1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <dm.h> 13 #include <malloc.h> 14 #include <memalign.h> 15 #include <miiphy.h> 16 #include <net.h> 17 #include <netdev.h> 18 #include "fec_mxc.h" 19 20 #include <asm/io.h> 21 #include <linux/errno.h> 22 #include <linux/compiler.h> 23 24 #include <asm/arch/clock.h> 25 #include <asm/arch/imx-regs.h> 26 #include <asm/mach-imx/sys_proto.h> 27 #include <asm-generic/gpio.h> 28 29 #include "fec_mxc.h" 30 #include <eth_phy.h> 31 32 DECLARE_GLOBAL_DATA_PTR; 33 34 /* 35 * Timeout the transfer after 5 mS. This is usually a bit more, since 36 * the code in the tightloops this timeout is used in adds some overhead. 37 */ 38 #define FEC_XFER_TIMEOUT 5000 39 40 /* 41 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 42 * 64-byte alignment in the DMA RX FEC buffer. 43 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 44 * satisfies the alignment on other SoCs (32-bytes) 45 */ 46 #define FEC_DMA_RX_MINALIGN 64 47 48 #ifndef CONFIG_MII 49 #error "CONFIG_MII has to be defined!" 50 #endif 51 52 #ifndef CONFIG_FEC_XCV_TYPE 53 #define CONFIG_FEC_XCV_TYPE MII100 54 #endif 55 56 /* 57 * The i.MX28 operates with packets in big endian. We need to swap them before 58 * sending and after receiving. 59 */ 60 #ifdef CONFIG_MX28 61 #define CONFIG_FEC_MXC_SWAP_PACKET 62 #endif 63 64 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 65 66 /* Check various alignment issues at compile time */ 67 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 68 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 69 #endif 70 71 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 72 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 73 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 74 #endif 75 76 #undef DEBUG 77 78 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 79 static void swap_packet(uint32_t *packet, int length) 80 { 81 int i; 82 83 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 84 packet[i] = __swab32(packet[i]); 85 } 86 #endif 87 88 /* MII-interface related functions */ 89 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, 90 uint8_t regaddr) 91 { 92 uint32_t reg; /* convenient holder for the PHY register */ 93 uint32_t phy; /* convenient holder for the PHY */ 94 uint32_t start; 95 int val; 96 97 /* 98 * reading from any PHY's register is done by properly 99 * programming the FEC's MII data register. 100 */ 101 writel(FEC_IEVENT_MII, ð->ievent); 102 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 103 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 104 105 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 106 phy | reg, ð->mii_data); 107 108 /* wait for the related interrupt */ 109 start = get_timer(0); 110 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 111 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 112 printf("Read MDIO failed...\n"); 113 return -1; 114 } 115 } 116 117 /* clear mii interrupt bit */ 118 writel(FEC_IEVENT_MII, ð->ievent); 119 120 /* it's now safe to read the PHY's register */ 121 val = (unsigned short)readl(ð->mii_data); 122 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 123 regaddr, val); 124 return val; 125 } 126 127 static void fec_mii_setspeed(struct ethernet_regs *eth) 128 { 129 /* 130 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 131 * and do not drop the Preamble. 132 * 133 * The i.MX28 and i.MX6 types have another field in the MSCR (aka 134 * MII_SPEED) register that defines the MDIO output hold time. Earlier 135 * versions are RAZ there, so just ignore the difference and write the 136 * register always. 137 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 138 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 139 * output. 140 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 141 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 142 * holdtime cannot result in a value greater than 3. 143 */ 144 u32 pclk = imx_get_fecclk(); 145 u32 speed = DIV_ROUND_UP(pclk, 5000000); 146 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; 147 #ifdef FEC_QUIRK_ENET_MAC 148 speed--; 149 #endif 150 writel(speed << 1 | hold << 8, ð->mii_speed); 151 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 152 } 153 154 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, 155 uint8_t regaddr, uint16_t data) 156 { 157 uint32_t reg; /* convenient holder for the PHY register */ 158 uint32_t phy; /* convenient holder for the PHY */ 159 uint32_t start; 160 161 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 162 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 163 164 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 165 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 166 167 /* wait for the MII interrupt */ 168 start = get_timer(0); 169 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 170 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 171 printf("Write MDIO failed...