_INV_MASK);
1470 }
1471 
1472 /* Enable shadow table entry and set its lookup ID */
1473 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1474 {
1475 	priv->prs_shadow[index].valid = true;
1476 	priv->prs_shadow[index].lu = lu;
1477 }
1478 
1479 /* Update ri fields in shadow table entry */
1480 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1481 				    unsigned int ri, unsigned int ri_mask)
1482 {
1483 	priv->prs_shadow[index].ri_mask = ri_mask;
1484 	priv->prs_shadow[index].ri = ri;
1485 }
1486 
1487 /* Update lookup field in tcam sw entry */
1488 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1489 {
1490 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1491 
1492 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1493 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1494 }
1495 
1496 /* Update mask for single port in tcam sw entry */
1497 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1498 				    unsigned int port, bool add)
1499 {
1500 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1501 
1502 	if (add)
1503 		pe->tcam.byte[enable_off] &= ~(1 << port);
1504 	else
1505 		pe->tcam.byte[enable_off] |= 1 << port;
1506 }
1507 
1508 /* Update port map in tcam sw entry */
1509 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1510 					unsigned int ports)
1511 {
1512 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1513 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1514 
1515 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1516 	pe->tcam.byte[enable_off] &= ~port_mask;
1517 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1518 }
1519 
1520 /* Obtain port map from tcam sw entry */
1521 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1522 {
1523 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1524 
1525 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1526 }
1527 
1528 /* Set byte of data and its enable bits in tcam sw entry */
1529 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1530 					 unsigned int offs, unsigned char byte,
1531 					 unsigned char enable)
1532 {
1533 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1534 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1535 }
1536 
1537 /* Get byte of data and its enable bits from tcam sw entry */
1538 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1539 					 unsigned int offs, unsigned char *byte,
1540 					 unsigned char *enable)
1541 {
1542 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1543 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1544 }
1545 
1546 /* Set ethertype in tcam sw entry */
1547 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1548 				  unsigned short ethertype)
1549 {
1550 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1551 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1552 }
1553 
1554 /* Set bits in sram sw entry */
1555 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1556 				    int val)
1557 {
1558 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1559 }
1560 
1561 /* Clear bits in sram sw entry */
1562 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1563 				      int val)
1564 {
1565 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1566 }
1567 
1568 /* Update ri bits in sram sw entry */
1569 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1570 				     unsigned int bits, unsigned int mask)
1571 {
1572 	unsigned int i;
1573 
1574 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1575 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1576 
1577 		if (!(mask & BIT(i)))
1578 			continue;
1579 
1580 		if (bits & BIT(i))
1581 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1582 		else
1583 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1584 
1585 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1586 	}
1587 }
1588 
1589 /* Update ai bits in sram sw entry */
1590 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1591 				     unsigned int bits, unsigned int mask)
1592 {
1593 	unsigned int i;
1594 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1595 
1596 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1597 
1598 		if (!(mask & BIT(i)))
1599 			continue;
1600 
1601 		if (bits & BIT(i))
1602 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1603 		else
1604 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1605 
1606 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1607 	}
1608 }
1609 
1610 /* Read ai bits from sram sw entry */
1611 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1612 {
1613 	u8 bits;
1614 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1615 	int ai_en_off = ai_off + 1;
1616 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1617 
1618 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1619 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1620 
1621 	return bits;
1622 }
1623 
1624 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1625  * lookup interation
1626  */
1627 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1628 				       unsigned int lu)
1629 {
1630 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1631 
1632 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1633 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1634 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1635 }
1636 
1637 /* In the sram sw entry set sign and value of the next lookup offset
1638  * and the offset value generated to the classifier
1639  */
1640 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1641 				     unsigned int op)
1642 {
1643 	/* Set sign */
1644 	if (shift < 0) {
1645 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1646 		shift = 0 - shift;
1647 	} else {
1648 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1649 	}
1650 
1651 	/* Set value */
1652 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1653 							   (unsigned char)shift;
1654 
1655 	/* Reset and set operation */
1656 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1657 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1658 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1659 
1660 	/* Set base offset as current */
1661 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1662 }
1663 
1664 /* In the sram sw entry set sign and value of the user defined offset
1665  * generated to the classifier
1666  */
1667 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1668 				      unsigned int type, int offset,
1669 				      unsigned int op)
1670 {
1671 	/* Set sign */
1672 	if (offset < 0) {
1673 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1674 		offset = 0 - offset;
1675 	} else {
1676 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1677 	}
1678 
1679 	/* Set value */
1680 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1681 				  MVPP2_PRS_SRAM_UDF_MASK);
1682 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1683 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1684 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1685 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1686 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1687 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1688 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1689 
1690 	/* Set offset type */
1691 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1692 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1693 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1694 
1695 	/* Set offset operation */
1696 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1697 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1698 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1699 
1700 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1701 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1702 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1703 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1704 
1705 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1706 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1707 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1708 
1709 	/* Set base offset as current */
1710 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1711 }
1712 
1713 /* Find parser flow entry */
1714 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1715 {
1716 	struct mvpp2_prs_entry *pe;
1717 	int tid;
1718 
1719 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1720 	if (!pe)
1721 		return NULL;
1722 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1723 
1724 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1725 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1726 		u8 bits;
1727 
1728 		if (!priv->prs_shadow[tid].valid ||
1729 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1730 			continue;
1731 
1732 		pe->index = tid;
1733 		mvpp2_prs_hw_read(priv, pe);
1734 		bits = mvpp2_prs_sram_ai_get(pe);
1735 
1736 		/* Sram store classification lookup ID in AI bits [5:0] */
1737 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1738 			return pe;
1739 	}
1740 	kfree(pe);
1741 
1742 	return NULL;
1743 }
1744 
1745 /* Return first free tcam index, seeking from start to end */
1746 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1747 				     unsigned char end)
1748 {
1749 	int tid;
1750 
1751 	if (start > end)
1752 		swap(start, end);
1753 
1754 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1755 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1756 
1757 	for (tid = start; tid <= end; tid++) {
1758 		if (!priv->prs_shadow[tid].valid)
1759 			return tid;
1760 	}
1761 
1762 	return -EINVAL;
1763 }
1764 
1765 /* Enable/disable dropping all mac da's */
1766 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1767 {
1768 	struct mvpp2_prs_entry pe;
1769 
1770 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1771 		/* Entry exist - update port only */
1772 		pe.index = MVPP2_PE_DROP_ALL;
1773 		mvpp2_prs_hw_read(priv, &pe);
1774 	} else {
1775 		/* Entry doesn't exist - create new */
1776 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1777 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1778 		pe.index = MVPP2_PE_DROP_ALL;
1779 
1780 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1781 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1782 					 MVPP2_PRS_RI_DROP_MASK);
1783 
1784 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1785 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1786 
1787 		/* Update shadow table */
1788 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1789 
1790 		/* Mask all ports */
1791 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1792 	}
1793 
1794 	/* Update port mask */
1795 	mvpp2_prs_tcam_port_set(&pe, port, add);
1796 
1797 	mvpp2_prs_hw_write(priv, &pe);
1798 }
1799 
1800 /* Set port to promiscuous mode */
1801 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1802 {
1803 	struct mvpp2_prs_entry pe;
1804 
1805 	/* Promiscuous mode - Accept unknown packets */
1806 
1807 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1808 		/* Entry exist - update port only */
1809 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1810 		mvpp2_prs_hw_read(priv, &pe);
1811 	} else {
1812 		/* Entry doesn't exist - create new */
1813 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1814 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1815 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1816 
1817 		/* Continue - set next lookup */
1818 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1819 
1820 		/* Set result info bits */
1821 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1822 					 MVPP2_PRS_RI_L2_CAST_MASK);
1823 
1824 		/* Shift to ethertype */
1825 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1826 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1827 
1828 		/* Mask all ports */
1829 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1830 
1831 		/* Update shadow table */
1832 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1833 	}
1834 
1835 	/* Update port mask */
1836 	mvpp2_prs_tcam_port_set(&pe, port, add);
1837 
1838 	mvpp2_prs_hw_write(priv, &pe);
1839 }
1840 
1841 /* Accept multicast */
1842 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1843 				    bool add)
1844 {
1845 	struct mvpp2_prs_entry pe;
1846 	unsigned char da_mc;
1847 
1848 	/* Ethernet multicast address first byte is
1849 	 * 0x01 for IPv4 and 0x33 for IPv6
1850 	 */
1851 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1852 
1853 	if (priv->prs_shadow[index].valid) {
1854 		/* Entry exist - update port only */
1855 		pe.index = index;
1856 		mvpp2_prs_hw_read(priv, &pe);
1857 	} else {
1858 		/* Entry doesn't exist - create new */
1859 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1860 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1861 		pe.index = index;
1862 
1863 		/* Continue - set next lookup */
1864 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1865 
1866 		/* Set result info bits */
1867 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1868 					 MVPP2_PRS_RI_L2_CAST_MASK);
1869 
1870 		/* Update tcam entry data first byte */
1871 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1872 
1873 		/* Shift to ethertype */
1874 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1875 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1876 
1877 		/* Mask all ports */
1878 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1879 
1880 		/* Update shadow table */
1881 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1882 	}
1883 
1884 	/* Update port mask */
1885 	mvpp2_prs_tcam_port_set(&pe, port, add);
1886 
1887 	mvpp2_prs_hw_write(priv, &pe);
1888 }
1889 
1890 /* Parser per-port initialization */
1891 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1892 				   int lu_max, int offset)
1893 {
1894 	u32 val;
1895 
1896 	/* Set lookup ID */
1897 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1898 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1899 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1900 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1901 
1902 	/* Set maximum number of loops for packet received from port */
1903 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1904 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1905 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1906 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1907 
1908 	/* Set initial offset for packet header extraction for the first
1909 	 * searching loop
1910 	 */
1911 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1912 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1913 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1914 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1915 }
1916 
1917 /* Default flow entries initialization for all ports */
1918 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1919 {
1920 	struct mvpp2_prs_entry pe;
1921 	int port;
1922 
1923 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1924 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1925 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1926 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1927 
1928 		/* Mask all ports */
1929 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1930 
1931 		/* Set flow ID*/
1932 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1933 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1934 
1935 		/* Update shadow table and hw entry */
1936 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1937 		mvpp2_prs_hw_write(priv, &pe);
1938 	}
1939 }
1940 
1941 /* Set default entry for Marvell Header field */
1942 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1943 {
1944 	struct mvpp2_prs_entry pe;
1945 
1946 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1947 
1948 	pe.index = MVPP2_PE_MH_DEFAULT;
1949 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1950 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1951 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1952 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1953 
1954 	/* Unmask all ports */
1955 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1956 
1957 	/* Update shadow table and hw entry */
1958 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1959 	mvpp2_prs_hw_write(priv, &pe);
1960 }
1961 
1962 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1963  * multicast MAC addresses
1964  */
1965 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1966 {
1967 	struct mvpp2_prs_entry pe;
1968 
1969 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1970 
1971 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1972 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1973 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1974 
1975 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1976 				 MVPP2_PRS_RI_DROP_MASK);
1977 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1978 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1979 
1980 	/* Unmask all ports */
1981 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1982 
1983 	/* Update shadow table and hw entry */
1984 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1985 	mvpp2_prs_hw_write(priv, &pe);
1986 
1987 	/* place holders only - no ports */
1988 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1989 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1990 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1991 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1992 }
1993 
1994 /* Match basic ethertypes */
1995 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1996 {
1997 	struct mvpp2_prs_entry pe;
1998 	int tid;
1999 
2000 	/* Ethertype: PPPoE */
2001 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2002 					MVPP2_PE_LAST_FREE_TID);
2003 	if (tid < 0)
2004 		return tid;
2005 
2006 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2007 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2008 	pe.index = tid;
