xref: /rk3399_rockchip-uboot/drivers/net/cpsw.c (revision eca3aeb352c964bdb28b8e191d6326370245e03f)
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <asm/errno.h>
25 #include <asm/io.h>
26 #include <phy.h>
27 #include <asm/arch/cpu.h>
28 
29 #define BITMASK(bits)		(BIT(bits) - 1)
30 #define PHY_REG_MASK		0x1f
31 #define PHY_ID_MASK		0x1f
32 #define NUM_DESCS		(PKTBUFSRX * 2)
33 #define PKT_MIN			60
34 #define PKT_MAX			(1500 + 14 + 4 + 4)
35 #define CLEAR_BIT		1
36 #define GIGABITEN		BIT(7)
37 #define FULLDUPLEXEN		BIT(0)
38 #define MIIEN			BIT(15)
39 
40 /* DMA Registers */
41 #define CPDMA_TXCONTROL		0x004
42 #define CPDMA_RXCONTROL		0x014
43 #define CPDMA_SOFTRESET		0x01c
44 #define CPDMA_RXFREE		0x0e0
45 #define CPDMA_TXHDP_VER1	0x100
46 #define CPDMA_TXHDP_VER2	0x200
47 #define CPDMA_RXHDP_VER1	0x120
48 #define CPDMA_RXHDP_VER2	0x220
49 #define CPDMA_TXCP_VER1		0x140
50 #define CPDMA_TXCP_VER2		0x240
51 #define CPDMA_RXCP_VER1		0x160
52 #define CPDMA_RXCP_VER2		0x260
53 
54 #define CPDMA_RAM_ADDR		0x4a102000
55 
56 /* Descriptor mode bits */
57 #define CPDMA_DESC_SOP		BIT(31)
58 #define CPDMA_DESC_EOP		BIT(30)
59 #define CPDMA_DESC_OWNER	BIT(29)
60 #define CPDMA_DESC_EOQ		BIT(28)
61 
62 /*
63  * This timeout definition is a worst-case ultra defensive measure against
64  * unexpected controller lock ups.  Ideally, we should never ever hit this
65  * scenario in practice.
66  */
67 #define MDIO_TIMEOUT            100 /* msecs */
68 #define CPDMA_TIMEOUT		100 /* msecs */
69 
70 struct cpsw_mdio_regs {
71 	u32	version;
72 	u32	control;
73 #define CONTROL_IDLE		BIT(31)
74 #define CONTROL_ENABLE		BIT(30)
75 
76 	u32	alive;
77 	u32	link;
78 	u32	linkintraw;
79 	u32	linkintmasked;
80 	u32	__reserved_0[2];
81 	u32	userintraw;
82 	u32	userintmasked;
83 	u32	userintmaskset;
84 	u32	userintmaskclr;
85 	u32	__reserved_1[20];
86 
87 	struct {
88 		u32		access;
89 		u32		physel;
90 #define USERACCESS_GO		BIT(31)
91 #define USERACCESS_WRITE	BIT(30)
92 #define USERACCESS_ACK		BIT(29)
93 #define USERACCESS_READ		(0)
94 #define USERACCESS_DATA		(0xffff)
95 	} user[0];
96 };
97 
98 struct cpsw_regs {
99 	u32	id_ver;
100 	u32	control;
101 	u32	soft_reset;
102 	u32	stat_port_en;
103 	u32	ptype;
104 };
105 
106 struct cpsw_slave_regs {
107 	u32	max_blks;
108 	u32	blk_cnt;
109 	u32	flow_thresh;
110 	u32	port_vlan;
111 	u32	tx_pri_map;
112 #ifdef CONFIG_AM33XX
113 	u32	gap_thresh;
114 #elif defined(CONFIG_TI814X)
115 	u32	ts_ctl;
116 	u32	ts_seq_ltype;
117 	u32	ts_vlan;
118 #endif
119 	u32	sa_lo;
120 	u32	sa_hi;
121 };
122 
123 struct cpsw_host_regs {
124 	u32	max_blks;
125 	u32	blk_cnt;
126 	u32	flow_thresh;
127 	u32	port_vlan;
128 	u32	tx_pri_map;
129 	u32	cpdma_tx_pri_map;
130 	u32	cpdma_rx_chan_map;
131 };
132 
133 struct cpsw_sliver_regs {
134 	u32	id_ver;
135 	u32	mac_control;
136 	u32	mac_status;
137 	u32	soft_reset;
138 	u32	rx_maxlen;
139 	u32	__reserved_0;
140 	u32	rx_pause;
141 	u32	tx_pause;
142 	u32	__reserved_1;
143 	u32	rx_pri_map;
144 };
145 
146 #define ALE_ENTRY_BITS		68
147 #define ALE_ENTRY_WORDS		DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
148 
149 /* ALE Registers */
150 #define ALE_CONTROL		0x08
151 #define ALE_UNKNOWNVLAN		0x18
152 #define ALE_TABLE_CONTROL	0x20
153 #define ALE_TABLE		0x34
154 #define ALE_PORTCTL		0x40
155 
156 #define ALE_TABLE_WRITE		BIT(31)
157 
158 #define ALE_TYPE_FREE			0
159 #define ALE_TYPE_ADDR			1
160 #define ALE_TYPE_VLAN			2
161 #define ALE_TYPE_VLAN_ADDR		3
162 
163 #define ALE_UCAST_PERSISTANT		0
164 #define ALE_UCAST_UNTOUCHED		1