\n"); 172 return -1; 173 } 174 } 175 176 /* clear MII interrupt bit */ 177 writel(FEC_IEVENT_MII, ð->ievent); 178 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 179 regaddr, data); 180 181 return 0; 182 } 183 184 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, 185 int regaddr) 186 { 187 return fec_mdio_read(bus->priv, phyaddr, regaddr); 188 } 189 190 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, 191 int regaddr, u16 data) 192 { 193 return fec_mdio_write(bus->priv, phyaddr, regaddr, data); 194 } 195 196 #ifndef CONFIG_PHYLIB 197 static int miiphy_restart_aneg(struct eth_device *dev) 198 { 199 int ret = 0; 200 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 201 struct fec_priv *fec = (struct fec_priv *)dev->priv; 202 struct ethernet_regs *eth = fec->bus->priv; 203 204 /* 205 * Wake up from sleep if necessary 206 * Reset PHY, then delay 300ns 207 */ 208 #ifdef CONFIG_MX27 209 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 210 #endif 211 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 212 udelay(1000); 213 214 /* Set the auto-negotiation advertisement register bits */ 215 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 216 LPA_100FULL | LPA_100HALF | LPA_10FULL | 217 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 218 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 219 BMCR_ANENABLE | BMCR_ANRESTART); 220 221 if (fec->mii_postcall) 222 ret = fec->mii_postcall(fec->phy_id); 223 224 #endif 225 return ret; 226 } 227 228 #ifndef CONFIG_FEC_FIXED_SPEED 229 static int miiphy_wait_aneg(struct eth_device *dev) 230 { 231 uint32_t start; 232 int status; 233 struct fec_priv *fec = (struct fec_priv *)dev->priv; 234 struct ethernet_regs *eth = fec->bus->priv; 235 236 /* Wait for AN completion */ 237 start = get_timer(0); 238 do { 239 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 240 printf("%s: Autonegotiation timeout\n", dev->name); 241 return -1; 242 } 243 244 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 245 if (status < 0) { 246 printf("%s: Autonegotiation failed. status: %d\n", 247 dev->name, status); 248 return -1; 249 } 250 } while (!(status & BMSR_LSTATUS)); 251 252 return 0; 253 } 254 #endif /* CONFIG_FEC_FIXED_SPEED */ 255 #endif 256 257 static int fec_rx_task_enable(struct fec_priv *fec) 258 { 259 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 260 return 0; 261 } 262 263 static int fec_rx_task_disable(struct fec_priv *fec) 264 { 265 return 0; 266 } 267 268 static int fec_tx_task_enable(struct fec_priv *fec) 269 { 270 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 271 return 0; 272 } 273 274 static int fec_tx_task_disable(struct fec_priv *fec) 275 { 276 return 0; 277 } 278 279 /** 280 * Initialize receive task's buffer descriptors 281 * @param[in] fec all we know about the device yet 282 * @param[in] count receive buffer count to be allocated 283 * @param[in] dsize desired size of each receive buffer 284 * @return 0 on success 285 * 286 * Init all RX descriptors to default values. 287 */ 288 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 289 { 290 uint32_t size; 291 uint8_t *data; 292 int i; 293 294 /* 295 * Reload the RX descriptors with default values and wipe 296 * the RX buffers. 297 */ 298 size = roundup(dsize, ARCH_DMA_MINALIGN); 299 for (i = 0; i < count; i++) { 300 data = (uint8_t *)fec->rbd_base[i].data_pointer; 301 memset(data, 0, dsize); 302 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 303 304 fec->rbd_base[i].status = FEC_RBD_EMPTY; 305 fec->rbd_base[i].data_length = 0; 306 } 307 308 /* Mark the last RBD to close the ring. */ 309 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 310 fec->rbd_index = 0; 311 312 flush_dcache_range((unsigned)fec->rbd_base, 313 (unsigned)fec->rbd_base + size); 314 } 315 316 /** 317 * Initialize transmit task's buffer descriptors 318 * @param[in] fec all we know about the device yet 319 * 320 * Transmit buffers are created externally. We only have to init the BDs here.\n 321 * Note: There is a race condition in the hardware. When only one BD is in 322 * use it must be marked with the WRAP bit to use it for every transmitt. 323 * This bit in combination with the READY bit results into double transmit 324 * of each data buffer. It seems the state machine checks READY earlier then 325 * resetting it after the first transfer. 326 * Using two BDs solves this issue. 