2009 
2010 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2011 
2012 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2013 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2014 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2015 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2016 				 MVPP2_PRS_RI_PPPOE_MASK);
2017 
2018 	/* Update shadow table and hw entry */
2019 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2020 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2021 	priv->prs_shadow[pe.index].finish = false;
2022 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2023 				MVPP2_PRS_RI_PPPOE_MASK);
2024 	mvpp2_prs_hw_write(priv, &pe);
2025 
2026 	/* Ethertype: ARP */
2027 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2028 					MVPP2_PE_LAST_FREE_TID);
2029 	if (tid < 0)
2030 		return tid;
2031 
2032 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2033 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2034 	pe.index = tid;
2035 
2036 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2037 
2038 	/* Generate flow in the next iteration*/
2039 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2040 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2041 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2042 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2043 	/* Set L3 offset */
2044 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2045 				  MVPP2_ETH_TYPE_LEN,
2046 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2047 
2048 	/* Update shadow table and hw entry */
2049 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2050 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2051 	priv->prs_shadow[pe.index].finish = true;
2052 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2053 				MVPP2_PRS_RI_L3_PROTO_MASK);
2054 	mvpp2_prs_hw_write(priv, &pe);
2055 
2056 	/* Ethertype: LBTD */
2057 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2058 					MVPP2_PE_LAST_FREE_TID);
2059 	if (tid < 0)
2060 		return tid;
2061 
2062 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2063 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2064 	pe.index = tid;
2065 
2066 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2067 
2068 	/* Generate flow in the next iteration*/
2069 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2070 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2071 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2072 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2073 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2074 				 MVPP2_PRS_RI_UDF3_MASK);
2075 	/* Set L3 offset */
2076 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2077 				  MVPP2_ETH_TYPE_LEN,
2078 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2079 
2080 	/* Update shadow table and hw entry */
2081 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2082 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2083 	priv->prs_shadow[pe.index].finish = true;
2084 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2085 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2086 				MVPP2_PRS_RI_CPU_CODE_MASK |
2087 				MVPP2_PRS_RI_UDF3_MASK);
2088 	mvpp2_prs_hw_write(priv, &pe);
2089 
2090 	/* Ethertype: IPv4 without options */
2091 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2092 					MVPP2_PE_LAST_FREE_TID);
2093 	if (tid < 0)
2094 		return tid;
2095 
2096 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2097 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2098 	pe.index = tid;
2099 
2100 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2101 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2102 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2103 				     MVPP2_PRS_IPV4_HEAD_MASK |
2104 				     MVPP2_PRS_IPV4_IHL_MASK);
2105 
2106 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2107 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2108 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2109 	/* Skip eth_type + 4 bytes of IP header */
2110 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2111 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2112 	/* Set L3 offset */
2113 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2114 				  MVPP2_ETH_TYPE_LEN,
2115 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2116 
2117 	/* Update shadow table and hw entry */
2118 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2119 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2120 	priv->prs_shadow[pe.index].finish = false;
2121 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2122 				MVPP2_PRS_RI_L3_PROTO_MASK);
2123 	mvpp2_prs_hw_write(priv, &pe);
2124 
2125 	/* Ethertype: IPv4 with options */
2126 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2127 					MVPP2_PE_LAST_FREE_TID);
2128 	if (tid < 0)
2129 		return tid;
2130 
2131 	pe.index = tid;
2132 
2133 	/* Clear tcam data before updating */
2134 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2135 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2136 
2137 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2138 				     MVPP2_PRS_IPV4_HEAD,
2139 				     MVPP2_PRS_IPV4_HEAD_MASK);
2140 
2141 	/* Clear ri before updating */
2142 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2143 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2144 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2145 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2146 
2147 	/* Update shadow table and hw entry */
2148 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2149 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2150 	priv->prs_shadow[pe.index].finish = false;
2151 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2152 				MVPP2_PRS_RI_L3_PROTO_MASK);
2153 	mvpp2_prs_hw_write(priv, &pe);
2154 
2155 	/* Ethertype: IPv6 without options */
2156 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2157 					MVPP2_PE_LAST_FREE_TID);
2158 	if (tid < 0)
2159 		return tid;
2160 
2161 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2162 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2163 	pe.index = tid;
2164 
2165 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2166 
2167 	/* Skip DIP of IPV6 header */
2168 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2169 				 MVPP2_MAX_L3_ADDR_SIZE,
2170 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2171 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2172 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2173 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2174 	/* Set L3 offset */
2175 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2176 				  MVPP2_ETH_TYPE_LEN,
2177 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2178 
2179 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2180 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2181 	priv->prs_shadow[pe.index].finish = false;
2182 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2183 				MVPP2_PRS_RI_L3_PROTO_MASK);
2184 	mvpp2_prs_hw_write(priv, &pe);
2185 
2186 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2187 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2188 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2189 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2190 
2191 	/* Unmask all ports */
2192 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2193 
2194 	/* Generate flow in the next iteration*/
2195 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2196 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2197 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2198 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2199 	/* Set L3 offset even it's unknown L3 */
2200 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2201 				  MVPP2_ETH_TYPE_LEN,
2202 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2203 
2204 	/* Update shadow table and hw entry */
2205 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2206 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2207 	priv->prs_shadow[pe.index].finish = true;
2208 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2209 				MVPP2_PRS_RI_L3_PROTO_MASK);
2210 	mvpp2_prs_hw_write(priv, &pe);
2211 
2212 	return 0;
2213 }
2214 
2215 /* Parser default initialization */
2216 static int mvpp2_prs_default_init(struct udevice *dev,
2217 				  struct mvpp2 *priv)
2218 {
2219 	int err, index, i;
2220 
2221 	/* Enable tcam table */
2222 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2223 
2224 	/* Clear all tcam and sram entries */
2225 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2226 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2227 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2228 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2229 
2230 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2231 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2232 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2233 	}
2234 
2235 	/* Invalidate all tcam entries */
2236 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2237 		mvpp2_prs_hw_inv(priv, index);
2238 
2239 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2240 					sizeof(struct mvpp2_prs_shadow),
2241 					GFP_KERNEL);
2242 	if (!priv->prs_shadow)
2243 		return -ENOMEM;
2244 
2245 	/* Always start from lookup = 0 */
2246 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2247 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2248 				       MVPP2_PRS_PORT_LU_MAX, 0);
2249 
2250 	mvpp2_prs_def_flow_init(priv);
2251 
2252 	mvpp2_prs_mh_init(priv);
2253 
2254 	mvpp2_prs_mac_init(priv);
2255 
2256 	err = mvpp2_prs_etype_init(priv);
2257 	if (err)
2258 		return err;
2259 
2260 	return 0;
2261 }
2262 
2263 /* Compare MAC DA with tcam entry data */
2264 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2265 				       const u8 *da, unsigned char *mask)
2266 {
2267 	unsigned char tcam_byte, tcam_mask;
2268 	int index;
2269 
2270 	for (index = 0; index < ETH_ALEN; index++) {
2271 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2272 		if (tcam_mask != mask[index])
2273 			return false;
2274 
2275 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2276 			return false;
2277 	}
2278 
2279 	return true;
2280 }
2281 
2282 /* Find tcam entry with matched pair <MAC DA, port> */
2283 static struct mvpp2_prs_entry *
2284 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2285 			    unsigned char *mask, int udf_type)
2286 {
2287 	struct mvpp2_prs_entry *pe;
2288 	int tid;
2289 
2290 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2291 	if (!pe)
2292 		return NULL;
2293 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2294 
2295 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2296 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2297 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2298 		unsigned int entry_pmap;
2299 
2300 		if (!priv->prs_shadow[tid].valid ||
2301 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2302 		    (priv->prs_shadow[tid].udf != udf_type))
2303 			continue;
2304 
2305 		pe->index = tid;
2306 		mvpp2_prs_hw_read(priv, pe);
2307 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2308 
2309 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2310 		    entry_pmap == pmap)
2311 			return pe;
2312 	}
2313 	kfree(pe);
2314 
2315 	return NULL;
2316 }
2317 
2318 /* Update parser's mac da entry */
2319 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2320 				   const u8 *da, bool add)
2321 {
2322 	struct mvpp2_prs_entry *pe;
2323 	unsigned int pmap, len, ri;
2324 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2325 	int tid;
2326 
2327 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2328 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2329 					 MVPP2_PRS_UDF_MAC_DEF);
2330 
2331 	/* No such entry */
2332 	if (!pe) {
2333 		if (!add)
2334 			return 0;
2335 
2336 		/* Create new TCAM entry */
2337 		/* Find first range mac entry*/
2338 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2339 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2340 			if (priv->prs_shadow[tid].valid &&
2341 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2342 			    (priv->prs_shadow[tid].udf ==
2343 						       MVPP2_PRS_UDF_MAC_RANGE))
2344 				break;
2345 
2346 		/* Go through the all entries from first to last */
2347 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2348 						tid - 1);
2349 		if (tid < 0)
2350 			return tid;
2351 
2352 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2353 		if (!pe)
2354 			return -1;
2355 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2356 		pe->index = tid;
2357 
2358 		/* Mask all ports */
2359 		mvpp2_prs_tcam_port_map_set(pe, 0);
2360 	}
2361 
2362 	/* Update port mask */
2363 	mvpp2_prs_tcam_port_set(pe, port, add);
2364 
2365 	/* Invalidate the entry if no ports are left enabled */
2366 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2367 	if (pmap == 0) {
2368 		if (add) {
2369 			kfree(pe);
2370 			return -1;
2371 		}
2372 		mvpp2_prs_hw_inv(priv, pe->index);
2373 		priv->prs_shadow[pe->index].valid = false;
2374 		kfree(pe);
2375 		return 0;
2376 	}
2377 
2378 	/* Continue - set next lookup */
2379 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2380 
2381 	/* Set match on DA */
2382 	len = ETH_ALEN;
2383 	while (len--)
2384 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2385 
2386 	/* Set result info bits */
2387 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2388 
2389 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2390 				 MVPP2_PRS_RI_MAC_ME_MASK);
2391 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2392 				MVPP2_PRS_RI_MAC_ME_MASK);
2393 
2394 	/* Shift to ethertype */
2395 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2396 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2397 
2398 	/* Update shadow table and hw entry */
2399 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2400 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2401 	mvpp2_prs_hw_write(priv, pe);
2402 
2403 	kfree(pe);
2404 
2405 	return 0;
2406 }
2407 
2408 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2409 {
2410 	int err;
2411 
2412 	/* Remove old parser entry */
2413 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2414 				      false);
2415 	if (err)
2416 		return err;
2417 
2418 	/* Add new parser entry */
2419 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2420 	if (err)
2421 		return err;
2422 
2423 	/* Set addr in the device */
2424 	memcpy(port->dev_addr, da, ETH_ALEN);
2425 
2426 	return 0;
2427 }
2428 
2429 /* Set prs flow for the port */
2430 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2431 {
2432 	struct mvpp2_prs_entry *pe;
2433 	int tid;
2434 
2435 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2436 
2437 	/* Such entry not exist */
2438 	if (!pe) {
2439 		/* Go through the all entires from last to first */
2440 		tid = mvpp2_prs_tcam_first_free(port->priv,
2441 						MVPP2_PE_LAST_FREE_TID,
2442 					       MVPP2_PE_FIRST_FREE_TID);
2443 		if (tid < 0)
2444 			return tid;
2445 
2446 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2447 		if (!pe)
2448 			return -ENOMEM;
2449 
2450 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2451 		pe->index = tid;
2452 
2453 		/* Set flow ID*/
2454 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2455 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2456 
2457 		/* Update shadow table */
2458 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2459 	}
2460 
2461 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2462 	mvpp2_prs_hw_write(port->priv, pe);
2463 	kfree(pe);
2464 
2465 	return 0;
2466 }
2467 
2468 /* Classifier configuration routines */
2469 
2470 /* Update classification flow table registers */
2471 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2472 				 struct mvpp2_cls_flow_entry *fe)
2473 {
2474 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2475 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2476 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2477 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2478 }
2479 
2480 /* Update classification lookup table register */
2481 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2482 				   struct mvpp2_cls_lookup_entry *le)
2483 {
2484 	u32 val;
2485 
2486 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2487 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2488 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2489 }
2490 
2491 /* Classifier default initialization */
2492 static void mvpp2_cls_init(struct mvpp2 *priv)
2493 {
2494 	struct mvpp2_cls_lookup_entry le;
2495 	struct mvpp2_cls_flow_entry fe;
2496 	int index;
2497 
2498 	/* Enable classifier */
2499 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2500 
2501 	/* Clear classifier flow table */
2502 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2503 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2504 		fe.index = index;
2505 		mvpp2_cls_flow_write(priv, &fe);
2506 	}
2507 
2508 	/* Clear classifier lookup table */
2509 	le.data = 0;
2510 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2511 		le.lkpid = index;
2512 		le.way = 0;
2513 		mvpp2_cls_lookup_write(priv, &le);
2514 
2515 		le.way = 1;
2516 		mvpp2_cls_lookup_write(priv, &le);
2517 	}
2518 }
2519 
2520 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2521 {
2522 	struct mvpp2_cls_lookup_entry le;
2523 	u32 val;
2524 
2525 	/* Set way for the port */
2526 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2527 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2528 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2529 
2530 	/* Pick the entry to be accessed in lookup ID decoding table
2531 	 * according to the way and lkpid.