165 #define ALE_UCAST_OUI			2
166 #define ALE_UCAST_TOUCHED		3
167 
168 #define ALE_MCAST_FWD			0
169 #define ALE_MCAST_BLOCK_LEARN_FWD	1
170 #define ALE_MCAST_FWD_LEARN		2
171 #define ALE_MCAST_FWD_2			3
172 
173 enum cpsw_ale_port_state {
174 	ALE_PORT_STATE_DISABLE	= 0x00,
175 	ALE_PORT_STATE_BLOCK	= 0x01,
176 	ALE_PORT_STATE_LEARN	= 0x02,
177 	ALE_PORT_STATE_FORWARD	= 0x03,
178 };
179 
180 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
181 #define ALE_SECURE	1
182 #define ALE_BLOCKED	2
183 
184 struct cpsw_slave {
185 	struct cpsw_slave_regs		*regs;
186 	struct cpsw_sliver_regs		*sliver;
187 	int				slave_num;
188 	u32				mac_control;
189 	struct cpsw_slave_data		*data;
190 };
191 
192 struct cpdma_desc {
193 	/* hardware fields */
194 	u32			hw_next;
195 	u32			hw_buffer;
196 	u32			hw_len;
197 	u32			hw_mode;
198 	/* software fields */
199 	u32			sw_buffer;
200 	u32			sw_len;
201 };
202 
203 struct cpdma_chan {
204 	struct cpdma_desc	*head, *tail;
205 	void			*hdp, *cp, *rxfree;
206 };
207 
208 #define desc_write(desc, fld, val)	__raw_writel((u32)(val), &(desc)->fld)
209 #define desc_read(desc, fld)		__raw_readl(&(desc)->fld)
210 #define desc_read_ptr(desc, fld)	((void *)__raw_readl(&(desc)->fld))
211 
212 #define chan_write(chan, fld, val)	__raw_writel((u32)(val), (chan)->fld)
213 #define chan_read(chan, fld)		__raw_readl((chan)->fld)
214 #define chan_read_ptr(chan, fld)	((void *)__raw_readl((chan)->fld))
215 
216 #define for_each_slave(slave, priv) \
217 	for (slave = (priv)->slaves; slave != (priv)->slaves + \
218 				(priv)->data.slaves; slave++)
219 
220 struct cpsw_priv {
221 	struct eth_device		*dev;
222 	struct cpsw_platform_data	data;
223 	int				host_port;
224 
225 	struct cpsw_regs		*regs;
226 	void				*dma_regs;
227 	struct cpsw_host_regs		*host_port_regs;
228 	void				*ale_regs;
229 
230 	struct cpdma_desc		*descs;
231 	struct cpdma_desc		*desc_free;
232 	struct cpdma_chan		rx_chan, tx_chan;
233 
234 	struct cpsw_slave		*slaves;
235 	struct phy_device		*phydev;
236 	struct mii_dev			*bus;
237 
238 	u32				mdio_link;
239 	u32				phy_mask;
240 };
241 
242 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
243 {
244 	int idx;
245 
246 	idx    = start / 32;
247 	start -= idx * 32;
248 	idx    = 2 - idx; /* flip */
249 	return (ale_entry[idx] >> start) & BITMASK(bits);
250 }
251 
252 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
253 				      u32 value)
254 {
255 	int idx;
256 
257 	value &= BITMASK(bits);
258 	idx    = start / 32;
259 	start -= idx * 32;
260 	idx    = 2 - idx; /* flip */
261 	ale_entry[idx] &= ~(BITMASK(bits) << start);
262 	ale_entry[idx] |=  (value << start);
263 }
264 
265 #define DEFINE_ALE_FIELD(name, start, bits)				\
266 static inline int cpsw_ale_get_##name(u32 *ale_entry)			\
267 {									\
268 	return cpsw_ale_get_field(ale_entry, start, bits);		\
269 }									\
270 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)	\
271 {									\
272 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
273 }
274 
275 DEFINE_ALE_FIELD(entry_type,		60,	2)
276 DEFINE_ALE_FIELD(mcast_state,		62,	2)
277 DEFINE_ALE_FIELD(port_mask,		66,	3)
278 DEFINE_ALE_FIELD(ucast_type,		62,	2)
279 DEFINE_ALE_FIELD(port_num,		66,	2)
280 DEFINE_ALE_FIELD(blocked,		65,	1)
281 DEFINE_ALE_FIELD(secure,		64,	1)
282 DEFINE_ALE_FIELD(mcast,			40,	1)
283 
284 /* The MAC address field in the ALE entry cannot be macroized as above */
285 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < 6; i++)
290 		addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
