xref: /rk3399_rockchip-uboot/drivers/net/keystone_net.c (revision 11db3abe6609e08e2df4ecc9353d2c0a2b061be2)
1 /*
2  * Ethernet driver for TI K2HK EVM.
3  *
4  * (C) Copyright 2012-2014
5  *     Texas Instruments Incorporated, <www.ti.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9 #include <common.h>
10 #include <command.h>
11 
12 #include <net.h>
13 #include <miiphy.h>
14 #include <malloc.h>
15 #include <asm/arch/emac_defs.h>
16 #include <asm/arch/psc_defs.h>
17 #include <asm/arch/keystone_nav.h>
18 
19 unsigned int emac_dbg;
20 
21 unsigned int emac_open;
22 static unsigned int sys_has_mdio = 1;
23 
24 #ifdef KEYSTONE2_EMAC_GIG_ENABLE
25 #define emac_gigabit_enable(x)	keystone2_eth_gigabit_enable(x)
26 #else
27 #define emac_gigabit_enable(x)	/* no gigabit to enable */
28 #endif
29 
30 #define RX_BUFF_NUMS	24
31 #define RX_BUFF_LEN	1520
32 #define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN
33 
34 static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16);
35 
36 struct rx_buff_desc net_rx_buffs = {
37 	.buff_ptr	= rx_buffs,
38 	.num_buffs	= RX_BUFF_NUMS,
39 	.buff_len	= RX_BUFF_LEN,
40 	.rx_flow	= 22,
41 };
42 
43 static void keystone2_eth_mdio_enable(void);
44 
45 static int gen_get_link_speed(int phy_addr);
46 
47 /* EMAC Addresses */
48 static volatile struct emac_regs	*adap_emac =
49 	(struct emac_regs *)EMAC_EMACSL_BASE_ADDR;
50 static volatile struct mdio_regs	*adap_mdio =
51 	(struct mdio_regs *)EMAC_MDIO_BASE_ADDR;
52 
53 int keystone2_eth_read_mac_addr(struct eth_device *dev)
54 {
55 	struct eth_priv_t *eth_priv;
56 	u32 maca = 0;
57 	u32 macb = 0;
58 
59 	eth_priv = (struct eth_priv_t *)dev->priv;
60 
61 	/* Read the e-fuse mac address */
62 	if (eth_priv->slave_port == 1) {
63 		maca = __raw_readl(MAC_ID_BASE_ADDR);
64 		macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
65 	}
66 
67 	dev->enetaddr[0] = (macb >>  8) & 0xff;
68 	dev->enetaddr[1] = (macb >>  0) & 0xff;
69 	dev->enetaddr[2] = (maca >> 24) & 0xff;
70 	dev->enetaddr[3] = (maca >> 16) & 0xff;
71 	dev->enetaddr[4] = (maca >>  8) & 0xff;
72 	dev->enetaddr[5] = (maca >>  0) & 0xff;
73 
74 	return 0;
75 }
76 
77 static void keystone2_eth_mdio_enable(void)
78 {
79 	u_int32_t	clkdiv;
80 
81 	clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
82 
83 	writel((clkdiv & 0xffff) |
84 	       MDIO_CONTROL_ENABLE |
85 	       MDIO_CONTROL_FAULT |
86 	       MDIO_CONTROL_FAULT_ENABLE,
87 	       &adap_mdio->control);
88 
89 	while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE)
90 		;
91 }
92 
93 /* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */
94 int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data)
95 {
96 	int	tmp;
97 
98 	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
99 		;
100 
101 	writel(MDIO_USERACCESS0_GO |
102 	       MDIO_USERACCESS0_WRITE_READ |
103 	       ((reg_num & 0x1f) << 21) |
104 	       ((phy_addr & 0x1f) << 16),
105 	       &adap_mdio->useraccess0);
106 
107 	/* Wait for command to complete */
108 	while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO)
109 		;
110 
111 	if (tmp & MDIO_USERACCESS0_ACK) {
112 		*data = tmp & 0xffff;
113 		return 0;
114 	}
115 
116 	*data = -1;
117 	return -1;
118 }
119 
120 /*
121  * Write to a PHY register via MDIO inteface.
122  * Blocks until operation is complete.
