1 /* 2 * CPSW Ethernet Switch Driver 3 * 4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <common.h> 17 #include <command.h> 18 #include <net.h> 19 #include <miiphy.h> 20 #include <malloc.h> 21 #include <net.h> 22 #include <netdev.h> 23 #include <cpsw.h> 24 #include <asm/errno.h> 25 #include <asm/io.h> 26 #include <phy.h> 27 #include <asm/arch/cpu.h> 28 29 #define BITMASK(bits) (BIT(bits) - 1) 30 #define PHY_REG_MASK 0x1f 31 #define PHY_ID_MASK 0x1f 32 #define NUM_DESCS (PKTBUFSRX * 2) 33 #define PKT_MIN 60 34 #define PKT_MAX (1500 + 14 + 4 + 4) 35 #define CLEAR_BIT 1 36 #define GIGABITEN BIT(7) 37 #define FULLDUPLEXEN BIT(0) 38 #define MIIEN BIT(15) 39 40 /* DMA Registers */ 41 #define CPDMA_TXCONTROL 0x004 42 #define CPDMA_RXCONTROL 0x014 43 #define CPDMA_SOFTRESET 0x01c 44 #define CPDMA_RXFREE 0x0e0 45 #define CPDMA_TXHDP_VER1 0x100 46 #define CPDMA_TXHDP_VER2 0x200 47 #define CPDMA_RXHDP_VER1 0x120 48 #define CPDMA_RXHDP_VER2 0x220 49 #define CPDMA_TXCP_VER1 0x140 50 #define CPDMA_TXCP_VER2 0x240 51 #define CPDMA_RXCP_VER1 0x160 52 #define CPDMA_RXCP_VER2 0x260 53 54 /* Descriptor mode bits */ 55 #define CPDMA_DESC_SOP BIT(31) 56 #define CPDMA_DESC_EOP BIT(30) 57 #define CPDMA_DESC_OWNER BIT(29) 58 #define CPDMA_DESC_EOQ BIT(28) 59 60 /* 61 * This timeout definition is a worst-case ultra defensive measure against 62 * unexpected controller lock ups. Ideally, we should never ever hit this 63 * scenario in practice. 64 */ 65 #define MDIO_TIMEOUT 100 /* msecs */ 66 #define CPDMA_TIMEOUT 100 /* msecs */ 67 68 struct cpsw_mdio_regs { 69 u32 version; 70 u32 control; 71 #define CONTROL_IDLE BIT(31) 72 #define CONTROL_ENABLE BIT(30) 73 74 u32 alive; 75 u32 link; 76 u32 linkintraw; 77 u32 linkintmasked; 78 u32 __reserved_0[2]; 79 u32 userintraw; 80 u32 userintmasked; 81 u32 userintmaskset; 82 u32 userintmaskclr; 83 u32 __reserved_1[20]; 84 85 struct { 86 u32 access; 87 u32 physel; 88 #define USERACCESS_GO BIT(31) 89 #define USERACCESS_WRITE BIT(30) 90 #define USERACCESS_ACK BIT(29) 91 #define USERACCESS_READ (0) 92 #define USERACCESS_DATA (0xffff) 93 } user[0]; 94 }; 95 96 struct cpsw_regs { 97 u32 id_ver; 98 u32 control; 99 u32 soft_reset; 100 u32 stat_port_en; 101 u32 ptype; 102 }; 103 104 struct cpsw_slave_regs { 105 u32 max_blks; 106 u32 blk_cnt; 107 u32 flow_thresh; 108 u32 port_vlan; 109 u32 tx_pri_map; 110 #ifdef CONFIG_AM33XX 111 u32 gap_thresh; 112 #elif defined(CONFIG_TI814X) 113 u32 ts_ctl; 114 u32 ts_seq_ltype; 115 u32 ts_vlan; 116 #endif 117 u32 sa_lo; 118 u32 sa_hi; 119 }; 120 121 struct cpsw_host_regs { 122 u32 max_blks; 123 u32 blk_cnt; 124 u32 flow_thresh; 125 u32 port_vlan; 126 u32 tx_pri_map; 127 u32 cpdma_tx_pri_map; 128 u32 cpdma_rx_chan_map; 129 }; 130 131 struct cpsw_sliver_regs { 132 u32 id_ver; 133 u32 mac_control; 134 u32 mac_status; 135 u32 soft_reset; 136 u32 rx_maxlen; 137 u32 __reserved_0; 138 u32 rx_pause; 139 u32 tx_pause; 140 u32 __reserved_1; 141 u32 rx_pri_map; 142 }; 143 144 #define ALE_ENTRY_BITS 68 145 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32) 146 147 /* ALE Registers */ 148 #define ALE_CONTROL 0x08 149 #define ALE_UNKNOWNVLAN 0x18 150 #define ALE_TABLE_CONTROL 0x20 151 #define ALE_TABLE 0x34 152 #define ALE_PORTCTL 0x40 153 154 #define ALE_TABLE_WRITE BIT(31) 155 156 #define ALE_TYPE_FREE 0 157 #define ALE_TYPE_ADDR 1 158 #define ALE_TYPE_VLAN 2 159 #define ALE_TYPE_VLAN_ADDR 3 160 161 #define ALE_UCAST_PERSISTANT 0 162 #define ALE_UCAST_UNTOUCHED 1 163 #define ALE_UCAST_OUI 2 164 #define ALE_UCAST_TOUCHED 3 165 166 #define ALE_MCAST_FWD 0 167 #define ALE_MCAST_BLOCK_LEARN_FWD 1 168 #define ALE_MCAST_FWD_LEARN 2 169 #define ALE_MCAST_FWD_2 3 170 171 enum cpsw_ale_port_state { 172 ALE_PORT_STATE_DISABLE = 0x00, 173 ALE_PORT_STATE_BLOCK = 0x01, 174 ALE_PORT_STATE_LEARN = 0x02, 175 ALE_PORT_STATE_FORWARD = 0x03, 176 }; 177 178 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */ 179 #define ALE_SECURE 1 180 #define ALE_BLOCKED 2 181 182 struct cpsw_slave { 183 struct cpsw_slave_regs *regs; 184 struct cpsw_sliver_regs *sliver; 185 int slave_num; 