2532 	 */
2533 	le.lkpid = port->id;
2534 	le.way = 0;
2535 	le.data = 0;
2536 
2537 	/* Set initial CPU queue for receiving packets */
2538 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2539 	le.data |= port->first_rxq;
2540 
2541 	/* Disable classification engines */
2542 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2543 
2544 	/* Update lookup ID table entry */
2545 	mvpp2_cls_lookup_write(port->priv, &le);
2546 }
2547 
2548 /* Set CPU queue number for oversize packets */
2549 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2550 {
2551 	u32 val;
2552 
2553 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2554 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2555 
2556 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2557 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2558 
2559 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2560 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2561 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2562 }
2563 
2564 /* Buffer Manager configuration routines */
2565 
2566 /* Create pool */
2567 static int mvpp2_bm_pool_create(struct udevice *dev,
2568 				struct mvpp2 *priv,
2569 				struct mvpp2_bm_pool *bm_pool, int size)
2570 {
2571 	u32 val;
2572 
2573 	/* Number of buffer pointers must be a multiple of 16, as per
2574 	 * hardware constraints
2575 	 */
2576 	if (!IS_ALIGNED(size, 16))
2577 		return -EINVAL;
2578 
2579 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2580 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2581 	if (!bm_pool->virt_addr)
2582 		return -ENOMEM;
2583 
2584 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2585 			MVPP2_BM_POOL_PTR_ALIGN)) {
2586 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2587 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2588 		return -ENOMEM;
2589 	}
2590 
2591 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2592 		    lower_32_bits(bm_pool->dma_addr));
2593 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2594 
2595 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2596 	val |= MVPP2_BM_START_MASK;
2597 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2598 
2599 	bm_pool->type = MVPP2_BM_FREE;
2600 	bm_pool->size = size;
2601 	bm_pool->pkt_size = 0;
2602 	bm_pool->buf_num = 0;
2603 
2604 	return 0;
2605 }
2606 
2607 /* Set pool buffer size */
2608 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2609 				      struct mvpp2_bm_pool *bm_pool,
2610 				      int buf_size)
2611 {
2612 	u32 val;
2613 
2614 	bm_pool->buf_size = buf_size;
2615 
2616 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2617 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2618 }
2619 
2620 /* Free all buffers from the pool */
2621 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2622 			       struct mvpp2_bm_pool *bm_pool)
2623 {
2624 	bm_pool->buf_num = 0;
2625 }
2626 
2627 /* Cleanup pool */
2628 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2629 				 struct mvpp2 *priv,
2630 				 struct mvpp2_bm_pool *bm_pool)
2631 {
2632 	u32 val;
2633 
2634 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2635 	if (bm_pool->buf_num) {
2636 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2637 		return 0;
2638 	}
2639 
2640 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2641 	val |= MVPP2_BM_STOP_MASK;
2642 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2643 
2644 	return 0;
2645 }
2646 
2647 static int mvpp2_bm_pools_init(struct udevice *dev,
2648 			       struct mvpp2 *priv)
2649 {
2650 	int i, err, size;
2651 	struct mvpp2_bm_pool *bm_pool;
2652 
2653 	/* Create all pools with maximum size */
2654 	size = MVPP2_BM_POOL_SIZE_MAX;
2655 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2656 		bm_pool = &priv->bm_pools[i];
2657 		bm_pool->id = i;
2658 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2659 		if (err)
2660 			goto err_unroll_pools;
2661 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2662 	}
2663 	return 0;
2664 
2665 err_unroll_pools:
2666 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2667 	for (i = i - 1; i >= 0; i--)
2668 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2669 	return err;
2670 }
2671 
2672 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2673 {
2674 	int i, err;
2675 
2676 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2677 		/* Mask BM all interrupts */
2678 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2679 		/* Clear BM cause register */
2680 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2681 	}
2682 
2683 	/* Allocate and initialize BM pools */
2684 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2685 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2686 	if (!priv->bm_pools)
2687 		return -ENOMEM;
2688 
2689 	err = mvpp2_bm_pools_init(dev, priv);
2690 	if (err < 0)
2691 		return err;
2692 	return 0;
2693 }
2694 
2695 /* Attach long pool to rxq */
2696 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2697 				    int lrxq, int long_pool)
2698 {
2699 	u32 val, mask;
2700 	int prxq;
2701 
2702 	/* Get queue physical ID */
2703 	prxq = port->rxqs[lrxq]->id;
2704 
2705 	if (port->priv->hw_version == MVPP21)
2706 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2707 	else
2708 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2709 
2710 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2711 	val &= ~mask;
2712 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2713 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2714 }
2715 
2716 /* Set pool number in a BM cookie */
2717 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2718 {
2719 	u32 bm;
2720 
2721 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2722 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2723 
2724 	return bm;
2725 }
2726 
2727 /* Get pool number from a BM cookie */
2728 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2729 {
2730 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2731 }
2732 
2733 /* Release buffer to BM */
2734 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2735 				     dma_addr_t buf_dma_addr,
2736 				     unsigned long buf_phys_addr)
2737 {
2738 	if (port->priv->hw_version == MVPP22) {
2739 		u32 val = 0;
2740 
2741 		if (sizeof(dma_addr_t) == 8)
2742 			val |= upper_32_bits(buf_dma_addr) &
2743 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2744 
2745 		if (sizeof(phys_addr_t) == 8)
2746 			val |= (upper_32_bits(buf_phys_addr)
2747 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2748 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2749 
2750 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2751 	}
2752 
2753 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2754 	 * returned in the "cookie" field of the RX
2755 	 * descriptor. Instead of storing the virtual address, we
2756 	 * store the physical address
2757 	 */
2758 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2759 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2760 }
2761 
2762 /* Refill BM pool */
2763 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2764 			      dma_addr_t dma_addr,
2765 			      phys_addr_t phys_addr)
2766 {
2767 	int pool = mvpp2_bm_cookie_pool_get(bm);
2768 
2769 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2770 }
2771 
2772 /* Allocate buffers for the pool */
2773 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2774 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2775 {
2776 	int i;
2777 
2778 	if (buf_num < 0 ||
2779 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2780 		netdev_err(port->dev,
2781 			   "cannot allocate %d buffers for pool %d\n",
2782 			   buf_num, bm_pool->id);
2783 		return 0;
2784 	}
2785 
2786 	for (i = 0; i < buf_num; i++) {
2787 		mvpp2_bm_pool_put(port, bm_pool->id,
2788 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2789 				  (unsigned long)buffer_loc.rx_buffer[i]);
2790 
2791 	}
2792 
2793 	/* Update BM driver with number of buffers added to pool */
2794 	bm_pool->buf_num += i;
2795 	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2796 
2797 	return i;
2798 }
2799 
2800 /* Notify the driver that BM pool is being used as specific type and return the
2801  * pool pointer on success
2802  */
2803 static struct mvpp2_bm_pool *
2804 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2805 		  int pkt_size)
2806 {
2807 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2808 	int num;
2809 
2810 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2811 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2812 		return NULL;
2813 	}
2814 
2815 	if (new_pool->type == MVPP2_BM_FREE)
2816 		new_pool->type = type;
2817 
2818 	/* Allocate buffers in case BM pool is used as long pool, but packet
2819 	 * size doesn't match MTU or BM pool hasn't being used yet
2820 	 */
2821 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2822 	    (new_pool->pkt_size == 0)) {
2823 		int pkts_num;
2824 
2825 		/* Set default buffer number or free all the buffers in case
2826 		 * the pool is not empty
2827 		 */
2828 		pkts_num = new_pool->buf_num;
2829 		if (pkts_num == 0)
2830 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2831 				   MVPP2_BM_LONG_BUF_NUM :
2832 				   MVPP2_BM_SHORT_BUF_NUM;
2833 		else
2834 			mvpp2_bm_bufs_free(NULL,
2835 					   port->priv, new_pool);
2836 
2837 		new_pool->pkt_size = pkt_size;
2838 
2839 		/* Allocate buffers for this pool */
2840 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2841 		if (num != pkts_num) {
2842 			dev_err(dev, "pool %d: %d of %d allocated\n",
2843 				new_pool->id, num, pkts_num);
2844 			return NULL;
2845 		}
2846 	}
2847 
2848 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2849 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2850 
2851 	return new_pool;
2852 }
2853 
2854 /* Initialize pools for swf */
2855 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2856 {
2857 	int rxq;
2858 
2859 	if (!port->pool_long) {
2860 		port->pool_long =
2861 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2862 					 MVPP2_BM_SWF_LONG,
2863 					 port->pkt_size);
2864 		if (!port->pool_long)
2865 			return -ENOMEM;
2866 
2867 		port->pool_long->port_map |= (1 << port->id);
2868 
2869 		for (rxq = 0; rxq < rxq_number; rxq++)
2870 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 /* Port configuration routines */
2877 
2878 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2879 {
2880 	u32 val;
2881 
2882 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2883 
2884 	switch (port->phy_interface) {
2885 	case PHY_INTERFACE_MODE_SGMII:
2886 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2887 		break;
2888 	case PHY_INTERFACE_MODE_RGMII:
2889 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2890 	default:
2891 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2892 	}
2893 
2894 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2895 }
2896 
2897 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2898 {
2899 	u32 val;
2900 
2901 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2902 	val |= MVPP2_GMAC_FC_ADV_EN;
2903 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2904 }
2905 
2906 static void mvpp2_port_enable(struct mvpp2_port *port)
2907 {
2908 	u32 val;
2909 
2910 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2911 	val |= MVPP2_GMAC_PORT_EN_MASK;
2912 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2913 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2914 }
2915 
2916 static void mvpp2_port_disable(struct mvpp2_port *port)
2917 {
2918 	u32 val;
2919 
2920 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2921 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2922 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2923 }
2924 
2925 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2926 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2927 {
2928 	u32 val;
2929 
2930 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2931 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2932 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2933 }
2934 
2935 /* Configure loopback port */
2936 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2937 {
2938 	u32 val;
2939 
2940 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2941 
2942 	if (port->speed == 1000)
2943 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2944 	else
2945 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2946 
2947 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2948 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2949 	else
2950 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2951 
2952 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2953 }
2954 
2955 static void mvpp2_port_reset(struct mvpp2_port *port)
2956 {
2957 	u32 val;
2958 
2959 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2960 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2961 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2962 
2963 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2964 	       MVPP2_GMAC_PORT_RESET_MASK)
2965 		continue;
2966 }
2967 
2968 /* Change maximum receive size of the port */
2969 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2970 {
2971 	u32 val;
2972 
2973 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2974 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2975 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2976 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2977 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2978 }
2979 
2980 /* PPv2.2 GoP/GMAC config */
2981 
2982 /* Set the MAC to reset or exit from reset */
2983 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2984 {
2985 	u32 val;
2986 
2987 	/* read - modify - write */
2988 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2989 	if (reset)
2990 		val |= MVPP2_GMAC_PORT_RESET_MASK;
2991 	else
2992 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
2993 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * gop_gpcs_mode_cfg
3000  *
3001  * Configure port to working with Gig PCS or don't.