291 }
292 
293 static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
294 {
295 	int i;
296 
297 	for (i = 0; i < 6; i++)
298 		cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
299 }
300 
301 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
302 {
303 	int i;
304 
305 	__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
306 
307 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
308 		ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
309 
310 	return idx;
311 }
312 
313 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
314 {
315 	int i;
316 
317 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
318 		__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
319 
320 	__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
321 
322 	return idx;
323 }
324 
325 static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
326 {
327 	u32 ale_entry[ALE_ENTRY_WORDS];
328 	int type, idx;
329 
330 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
331 		u8 entry_addr[6];
332 
333 		cpsw_ale_read(priv, idx, ale_entry);
334 		type = cpsw_ale_get_entry_type(ale_entry);
335 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
336 			continue;
337 		cpsw_ale_get_addr(ale_entry, entry_addr);
338 		if (memcmp(entry_addr, addr, 6) == 0)
339 			return idx;
340 	}
341 	return -ENOENT;
342 }
343 
344 static int cpsw_ale_match_free(struct cpsw_priv *priv)
345 {
346 	u32 ale_entry[ALE_ENTRY_WORDS];
347 	int type, idx;
348 
349 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
350 		cpsw_ale_read(priv, idx, ale_entry);
351 		type = cpsw_ale_get_entry_type(ale_entry);
352 		if (type == ALE_TYPE_FREE)
353 			return idx;
354 	}
355 	return -ENOENT;
356 }
357 
358 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
359 {
360 	u32 ale_entry[ALE_ENTRY_WORDS];
361 	int type, idx;
362 
363 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
364 		cpsw_ale_read(priv, idx, ale_entry);
365 		type = cpsw_ale_get_entry_type(ale_entry);
366 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
367 			continue;
368 		if (cpsw_ale_get_mcast(ale_entry))
369 			continue;
370 		type = cpsw_ale_get_ucast_type(ale_entry);
371 		if (type != ALE_UCAST_PERSISTANT &&
372 		    type != ALE_UCAST_OUI)
373 			return idx;
374 	}
375 	return -ENOENT;
376 }
377 
378 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
379 			      int port, int flags)
380 {
381 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
382 	int idx;
383 
384 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
385 	cpsw_ale_set_addr(ale_entry, addr);
386 	cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
387 	cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
388 	cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
389 	cpsw_ale_set_port_num(ale_entry, port);
390 
391 	idx = cpsw_ale_match_addr(priv, addr);
392 	if (idx < 0)
393 		idx = cpsw_ale_match_free(priv);
394 	if (idx < 0)
395 		idx = cpsw_ale_find_ageable(priv);
396 	if (idx < 0)
397 		return -ENOMEM;
398 
399 	cpsw_ale_write(priv, idx, ale_entry);
400 	return 0;
401 }
402 
403 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
404 {
405 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
406 	int idx, mask;
407 
408 	idx = cpsw_ale_match_addr(priv, addr);
409 	if (idx >= 0)
410 		cpsw_ale_read(priv, idx, ale_entry);
411 
412 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
413 	cpsw_ale_set_addr(ale_entry, addr);
414 	cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
415 
416 	mask = cpsw_ale_get_port_mask(ale_entry);