327 */ 328 static void fec_tbd_init(struct fec_priv *fec) 329 { 330 unsigned addr = (unsigned)fec->tbd_base; 331 unsigned size = roundup(2 * sizeof(struct fec_bd), 332 ARCH_DMA_MINALIGN); 333 334 memset(fec->tbd_base, 0, size); 335 fec->tbd_base[0].status = 0; 336 fec->tbd_base[1].status = FEC_TBD_WRAP; 337 fec->tbd_index = 0; 338 flush_dcache_range(addr, addr + size); 339 } 340 341 /** 342 * Mark the given read buffer descriptor as free 343 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 344 * @param[in] prbd buffer descriptor to mark free again 345 */ 346 static void fec_rbd_clean(int last, struct fec_bd *prbd) 347 { 348 unsigned short flags = FEC_RBD_EMPTY; 349 if (last) 350 flags |= FEC_RBD_WRAP; 351 writew(flags, &prbd->status); 352 writew(0, &prbd->data_length); 353 } 354 355 static int fec_get_hwaddr(int dev_id, unsigned char *mac) 356 { 357 imx_get_mac_from_fuse(dev_id, mac); 358 return !is_valid_ethaddr(mac); 359 } 360 361 #ifdef CONFIG_DM_ETH 362 static int fecmxc_set_hwaddr(struct udevice *dev) 363 #else 364 static int fec_set_hwaddr(struct eth_device *dev) 365 #endif 366 { 367 #ifdef CONFIG_DM_ETH 368 struct fec_priv *fec = dev_get_priv(dev); 369 struct eth_pdata *pdata = dev_get_platdata(dev); 370 uchar *mac = pdata->enetaddr; 371 #else 372 uchar *mac = dev->enetaddr; 373 struct fec_priv *fec = (struct fec_priv *)dev->priv; 374 #endif 375 376 writel(0, &fec->eth->iaddr1); 377 writel(0, &fec->eth->iaddr2); 378 writel(0, &fec->eth->gaddr1); 379 writel(0, &fec->eth->gaddr2); 380 381 /* Set physical address */ 382 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 383 &fec->eth->paddr1); 384 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 385 386 return 0; 387 } 388 389 /* Do initial configuration of the FEC registers */ 390 static void fec_reg_setup(struct fec_priv *fec) 391 { 392 uint32_t rcntrl; 393 394 /* Set interrupt mask register */ 395 writel(0x00000000, &fec->eth->imask); 396 397 /* Clear FEC-Lite interrupt event register(IEVENT) */ 398 writel(0xffffffff, &fec->eth->ievent); 399 400 /* Set FEC-Lite receive control register(R_CNTRL): */ 401 402 /* Start with frame length = 1518, common for all modes. */ 403 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 404 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 405 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 406 if (fec->xcv_type == RGMII) 407 rcntrl |= FEC_RCNTRL_RGMII; 408 else if (fec->xcv_type == RMII) 409 rcntrl |= FEC_RCNTRL_RMII; 410 411 writel(rcntrl, &fec->eth->r_cntrl); 412 } 413 414 /** 415 * Start the FEC engine 416 * @param[in] dev Our device to handle 417 */ 418 #ifdef CONFIG_DM_ETH 419 static int fec_open(struct udevice *dev) 420 #else 421 static int fec_open(struct eth_device *edev) 422 #endif 423 { 424 #ifdef CONFIG_DM_ETH 425 struct fec_priv *fec = dev_get_priv(dev); 426 #else 427 struct fec_priv *fec = (struct fec_priv *)edev->priv; 428 #endif 429 int speed; 430 uint32_t addr, size; 431 int i; 432 433 debug("fec_open: fec_open(dev)\n"); 434 /* full-duplex, heartbeat disabled */ 435 writel(1 << 2, &fec->eth->x_cntrl); 436 fec->rbd_index = 0; 437 438 /* Invalidate all descriptors */ 439 for (i = 0; i < FEC_RBD_NUM - 1; i++) 440 fec_rbd_clean(0, &fec->rbd_base[i]); 441 fec_rbd_clean(1, &fec->rbd_base[i]); 442 443 /* Flush the descriptors into RAM */ 444 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 445 ARCH_DMA_MINALIGN); 446 addr = (uint32_t)fec->rbd_base; 447 flush_dcache_range(addr, addr + size); 448 449 #ifdef FEC_QUIRK_ENET_MAC 450 /* Enable ENET HW endian SWAP */ 451 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 452 &fec->eth->ecntrl); 453 /* Enable ENET store and forward mode */ 454 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 455 &fec->eth->x_wmrk); 456 #endif 457 /* Enable FEC-Lite controller */ 458 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 459 &fec->eth->ecntrl); 460 461 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 462 udelay(100); 463 464 /* setup the MII gasket for RMII mode */ 465 /* disable the gasket */ 466 writew(0, &fec->eth->miigsk_enr); 467 468 /* wait for the gasket to be disabled */ 469 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 470 udelay(2); 471 472 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 473 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 474 475 /* re-enable the gasket */ 476 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 477 478 /* wait until MII gasket is ready */ 479 int max_loops = 10; 480 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 481 if (--max_loops <= 0) { 482 printf("WAIT for MII Gasket ready timed out\n"); 483 break; 484 } 485 } 486 #endif 487 488 #ifdef CONFIG_PHYLIB 489 { 490 /* Start up the PHY */ 491 int ret = phy_startup(fec->phydev); 492 493 if (ret) { 494 printf("Could not initialize PHY %s\n", 495 fec->phydev->dev->name); 496 return ret; 497 } 498 speed = fec->phydev->speed; 