3002  */
3003 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3004 {
3005 	u32 val;
3006 
3007 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3008 	if (en)
3009 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3010 	else
3011 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3012 	/* enable / disable PCS on this port */
3013 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3014 
3015 	return 0;
3016 }
3017 
3018 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3019 {
3020 	u32 val;
3021 
3022 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3023 	if (en)
3024 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3025 	else
3026 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3027 	/* enable / disable PCS on this port */
3028 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3029 
3030 	return 0;
3031 }
3032 
3033 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3034 {
3035 	u32 val, thresh;
3036 
3037 	/*
3038 	 * Configure minimal level of the Tx FIFO before the lower part
3039 	 * starts to read a packet
3040 	 */
3041 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3042 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3043 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3044 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3045 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3046 
3047 	/* Disable bypass of sync module */
3048 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3049 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3050 	/* configure DP clock select according to mode */
3051 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3052 	/* configure QSGMII bypass according to mode */
3053 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3054 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3055 
3056 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3057 	val |= MVPP2_GMAC_PORT_DIS_PADING_MASK;
3058 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3059 
3060 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3061 	/*
3062 	 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3063 	 * transceiver
3064 	 */
3065 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3066 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3067 
3068 	/* configure AN 0x9268 */
3069 	val = MVPP2_GMAC_EN_PCS_AN |
3070 		MVPP2_GMAC_AN_BYPASS_EN |
3071 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3072 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3073 		MVPP2_GMAC_FC_ADV_EN    |
3074 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3075 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3076 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3077 }
3078 
3079 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3080 {
3081 	u32 val, thresh;
3082 
3083 	/*
3084 	 * Configure minimal level of the Tx FIFO before the lower part
3085 	 * starts to read a packet
3086 	 */
3087 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3088 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3089 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3090 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3091 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3092 
3093 	/* Disable bypass of sync module */
3094 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3095 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3096 	/* configure DP clock select according to mode */
3097 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3098 	/* configure QSGMII bypass according to mode */
3099 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3100 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3101 
3102 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3103 	val |= MVPP2_GMAC_PORT_DIS_PADING_MASK;
3104 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3105 
3106 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3107 	/* configure GIG MAC to SGMII mode */
3108 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3109 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3110 
3111 	/* configure AN */
3112 	val = MVPP2_GMAC_EN_PCS_AN |
3113 		MVPP2_GMAC_AN_BYPASS_EN |
3114 		MVPP2_GMAC_AN_SPEED_EN  |
3115 		MVPP2_GMAC_EN_FC_AN     |
3116 		MVPP2_GMAC_AN_DUPLEX_EN |
3117 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3118 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3119 }
3120 
3121 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3122 {
3123 	u32 val, thresh;
3124 
3125 	/*
3126 	 * Configure minimal level of the Tx FIFO before the lower part
3127 	 * starts to read a packet
3128 	 */
3129 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3130 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3131 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3132 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3133 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3134 
3135 	/* Disable bypass of sync module */
3136 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3137 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3138 	/* configure DP clock select according to mode */
3139 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3140 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3141 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3142 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3143 
3144 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3145 	val &= ~MVPP2_GMAC_PORT_DIS_PADING_MASK;
3146 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3147 
3148 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3149 	/* configure GIG MAC to SGMII mode */
3150 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3151 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3152 
3153 	/* configure AN 0xb8e8 */
3154 	val = MVPP2_GMAC_AN_BYPASS_EN |
3155 		MVPP2_GMAC_AN_SPEED_EN   |
3156 		MVPP2_GMAC_EN_FC_AN      |
3157 		MVPP2_GMAC_AN_DUPLEX_EN  |
3158 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3159 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3160 }
3161 
3162 /* Set the internal mux's to the required MAC in the GOP */
3163 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3164 {
3165 	u32 val;
3166 
3167 	/* Set TX FIFO thresholds */
3168 	switch (port->phy_interface) {
3169 	case PHY_INTERFACE_MODE_SGMII:
3170 		if (port->phy_speed == 2500)
3171 			gop_gmac_sgmii2_5_cfg(port);
3172 		else
3173 			gop_gmac_sgmii_cfg(port);
3174 		break;
3175 
3176 	case PHY_INTERFACE_MODE_RGMII:
3177 	case PHY_INTERFACE_MODE_RGMII_ID:
3178 		gop_gmac_rgmii_cfg(port);
3179 		break;
3180 
3181 	default:
3182 		return -1;
3183 	}
3184 
3185 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3186 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3187 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3188 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3189 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3190 
3191 	/* PeriodicXonEn disable */
3192 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3193 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3194 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3195 
3196 	return 0;
3197 }
3198 
3199 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3200 {
3201 	u32 val;
3202 
3203 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3204 	if (port->gop_id > 0)
3205 		return;
3206 
3207 	/* configure 1Gig MAC mode */
3208 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3209 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3210 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3211 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3212 }
3213 
3214 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3215 {
3216 	u32 val;
3217 
3218 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3219 	if (reset)
3220 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3221 	else
3222 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3223 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3224 
3225 	return 0;
3226 }
3227 
3228 /* Set the internal mux's to the required PCS in the PI */
3229 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3230 {
3231 	u32 val;
3232 	int lane;
3233 
3234 	switch (num_of_lanes) {
3235 	case 1:
3236 		lane = 0;
3237 		break;
3238 	case 2:
3239 		lane = 1;
3240 		break;
3241 	case 4:
3242 		lane = 2;
3243 		break;
3244 	default:
3245 		return -1;
3246 	}
3247 
3248 	/* configure XG MAC mode */
3249 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3250 	val &= ~MVPP22_XPCS_PCSMODE_OFFS;
3251 	val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3252 	val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3253 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3254 
3255 	return 0;
3256 }
3257 
3258 static int gop_mpcs_mode(struct mvpp2_port *port)
3259 {
3260 	u32 val;
3261 
3262 	/* configure PCS40G COMMON CONTROL */
3263 	val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3264 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3265 	writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3266 
3267 	/* configure PCS CLOCK RESET */
3268 	val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3269 	val &= ~CLK_DIVISION_RATIO_MASK;
3270 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3271 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3272 
3273 	val &= ~CLK_DIV_PHASE_SET_MASK;
3274 	val |= MAC_CLK_RESET_MASK;
3275 	val |= RX_SD_CLK_RESET_MASK;
3276 	val |= TX_SD_CLK_RESET_MASK;
3277 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3278 
3279 	return 0;
3280 }
3281 
3282 /* Set the internal mux's to the required MAC in the GOP */
3283 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3284 {
3285 	u32 val;
3286 
3287 	/* configure 10G MAC mode */
3288 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3289 	val |= MVPP22_XLG_RX_FC_EN;
3290 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3291 
3292 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3293 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3294 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3295 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3296 
3297 	/* read - modify - write */
3298 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3299 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3300 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3301 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3302 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3303 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3304 
3305 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3306 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3307 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3308 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3309 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3310 
3311 	/* unmask link change interrupt */
3312 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3313 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3314 	val |= 1; /* unmask summary bit */
3315 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3316 
3317 	return 0;
3318 }
3319 
3320 /* Set PCS to reset or exit from reset */
3321 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3322 {
3323 	u32 val;
3324 
3325 	/* read - modify - write */
3326 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3327 	if (reset)
3328 		val &= ~MVPP22_XPCS_PCSRESET;
3329 	else
3330 		val |= MVPP22_XPCS_PCSRESET;
3331 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3332 
3333 	return 0;
3334 }
3335 
3336 /* Set the MAC to reset or exit from reset */
3337 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3338 {
3339 	u32 val;
3340 
3341 	/* read - modify - write */
3342 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3343 	if (reset)
3344 		val &= ~MVPP22_XLG_MAC_RESETN;
3345 	else
3346 		val |= MVPP22_XLG_MAC_RESETN;
3347 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3348 
3349 	return 0;
3350 }
3351 
3352 /*
3353  * gop_port_init
3354  *
3355  * Init physical port. Configures the port mode and all it's elements
3356  * accordingly.
3357  * Does not verify that the selected mode/port number is valid at the
3358  * core level.
3359  */
3360 static int gop_port_init(struct mvpp2_port *port)
3361 {
3362 	int mac_num = port->gop_id;
3363 	int num_of_act_lanes;
3364 
3365 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3366 		netdev_err(NULL, "%s: illegal port number %d", __func__,
3367 			   mac_num);
3368 		return -1;
3369 	}
3370 
3371 	switch (port->phy_interface) {
3372 	case PHY_INTERFACE_MODE_RGMII:
3373 	case PHY_INTERFACE_MODE_RGMII_ID:
3374 		gop_gmac_reset(port, 1);
3375 
3376 		/* configure PCS */
3377 		gop_gpcs_mode_cfg(port, 0);
3378 		gop_bypass_clk_cfg(port, 1);
3379 
3380 		/* configure MAC */
3381 		gop_gmac_mode_cfg(port);
3382 		/* pcs unreset */
3383 		gop_gpcs_reset(port, 0);
3384 
3385 		/* mac unreset */
3386 		gop_gmac_reset(port, 0);
3387 		break;
3388 
3389 	case PHY_INTERFACE_MODE_SGMII:
3390 		/* configure PCS */
3391 		gop_gpcs_mode_cfg(port, 1);
3392 
3393 		/* configure MAC */
3394 		gop_gmac_mode_cfg(port);
3395 		/* select proper Mac mode */
3396 		gop_xlg_2_gig_mac_cfg(port);
3397 
3398 		/* pcs unreset */
3399 		gop_gpcs_reset(port, 0);
3400 		/* mac unreset */
3401 		gop_gmac_reset(port, 0);
3402 		break;
3403 
3404 	case PHY_INTERFACE_MODE_SFI:
3405 		num_of_act_lanes = 2;
3406 		mac_num = 0;
3407 		/* configure PCS */
3408 		gop_xpcs_mode(port, num_of_act_lanes);
3409 		gop_mpcs_mode(port);
3410 		/* configure MAC */
3411 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3412 
3413 		/* pcs unreset */
3414 		gop_xpcs_reset(port, 0);
3415 
3416 		/* mac unreset */
3417 		gop_xlg_mac_reset(port, 0);
3418 		break;
3419 
3420 	default:
3421 		netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3422 			   __func__, port->phy_interface);
3423 		return -1;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3430 {
3431 	u32 val;
3432 
3433 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3434 	if (enable) {
3435 		/* Enable port and MIB counters update */
3436 		val |= MVPP22_XLG_PORT_EN;
3437 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3438 	} else {
3439 		/* Disable port */
3440 		val &= ~MVPP22_XLG_PORT_EN;
3441 	}
3442 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3443 }
3444 
3445 static void gop_port_enable(struct mvpp2_port *port, int enable)
3446 {
3447 	switch (port->phy_interface) {
3448 	case PHY_INTERFACE_MODE_RGMII:
3449 	case PHY_INTERFACE_MODE_RGMII_ID:
3450 	case PHY_INTERFACE_MODE_SGMII:
3451 		if (enable)
3452 			mvpp2_port_enable(port);
3453 		else
3454 			mvpp2_port_disable(port);
3455 		break;
3456 
3457 	case PHY_INTERFACE_MODE_SFI:
3458 		gop_xlg_mac_port_enable(port, enable);
3459 
3460 		break;
3461 	default:
3462 		netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3463 			   port->phy_interface);
3464 		return;
3465 	}
3466 }
3467 
3468 /* RFU1 functions */
3469 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3470 {
3471 	return readl(priv->rfu1_base + offset);
3472 }
3473 
3474 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3475 {
3476 	writel(data, priv->rfu1_base + offset);
3477 }
3478 
3479 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3480 {
3481 	u32 val = 0;
3482 
3483 	if (gop_id == 2) {
3484 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3485 			val |= MV_NETC_GE_MAC2_SGMII;
3486 	}
3487 
3488 	if (gop_id == 3) {
3489 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3490 			val |= MV_NETC_GE_MAC3_SGMII;
3491 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3492 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3493 			val |= MV_NETC_GE_MAC3_RGMII;
3494 	}
3495 
3496 	return val;
3497 }
3498 
3499 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3500 {
3501 	u32 reg;
3502 
3503 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3504 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3505 
3506 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3507 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3508 
3509 	reg |= val;
3510 
3511 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3512 }
3513 
3514 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3515 {
3516 	u32 reg;
3517 
3518 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3519 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3520 
3521 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3522 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3523 
3524 	reg |= val;
3525 
3526 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3527 }
3528 
3529 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3530 {
3531 	u32 reg;
3532 
3533 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3534 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3535 
3536 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3537 	val &= NETC_GOP_SOFT_RESET_MASK;
3538 
3539 	reg |= val;
3540 
3541 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3542 }
3543 
3544 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3545 {
3546 	u32 reg;
3547 
3548 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3549 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3550 
3551 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3552 	val &= NETC_CLK_DIV_PHASE_MASK;
3553 
3554 	reg |= val;
3555 
3556 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3557 }
3558 
3559 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3560 {
3561 	u32 reg;
3562 
3563 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3564 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3565 
3566 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3567 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3568 
3569 	reg |= val;
3570 
3571 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3572 }
3573 
3574 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3575 					   u32 val)
3576 {
3577 	u32 reg, mask, offset;
3578 
3579 	if (gop_id == 2) {
3580 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3581 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3582 	} else {
3583 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3584 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3585 	}
3586 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3587 	reg &= ~mask;
3588 
3589 	val <<= offset;
3590 	val &= mask;
3591 
3592 	reg |= val;
3593 
3594 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3595 }
3596 
3597 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3598 {
3599 	u32 reg;
3600 
3601 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3602 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3603 
3604 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3605 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3606 
3607 	reg |= val;
3608 
3609 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3610 }
3611 
3612 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3613 {
3614 	u32 reg;
3615 
3616 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3617 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3618 
3619 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3620 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3621 
3622 	reg |= val;