123  */
124 int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data)
125 {
126 	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
127 		;
128 
129 	writel(MDIO_USERACCESS0_GO |
130 	       MDIO_USERACCESS0_WRITE_WRITE |
131 	       ((reg_num & 0x1f) << 21) |
132 	       ((phy_addr & 0x1f) << 16) |
133 	       (data & 0xffff),
134 	       &adap_mdio->useraccess0);
135 
136 	/* Wait for command to complete */
137 	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
138 		;
139 
140 	return 0;
141 }
142 
143 /* PHY functions for a generic PHY */
144 static int gen_get_link_speed(int phy_addr)
145 {
146 	u_int16_t	tmp;
147 
148 	if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) &&
149 	    (tmp & 0x04)) {
150 		return 0;
151 	}
152 
153 	return -1;
154 }
155 
156 static void  __attribute__((unused))
157 	keystone2_eth_gigabit_enable(struct eth_device *dev)
158 {
159 	u_int16_t data;
160 	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
161 
162 	if (sys_has_mdio) {
163 		if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) ||
164 		    !(data & (1 << 6))) /* speed selection MSB */
165 			return;
166 	}
167 
168 	/*
169 	 * Check if link detected is giga-bit
170 	 * If Gigabit mode detected, enable gigbit in MAC
171 	 */
172 	writel(readl(&(adap_emac[eth_priv->slave_port - 1].maccontrol)) |
173 	       EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
174 	       &(adap_emac[eth_priv->slave_port - 1].maccontrol))
175 		;
176 }
177 
178 int keystone_sgmii_link_status(int port)
179 {
180 	u32 status = 0;
181 
182 	status = __raw_readl(SGMII_STATUS_REG(port));
183 
184 	return status & SGMII_REG_STATUS_LINK;
185 }
186 
187 
188 int keystone_get_link_status(struct eth_device *dev)
189 {
190 	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
191 	int sgmii_link;
192 	int link_state = 0;
193 #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
194 	int j;
195 
196 	for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0);
197 	     j++) {
198 #endif
199 		sgmii_link =
200 			keystone_sgmii_link_status(eth_priv->slave_port - 1);
201 
202 		if (sgmii_link) {
203 			link_state = 1;
204 
205 			if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY)
206 				if (gen_get_link_speed(eth_priv->phy_addr))
207 					link_state = 0;
208 		}
209 #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
210 	}
211 #endif
212 	return link_state;
213 }
214 
215 int keystone_sgmii_config(int port, int interface)
216 {
217 	unsigned int i, status, mask;
218 	unsigned int mr_adv_ability, control;
219 
220 	switch (interface) {
221 	case SGMII_LINK_MAC_MAC_AUTONEG:
222 		mr_adv_ability	= (SGMII_REG_MR_ADV_ENABLE |
223 				   SGMII_REG_MR_ADV_LINK |
224 				   SGMII_REG_MR_ADV_FULL_DUPLEX |
225 				   SGMII_REG_MR_ADV_GIG_MODE);
226 		control		= (SGMII_REG_CONTROL_MASTER |
227 				   SGMII_REG_CONTROL_AUTONEG);
228 
229 		break;
230 	case SGMII_LINK_MAC_PHY:
231 	case SGMII_LINK_MAC_PHY_FORCED:
232 		mr_adv_ability	= SGMII_REG_MR_ADV_ENABLE;
233 		control		= SGMII_REG_CONTROL_AUTONEG;
234 
235 		break;
236 	case SGMII_LINK_MAC_MAC_FORCED:
237 		mr_adv_ability	= (SGMII_REG_MR_ADV_ENABLE |
238 				   SGMII_REG_MR_ADV_LINK |
239 				   SGMII_REG_MR_ADV_FULL_DUPLEX |
240 				   SGMII_REG_MR_ADV_GIG_MODE);
241 		control		= SGMII_REG_CONTROL_MASTER;
242 
243 		break;
244 	case SGMII_LINK_MAC_FIBER:
245 		mr_adv_ability	= 0x20;
246 		control		= SGMII_REG_CONTROL_AUTONEG;
247 
248 		break;
249 	default:
250 		mr_adv_ability	= SGMII_REG_MR_ADV_ENABLE;
251 		control		= SGMII_REG_CONTROL_AUTONEG;
252 	}
253 
254 	__raw_writel(0, SGMII_CTL_REG(port));
255 
256 	/*
257 	 * Wait for the SerDes pll to lock,
258 	 * but don't trap if lock is never read
259 	 */
260 	for (i = 0; i < 1000; i++)  {