499 } 500 #elif CONFIG_FEC_FIXED_SPEED 501 speed = CONFIG_FEC_FIXED_SPEED; 502 #else 503 miiphy_wait_aneg(edev); 504 speed = miiphy_speed(edev->name, fec->phy_id); 505 miiphy_duplex(edev->name, fec->phy_id); 506 #endif 507 508 #ifdef FEC_QUIRK_ENET_MAC 509 { 510 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 511 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 512 if (speed == _1000BASET) 513 ecr |= FEC_ECNTRL_SPEED; 514 else if (speed != _100BASET) 515 rcr |= FEC_RCNTRL_RMII_10T; 516 writel(ecr, &fec->eth->ecntrl); 517 writel(rcr, &fec->eth->r_cntrl); 518 } 519 #endif 520 debug("%s:Speed=%i\n", __func__, speed); 521 522 /* Enable SmartDMA receive task */ 523 fec_rx_task_enable(fec); 524 525 udelay(100000); 526 return 0; 527 } 528 529 #ifdef CONFIG_DM_ETH 530 static int fecmxc_init(struct udevice *dev) 531 #else 532 static int fec_init(struct eth_device *dev, bd_t *bd) 533 #endif 534 { 535 #ifdef CONFIG_DM_ETH 536 struct fec_priv *fec = dev_get_priv(dev); 537 #else 538 struct fec_priv *fec = (struct fec_priv *)dev->priv; 539 #endif 540 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 541 int i; 542 543 /* Initialize MAC address */ 544 #ifdef CONFIG_DM_ETH 545 fecmxc_set_hwaddr(dev); 546 #else 547 fec_set_hwaddr(dev); 548 #endif 549 550 /* Setup transmit descriptors, there are two in total. */ 551 fec_tbd_init(fec); 552 553 /* Setup receive descriptors. */ 554 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 555 556 fec_reg_setup(fec); 557 558 if (fec->xcv_type != SEVENWIRE) 559 fec_mii_setspeed(fec->bus->priv); 560 561 /* Set Opcode/Pause Duration Register */ 562 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 563 writel(0x2, &fec->eth->x_wmrk); 564 565 /* Set multicast address filter */ 566 writel(0x00000000, &fec->eth->gaddr1); 567 writel(0x00000000, &fec->eth->gaddr2); 568 569 /* Do not access reserved register for i.MX6UL */ 570 if (!is_mx6ul() && !is_mx6ull()) { 571 /* clear MIB RAM */ 572 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 573 writel(0, i); 574 575 /* FIFO receive start register */ 576 writel(0x520, &fec->eth->r_fstart); 577 } 578 579 /* size and address of each buffer */ 580 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 581 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 582 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 583 584 #ifndef CONFIG_PHYLIB 585 if (fec->xcv_type != SEVENWIRE) 586 miiphy_restart_aneg(dev); 587 #endif 588 fec_open(dev); 589 return 0; 590 } 591 592 /** 593 * Halt the FEC engine 594 * @param[in] dev Our device to handle 595 */ 596 #ifdef CONFIG_DM_ETH 597 static void fecmxc_halt(struct udevice *dev) 598 #else 599 static void fec_halt(struct eth_device *dev) 600 #endif 601 { 602 #ifdef CONFIG_DM_ETH 603 struct fec_priv *fec = dev_get_priv(dev); 604 #else 605 struct fec_priv *fec = (struct fec_priv *)dev->priv; 606 #endif 607 int counter = 0xffff; 608 609 /* issue graceful stop command to the FEC transmitter if necessary */ 610 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 611 &fec->eth->x_cntrl); 612 613 debug("eth_halt: wait for stop regs\n"); 614 /* wait for graceful stop to register */ 615 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 616 udelay(1); 617 618 /* Disable SmartDMA tasks */ 619 fec_tx_task_disable(fec); 620 fec_rx_task_disable(fec); 621 622 /* 623 * Disable the Ethernet Controller 624 * Note: this will also reset the BD index counter! 625 */ 626 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 627 &fec->eth->ecntrl); 628 fec->rbd_index = 0; 629 fec->tbd_index = 0; 630 debug("eth_halt: done\n"); 631 } 632 633 /** 634 * Transmit one frame 635 * @param[in] dev Our ethernet device to handle 636 * @param[in] packet Pointer to the data to be transmitted 637 * @param[in] length Data count in bytes 638 * @return 0 on success 639 */ 640 #ifdef CONFIG_DM_ETH 641 static int fecmxc_send(struct udevice *dev, void *packet, int length) 642 #else 643 static int fec_send(struct eth_device *dev, void *packet, int length) 644 #endif 645 { 646 unsigned int status; 647 uint32_t size, end; 648 uint32_t addr; 649 int timeout = FEC_XFER_TIMEOUT; 650 int ret = 0; 651 652 /* 653 * This routine transmits one frame. This routine only accepts 654 * 6-byte Ethernet addresses. 655 */ 656 #ifdef CONFIG_DM_ETH 657 struct fec_priv *fec = dev_get_priv(dev); 658 #else 659 struct fec_priv *fec = (struct fec_priv *)dev->priv; 660 #endif 661 662 /* 663 * Check for valid length of data. 664 */ 665 if ((length > 1500) || (length <= 0)) { 666 printf("Payload (%d) too large\n", length); 667 return -1; 668 } 669 670 /* 671 * Setup the transmit buffer. We are always using the first buffer for 672 * transmission, the second will be empty and only used to stop the DMA 673 * engine. We also flush the packet to RAM here to avoid cache trouble. 