3623 
3624 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3625 }
3626 
3627 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3628 				  enum mv_netc_phase phase)
3629 {
3630 	switch (phase) {
3631 	case MV_NETC_FIRST_PHASE:
3632 		/* Set Bus Width to HB mode = 1 */
3633 		gop_netc_bus_width_select(priv, 1);
3634 		/* Select RGMII mode */
3635 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3636 		break;
3637 
3638 	case MV_NETC_SECOND_PHASE:
3639 		/* De-assert the relevant port HB reset */
3640 		gop_netc_port_rf_reset(priv, gop_id, 1);
3641 		break;
3642 	}
3643 }
3644 
3645 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3646 				  enum mv_netc_phase phase)
3647 {
3648 	switch (phase) {
3649 	case MV_NETC_FIRST_PHASE:
3650 		/* Set Bus Width to HB mode = 1 */
3651 		gop_netc_bus_width_select(priv, 1);
3652 		/* Select SGMII mode */
3653 		if (gop_id >= 1) {
3654 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3655 						       MV_NETC_GBE_SGMII);
3656 		}
3657 
3658 		/* Configure the sample stages */
3659 		gop_netc_sample_stages_timing(priv, 0);
3660 		/* Configure the ComPhy Selector */
3661 		/* gop_netc_com_phy_selector_config(netComplex); */
3662 		break;
3663 
3664 	case MV_NETC_SECOND_PHASE:
3665 		/* De-assert the relevant port HB reset */
3666 		gop_netc_port_rf_reset(priv, gop_id, 1);
3667 		break;
3668 	}
3669 }
3670 
3671 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3672 {
3673 	u32 c = priv->netc_config;
3674 
3675 	if (c & MV_NETC_GE_MAC2_SGMII)
3676 		gop_netc_mac_to_sgmii(priv, 2, phase);
3677 	else
3678 		gop_netc_mac_to_xgmii(priv, 2, phase);
3679 
3680 	if (c & MV_NETC_GE_MAC3_SGMII) {
3681 		gop_netc_mac_to_sgmii(priv, 3, phase);
3682 	} else {
3683 		gop_netc_mac_to_xgmii(priv, 3, phase);
3684 		if (c & MV_NETC_GE_MAC3_RGMII)
3685 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3686 		else
3687 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3688 	}
3689 
3690 	/* Activate gop ports 0, 2, 3 */
3691 	gop_netc_active_port(priv, 0, 1);
3692 	gop_netc_active_port(priv, 2, 1);
3693 	gop_netc_active_port(priv, 3, 1);
3694 
3695 	if (phase == MV_NETC_SECOND_PHASE) {
3696 		/* Enable the GOP internal clock logic */
3697 		gop_netc_gop_clock_logic_set(priv, 1);
3698 		/* De-assert GOP unit reset */
3699 		gop_netc_gop_reset(priv, 1);
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 /* Set defaults to the MVPP2 port */
3706 static void mvpp2_defaults_set(struct mvpp2_port *port)
3707 {
3708 	int tx_port_num, val, queue, ptxq, lrxq;
3709 
3710 	if (port->priv->hw_version == MVPP21) {
3711 		/* Configure port to loopback if needed */
3712 		if (port->flags & MVPP2_F_LOOPBACK)
3713 			mvpp2_port_loopback_set(port);
3714 
3715 		/* Update TX FIFO MIN Threshold */
3716 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3717 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3718 		/* Min. TX threshold must be less than minimal packet length */
3719 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3720 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3721 	}
3722 
3723 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3724 	tx_port_num = mvpp2_egress_port(port);
3725 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3726 		    tx_port_num);
3727 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3728 
3729 	/* Close bandwidth for all queues */
3730 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3731 		ptxq = mvpp2_txq_phys(port->id, queue);
3732 		mvpp2_write(port->priv,
3733 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3734 	}
3735 
3736 	/* Set refill period to 1 usec, refill tokens
3737 	 * and bucket size to maximum
3738 	 */
3739 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3740 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3741 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3742 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3743 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3744 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3745 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3746 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3747 
3748 	/* Set MaximumLowLatencyPacketSize value to 256 */
3749 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3750 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3751 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3752 
3753 	/* Enable Rx cache snoop */
3754 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3755 		queue = port->rxqs[lrxq]->id;
3756 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3757 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3758 			   MVPP2_SNOOP_BUF_HDR_MASK;
3759 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3760 	}
3761 }
3762 
3763 /* Enable/disable receiving packets */
3764 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3765 {
3766 	u32 val;
3767 	int lrxq, queue;
3768 
3769 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3770 		queue = port->rxqs[lrxq]->id;
3771 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3772 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3773 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3774 	}
3775 }
3776 
3777 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3778 {
3779 	u32 val;
3780 	int lrxq, queue;
3781 
3782 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3783 		queue = port->rxqs[lrxq]->id;
3784 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3785 		val |= MVPP2_RXQ_DISABLE_MASK;
3786 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3787 	}
3788 }
3789 
3790 /* Enable transmit via physical egress queue
3791  * - HW starts take descriptors from DRAM
3792  */
3793 static void mvpp2_egress_enable(struct mvpp2_port *port)
3794 {
3795 	u32 qmap;
3796 	int queue;
3797 	int tx_port_num = mvpp2_egress_port(port);
3798 
3799 	/* Enable all initialized TXs. */
3800 	qmap = 0;
3801 	for (queue = 0; queue < txq_number; queue++) {
3802 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3803 
3804 		if (txq->descs != NULL)
3805 			qmap |= (1 << queue);
3806 	}
3807 
3808 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3809 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3810 }
3811 
3812 /* Disable transmit via physical egress queue
3813  * - HW doesn't take descriptors from DRAM
3814  */
3815 static void mvpp2_egress_disable(struct mvpp2_port *port)
3816 {
3817 	u32 reg_data;
3818 	int delay;
3819 	int tx_port_num = mvpp2_egress_port(port);
3820 
3821 	/* Issue stop command for active channels only */
3822 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3823 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3824 		    MVPP2_TXP_SCHED_ENQ_MASK;
3825 	if (reg_data != 0)
3826 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3827 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3828 
3829 	/* Wait for all Tx activity to terminate. */
3830 	delay = 0;
3831 	do {
3832 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3833 			netdev_warn(port->dev,
3834 				    "Tx stop timed out, status=0x%08x\n",
3835 				    reg_data);
3836 			break;
3837 		}
3838 		mdelay(1);
3839 		delay++;
3840 
3841 		/* Check port TX Command register that all
3842 		 * Tx queues are stopped
3843 		 */
3844 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3845 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3846 }
3847 
3848 /* Rx descriptors helper methods */
3849 
3850 /* Get number of Rx descriptors occupied by received packets */
3851 static inline int
3852 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3853 {
3854 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3855 
3856 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3857 }
3858 
3859 /* Update Rx queue status with the number of occupied and available
3860  * Rx descriptor slots.
3861  */
3862 static inline void
3863 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3864 			int used_count, int free_count)
3865 {
3866 	/* Decrement the number of used descriptors and increment count
3867 	 * increment the number of free descriptors.
3868 	 */
3869 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3870 
3871 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3872 }
3873 
3874 /* Get pointer to next RX descriptor to be processed by SW */
3875 static inline struct mvpp2_rx_desc *
3876 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3877 {
3878 	int rx_desc = rxq->next_desc_to_proc;
3879 
3880 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3881 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3882 	return rxq->descs + rx_desc;
3883 }
3884 
3885 /* Set rx queue offset */
3886 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3887 				 int prxq, int offset)
3888 {
3889 	u32 val;
3890 
3891 	/* Convert offset from bytes to units of 32 bytes */
3892 	offset = offset >> 5;
3893 
3894 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3895 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3896 
3897 	/* Offset is in */
3898 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3899 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3900 
3901 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3902 }
3903 
3904 /* Obtain BM cookie information from descriptor */
3905 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3906 				 struct mvpp2_rx_desc *rx_desc)
3907 {
3908 	int cpu = smp_processor_id();
3909 	int pool;
3910 
3911 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3912 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3913 		MVPP2_RXD_BM_POOL_ID_OFFS;
3914 
3915 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3916 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3917 }
3918 
3919 /* Tx descriptors helper methods */
3920 
3921 /* Get number of Tx descriptors waiting to be transmitted by HW */
3922 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3923 				       struct mvpp2_tx_queue *txq)
3924 {
3925 	u32 val;
3926 
3927 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3928 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3929 
3930 	return val & MVPP2_TXQ_PENDING_MASK;
3931 }
3932 
3933 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3934 static struct mvpp2_tx_desc *
3935 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3936 {
3937 	int tx_desc = txq->next_desc_to_proc;
3938 
3939 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3940 	return txq->descs + tx_desc;
3941 }
3942 
3943 /* Update HW with number of aggregated Tx descriptors to be sent */
3944 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3945 {
3946 	/* aggregated access - relevant TXQ number is written in TX desc */
3947 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3948 }
3949 
3950 /* Get number of sent descriptors and decrement counter.
3951  * The number of sent descriptors is returned.
3952  * Per-CPU access
3953  */
3954 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3955 					   struct mvpp2_tx_queue *txq)
3956 {
3957 	u32 val;
3958 
3959 	/* Reading status reg resets transmitted descriptor counter */
3960 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3961 
3962 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3963 		MVPP2_TRANSMITTED_COUNT_OFFSET;
3964 }
3965 
3966 static void mvpp2_txq_sent_counter_clear(void *arg)
3967 {
3968 	struct mvpp2_port *port = arg;
3969 	int queue;
3970 
3971 	for (queue = 0; queue < txq_number; queue++) {
3972 		int id = port->txqs[queue]->id;
3973 
3974 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3975 	}
3976 }
3977 
3978 /* Set max sizes for Tx queues */
3979 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3980 {
3981 	u32	val, size, mtu;
3982 	int	txq, tx_port_num;
3983 
3984 	mtu = port->pkt_size * 8;
3985 	if (mtu > MVPP2_TXP_MTU_MAX)
3986 		mtu = MVPP2_TXP_MTU_MAX;
3987 
3988 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3989 	mtu = 3 * mtu;
3990 
3991 	/* Indirect access to registers */
3992 	tx_port_num = mvpp2_egress_port(port);
3993 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3994 
3995 	/* Set MTU */
3996 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3997 	val &= ~MVPP2_TXP_MTU_MAX;
3998 	val |= mtu;
3999 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4000 
4001 	/* TXP token size and all TXQs token size must be larger that MTU */
4002 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4003 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4004 	if (size < mtu) {
4005 		size = mtu;
4006 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4007 		val |= size;
4008 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4009 	}
4010 
4011 	for (txq = 0; txq < txq_number; txq++) {
4012 		val = mvpp2_read(port->priv,
4013 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4014 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4015 
4016 		if (size < mtu) {
4017 			size = mtu;
4018 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4019 			val |= size;
4020 			mvpp2_write(port->priv,
4021 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4022 				    val);
4023 		}
4024 	}
4025 }
4026 
4027 /* Free Tx queue skbuffs */
4028 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4029 				struct mvpp2_tx_queue *txq,
4030 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4031 {
4032 	int i;
4033 
4034 	for (i = 0; i < num; i++)
4035 		mvpp2_txq_inc_get(txq_pcpu);
4036 }
4037 
4038 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4039 							u32 cause)
4040 {
4041 	int queue = fls(cause) - 1;
4042 
4043 	return port->rxqs[queue];
4044 }
4045 
4046 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4047 							u32 cause)
4048 {
4049 	int queue = fls(cause) - 1;
4050 
4051 	return port->txqs[queue];
4052 }
4053 
4054 /* Rx/Tx queue initialization/cleanup methods */
4055 
4056 /* Allocate and initialize descriptors for aggr TXQ */
4057 static int mvpp2_aggr_txq_init(struct udevice *dev,
4058 			       struct mvpp2_tx_queue *aggr_txq,
4059 			       int desc_num, int cpu,
4060 			       struct mvpp2 *priv)
4061 {
4062 	u32 txq_dma;
4063 
4064 	/* Allocate memory for TX descriptors */
4065 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4066 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4067 	if (!aggr_txq->descs)
4068 		return -ENOMEM;
4069 
4070 	/* Make sure descriptor address is cache line size aligned  */
4071 	BUG_ON(aggr_txq->descs !=
4072 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4073 
4074 	aggr_txq->last_desc = aggr_txq->size - 1;
4075 
4076 	/* Aggr TXQ no reset WA */
4077 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4078 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4079 
4080 	/* Set Tx descriptors queue starting address indirect
4081 	 * access
4082 	 */
4083 	if (priv->hw_version == MVPP21)
4084 		txq_dma = aggr_txq->descs_dma;
4085 	else
4086 		txq_dma = aggr_txq->descs_dma >>
4087 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4088 
4089 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4090 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4091 
4092 	return 0;
4093 }
4094 
4095 /* Create a specified Rx queue */
4096 static int mvpp2_rxq_init(struct mvpp2_port *port,
4097 			  struct mvpp2_rx_queue *rxq)
4098 
4099 {
4100 	u32 rxq_dma;
4101 
4102 	rxq->size = port->rx_ring_size;
4103 
4104 	/* Allocate memory for RX descriptors */
4105 	rxq->descs = buffer_loc.rx_descs;
4106 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4107 	if (!rxq->descs)
4108 		return -ENOMEM;
4109 
4110 	BUG_ON(rxq->descs !=
4111 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4112 
4113 	rxq->last_desc = rxq->size - 1;
4114 
4115 	/* Zero occupied and non-occupied counters - direct access */
4116 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4117 
4118 	/* Set Rx descriptors queue starting address - indirect access */
4119 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4120 	if (port->priv->hw_version == MVPP21)
4121 		rxq_dma = rxq->descs_dma;
4122 	else
4123 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4124 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4125 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4126 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4127 
4128 	/* Set Offset */
4129 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4130 
4131 	/* Add number of descriptors ready for receiving packets */
4132 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4133 
4134 	return 0;
4135 }
4136 
4137 /* Push packets received by the RXQ to BM pool */
4138 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4139 				struct mvpp2_rx_queue *rxq)
4140 {
4141 	int rx_received, i;
4142 
4143 	rx_received = mvpp2_rxq_received(port, rxq->id);
4144 	if (!rx_received)
4145 		return;
4146 
4147 	for (i = 0; i < rx_received; i++) {
4148 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4149 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4150 
4151 		mvpp2_pool_refill(port, bm,
4152 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4153 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4154 	}
4155 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4156 }
4157 
4158 /* Cleanup Rx queue */
4159 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4160 			     struct mvpp2_rx_queue *rxq)
4161 {
4162 	mvpp2_rxq_drop_pkts(port, rxq);
4163 
4164 	rxq->descs             = NULL;
4165 	rxq->last_desc         = 0;
4166 	rxq->next_desc_to_proc = 0;
4167 	rxq->descs_dma         = 0;
4168 
4169 	/* Clear Rx descriptors queue starting address and size;
4170 	 * free descriptor number
4171 	 */
4172 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4173 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4174 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4175 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4176 }
4177 
4178 /* Create and initialize a Tx queue */
4179 static int mvpp2_txq_init(struct mvpp2_port *port,
4180 			  struct mvpp2_tx_queue *txq)
4181 {
4182 	u32 val;
4183 	int cpu, desc, desc_per_txq, tx_port_num;
4184 	struct mvpp2_txq_pcpu *txq_pcpu;
4185 
4186 	txq->size = port->tx_ring_size;
4187 
4188 	/* Allocate memory for Tx descriptors */
4189 	txq->descs = buffer_loc.tx_descs;
4190 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4191 	if (!txq->descs)
4192 		return -ENOMEM;
4193 
4194 	/* Make sure descriptor address is cache line size aligned  */
4195 	BUG_ON(txq->descs !=
4196 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4197 
4198 	txq->last_desc = txq->size - 1;
4199 
4200 	/* Set Tx descriptors queue starting address - indirect access */
4201 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4202 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4203 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4204 					     MVPP2_TXQ_DESC_SIZE_MASK);
4205 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4206 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4207 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4208 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4209 	val &= ~MVPP2_TXQ_PENDING_MASK;
4210 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4211 
4212 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4213 	 * for each existing TXQ.