186 u32 mac_control; 187 struct cpsw_slave_data *data; 188 }; 189 190 struct cpdma_desc { 191 /* hardware fields */ 192 u32 hw_next; 193 u32 hw_buffer; 194 u32 hw_len; 195 u32 hw_mode; 196 /* software fields */ 197 u32 sw_buffer; 198 u32 sw_len; 199 }; 200 201 struct cpdma_chan { 202 struct cpdma_desc *head, *tail; 203 void *hdp, *cp, *rxfree; 204 }; 205 206 #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld) 207 #define desc_read(desc, fld) __raw_readl(&(desc)->fld) 208 #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld)) 209 210 #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld) 211 #define chan_read(chan, fld) __raw_readl((chan)->fld) 212 #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld)) 213 214 #define for_active_slave(slave, priv) \ 215 slave = (priv)->slaves + (priv)->data.active_slave; if (slave) 216 #define for_each_slave(slave, priv) \ 217 for (slave = (priv)->slaves; slave != (priv)->slaves + \ 218 (priv)->data.slaves; slave++) 219 220 struct cpsw_priv { 221 struct eth_device *dev; 222 struct cpsw_platform_data data; 223 int host_port; 224 225 struct cpsw_regs *regs; 226 void *dma_regs; 227 struct cpsw_host_regs *host_port_regs; 228 void *ale_regs; 229 230 struct cpdma_desc *descs; 231 struct cpdma_desc *desc_free; 232 struct cpdma_chan rx_chan, tx_chan; 233 234 struct cpsw_slave *slaves; 235 struct phy_device *phydev; 236 struct mii_dev *bus; 237 238 u32 phy_mask; 239 }; 240 241 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits) 242 { 243 int idx; 244 245 idx = start / 32; 246 start -= idx * 32; 247 idx = 2 - idx; /* flip */ 248 return (ale_entry[idx] >> start) & BITMASK(bits); 249 } 250 251 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits, 252 u32 value) 253 { 254 int idx; 255 256 value &= BITMASK(bits); 257 idx = start / 32; 258 start -= idx * 32; 259 idx = 2 - idx; /* flip */ 260 ale_entry[idx] &= ~(BITMASK(bits) << start); 261 ale_entry[idx] |= (value << start); 262 } 263 264 #define DEFINE_ALE_FIELD(name, start, bits) \ 265 static inline int cpsw_ale_get_##name(u32 *ale_entry) \ 266 { \ 267 return cpsw_ale_get_field(ale_entry, start, bits); \ 268 } \ 269 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \ 270 { \ 271 cpsw_ale_set_field(ale_entry, start, bits, value); \ 272 } 273 274 DEFINE_ALE_FIELD(entry_type, 60, 2) 275 DEFINE_ALE_FIELD(mcast_state, 62, 2) 276 DEFINE_ALE_FIELD(port_mask, 66, 3) 277 DEFINE_ALE_FIELD(ucast_type, 62, 2) 278 DEFINE_ALE_FIELD(port_num, 66, 2) 279 DEFINE_ALE_FIELD(blocked, 65, 1) 280 DEFINE_ALE_FIELD(secure, 64, 1) 281 DEFINE_ALE_FIELD(mcast, 40, 1) 282 283 /* The MAC address field in the ALE entry cannot be macroized as above */ 284 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr) 285 { 286 int i; 287 288 for (i = 0; i < 6; i++) 289 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8); 290 } 291 292 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr) 293 { 294 int i; 295 296 for (i = 0; i < 6; i++) 297 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]); 298 } 299 300 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry) 301 { 302 int i; 303 304 __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL); 305 306 for (i = 0; i < ALE_ENTRY_WORDS; i++) 307 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i); 308 309 return idx; 310 } 311 312 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry) 313 { 314 int i; 315 316 for (i = 0; i < ALE_ENTRY_WORDS; i++) 317 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i); 318 319 __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL); 320 321 return idx; 322 } 323 324 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr) 325 { 326 u32 ale_entry[ALE_ENTRY_WORDS]; 327 int type, idx; 328 329 for (idx = 0; idx < priv->data.ale_entries; idx++) { 330 u8 entry_addr[6]; 331 332 cpsw_ale_read(priv, idx, ale_entry); 333 type = cpsw_ale_get_entry_type(ale_entry); 334 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) 335 continue; 336 cpsw_ale_get_addr(ale_entry, entry_addr); 337 if (memcmp(entry_addr, addr, 6) == 0) 338 return idx; 339 } 