261 		udelay(2000);
262 		status = __raw_readl(SGMII_STATUS_REG(port));
263 		if ((status & SGMII_REG_STATUS_LOCK) != 0)
264 			break;
265 	}
266 
267 	__raw_writel(mr_adv_ability, SGMII_MRADV_REG(port));
268 	__raw_writel(control, SGMII_CTL_REG(port));
269 
270 
271 	mask = SGMII_REG_STATUS_LINK;
272 
273 	if (control & SGMII_REG_CONTROL_AUTONEG)
274 		mask |= SGMII_REG_STATUS_AUTONEG;
275 
276 	for (i = 0; i < 1000; i++) {
277 		status = __raw_readl(SGMII_STATUS_REG(port));
278 		if ((status & mask) == mask)
279 			break;
280 	}
281 
282 	return 0;
283 }
284 
285 int mac_sl_reset(u32 port)
286 {
287 	u32 i, v;
288 
289 	if (port >= DEVICE_N_GMACSL_PORTS)
290 		return GMACSL_RET_INVALID_PORT;
291 
292 	/* Set the soft reset bit */
293 	DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) +
294 		       CPGMACSL_REG_RESET, CPGMAC_REG_RESET_VAL_RESET);
295 
296 	/* Wait for the bit to clear */
297 	for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
298 		v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) +
299 				   CPGMACSL_REG_RESET);
300 		if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
301 		    CPGMAC_REG_RESET_VAL_RESET)
302 			return GMACSL_RET_OK;
303 	}
304 
305 	/* Timeout on the reset */
306 	return GMACSL_RET_WARN_RESET_INCOMPLETE;
307 }
308 
309 int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg)
310 {
311 	u32 v, i;
312 	int ret = GMACSL_RET_OK;
313 
314 	if (port >= DEVICE_N_GMACSL_PORTS)
315 		return GMACSL_RET_INVALID_PORT;
316 
317 	if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) {
318 		cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN;
319 		ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG;
320 	}
321 
322 	/* Must wait if the device is undergoing reset */
323 	for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
324 		v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) +
325 				   CPGMACSL_REG_RESET);
326 		if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
327 		    CPGMAC_REG_RESET_VAL_RESET)
328 			break;
329 	}
330 
331 	if (i == DEVICE_EMACSL_RESET_POLL_COUNT)
332 		return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE;
333 
334 	DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN,
335 		       cfg->max_rx_len);
336 
337 	DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL,
338 		       cfg->ctl);
339 
340 	return ret;
341 }
342 
343 int ethss_config(u32 ctl, u32 max_pkt_size)
344 {
345 	u32 i;
346 
347 	/* Max length register */
348 	DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_MAXLEN, max_pkt_size);
349 
350 	/* Control register */
351 	DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_CTL, ctl);
352 
353 	/* All statistics enabled by default */
354 	DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN,
355 		       CPSW_REG_VAL_STAT_ENABLE_ALL);
356 
357 	/* Reset and enable the ALE */
358 	DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL,
359 		       CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE |
360 		       CPSW_REG_VAL_ALE_CTL_BYPASS);
361 
362 	/* All ports put into forward mode */
363 	for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++)
364 		DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i),
365 			       CPSW_REG_VAL_PORTCTL_FORWARD_MODE);
366 
367 	return 0;
368 }
369 
370 int ethss_start(void)
371 {
372 	int i;
373 	struct mac_sl_cfg cfg;
374 
375 	cfg.max_rx_len	= MAX_SIZE_STREAM_BUFFER;
376 	cfg.ctl		= GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL;
377 
378 	for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) {
379 		mac_sl_reset(i);
380 		mac_sl_config(i, &cfg);
381 	}
382 
383 	return 0;
384 }
385 
386 int ethss_stop(void)
387 {
388 	int i;
389 
390 	for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++)