674 */ 675 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 676 swap_packet((uint32_t *)packet, length); 677 #endif 678 679 addr = (uint32_t)packet; 680 end = roundup(addr + length, ARCH_DMA_MINALIGN); 681 addr &= ~(ARCH_DMA_MINALIGN - 1); 682 flush_dcache_range(addr, end); 683 684 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 685 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 686 687 /* 688 * update BD's status now 689 * This block: 690 * - is always the last in a chain (means no chain) 691 * - should transmitt the CRC 692 * - might be the last BD in the list, so the address counter should 693 * wrap (-> keep the WRAP flag) 694 */ 695 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 696 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 697 writew(status, &fec->tbd_base[fec->tbd_index].status); 698 699 /* 700 * Flush data cache. This code flushes both TX descriptors to RAM. 701 * After this code, the descriptors will be safely in RAM and we 702 * can start DMA. 703 */ 704 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 705 addr = (uint32_t)fec->tbd_base; 706 flush_dcache_range(addr, addr + size); 707 708 /* 709 * Below we read the DMA descriptor's last four bytes back from the 710 * DRAM. This is important in order to make sure that all WRITE 711 * operations on the bus that were triggered by previous cache FLUSH 712 * have completed. 713 * 714 * Otherwise, on MX28, it is possible to observe a corruption of the 715 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 716 * for the bus structure of MX28. The scenario is as follows: 717 * 718 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 719 * to DRAM due to flush_dcache_range() 720 * 2) ARM core writes the FEC registers via AHB_ARB2 721 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 722 * 723 * Note that 2) does sometimes finish before 1) due to reordering of 724 * WRITE accesses on the AHB bus, therefore triggering 3) before the 725 * DMA descriptor is fully written into DRAM. This results in occasional 726 * corruption of the DMA descriptor. 727 */ 728 readl(addr + size - 4); 729 730 /* Enable SmartDMA transmit task */ 731 fec_tx_task_enable(fec); 732 733 /* 734 * Wait until frame is sent. On each turn of the wait cycle, we must 735 * invalidate data cache to see what's really in RAM. Also, we need 736 * barrier here. 737 */ 738 while (--timeout) { 739 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 740 break; 741 } 742 743 if (!timeout) { 744 ret = -EINVAL; 745 goto out; 746 } 747 748 /* 749 * The TDAR bit is cleared when the descriptors are all out from TX 750 * but on mx6solox we noticed that the READY bit is still not cleared 751 * right after TDAR. 752 * These are two distinct signals, and in IC simulation, we found that 753 * TDAR always gets cleared prior than the READY bit of last BD becomes 754 * cleared. 755 * In mx6solox, we use a later version of FEC IP. It looks like that 756 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 757 * version. 758 * 759 * Fix this by polling the READY bit of BD after the TDAR polling, 760 * which covers the mx6solox case and does not harm the other SoCs. 761 */ 762 timeout = FEC_XFER_TIMEOUT; 763 while (--timeout) { 764 invalidate_dcache_range(addr, addr + size); 765 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 766 FEC_TBD_READY)) 767 break; 768 } 769 770 if (!timeout) 771 ret = -EINVAL; 772 773 out: 774 debug("fec_send: status 0x%x index %d ret %i\n", 775 readw(&fec->tbd_base[fec->tbd_index].status), 776 fec->tbd_index, ret); 777 /* for next transmission use the other buffer */ 778 if (fec->tbd_index) 779 fec->tbd_index = 0; 780 else 781 fec->tbd_index = 1; 782 783 return ret; 784 } 785 786 /** 787 * Pull one frame from the card 788 * @param[in] dev Our ethernet device to handle 789 * @return Length of packet read 790 */ 791 #ifdef CONFIG_DM_ETH 792 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) 793 #else 794 static int fec_recv(struct eth_device *dev) 795 #endif 796 { 797 #ifdef CONFIG_DM_ETH 798 struct fec_priv *fec = dev_get_priv(dev); 799 #else 800 struct fec_priv *fec = (struct fec_priv *)dev->priv; 801 #endif 802 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 803 unsigned long ievent; 804 int frame_length, len = 0; 805 uint16_t bd_status; 806 uint32_t addr, size, end; 807 int i; 808 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 809 810 /* Check if any critical events have happened */ 811 ievent = readl(&fec->eth->ievent); 812 writel(ievent, &fec->eth->ievent); 813 debug("fec_recv: ievent 0x%lx\n", ievent); 814 if (ievent & FEC_IEVENT_BABR) { 815 #ifdef CONFIG_DM_ETH 816 