417 	port_mask |= mask;
418 	cpsw_ale_set_port_mask(ale_entry, port_mask);
419 
420 	if (idx < 0)
421 		idx = cpsw_ale_match_free(priv);
422 	if (idx < 0)
423 		idx = cpsw_ale_find_ageable(priv);
424 	if (idx < 0)
425 		return -ENOMEM;
426 
427 	cpsw_ale_write(priv, idx, ale_entry);
428 	return 0;
429 }
430 
431 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
432 {
433 	u32 tmp, mask = BIT(bit);
434 
435 	tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
436 	tmp &= ~mask;
437 	tmp |= val ? mask : 0;
438 	__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
439 }
440 
441 #define cpsw_ale_enable(priv, val)	cpsw_ale_control(priv, 31, val)
442 #define cpsw_ale_clear(priv, val)	cpsw_ale_control(priv, 30, val)
443 #define cpsw_ale_vlan_aware(priv, val)	cpsw_ale_control(priv,  2, val)
444 
445 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
446 				       int val)
447 {
448 	int offset = ALE_PORTCTL + 4 * port;
449 	u32 tmp, mask = 0x3;
450 
451 	tmp  = __raw_readl(priv->ale_regs + offset);
452 	tmp &= ~mask;
453 	tmp |= val & mask;
454 	__raw_writel(tmp, priv->ale_regs + offset);
455 }
456 
457 static struct cpsw_mdio_regs *mdio_regs;
458 
459 /* wait until hardware is ready for another user access */
460 static inline u32 wait_for_user_access(void)
461 {
462 	u32 reg = 0;
463 	int timeout = MDIO_TIMEOUT;
464 
465 	while (timeout-- &&
466 	((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
467 		udelay(10);
468 
469 	if (timeout == -1) {
470 		printf("wait_for_user_access Timeout\n");
471 		return -ETIMEDOUT;
472 	}
473 	return reg;
474 }
475 
476 /* wait until hardware state machine is idle */
477 static inline void wait_for_idle(void)
478 {
479 	int timeout = MDIO_TIMEOUT;
480 
481 	while (timeout-- &&
482 		((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
483 		udelay(10);
484 
485 	if (timeout == -1)
486 		printf("wait_for_idle Timeout\n");
487 }
488 
489 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
490 				int dev_addr, int phy_reg)
491 {
492 	unsigned short data;
493 	u32 reg;
494 
495 	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
496 		return -EINVAL;
497 
498 	wait_for_user_access();
499 	reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
500 	       (phy_id << 16));
501 	__raw_writel(reg, &mdio_regs->user[0].access);
502 	reg = wait_for_user_access();
503 
504 	data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
505 	return data;
506 }
507 
508 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
509 				int phy_reg, u16 data)
510 {
511 	u32 reg;
512 
513 	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
514 		return -EINVAL;
515 
516 	wait_for_user_access();
517 	reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
518 		   (phy_id << 16) | (data & USERACCESS_DATA));
519 	__raw_writel(reg, &mdio_regs->user[0].access);
520 	wait_for_user_access();
521 
522 	return 0;
523 }
524 
525 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
526 {
527 	struct mii_dev *bus = mdio_alloc();
528 
529 	mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
530 
531 	/* set enable and clock divider */
532 	__raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
533 
534 	/*
535 	 * wait for scan logic to settle:
536 	 * the scan time consists of (a) a large fixed component, and (b) a
537 	 * small component that varies with the mii bus frequency.  These
538 	 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
539 	 * silicon.  Since the effect of (b) was found to be largely
540 	 * negligible, we keep things simple here.