391 		mac_sl_reset(i);
392 
393 	return 0;
394 }
395 
396 int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num)
397 {
398 	if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE)
399 		num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE;
400 
401 	return netcp_send(buffer, num_bytes, (slave_port_num) << 16);
402 }
403 
404 /* Eth device open */
405 static int keystone2_eth_open(struct eth_device *dev, bd_t *bis)
406 {
407 	u_int32_t clkdiv;
408 	int link;
409 	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
410 
411 	debug("+ emac_open\n");
412 
413 	net_rx_buffs.rx_flow	= eth_priv->rx_flow;
414 
415 	sys_has_mdio =
416 		(eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0;
417 
418 	psc_enable_module(KS2_LPSC_PA);
419 	psc_enable_module(KS2_LPSC_CPGMAC);
420 
421 	sgmii_serdes_setup_156p25mhz();
422 
423 	if (sys_has_mdio)
424 		keystone2_eth_mdio_enable();
425 
426 	keystone_sgmii_config(eth_priv->slave_port - 1,
427 			      eth_priv->sgmii_link_type);
428 
429 	udelay(10000);
430 
431 	/* On chip switch configuration */
432 	ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);
433 
434 	/* TODO: add error handling code */
435 	if (qm_init()) {
436 		printf("ERROR: qm_init()\n");
437 		return -1;
438 	}
439 	if (netcp_init(&net_rx_buffs)) {
440 		qm_close();
441 		printf("ERROR: netcp_init()\n");
442 		return -1;
443 	}
444 
445 	/*
446 	 * Streaming switch configuration. If not present this
447 	 * statement is defined to void in target.h.
448 	 * If present this is usually defined to a series of register writes
449 	 */
450 	hw_config_streaming_switch();
451 
452 	if (sys_has_mdio) {
453 		/* Init MDIO & get link state */
454 		clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
455 		writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE |
456 		       MDIO_CONTROL_FAULT, &adap_mdio->control)
457 			;
458 
459 		/* We need to wait for MDIO to start */
460 		udelay(1000);
461 
462 		link = keystone_get_link_status(dev);
463 		if (link == 0) {
464 			netcp_close();
465 			qm_close();
466 			return -1;
467 		}
468 	}
469 
470 	emac_gigabit_enable(dev);
471 
472 	ethss_start();
473 
474 	debug("- emac_open\n");
475 
476 	emac_open = 1;
477 
478 	return 0;
479 }
480 
481 /* Eth device close */
482 void keystone2_eth_close(struct eth_device *dev)
483 {
484 	debug("+ emac_close\n");
485 
486 	if (!emac_open)
487 		return;
488 
489 	ethss_stop();
490 
491 	netcp_close();
492 	qm_close();
493 
494 	emac_open = 0;
495 
496 	debug("- emac_close\n");
497 }
498 
499 static int tx_send_loop;
500 
501 /*
502  * This function sends a single packet on the network and returns
503  * positive number (number of bytes transmitted) or negative for error
504  */
505 static int keystone2_eth_send_packet(struct eth_device *dev,
506 					void *packet, int length)
507 {
508 	int ret_status = -1;
509 	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
510 
511 	tx_send_loop = 0;
512 
513 	if (keystone_get_link_status(dev) == 0)
514 		return -1;
515 
516 	emac_gigabit_enable(dev);
517 
518 	if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0)
519 		return ret_status;
520 
521 	if (keystone_get_link_status(dev) == 0)
522 		return -1;
523 
524 	emac_gigabit_enable(dev);
525 
526 	return length;
527 }
528 
529 /*
530  * This function handles receipt of a packet from the network
531  */
532 static int keystone2_eth_rcv_packet(struct eth_device *dev)
533 {
534 	void *hd;
535 	int  pkt_size;
536 	u32  *pkt;
537 
538 	hd = netcp_recv(&pkt, &pkt_size);
539 	if (hd == NULL)
540 		return 0;
541 
542 	NetReceive((uchar *)pkt, pkt_size);
543 
544 	netcp_release_rxhd(hd);
545 
546 	return pkt_size;
547 }
548 
549 /*
550  * This function initializes the EMAC hardware.