fecmxc_halt(dev); 817 fecmxc_init(dev); 818 #else 819 fec_halt(dev); 820 fec_init(dev, fec->bd); 821 #endif 822 printf("some error: 0x%08lx\n", ievent); 823 return 0; 824 } 825 if (ievent & FEC_IEVENT_HBERR) { 826 /* Heartbeat error */ 827 writel(0x00000001 | readl(&fec->eth->x_cntrl), 828 &fec->eth->x_cntrl); 829 } 830 if (ievent & FEC_IEVENT_GRA) { 831 /* Graceful stop complete */ 832 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 833 #ifdef CONFIG_DM_ETH 834 fecmxc_halt(dev); 835 #else 836 fec_halt(dev); 837 #endif 838 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 839 &fec->eth->x_cntrl); 840 #ifdef CONFIG_DM_ETH 841 fecmxc_init(dev); 842 #else 843 fec_init(dev, fec->bd); 844 #endif 845 } 846 } 847 848 /* 849 * Read the buffer status. Before the status can be read, the data cache 850 * must be invalidated, because the data in RAM might have been changed 851 * by DMA. The descriptors are properly aligned to cachelines so there's 852 * no need to worry they'd overlap. 853 * 854 * WARNING: By invalidating the descriptor here, we also invalidate 855 * the descriptors surrounding this one. Therefore we can NOT change the 856 * contents of this descriptor nor the surrounding ones. The problem is 857 * that in order to mark the descriptor as processed, we need to change 858 * the descriptor. The solution is to mark the whole cache line when all 859 * descriptors in the cache line are processed. 860 */ 861 addr = (uint32_t)rbd; 862 addr &= ~(ARCH_DMA_MINALIGN - 1); 863 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 864 invalidate_dcache_range(addr, addr + size); 865 866 bd_status = readw(&rbd->status); 867 debug("fec_recv: status 0x%x\n", bd_status); 868 869 if (!(bd_status & FEC_RBD_EMPTY)) { 870 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 871 ((readw(&rbd->data_length) - 4) > 14)) { 872 /* Get buffer address and size */ 873 addr = readl(&rbd->data_pointer); 874 frame_length = readw(&rbd->data_length) - 4; 875 /* Invalidate data cache over the buffer */ 876 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 877 addr &= ~(ARCH_DMA_MINALIGN - 1); 878 invalidate_dcache_range(addr, end); 879 880 /* Fill the buffer and pass it to upper layers */ 881 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 882 swap_packet((uint32_t *)addr, frame_length); 883 #endif 884 memcpy(buff, (char *)addr, frame_length); 885 net_process_received_packet(buff, frame_length); 886 len = frame_length; 887 } else { 888 if (bd_status & FEC_RBD_ERR) 889 printf("error frame: 0x%08x 0x%08x\n", 890 addr, bd_status); 891 } 892 893 /* 894 * Free the current buffer, restart the engine and move forward 895 * to the next buffer. Here we check if the whole cacheline of 896 * descriptors was already processed and if so, we mark it free 897 * as whole. 898 */ 899 size = RXDESC_PER_CACHELINE - 1; 900 if ((fec->rbd_index & size) == size) { 901 i = fec->rbd_index - size; 902 addr = (uint32_t)&fec->rbd_base[i]; 903 for (; i <= fec->rbd_index ; i++) { 904 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 905 &fec->rbd_base[i]); 906 } 907 flush_dcache_range(addr, 908 addr + ARCH_DMA_MINALIGN); 909 } 910 911 fec_rx_task_enable(fec); 912 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 913 } 914 debug("fec_recv: stop\n"); 915 916 return len; 917 } 918 919 static void fec_set_dev_name(char *dest, int dev_id) 920 { 921 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 922 } 923 924 static int fec_alloc_descs(struct fec_priv *fec) 925 { 926 unsigned int size; 927 int i; 928 uint8_t *data; 929 930 /* Allocate TX descriptors. */ 931 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 932 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 933 if (!fec->tbd_base) 934 goto err_tx; 935 936 /* Allocate RX descriptors. */ 937 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 938 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 939 if (!fec->rbd_base) 940 goto err_rx; 941 942 memset(fec->rbd_base, 0, size); 943 944 /* Allocate RX buffers. */ 945 946 /* Maximum RX buffer size. */ 947 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 948 for (i = 0; i < FEC_RBD_NUM; i++) { 949 data = memalign(FEC_DMA_RX_MINALIGN, size); 950 if (!data) { 951 printf("%s: error allocating rxbuf %d\n", __func__, i); 952 goto err_ring; 953 } 954 955 memset(data, 0, size); 956 957 fec->rbd_base[i].data_pointer = (uint32_t)data; 958 fec->rbd_base[i].status = FEC_RBD_EMPTY; 959 fec->rbd_base[i].data_length = 0; 960 /* Flush the buffer to memory. */ 961 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 962 } 963 964 /* Mark the last RBD to close the ring. */ 965 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 966 967 fec->rbd_index = 0; 968 fec->tbd_index = 0; 969 970 