4214 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4215 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4216 	 */
4217 	desc_per_txq = 16;
4218 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4219 	       (txq->log_id * desc_per_txq);
4220 
4221 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4222 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4223 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4224 
4225 	/* WRR / EJP configuration - indirect access */
4226 	tx_port_num = mvpp2_egress_port(port);
4227 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4228 
4229 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4230 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4231 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4232 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4233 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4234 
4235 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4236 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4237 		    val);
4238 
4239 	for_each_present_cpu(cpu) {
4240 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4241 		txq_pcpu->size = txq->size;
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 /* Free allocated TXQ resources */
4248 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4249 			     struct mvpp2_tx_queue *txq)
4250 {
4251 	txq->descs             = NULL;
4252 	txq->last_desc         = 0;
4253 	txq->next_desc_to_proc = 0;
4254 	txq->descs_dma         = 0;
4255 
4256 	/* Set minimum bandwidth for disabled TXQs */
4257 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4258 
4259 	/* Set Tx descriptors queue starting address and size */
4260 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4261 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4262 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4263 }
4264 
4265 /* Cleanup Tx ports */
4266 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4267 {
4268 	struct mvpp2_txq_pcpu *txq_pcpu;
4269 	int delay, pending, cpu;
4270 	u32 val;
4271 
4272 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4273 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4274 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4275 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4276 
4277 	/* The napi queue has been stopped so wait for all packets
4278 	 * to be transmitted.
4279 	 */
4280 	delay = 0;
4281 	do {
4282 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4283 			netdev_warn(port->dev,
4284 				    "port %d: cleaning queue %d timed out\n",
4285 				    port->id, txq->log_id);
4286 			break;
4287 		}
4288 		mdelay(1);
4289 		delay++;
4290 
4291 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4292 	} while (pending);
4293 
4294 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4295 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4296 
4297 	for_each_present_cpu(cpu) {
4298 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4299 
4300 		/* Release all packets */
4301 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4302 
4303 		/* Reset queue */
4304 		txq_pcpu->count = 0;
4305 		txq_pcpu->txq_put_index = 0;
4306 		txq_pcpu->txq_get_index = 0;
4307 	}
4308 }
4309 
4310 /* Cleanup all Tx queues */
4311 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4312 {
4313 	struct mvpp2_tx_queue *txq;
4314 	int queue;
4315 	u32 val;
4316 
4317 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4318 
4319 	/* Reset Tx ports and delete Tx queues */
4320 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4321 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4322 
4323 	for (queue = 0; queue < txq_number; queue++) {
4324 		txq = port->txqs[queue];
4325 		mvpp2_txq_clean(port, txq);
4326 		mvpp2_txq_deinit(port, txq);
4327 	}
4328 
4329 	mvpp2_txq_sent_counter_clear(port);
4330 
4331 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4332 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4333 }
4334 
4335 /* Cleanup all Rx queues */
4336 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4337 {
4338 	int queue;
4339 
4340 	for (queue = 0; queue < rxq_number; queue++)
4341 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4342 }
4343 
4344 /* Init all Rx queues for port */
4345 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4346 {
4347 	int queue, err;
4348 
4349 	for (queue = 0; queue < rxq_number; queue++) {
4350 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4351 		if (err)
4352 			goto err_cleanup;
4353 	}
4354 	return 0;
4355 
4356 err_cleanup:
4357 	mvpp2_cleanup_rxqs(port);
4358 	return err;
4359 }
4360 
4361 /* Init all tx queues for port */
4362 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4363 {
4364 	struct mvpp2_tx_queue *txq;
4365 	int queue, err;
4366 
4367 	for (queue = 0; queue < txq_number; queue++) {
4368 		txq = port->txqs[queue];
4369 		err = mvpp2_txq_init(port, txq);
4370 		if (err)
4371 			goto err_cleanup;
4372 	}
4373 
4374 	mvpp2_txq_sent_counter_clear(port);
4375 	return 0;
4376 
4377 err_cleanup:
4378 	mvpp2_cleanup_txqs(port);
4379 	return err;
4380 }
4381 
4382 /* Adjust link */
4383 static void mvpp2_link_event(struct mvpp2_port *port)
4384 {
4385 	struct phy_device *phydev = port->phy_dev;
4386 	int status_change = 0;
4387 	u32 val;
4388 
4389 	if (phydev->link) {
4390 		if ((port->speed != phydev->speed) ||
4391 		    (port->duplex != phydev->duplex)) {
4392 			u32 val;
4393 
4394 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4395 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4396 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4397 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4398 				 MVPP2_GMAC_AN_SPEED_EN |
4399 				 MVPP2_GMAC_AN_DUPLEX_EN);
4400 
4401 			if (phydev->duplex)
4402 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4403 
4404 			if (phydev->speed == SPEED_1000)
4405 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4406 			else if (phydev->speed == SPEED_100)
4407 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4408 
4409 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4410 
4411 			port->duplex = phydev->duplex;
4412 			port->speed  = phydev->speed;
4413 		}
4414 	}
4415 
4416 	if (phydev->link != port->link) {
4417 		if (!phydev->link) {
4418 			port->duplex = -1;
4419 			port->speed = 0;
4420 		}
4421 
4422 		port->link = phydev->link;
4423 		status_change = 1;
4424 	}
4425 
4426 	if (status_change) {
4427 		if (phydev->link) {
4428 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4429 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4430 				MVPP2_GMAC_FORCE_LINK_DOWN);
4431 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4432 			mvpp2_egress_enable(port);
4433 			mvpp2_ingress_enable(port);
4434 		} else {
4435 			mvpp2_ingress_disable(port);
4436 			mvpp2_egress_disable(port);
4437 		}
4438 	}
4439 }
4440 
4441 /* Main RX/TX processing routines */
4442 
4443 /* Display more error info */
4444 static void mvpp2_rx_error(struct mvpp2_port *port,
4445 			   struct mvpp2_rx_desc *rx_desc)
4446 {
4447 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4448 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4449 
4450 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4451 	case MVPP2_RXD_ERR_CRC:
4452 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4453 			   status, sz);
4454 		break;
4455 	case MVPP2_RXD_ERR_OVERRUN:
4456 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4457 			   status, sz);
4458 		break;
4459 	case MVPP2_RXD_ERR_RESOURCE:
4460 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4461 			   status, sz);
4462 		break;
4463 	}
4464 }
4465 
4466 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4467 static int mvpp2_rx_refill(struct mvpp2_port *port,
4468 			   struct mvpp2_bm_pool *bm_pool,
4469 			   u32 bm, dma_addr_t dma_addr)
4470 {
4471 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4472 	return 0;
4473 }
4474 
4475 /* Set hw internals when starting port */
4476 static void mvpp2_start_dev(struct mvpp2_port *port)
4477 {
4478 	mvpp2_gmac_max_rx_size_set(port);
4479 	mvpp2_txp_max_tx_size_set(port);
4480 
4481 	if (port->priv->hw_version == MVPP21)
4482 		mvpp2_port_enable(port);
4483 	else
4484 		gop_port_enable(port, 1);
4485 }
4486 
4487 /* Set hw internals when stopping port */
4488 static void mvpp2_stop_dev(struct mvpp2_port *port)
4489 {
4490 	/* Stop new packets from arriving to RXQs */
4491 	mvpp2_ingress_disable(port);
4492 
4493 	mvpp2_egress_disable(port);
4494 
4495 	if (port->priv->hw_version == MVPP21)
4496 		mvpp2_port_disable(port);
4497 	else
4498 		gop_port_enable(port, 0);
4499 }
4500 
4501 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4502 {
4503 	struct phy_device *phy_dev;
4504 
4505 	if (!port->init || port->link == 0) {
4506 		phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
4507 				      port->phy_interface);
4508 		port->phy_dev = phy_dev;
4509 		if (!phy_dev) {
4510 			netdev_err(port->dev, "cannot connect to phy\n");
4511 			return -ENODEV;
4512 		}
4513 		phy_dev->supported &= PHY_GBIT_FEATURES;
4514 		phy_dev->advertising = phy_dev->supported;
4515 
4516 		port->phy_dev = phy_dev;
4517 		port->link    = 0;
4518 		port->duplex  = 0;
4519 		port->speed   = 0;
4520 
4521 		phy_config(phy_dev);
4522 		phy_startup(phy_dev);
4523 		if (!phy_dev->link) {
4524 			printf("%s: No link\n", phy_dev->dev->name);
4525 			return -1;
4526 		}
4527 
4528 		port->init = 1;
4529 	} else {
4530 		mvpp2_egress_enable(port);
4531 		mvpp2_ingress_enable(port);
4532 	}
4533 
4534 	return 0;
4535 }
4536 
4537 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4538 {
4539 	unsigned char mac_bcast[ETH_ALEN] = {
4540 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4541 	int err;
4542 
4543 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4544 	if (err) {
4545 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4546 		return err;
4547 	}
4548 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4549 				      port->dev_addr, true);
4550 	if (err) {
4551 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4552 		return err;
4553 	}
4554 	err = mvpp2_prs_def_flow(port);
4555 	if (err) {
4556 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4557 		return err;
4558 	}
4559 
4560 	/* Allocate the Rx/Tx queues */
4561 	err = mvpp2_setup_rxqs(port);
4562 	if (err) {
4563 		netdev_err(port->dev, "cannot allocate Rx queues\n");
4564 		return err;
4565 	}
4566 
4567 	err = mvpp2_setup_txqs(port);
4568 	if (err) {
4569 		netdev_err(port->dev, "cannot allocate Tx queues\n");
4570 		return err;
4571 	}
4572 
4573 	err = mvpp2_phy_connect(dev, port);
4574 	if (err < 0)
4575 		return err;
4576 
4577 	mvpp2_link_event(port);
4578 
4579 	mvpp2_start_dev(port);
4580 
4581 	return 0;
4582 }
4583 
4584 /* No Device ops here in U-Boot */
4585 
4586 /* Driver initialization */
4587 
4588 static void mvpp2_port_power_up(struct mvpp2_port *port)
4589 {
4590 	struct mvpp2 *priv = port->priv;
4591 
4592 	/* On PPv2.2 the GoP / interface configuration has already been done */
4593 	if (priv->hw_version == MVPP21)
4594 		mvpp2_port_mii_set(port);
4595 	mvpp2_port_periodic_xon_disable(port);
4596 	if (priv->hw_version == MVPP21)
4597 		mvpp2_port_fc_adv_enable(port);
4598 	mvpp2_port_reset(port);
4599 }
4600 
4601 /* Initialize port HW */
4602 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4603 {
4604 	struct mvpp2 *priv = port->priv;
4605 	struct mvpp2_txq_pcpu *txq_pcpu;
4606 	int queue, cpu, err;
4607 
4608 	if (port->first_rxq + rxq_number >
4609 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4610 		return -EINVAL;
4611 
4612 	/* Disable port */
4613 	mvpp2_egress_disable(port);
4614 	if (priv->hw_version == MVPP21)
4615 		mvpp2_port_disable(port);
4616 	else
4617 		gop_port_enable(port, 0);
4618 
4619 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4620 				  GFP_KERNEL);
4621 	if (!port->txqs)
4622 		return -ENOMEM;
4623 
4624 	/* Associate physical Tx queues to this port and initialize.
4625 	 * The mapping is predefined.