541 	 */
542 	udelay(1000);
543 
544 	bus->read = cpsw_mdio_read;
545 	bus->write = cpsw_mdio_write;
546 	sprintf(bus->name, name);
547 
548 	mdio_register(bus);
549 }
550 
551 /* Set a self-clearing bit in a register, and wait for it to clear */
552 static inline void setbit_and_wait_for_clear32(void *addr)
553 {
554 	__raw_writel(CLEAR_BIT, addr);
555 	while (__raw_readl(addr) & CLEAR_BIT)
556 		;
557 }
558 
559 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
560 			 ((mac)[2] << 16) | ((mac)[3] << 24))
561 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
562 
563 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
564 			       struct cpsw_priv *priv)
565 {
566 	__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
567 	__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
568 }
569 
570 static void cpsw_slave_update_link(struct cpsw_slave *slave,
571 				   struct cpsw_priv *priv, int *link)
572 {
573 	struct phy_device *phy = priv->phydev;
574 	u32 mac_control = 0;
575 
576 	phy_startup(phy);
577 	*link = phy->link;
578 
579 	if (*link) { /* link up */
580 		mac_control = priv->data.mac_control;
581 		if (phy->speed == 1000)
582 			mac_control |= GIGABITEN;
583 		if (phy->duplex == DUPLEX_FULL)
584 			mac_control |= FULLDUPLEXEN;
585 		if (phy->speed == 100)
586 			mac_control |= MIIEN;
587 	}
588 
589 	if (mac_control == slave->mac_control)
590 		return;
591 
592 	if (mac_control) {
593 		printf("link up on port %d, speed %d, %s duplex\n",
594 				slave->slave_num, phy->speed,
595 				(phy->duplex == DUPLEX_FULL) ? "full" : "half");
596 	} else {
597 		printf("link down on port %d\n", slave->slave_num);
598 	}
599 
600 	__raw_writel(mac_control, &slave->sliver->mac_control);
601 	slave->mac_control = mac_control;
602 }
603 
604 static int cpsw_update_link(struct cpsw_priv *priv)
605 {
606 	int link = 0;
607 	struct cpsw_slave *slave;
608 
609 	for_each_slave(slave, priv)
610 		cpsw_slave_update_link(slave, priv, &link);
611 	priv->mdio_link = readl(&mdio_regs->link);
612 	return link;
613 }
614 
615 static int cpsw_check_link(struct cpsw_priv *priv)
616 {
617 	u32 link = 0;
618 
619 	link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
620 	if ((link) && (link == priv->mdio_link))
621 		return 1;
622 
623 	return cpsw_update_link(priv);
624 }
625 
626 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
627 {
628 	if (priv->host_port == 0)
629 		return slave_num + 1;
630 	else
631 		return slave_num;
632 }
633 
634 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
635 {
636 	u32     slave_port;
637 
638 	setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
639 
640 	/* setup priority mapping */
641 	__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
642 	__raw_writel(0x33221100, &slave->regs->tx_pri_map);
643 
644 	/* setup max packet size, and mac address */
645 	__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
646 	cpsw_set_slave_mac(slave, priv);
647 
648 	slave->mac_control = 0;	/* no link yet */
649 
650 	/* enable forwarding */
651 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
652 	cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
653 
654 	cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
655 
656 	priv->phy_mask |= 1 << slave->data->phy_id;
657 }
658 
659 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
660 {
661 	struct cpdma_desc *desc = priv->desc_free;
662 
663 	if (desc)
664 		priv->desc_free = desc_read_ptr(desc, hw_next);
665 	return desc;
666 }
667 
668 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
669 {
670 	if (desc) {
671 		desc_write(desc, hw_next, priv->desc_free);
672 		priv->desc_free = desc;
673 	}
674 }
675 
676 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
677 			void *buffer, int len)
678 {
679 	struct cpdma_desc *desc, *prev;
680 	u32 mode;
681 
682 	desc = cpdma_desc_alloc(priv);
683 	if (!desc)
684 		return -ENOMEM;
685 
686 	if (len < PKT_MIN)
687 		len = PKT_MIN;
688 
689 	mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
690 
691 	desc_write(desc, hw_next,   0);
692 	desc_write(desc, hw_buffer, buffer);
693 	desc_write(desc, hw_len,    len);
694 	desc_write(desc, hw_mode,   mode | len);
695 	desc_write(desc, sw_buffer, buffer);
696 	desc_write(desc, sw_len,    len);
697 
698 	if (!chan->head) {
699 		/* simple case - first packet enqueued */
700 		chan->head = desc;
701 		chan->tail = desc;
702 		chan_write(chan, hdp, desc);
703 		goto done;
704 	}
705 
706 	/* not the first packet - enqueue at the tail */