return 0; 971 972 err_ring: 973 for (; i >= 0; i--) 974 free((void *)fec->rbd_base[i].data_pointer); 975 free(fec->rbd_base); 976 err_rx: 977 free(fec->tbd_base); 978 err_tx: 979 return -ENOMEM; 980 } 981 982 static void fec_free_descs(struct fec_priv *fec) 983 { 984 int i; 985 986 for (i = 0; i < FEC_RBD_NUM; i++) 987 free((void *)fec->rbd_base[i].data_pointer); 988 free(fec->rbd_base); 989 free(fec->tbd_base); 990 } 991 992 #ifdef CONFIG_DM_ETH 993 struct mii_dev *fec_get_miibus(struct udevice *dev, int dev_id) 994 #else 995 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 996 #endif 997 { 998 #ifdef CONFIG_DM_ETH 999 struct fec_priv *priv = dev_get_priv(dev); 1000 struct ethernet_regs *eth = priv->eth; 1001 #else 1002 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1003 #endif 1004 struct mii_dev *bus; 1005 int ret; 1006 1007 bus = mdio_alloc(); 1008 if (!bus) { 1009 printf("mdio_alloc failed\n"); 1010 return NULL; 1011 } 1012 bus->read = fec_phy_read; 1013 bus->write = fec_phy_write; 1014 bus->priv = eth; 1015 fec_set_dev_name(bus->name, dev_id); 1016 1017 ret = mdio_register(bus); 1018 if (ret) { 1019 printf("mdio_register failed\n"); 1020 free(bus); 1021 return NULL; 1022 } 1023 fec_mii_setspeed(eth); 1024 return bus; 1025 } 1026 1027 #ifndef CONFIG_DM_ETH 1028 #ifdef CONFIG_PHYLIB 1029 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1030 struct mii_dev *bus, struct phy_device *phydev) 1031 #else 1032 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1033 struct mii_dev *bus, int phy_id) 1034 #endif 1035 { 1036 struct eth_device *edev; 1037 struct fec_priv *fec; 1038 unsigned char ethaddr[6]; 1039 char mac[16]; 1040 uint32_t start; 1041 int ret = 0; 1042 1043 /* create and fill edev struct */ 1044 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 1045 if (!edev) { 1046 puts("fec_mxc: not enough malloc memory for eth_device\n"); 1047 ret = -ENOMEM; 1048 goto err1; 1049 } 1050 1051 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 1052 if (!fec) { 1053 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 1054 ret = -ENOMEM; 1055 goto err2; 1056 } 1057 1058 memset(edev, 0, sizeof(*edev)); 1059 memset(fec, 0, sizeof(*fec)); 1060 1061 ret = fec_alloc_descs(fec); 1062 if (ret) 1063 goto err3; 1064 1065 edev->priv = fec; 1066 edev->init = fec_init; 1067 edev->send = fec_send; 1068 edev->recv = fec_recv; 1069 edev->halt = fec_halt; 1070 edev->write_hwaddr = fec_set_hwaddr; 1071 1072 fec->eth = (struct ethernet_regs *)base_addr; 1073 fec->bd = bd; 1074 1075 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1076 1077 /* Reset chip. */ 1078 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1079 start = get_timer(0); 1080 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1081 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1082 printf("FEC MXC: Timeout resetting chip\n"); 1083 goto err4; 1084 } 1085 udelay(10); 1086 } 1087 1088 fec_reg_setup(fec); 1089 fec_set_dev_name(edev->name, dev_id); 1090 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1091 fec->bus = bus; 1092 fec_mii_setspeed(bus->priv); 1093 #ifdef CONFIG_PHYLIB 1094 fec->phydev = phydev; 1095 phy_connect_dev(phydev, edev); 1096 /* Configure phy */ 1097 phy_config(phydev); 1098 #else 1099 fec->phy_id = phy_id; 1100 #endif 1101 eth_register(edev); 1102 /* only support one eth device, the index number pointed by dev_id */ 1103 edev->index = fec->dev_id; 1104 1105 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { 1106 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); 1107 memcpy(edev->enetaddr, ethaddr, 6); 1108 if (fec->dev_id) 1109 sprintf(mac, "eth%daddr", fec->dev_id); 1110 else 1111 strcpy(mac, "ethaddr"); 1112 if (!env_get(mac)) 1113 eth_env_set_enetaddr(mac, ethaddr); 1114 } 1115 return ret; 1116 err4: 1117 fec_free_descs(fec); 1118 err3: 1119 free(fec); 1120 err2: 1121 free(edev); 1122 err1: 1123 return ret; 1124 } 1125 1126 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1127 { 1128 uint32_t base_mii; 1129 struct mii_dev *bus = NULL; 1130 #ifdef CONFIG_PHYLIB 1131 struct phy_device *phydev = NULL; 1132 #endif 1133 int ret; 1134 1135 #ifdef CONFIG_MX28 1136 /* 1137 * The i.MX28 has two ethernet interfaces, but they are not equal. 