4626 	 */
4627 	for (queue = 0; queue < txq_number; queue++) {
4628 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4629 		struct mvpp2_tx_queue *txq;
4630 
4631 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4632 		if (!txq)
4633 			return -ENOMEM;
4634 
4635 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4636 					 GFP_KERNEL);
4637 		if (!txq->pcpu)
4638 			return -ENOMEM;
4639 
4640 		txq->id = queue_phy_id;
4641 		txq->log_id = queue;
4642 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4643 		for_each_present_cpu(cpu) {
4644 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4645 			txq_pcpu->cpu = cpu;
4646 		}
4647 
4648 		port->txqs[queue] = txq;
4649 	}
4650 
4651 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4652 				  GFP_KERNEL);
4653 	if (!port->rxqs)
4654 		return -ENOMEM;
4655 
4656 	/* Allocate and initialize Rx queue for this port */
4657 	for (queue = 0; queue < rxq_number; queue++) {
4658 		struct mvpp2_rx_queue *rxq;
4659 
4660 		/* Map physical Rx queue to port's logical Rx queue */
4661 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4662 		if (!rxq)
4663 			return -ENOMEM;
4664 		/* Map this Rx queue to a physical queue */
4665 		rxq->id = port->first_rxq + queue;
4666 		rxq->port = port->id;
4667 		rxq->logic_rxq = queue;
4668 
4669 		port->rxqs[queue] = rxq;
4670 	}
4671 
4672 	/* Configure Rx queue group interrupt for this port */
4673 	if (priv->hw_version == MVPP21) {
4674 		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
4675 			    CONFIG_MV_ETH_RXQ);
4676 	} else {
4677 		u32 val;
4678 
4679 		val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
4680 		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
4681 
4682 		val = (CONFIG_MV_ETH_RXQ <<
4683 		       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
4684 		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
4685 	}
4686 
4687 	/* Create Rx descriptor rings */
4688 	for (queue = 0; queue < rxq_number; queue++) {
4689 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4690 
4691 		rxq->size = port->rx_ring_size;
4692 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4693 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4694 	}
4695 
4696 	mvpp2_ingress_disable(port);
4697 
4698 	/* Port default configuration */
4699 	mvpp2_defaults_set(port);
4700 
4701 	/* Port's classifier configuration */
4702 	mvpp2_cls_oversize_rxq_set(port);
4703 	mvpp2_cls_port_config(port);
4704 
4705 	/* Provide an initial Rx packet size */
4706 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4707 
4708 	/* Initialize pools for swf */
4709 	err = mvpp2_swf_bm_pool_init(port);
4710 	if (err)
4711 		return err;
4712 
4713 	return 0;
4714 }
4715 
4716 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4717 {
4718 	int port_node = dev_of_offset(dev);
4719 	const char *phy_mode_str;
4720 	int phy_node;
4721 	u32 id;
4722 	u32 phyaddr;
4723 	int phy_mode = -1;
4724 
4725 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4726 	if (phy_node < 0) {
4727 		dev_err(&pdev->dev, "missing phy\n");
4728 		return -ENODEV;
4729 	}
4730 
4731 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4732 	if (phy_mode_str)
4733 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4734 	if (phy_mode == -1) {
4735 		dev_err(&pdev->dev, "incorrect phy mode\n");
4736 		return -EINVAL;
4737 	}
4738 
4739 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4740 	if (id == -1) {
4741 		dev_err(&pdev->dev, "missing port-id value\n");
4742 		return -EINVAL;
4743 	}
4744 
4745 	/*
4746 	 * ToDo:
4747 	 * Not sure if this DT property "phy-speed" will get accepted, so
4748 	 * this might change later
4749 	 */
4750 	/* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4751 	port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4752 					 "phy-speed", 1000);
4753 
4754 	phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4755 
4756 	port->id = id;
4757 	if (port->priv->hw_version == MVPP21)
4758 		port->first_rxq = port->id * rxq_number;
4759 	else
4760 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4761 	port->phy_node = phy_node;
4762 	port->phy_interface = phy_mode;
4763 	port->phyaddr = phyaddr;
4764 
4765 	return 0;
4766 }
4767 
4768 /* Ports initialization */
4769 static int mvpp2_port_probe(struct udevice *dev,
4770 			    struct mvpp2_port *port,
4771 			    int port_node,
4772 			    struct mvpp2 *priv)
4773 {
4774 	int err;
4775 
4776 	port->tx_ring_size = MVPP2_MAX_TXD;
4777 	port->rx_ring_size = MVPP2_MAX_RXD;
4778 
4779 	err = mvpp2_port_init(dev, port);
4780 	if (err < 0) {
4781 		dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4782 		return err;
4783 	}
4784 	mvpp2_port_power_up(port);
4785 
4786 	priv->port_list[port->id] = port;
4787 	return 0;
4788 }
4789 
4790 /* Initialize decoding windows */
4791 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4792 				    struct mvpp2 *priv)
4793 {
4794 	u32 win_enable;
4795 	int i;
4796 
4797 	for (i = 0; i < 6; i++) {
4798 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4799 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4800 
4801 		if (i < 4)
4802 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4803 	}
4804 
4805 	win_enable = 0;
4806 
4807 	for (i = 0; i < dram->num_cs; i++) {
4808 		const struct mbus_dram_window *cs = dram->cs + i;
4809 
4810 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4811 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4812 			    dram->mbus_dram_target_id);
4813 
4814 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4815 			    (cs->size - 1) & 0xffff0000);
4816 
4817 		win_enable |= (1 << i);
4818 	}
4819 
4820 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4821 }
4822 
4823 /* Initialize Rx FIFO's */
4824 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4825 {
4826 	int port;
4827 
4828 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4829 		if (priv->hw_version == MVPP22) {
4830 			if (port == 0) {
4831 				mvpp2_write(priv,
4832 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4833 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4834 				mvpp2_write(priv,
4835 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4836 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4837 			} else if (port == 1) {
4838 				mvpp2_write(priv,
4839 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4840 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4841 				mvpp2_write(priv,
4842 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4843 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4844 			} else {
4845 				mvpp2_write(priv,
4846 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4847 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4848 				mvpp2_write(priv,
4849 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4850 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4851 			}
4852 		} else {
4853 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4854 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4855 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4856 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4857 		}
4858 	}
4859 
4860 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4861 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4862 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4863 }
4864 
4865 /* Initialize Tx FIFO's */
4866 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4867 {
4868 	int port, val;
4869 
4870 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4871 		/* Port 0 supports 10KB TX FIFO */
4872 		if (port == 0) {
4873 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4874 				MVPP22_TX_FIFO_SIZE_MASK;
4875 		} else {
4876 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4877 				MVPP22_TX_FIFO_SIZE_MASK;
4878 		}
4879 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4880 	}
4881 }
4882 
4883 static void mvpp2_axi_init(struct mvpp2 *priv)
4884 {
4885 	u32 val, rdval, wrval;
4886 
4887 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4888 
4889 	/* AXI Bridge Configuration */
4890 
4891 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4892 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4893 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4894 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4895 
4896 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4897 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4898 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4899 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4900 
4901 	/* BM */
4902 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4903 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4904 
4905 	/* Descriptors */
4906 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4907 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4908 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4909 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4910 
4911 	/* Buffer Data */
4912 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4913 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4914 
4915 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4916 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4917 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4918 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4919 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4920 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4921 
4922 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4923 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4924 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4925 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4926 
4927 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4928 
4929 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4930 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4931 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4932 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4933 
4934 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4935 }
4936 
4937 /* Initialize network controller common part HW */
4938 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4939 {
4940 	const struct mbus_dram_target_info *dram_target_info;
4941 	int err, i;
4942 	u32 val;
4943 
4944 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
4945 	if ((rxq_number > priv->max_port_rxqs) ||
4946 	    (txq_number > MVPP2_MAX_TXQ)) {
4947 		dev_err(&pdev->dev, "invalid queue size parameter\n");
4948 		return -EINVAL;
4949 	}
4950 
4951 	/* MBUS windows configuration */
4952 	dram_target_info = mvebu_mbus_dram_info();
4953 	if (dram_target_info)
4954 		mvpp2_conf_mbus_windows(dram_target_info, priv);
4955 
4956 	if (priv->hw_version == MVPP22)
4957 		mvpp2_axi_init(priv);
4958 
4959 	/* Disable HW PHY polling */
4960 	if (priv->hw_version == MVPP21) {
4961 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4962 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
4963 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4964 	} else {
4965 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4966 		val &= ~MVPP22_SMI_POLLING_EN;
4967 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4968 	}
4969 
4970 	/* Allocate and initialize aggregated TXQs */
4971 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
4972 				       sizeof(struct mvpp2_tx_queue),
4973 				       GFP_KERNEL);
4974 	if (!priv->aggr_txqs)
4975 		return -ENOMEM;
4976 
4977 	for_each_present_cpu(i) {
4978 		priv->aggr_txqs[i].id = i;
4979 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
4980 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
4981 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
4982 		if (err < 0)
4983 			return err;
4984 	}
4985 
4986 	/* Rx Fifo Init */
4987 	mvpp2_rx_fifo_init(priv);
4988 
4989 	/* Tx Fifo Init */
4990 	if (priv->hw_version == MVPP22)
4991 		mvpp2_tx_fifo_init(priv);
4992 
4993 	/* Reset Rx queue group interrupt configuration */
4994 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
4995 		if (priv->hw_version == MVPP21) {
4996 			mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
4997 				    CONFIG_MV_ETH_RXQ);
4998 			continue;
4999 		} else {
5000 			u32 val;
5001 
5002 			val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
5003 			mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
5004 
5005 			val = (CONFIG_MV_ETH_RXQ <<
5006 			       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
5007 			mvpp2_write(priv,
5008 				    MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
5009 		}
5010 	}
5011 
5012 	if (priv->hw_version == MVPP21)
5013 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5014 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5015 
5016 	/* Allow cache snoop when transmiting packets */
5017 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5018 
5019 	/* Buffer Manager initialization */
5020 	err = mvpp2_bm_init(dev, priv);
5021 	if (err < 0)
5022 		return err;
5023 
5024 	/* Parser default initialization */
5025 	err = mvpp2_prs_default_init(dev, priv);
5026 	if (err < 0)
5027 		return err;
5028 
5029 	/* Classifier default initialization */
5030 	mvpp2_cls_init(priv);
5031 
5032 	return 0;
5033 }
5034 
5035 /* SMI / MDIO functions */
5036 
5037 static int smi_wait_ready(struct mvpp2 *priv)
5038 {
5039 	u32 timeout = MVPP2_SMI_TIMEOUT;
5040 	u32 smi_reg;
5041 
5042 	/* wait till the SMI is not busy */
5043 	do {
5044 		/* read smi register */
5045 		smi_reg = readl(priv->mdio_base);
5046 		if (timeout-- == 0) {
5047 			printf("Error: SMI busy timeout\n");
5048 			return -EFAULT;
5049 		}
5050 	} while (smi_reg & MVPP2_SMI_BUSY);
5051 
5052 	return 0;
5053 }
5054 
5055 /*
5056  * mpp2_mdio_read - miiphy_read callback function.
5057  *
5058  * Returns 16bit phy register value, or 0xffff on error
5059  */
5060 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5061 {
5062 	struct mvpp2 *priv = bus->priv;
5063 	u32 smi_reg;
5064 	u32 timeout;
5065 
5066 	/* check parameters */
5067 	if (addr > MVPP2_PHY_ADDR_MASK) {
5068 		printf("Error: Invalid PHY address %d\n", addr);
5069 		return -EFAULT;
5070 	}
5071 
5072 	if (reg > MVPP2_PHY_REG_MASK) {
5073 		printf("Err: Invalid register offset %d\n", reg);
5074 		return -EFAULT;
5075 	}
5076 
5077 	/* wait till the SMI is not busy */
5078 	if (smi_wait_ready(priv) < 0)
5079 		return -EFAULT;
5080 
5081 	/* fill the phy address and regiser offset and read opcode */
5082 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5083 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
5084 		| MVPP2_SMI_OPCODE_READ;
5085 
5086 	/* write the smi register */
5087 	writel(smi_reg, priv->mdio_base);
5088 
5089 	/* wait till read value is ready */
5090 	timeout = MVPP2_SMI_TIMEOUT;
5091 
5092 	do {
5093 		/* read smi register */
5094 		smi_reg = readl(priv->mdio_base);
5095 		if (timeout-- == 0) {
5096 			printf("Err: SMI read ready timeout\n");
5097 			return -EFAULT;
5098 		}
5099 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
5100 
5101 	/* Wait for the data to update in the SMI register */
5102 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5103 		;
5104 
5105 	return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5106 }
5107 
5108 /*
5109  * mpp2_mdio_write - miiphy_write callback function.
5110  *
5111  * Returns 0 if write succeed, -EINVAL on bad parameters
5112  * -ETIME on timeout
5113  */
5114 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5115 			   u16 value)
5116 {
5117 	struct mvpp2 *priv = bus->priv;
5118 	u32 smi_reg;
5119 
5120 	/* check parameters */
5121 	if (addr > MVPP2_PHY_ADDR_MASK) {
5122 		printf("Error: Invalid PHY address %d\n", addr);
5123 		return -EFAULT;
5124 	}
5125 
5126 	if (reg > MVPP2_PHY_REG_MASK) {
5127 		printf("Err: Invalid register offset %d\n", reg);
5128 		return -EFAULT;
5129 	}
5130 
5131 	/* wait till the SMI is not busy */
5132 	if (smi_wait_ready(priv) < 0)
5133 		return -EFAULT;
5134 
5135 	/* fill the phy addr and reg offset and write opcode and data */
5136 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
5137 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5138 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
5139 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5140 
5141 	/* write the smi register */
5142 	writel(smi_reg, priv->mdio_base);
5143 
5144 	return 0;
5145 }
5146 
5147 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5148 {
5149 	struct mvpp2_port *port = dev_get_priv(dev);
5150 	struct mvpp2_rx_desc *rx_desc;
5151 	struct mvpp2_bm_pool *bm_pool;
5152 	dma_addr_t dma_addr;
5153 	u32 bm, rx_status;
5154 	int pool, rx_bytes, err;
5155 	int rx_received;
5156 	struct mvpp2_rx_queue *rxq;
5157 	u32 cause_rx_tx, cause_rx, cause_misc;
5158 	u8 *data;
5159 
5160 	cause_rx_tx = mvpp2_read(port->priv,
5161 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5162 	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5163 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5164 	if (!cause_rx_tx && !cause_misc)
5165 		return 0;
5166 
5167 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5168 
5169 	/* Process RX packets */
5170 	cause_rx |= port->pending_cause_rx;
5171 	rxq = mvpp2_get_rx_queue(port, cause_rx);
5172 
5173 	/* Get number of received packets and clamp the to-do */
5174 	rx_received = mvpp2_rxq_received(port, rxq->id);
5175 
5176 	/* Return if no packets are received */
5177 	if (!rx_received)
5178 		return 0;
5179 
5180 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5181 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5182 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5183 	rx_bytes -= MVPP2_MH_SIZE;
5184 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5185 
5186 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5187 	pool = mvpp2_bm_cookie_pool_get(bm);
5188 	bm_pool = &port->priv->bm_pools[pool];
5189 
5190 	/* In case of an error, release the requested buffer pointer
5191 	 * to the Buffer Manager. This request process is controlled
5192 	 * by the hardware, and the information about the buffer is
5193 	 * comprised by the RX descriptor.