707 	prev = chan->tail;
708 	desc_write(prev, hw_next, desc);
709 	chan->tail = desc;
710 
711 	/* next check if EOQ has been triggered already */
712 	if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
713 		chan_write(chan, hdp, desc);
714 
715 done:
716 	if (chan->rxfree)
717 		chan_write(chan, rxfree, 1);
718 	return 0;
719 }
720 
721 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
722 			 void **buffer, int *len)
723 {
724 	struct cpdma_desc *desc = chan->head;
725 	u32 status;
726 
727 	if (!desc)
728 		return -ENOENT;
729 
730 	status = desc_read(desc, hw_mode);
731 
732 	if (len)
733 		*len = status & 0x7ff;
734 
735 	if (buffer)
736 		*buffer = desc_read_ptr(desc, sw_buffer);
737 
738 	if (status & CPDMA_DESC_OWNER) {
739 		if (chan_read(chan, hdp) == 0) {
740 			if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
741 				chan_write(chan, hdp, desc);
742 		}
743 
744 		return -EBUSY;
745 	}
746 
747 	chan->head = desc_read_ptr(desc, hw_next);
748 	chan_write(chan, cp, desc);
749 
750 	cpdma_desc_free(priv, desc);
751 	return 0;
752 }
753 
754 static int cpsw_init(struct eth_device *dev, bd_t *bis)
755 {
756 	struct cpsw_priv	*priv = dev->priv;
757 	struct cpsw_slave	*slave;
758 	int i, ret;
759 
760 	/* soft reset the controller and initialize priv */
761 	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
762 
763 	/* initialize and reset the address lookup engine */
764 	cpsw_ale_enable(priv, 1);
765 	cpsw_ale_clear(priv, 1);
766 	cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
767 
768 	/* setup host port priority mapping */
769 	__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
770 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
771 
772 	/* disable priority elevation and enable statistics on all ports */
773 	__raw_writel(0, &priv->regs->ptype);
774 
775 	/* enable statistics collection only on the host port */
776 	__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
777 
778 	cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
779 
780 	cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
781 			   ALE_SECURE);
782 	cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
783 
784 	for_each_slave(slave, priv)
785 		cpsw_slave_init(slave, priv);
786 
787 	cpsw_update_link(priv);
788 
789 	/* init descriptor pool */
790 	for (i = 0; i < NUM_DESCS; i++) {
791 		desc_write(&priv->descs[i], hw_next,
792 			   (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
793 	}
794 	priv->desc_free = &priv->descs[0];
795 
796 	/* initialize channels */
797 	if (priv->data.version == CPSW_CTRL_VERSION_2) {
798 		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
799 		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
800 		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
801 		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
802 
803 		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
804 		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
805 		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
806 	} else {
807 		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
808 		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
809 		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
810 		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
811 
812 		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
813 		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
814 		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
815 	}
816 
817 	/* clear dma state */
818 	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
819 
820 	if (priv->data.version == CPSW_CTRL_VERSION_2) {
821 		for (i = 0; i < priv->data.channels; i++) {
822 			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
823 					* i);
824 			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
825 					* i);
826 			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
827 					* i);
828 			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
829 					* i);
830 			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
831 					* i);
832 		}
833 	} else {
834 		for (i = 0; i < priv->data.channels; i++) {
835 			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
836 					* i);
837 			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
838 					* i);
839 			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
840 					* i);
841 			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
842 					* i);
843 			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