1138 * Only the first one can access the MDIO bus. 1139 */ 1140 base_mii = MXS_ENET0_BASE; 1141 #else 1142 base_mii = addr; 1143 #endif 1144 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1145 bus = fec_get_miibus(base_mii, dev_id); 1146 if (!bus) 1147 return -ENOMEM; 1148 #ifdef CONFIG_PHYLIB 1149 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1150 if (!phydev) { 1151 mdio_unregister(bus); 1152 free(bus); 1153 return -ENOMEM; 1154 } 1155 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1156 #else 1157 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1158 #endif 1159 if (ret) { 1160 #ifdef CONFIG_PHYLIB 1161 free(phydev); 1162 #endif 1163 mdio_unregister(bus); 1164 free(bus); 1165 } 1166 return ret; 1167 } 1168 1169 #ifdef CONFIG_FEC_MXC_PHYADDR 1170 int fecmxc_initialize(bd_t *bd) 1171 { 1172 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1173 IMX_FEC_BASE); 1174 } 1175 #endif 1176 1177 #ifndef CONFIG_PHYLIB 1178 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1179 { 1180 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1181 fec->mii_postcall = cb; 1182 return 0; 1183 } 1184 #endif 1185 1186 #else 1187 1188 static int fecmxc_read_rom_hwaddr(struct udevice *dev) 1189 { 1190 struct fec_priv *priv = dev_get_priv(dev); 1191 struct eth_pdata *pdata = dev_get_platdata(dev); 1192 1193 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); 1194 } 1195 1196 static const struct eth_ops fecmxc_ops = { 1197 .start = fecmxc_init, 1198 .send = fecmxc_send, 1199 .recv = fecmxc_recv, 1200 .stop = fecmxc_halt, 1201 .write_hwaddr = fecmxc_set_hwaddr, 1202 .read_rom_hwaddr = fecmxc_read_rom_hwaddr, 1203 }; 1204 1205 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) 1206 { 1207 struct phy_device *phydev; 1208 int mask = 0xffffffff; 1209 1210 #ifdef CONFIG_PHYLIB 1211 mask = 1 << CONFIG_FEC_MXC_PHYADDR; 1212 #endif 1213 1214 phydev = phy_find_by_mask(priv->bus, mask, priv->interface); 1215 if (!phydev) 1216 return -ENODEV; 1217 1218 phy_connect_dev(phydev, dev); 1219 1220 priv->phydev = phydev; 1221 phy_config(phydev); 1222 1223 return 0; 1224 } 1225 1226 static int fecmxc_probe(struct udevice *dev) 1227 { 1228 struct eth_pdata *pdata = dev_get_platdata(dev); 1229 struct fec_priv *priv = dev_get_priv(dev); 1230 struct mii_dev *bus = NULL; 1231 int dev_id = -1; 1232 uint32_t start; 1233 int ret; 1234 1235 ret = fec_alloc_descs(priv); 1236 if (ret) 1237 return ret; 1238 1239 /* Reset chip. */ 1240 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, 1241 &priv->eth->ecntrl); 1242 start = get_timer(0); 1243 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { 1244 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1245 printf("FEC MXC: Timeout reseting chip\n"); 1246 goto err_timeout; 1247 } 1248 udelay(10); 1249 } 1250 1251 fec_reg_setup(priv); 1252 1253 priv->dev_id = dev->seq; 1254 1255 #ifdef CONFIG_DM_ETH_PHY 1256 bus = eth_phy_get_mdio_bus(dev); 1257 #endif 1258 1259 if (!bus) { 1260 #ifdef CONFIG_FEC_MXC_MDIO_BASE 1261 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq); 1262 #else 1263 bus = fec_get_miibus((ulong)priv->eth, dev->seq); 1264 #endif 1265 } 1266 if (!bus) { 1267 ret = -ENOMEM; 1268 goto err_mii; 1269 } 1270 1271 #ifdef CONFIG_DM_ETH_PHY 1272 eth_phy_set_mdio_bus(dev, bus); 1273 #endif 1274 1275 priv->bus = bus; 1276 priv->xcv_type = CONFIG_FEC_XCV_TYPE; 1277 priv->interface = pdata->phy_interface; 1278 ret = fec_phy_init(priv, dev); 1279 if (ret) 1280 goto err_phy; 1281 1282 return 0; 1283 1284 err_timeout: 1285 free(priv->phydev); 1286 err_phy: 1287 mdio_unregister(bus); 1288 free(bus); 1289 err_mii: 1290 fec_free_descs(priv); 1291 return ret; 1292 } 1293 1294 static int fecmxc_remove(struct udevice *dev) 1295 { 1296 struct fec_priv *priv = dev_get_priv(dev); 1297 1298 free(priv->phydev); 1299 fec_free_descs(priv); 1300 mdio_unregister(priv->bus); 1301 mdio_free(priv->bus); 1302 1303 return 0; 1304 } 1305 1306 static int fecmxc_ofdata_to_platdata(struct udevice *dev) 1307 { 1308 struct eth_pdata *pdata = dev_get_platdata(dev); 1309 struct fec_priv *priv = dev_get_priv(dev); 1310 const char *phy_mode; 1311 1312 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); 1313 priv->eth = (struct ethernet_regs *)pdata->iobase; 1314 1315 pdata->phy_interface = -1; 1316 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", 1317 NULL); 1318 if (phy_mode) 1319 pdata->phy_interface = phy_get_interface_by_name(phy_mode); 1320 if (pdata->phy_interface == -1) { 1321 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 1322 return -EINVAL; 1323 } 1324 1325 /* TODO 1326 * Need to get the reset-gpio and related properties from DT 1327 * and implemet the enet reset code on .probe call 1328 */ 1329 1330 return 0; 1331 } 1332 1333 static const struct udevice_id fecmxc_ids[] = { 1334 { .compatible = "fsl,imx6q-fec" }, 1335 { } 1336 }; 1337 1338 U_BOOT_DRIVER(fecmxc_gem) = { 1339 .name = "fecmxc", 1340 .id = UCLASS_ETH, 1341 .of_match = fecmxc_ids, 1342 .ofdata_to_platdata = fecmxc_ofdata_to_platdata, 1343 .probe = fecmxc_probe, 1344 .remove = fecmxc_remove, 1345 .ops = &fecmxc_ops, 1346 .priv_auto_alloc_size = sizeof(struct fec_priv), 1347 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 1348 }; 1349 #endif 1350