5194 	 */
5195 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5196 		mvpp2_rx_error(port, rx_desc);
5197 		/* Return the buffer to the pool */
5198 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5199 		return 0;
5200 	}
5201 
5202 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5203 	if (err) {
5204 		netdev_err(port->dev, "failed to refill BM pools\n");
5205 		return 0;
5206 	}
5207 
5208 	/* Update Rx queue management counters */
5209 	mb();
5210 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5211 
5212 	/* give packet to stack - skip on first n bytes */
5213 	data = (u8 *)dma_addr + 2 + 32;
5214 
5215 	if (rx_bytes <= 0)
5216 		return 0;
5217 
5218 	/*
5219 	 * No cache invalidation needed here, since the rx_buffer's are
5220 	 * located in a uncached memory region
5221 	 */
5222 	*packetp = data;
5223 
5224 	return rx_bytes;
5225 }
5226 
5227 /* Drain Txq */
5228 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5229 			    int enable)
5230 {
5231 	u32 val;
5232 
5233 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5234 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
5235 	if (enable)
5236 		val |= MVPP2_TXQ_DRAIN_EN_MASK;
5237 	else
5238 		val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5239 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
5240 }
5241 
5242 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5243 {
5244 	struct mvpp2_port *port = dev_get_priv(dev);
5245 	struct mvpp2_tx_queue *txq, *aggr_txq;
5246 	struct mvpp2_tx_desc *tx_desc;
5247 	int tx_done;
5248 	int timeout;
5249 
5250 	txq = port->txqs[0];
5251 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5252 
5253 	/* Get a descriptor for the first part of the packet */
5254 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5255 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5256 	mvpp2_txdesc_size_set(port, tx_desc, length);
5257 	mvpp2_txdesc_offset_set(port, tx_desc,
5258 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5259 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5260 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5261 	/* First and Last descriptor */
5262 	mvpp2_txdesc_cmd_set(port, tx_desc,
5263 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5264 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5265 
5266 	/* Flush tx data */
5267 	flush_dcache_range((unsigned long)packet,
5268 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5269 
5270 	/* Enable transmit */
5271 	mb();
5272 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5273 
5274 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5275 
5276 	timeout = 0;
5277 	do {
5278 		if (timeout++ > 10000) {
5279 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5280 			return 0;
5281 		}
5282 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5283 	} while (tx_done);
5284 
5285 	/* Enable TXQ drain */
5286 	mvpp2_txq_drain(port, txq, 1);
5287 
5288 	timeout = 0;
5289 	do {
5290 		if (timeout++ > 10000) {
5291 			printf("timeout: packet not sent\n");
5292 			return 0;
5293 		}
5294 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5295 	} while (!tx_done);
5296 
5297 	/* Disable TXQ drain */
5298 	mvpp2_txq_drain(port, txq, 0);
5299 
5300 	return 0;
5301 }
5302 
5303 static int mvpp2_start(struct udevice *dev)
5304 {
5305 	struct eth_pdata *pdata = dev_get_platdata(dev);
5306 	struct mvpp2_port *port = dev_get_priv(dev);
5307 
5308 	/* Load current MAC address */
5309 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5310 
5311 	/* Reconfigure parser accept the original MAC address */
5312 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5313 
5314 	mvpp2_port_power_up(port);
5315 
5316 	mvpp2_open(dev, port);
5317 
5318 	return 0;
5319 }
5320 
5321 static void mvpp2_stop(struct udevice *dev)
5322 {
5323 	struct mvpp2_port *port = dev_get_priv(dev);
5324 
5325 	mvpp2_stop_dev(port);
5326 	mvpp2_cleanup_rxqs(port);
5327 	mvpp2_cleanup_txqs(port);
5328 }
5329 
5330 static int mvpp2_base_probe(struct udevice *dev)
5331 {
5332 	struct mvpp2 *priv = dev_get_priv(dev);
5333 	struct mii_dev *bus;
5334 	void *bd_space;
5335 	u32 size = 0;
5336 	int i;
5337 
5338 	/* Save hw-version */
5339 	priv->hw_version = dev_get_driver_data(dev);
5340 
5341 	/*
5342 	 * U-Boot special buffer handling:
5343 	 *
5344 	 * Allocate buffer area for descs and rx_buffers. This is only
5345 	 * done once for all interfaces. As only one interface can
5346 	 * be active. Make this area DMA-safe by disabling the D-cache
5347 	 */
5348 
5349 	/* Align buffer area for descs and rx_buffers to 1MiB */
5350 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5351 	mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5352 					BD_SPACE, DCACHE_OFF);
5353 
5354 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5355 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5356 
5357 	buffer_loc.tx_descs =
5358 		(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5359 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5360 
5361 	buffer_loc.rx_descs =
5362 		(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5363 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5364 
5365 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5366 		buffer_loc.bm_pool[i] =
5367 			(unsigned long *)((unsigned long)bd_space + size);
5368 		if (priv->hw_version == MVPP21)
5369 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5370 		else
5371 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5372 	}
5373 
5374 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5375 		buffer_loc.rx_buffer[i] =
5376 			(unsigned long *)((unsigned long)bd_space + size);
5377 		size += RX_BUFFER_SIZE;
5378 	}
5379 
5380 	/* Clear the complete area so that all descriptors are cleared */
5381 	memset(bd_space, 0, size);
5382 
5383 	/* Save base addresses for later use */
5384 	priv->base = (void *)dev_get_addr_index(dev, 0);
5385 	if (IS_ERR(priv->base))
5386 		return PTR_ERR(priv->base);
5387 
5388 	if (priv->hw_version == MVPP21) {
5389 		priv->lms_base = (void *)dev_get_addr_index(dev, 1);
5390 		if (IS_ERR(priv->lms_base))
5391 			return PTR_ERR(priv->lms_base);
5392 
5393 		priv->mdio_base = priv->lms_base + MVPP21_SMI;
5394 	} else {
5395 		priv->iface_base = (void *)dev_get_addr_index(dev, 1);
5396 		if (IS_ERR(priv->iface_base))
5397 			return PTR_ERR(priv->iface_base);
5398 
5399 		priv->mdio_base = priv->iface_base + MVPP22_SMI;
5400 
5401 		/* Store common base addresses for all ports */
5402 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5403 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5404 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5405 	}
5406 
5407 	if (priv->hw_version == MVPP21)
5408 		priv->max_port_rxqs = 8;
5409 	else
5410 		priv->max_port_rxqs = 32;
5411 
5412 	/* Finally create and register the MDIO bus driver */
5413 	bus = mdio_alloc();
5414 	if (!bus) {
5415 		printf("Failed to allocate MDIO bus\n");
5416 		return -ENOMEM;
5417 	}
5418 
5419 	bus->read = mpp2_mdio_read;
5420 	bus->write = mpp2_mdio_write;
5421 	snprintf(bus->name, sizeof(bus->name), dev->name);
5422 	bus->priv = (void *)priv;
5423 	priv->bus = bus;
5424 
5425 	return mdio_register(bus);
5426 }
5427 
5428 static int mvpp2_probe(struct udevice *dev)
5429 {
5430 	struct mvpp2_port *port = dev_get_priv(dev);
5431 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5432 	int err;
5433 
5434 	/* Only call the probe function for the parent once */
5435 	if (!priv->probe_done) {
5436 		err = mvpp2_base_probe(dev->parent);
5437 		priv->probe_done = 1;
5438 	}
5439 
5440 	port->priv = dev_get_priv(dev->parent);
5441 
5442 	err = phy_info_parse(dev, port);
5443 	if (err)
5444 		return err;
5445 
5446 	/*
5447 	 * We need the port specific io base addresses at this stage, since
5448 	 * gop_port_init() accesses these registers
5449 	 */
5450 	if (priv->hw_version == MVPP21) {
5451 		int priv_common_regs_num = 2;
5452 
5453 		port->base = (void __iomem *)dev_get_addr_index(
5454 			dev->parent, priv_common_regs_num + port->id);
5455 		if (IS_ERR(port->base))
5456 			return PTR_ERR(port->base);
5457 	} else {
5458 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5459 					      "gop-port-id", -1);
5460 		if (port->id == -1) {
5461 			dev_err(&pdev->dev, "missing gop-port-id value\n");
5462 			return -EINVAL;
5463 		}
5464 
5465 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5466 			port->gop_id * MVPP22_PORT_OFFSET;
5467 
5468 		/* GoP Init */
5469 		gop_port_init(port);
5470 	}
5471 
5472 	/* Initialize network controller */
5473 	err = mvpp2_init(dev, priv);
5474 	if (err < 0) {
5475 		dev_err(&pdev->dev, "failed to initialize controller\n");
5476 		return err;
5477 	}
5478 
5479 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5480 	if (err)
5481 		return err;
5482 
5483 	if (priv->hw_version == MVPP22) {
5484 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5485 							   port->phy_interface);
5486 
5487 		/* Netcomplex configurations for all ports */
5488 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5489 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5490 	}
5491 
5492 	return 0;
5493 }
5494 
5495 static const struct eth_ops mvpp2_ops = {
5496 	.start		= mvpp2_start,
5497 	.send		= mvpp2_send,
5498 	.recv		= mvpp2_recv,
5499 	.stop		= mvpp2_stop,
5500 };
5501 
5502 static struct driver mvpp2_driver = {
5503 	.name	= "mvpp2",
5504 	.id	= UCLASS_ETH,
5505 	.probe	= mvpp2_probe,
5506 	.ops	= &mvpp2_ops,
5507 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
5508 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5509 };
5510 
5511 /*
5512  * Use a MISC device to bind the n instances (child nodes) of the
5513  * network base controller in UCLASS_ETH.
5514  */
5515 static int mvpp2_base_bind(struct udevice *parent)
5516 {
5517 	const void *blob = gd->fdt_blob;
5518 	int node = dev_of_offset(parent);
5519 	struct uclass_driver *drv;
5520 	struct udevice *dev;
5521 	struct eth_pdata *plat;
5522 	char *name;
5523 	int subnode;
5524 	u32 id;
5525 	int base_id_add;
5526 
5527 	/* Lookup eth driver */
5528 	drv = lists_uclass_lookup(UCLASS_ETH);
5529 	if (!drv) {
5530 		puts("Cannot find eth driver\n");
5531 		return -ENOENT;
5532 	}
5533 
5534 	base_id_add = base_id;
5535 
5536 	fdt_for_each_subnode(subnode, blob, node) {
5537 		/* Increment base_id for all subnodes, also the disabled ones */
5538 		base_id++;
5539 
5540 		/* Skip disabled ports */
5541 		if (!fdtdec_get_is_enabled(blob, subnode))
5542 			continue;
5543 
5544 		plat = calloc(1, sizeof(*plat));
5545 		if (!plat)
5546 			return -ENOMEM;
5547 
5548 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5549 		id += base_id_add;
5550 
5551 		name = calloc(1, 16);
5552 		sprintf(name, "mvpp2-%d", id);
5553 
5554 		/* Create child device UCLASS_ETH and bind it */
5555 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5556 		dev_set_of_offset(dev, subnode);
5557 	}
5558 
5559 	return 0;
5560 }
5561 
5562 static const struct udevice_id mvpp2_ids[] = {
5563 	{
5564 		.compatible = "marvell,armada-375-pp2",
5565 		.data = MVPP21,
5566 	},
5567 	{
5568 		.compatible = "marvell,armada-7k-pp22",
5569 		.data = MVPP22,
5570 	},
5571 	{ }
5572 };
5573 
5574 U_BOOT_DRIVER(mvpp2_base) = {
5575 	.name	= "mvpp2_base",
5576 	.id	= UCLASS_MISC,
5577 	.of_match = mvpp2_ids,
5578 	.bind	= mvpp2_base_bind,
5579 	.priv_auto_alloc_size = sizeof(struct mvpp2),
5580 };
5581