551  */
552 int keystone2_emac_initialize(struct eth_priv_t *eth_priv)
553 {
554 	struct eth_device *dev;
555 
556 	dev = malloc(sizeof(struct eth_device));
557 	if (dev == NULL)
558 		return -1;
559 
560 	memset(dev, 0, sizeof(struct eth_device));
561 
562 	strcpy(dev->name, eth_priv->int_name);
563 	dev->priv = eth_priv;
564 
565 	keystone2_eth_read_mac_addr(dev);
566 
567 	dev->iobase		= 0;
568 	dev->init		= keystone2_eth_open;
569 	dev->halt		= keystone2_eth_close;
570 	dev->send		= keystone2_eth_send_packet;
571 	dev->recv		= keystone2_eth_rcv_packet;
572 
573 	eth_register(dev);
574 
575 	return 0;
576 }
577 
578 void sgmii_serdes_setup_156p25mhz(void)
579 {
580 	unsigned int cnt;
581 
582 	/*
583 	 * configure Serializer/Deserializer (SerDes) hardware. SerDes IP
584 	 * hardware vendor published only register addresses and their values
585 	 * to be used for configuring SerDes. So had to use hardcoded values
586 	 * below.
587 	 */
588 	clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000);
589 	clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282);
590 	clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438);
591 	clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700);
592 	clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000);
593 
594 	clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080);
595 	clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000);
596 	clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000);
597 	clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000);
598 	clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8);
599 	clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4);
600 	clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400);
601 	clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800);
602 	clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082);
603 	clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385);
604 
605 	clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080);
606 	clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000);
607 	clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000);
608 	clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000);
609 	clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8);
610 	clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4);
611 	clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400);
612 	clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800);
613 	clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082);
614 	clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385);
615 
616 	clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080);
617 	clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000);
618 	clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000);
619 	clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000);
620 	clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8);
621 	clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4);
622 	clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400);
623 	clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800);
624 	clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082);
625 	clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385);
626 
627 	clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080);
628 	clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000);
629 	clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000);
630 	clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000);
631 	clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8);
632 	clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4);
633 	clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400);
634 	clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800);
635 	clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082);
636 	clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385);
637 
638 	clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800);
639 	clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000);
640 	clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00);
641 	clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600);
642 	clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000);
643 	clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000);
644 	clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000);
645 	clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b);
646 	clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000);
647 	clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e);
648 	clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003);
649 	clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f);
650 
651 	clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00);
652 	clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72);
653 	clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100);
654 	clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060);
655 	clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000);
656 	clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220);
657 	clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602);
658 	clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1);
659 	clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989);
660 	clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001);
661 	clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000);
662 	clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000);
663 	clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d);
664 
665 	/*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/
666 	clrbits_le32(0x0232a010, 1 << 28);
667 
668 	/* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */
669 	clrbits_le32(0x0232a228, 1 << 29);
670 	writel(0xF800F8C0, 0x0232bfe0);
671 	clrbits_le32(0x0232a428, 1 << 29);
672 	writel(0xF800F8C0, 0x0232bfe4);
673 	clrbits_le32(0x0232a628, 1 << 29);
674 	writel(0xF800F8C0, 0x0232bfe8);
675 	clrbits_le32(0x0232a828, 1 << 29);
676 	writel(0xF800F8C0, 0x0232bfec);
677 
678 	/*Enable pll via the pll_ctrl 0x0014*/
679 	writel(0xe0000000, 0x0232bff4)
680 		;
681 
682 	/*Waiting for SGMII Serdes PLL lock.*/
683 	for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--)
684 		;
685 
686 	for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--)
687 		;
688 
689 	for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--)
690 		;
691 
692 	for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--)
693 		;
694 
695 	udelay(45000);
696 }
697 
698 void sgmii_serdes_shutdown(void)
699 {
700 	/*
701 	 * shutdown SerDes hardware. SerDes hardware vendor published only
702 	 * register addresses and their values. So had to use hardcoded
703 	 * values below.
704 	 */
705 	clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13);
706 	setbits_le32(0x02320228, 1 << 29);
707 	clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13);
708 	setbits_le32(0x02320428, 1 << 29);
709 	clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13);
710 	setbits_le32(0x02320628, 1 << 29);
711 	clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13);
712 	setbits_le32(0x02320828, 1 << 29);
713 
714 	clrbits_le32(0x02320034, 3 << 29);
715 	setbits_le32(0x02320010, 1 << 28);
716 }
717