844 					* i);
845 
846 		}
847 	}
848 
849 	__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
850 	__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
851 
852 	/* submit rx descs */
853 	for (i = 0; i < PKTBUFSRX; i++) {
854 		ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
855 				   PKTSIZE);
856 		if (ret < 0) {
857 			printf("error %d submitting rx desc\n", ret);
858 			break;
859 		}
860 	}
861 
862 	return 0;
863 }
864 
865 static void cpsw_halt(struct eth_device *dev)
866 {
867 	struct cpsw_priv	*priv = dev->priv;
868 
869 	writel(0, priv->dma_regs + CPDMA_TXCONTROL);
870 	writel(0, priv->dma_regs + CPDMA_RXCONTROL);
871 
872 	/* soft reset the controller and initialize priv */
873 	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
874 
875 	/* clear dma state */
876 	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
877 
878 	priv->data.control(0);
879 }
880 
881 static int cpsw_send(struct eth_device *dev, void *packet, int length)
882 {
883 	struct cpsw_priv	*priv = dev->priv;
884 	void *buffer;
885 	int len;
886 	int timeout = CPDMA_TIMEOUT;
887 
888 	if (!cpsw_check_link(priv))
889 		return -EIO;
890 
891 	flush_dcache_range((unsigned long)packet,
892 			   (unsigned long)packet + length);
893 
894 	/* first reap completed packets */
895 	while (timeout-- &&
896 		(cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
897 		;
898 
899 	if (timeout == -1) {
900 		printf("cpdma_process timeout\n");
901 		return -ETIMEDOUT;
902 	}
903 
904 	return cpdma_submit(priv, &priv->tx_chan, packet, length);
905 }
906 
907 static int cpsw_recv(struct eth_device *dev)
908 {
909 	struct cpsw_priv	*priv = dev->priv;
910 	void *buffer;
911 	int len;
912 
913 	cpsw_update_link(priv);
914 
915 	while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
916 		invalidate_dcache_range((unsigned long)buffer,
917 					(unsigned long)buffer + PKTSIZE_ALIGN);
918 		NetReceive(buffer, len);
919 		cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
920 	}
921 
922 	return 0;
923 }
924 
925 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
926 			    struct cpsw_priv *priv)
927 {
928 	void			*regs = priv->regs;
929 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
930 	slave->slave_num = slave_num;
931 	slave->data	= data;
932 	slave->regs	= regs + data->slave_reg_ofs;
933 	slave->sliver	= regs + data->sliver_reg_ofs;
934 }
935 
936 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
937 {
938 	struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
939 	struct phy_device *phydev;
940 	u32 supported = (SUPPORTED_10baseT_Half |
941 			SUPPORTED_10baseT_Full |
942 			SUPPORTED_100baseT_Half |
943 			SUPPORTED_100baseT_Full |
944 			SUPPORTED_1000baseT_Full);
945 
946 	phydev = phy_connect(priv->bus,
947 			CONFIG_PHY_ADDR,
948 			dev,
949 			slave->data->phy_if);
950 
951 	phydev->supported &= supported;
952 	phydev->advertising = phydev->supported;
953 
954 	priv->phydev = phydev;
955 	phy_config(phydev);
956 
957 	return 1;
958 }
959 
960 int cpsw_register(struct cpsw_platform_data *data)
961 {
962 	struct cpsw_priv	*priv;
963 	struct cpsw_slave	*slave;
964 	void			*regs = (void *)data->cpsw_base;
965 	struct eth_device	*dev;
966 
967 	dev = calloc(sizeof(*dev), 1);
968 	if (!dev)
969 		return -ENOMEM;
970 
971 	priv = calloc(sizeof(*priv), 1);
972 	if (!priv) {
973 		free(dev);
974 		return -ENOMEM;
975 	}
976 
977 	priv->data = *data;
978 	priv->dev = dev;
979 
980 	priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
981 	if (!priv->slaves) {
982 		free(dev);
983 		free(priv);
984 		return -ENOMEM;
985 	}
986 
987 	priv->descs		= (void *)CPDMA_RAM_ADDR;
988 	priv->host_port		= data->host_port_num;
989 	priv->regs		= regs;
990 	priv->host_port_regs	= regs + data->host_port_reg_ofs;
991 	priv->dma_regs		= regs + data->cpdma_reg_ofs;
992 	priv->ale_regs		= regs + data->ale_reg_ofs;
993 
994 	int idx = 0;
995 
996 	for_each_slave(slave, priv) {
997 		cpsw_slave_setup(slave, idx, priv);
998 		idx = idx + 1;
999 	}
1000 
1001 	strcpy(dev->name, "cpsw");
1002 	dev->iobase	= 0;
1003 	dev->init	= cpsw_init;
1004 	dev->halt	= cpsw_halt;
1005 	dev->send	= cpsw_send;
1006 	dev->recv	= cpsw_recv;
1007 	dev->priv	= priv;
1008 
1009 	eth_register(dev);
1010 
1011 	cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
1012 	priv->bus = miiphy_get_dev_by_name(dev->name);
1013 	for_each_slave(slave, priv)
1014 		cpsw_phy_init(dev, slave);
1015 
1016 	return 1;
1017 }
1018