340 return -ENOENT; 341 } 342 343 static int cpsw_ale_match_free(struct cpsw_priv *priv) 344 { 345 u32 ale_entry[ALE_ENTRY_WORDS]; 346 int type, idx; 347 348 for (idx = 0; idx < priv->data.ale_entries; idx++) { 349 cpsw_ale_read(priv, idx, ale_entry); 350 type = cpsw_ale_get_entry_type(ale_entry); 351 if (type == ALE_TYPE_FREE) 352 return idx; 353 } 354 return -ENOENT; 355 } 356 357 static int cpsw_ale_find_ageable(struct cpsw_priv *priv) 358 { 359 u32 ale_entry[ALE_ENTRY_WORDS]; 360 int type, idx; 361 362 for (idx = 0; idx < priv->data.ale_entries; idx++) { 363 cpsw_ale_read(priv, idx, ale_entry); 364 type = cpsw_ale_get_entry_type(ale_entry); 365 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) 366 continue; 367 if (cpsw_ale_get_mcast(ale_entry)) 368 continue; 369 type = cpsw_ale_get_ucast_type(ale_entry); 370 if (type != ALE_UCAST_PERSISTANT && 371 type != ALE_UCAST_OUI) 372 return idx; 373 } 374 return -ENOENT; 375 } 376 377 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr, 378 int port, int flags) 379 { 380 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; 381 int idx; 382 383 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); 384 cpsw_ale_set_addr(ale_entry, addr); 385 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT); 386 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0); 387 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0); 388 cpsw_ale_set_port_num(ale_entry, port); 389 390 idx = cpsw_ale_match_addr(priv, addr); 391 if (idx < 0) 392 idx = cpsw_ale_match_free(priv); 393 if (idx < 0) 394 idx = cpsw_ale_find_ageable(priv); 395 if (idx < 0) 396 return -ENOMEM; 397 398 cpsw_ale_write(priv, idx, ale_entry); 399 return 0; 400 } 401 402 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr, 403 int port_mask) 404 { 405 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; 406 int idx, mask; 407 408 idx = cpsw_ale_match_addr(priv, addr); 409 if (idx >= 0) 410 cpsw_ale_read(priv, idx, ale_entry); 411 412 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); 413 cpsw_ale_set_addr(ale_entry, addr); 414 cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2); 415 416 mask = cpsw_ale_get_port_mask(ale_entry); 417 port_mask |= mask; 418 cpsw_ale_set_port_mask(ale_entry, port_mask); 419 420 if (idx < 0) 421 idx = cpsw_ale_match_free(priv); 422 if (idx < 0) 423 idx = cpsw_ale_find_ageable(priv); 424 if (idx < 0) 425 return -ENOMEM; 426 427 cpsw_ale_write(priv, idx, ale_entry); 428 return 0; 429 } 430 431 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val) 432 { 433 u32 tmp, mask = BIT(bit); 434 435 tmp = __raw_readl(priv->ale_regs + ALE_CONTROL); 436 tmp &= ~mask; 437 tmp |= val ? mask : 0; 438 __raw_writel(tmp, priv->ale_regs + ALE_CONTROL); 439 } 440 441 #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val) 442 #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val) 443 #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val) 444 445 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port, 446 int val) 447 { 448 int offset = ALE_PORTCTL + 4 * port; 449 u32 tmp, mask = 0x3; 450 451 tmp = __raw_readl(priv->ale_regs + offset); 452 tmp &= ~mask; 453 tmp |= val & mask; 454 __raw_writel(tmp, priv->ale_regs + offset); 455 } 456 457 static struct cpsw_mdio_regs *mdio_regs; 458 459 /* wait until hardware is ready for another user access */ 460 static inline u32 wait_for_user_access(void) 461 { 462 u32 reg = 0; 463 int timeout = MDIO_TIMEOUT; 464 465 while (timeout-- && 466 ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO)) 467 udelay(10); 468 469 if (timeout == -1) { 470 printf("wait_for_user_access Timeout\n"); 471 return -ETIMEDOUT; 472 } 473 return reg; 474 } 475 476 /* wait until hardware state machine is idle */ 477 static inline void wait_for_idle(void) 478 { 479 int timeout = MDIO_TIMEOUT; 480 481 while (timeout-- && 482 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0)) 483 udelay(10); 484 485 if (timeout == -1) 486 printf("wait_for_idle Timeout\n"); 487 } 488 489 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id, 490 int dev_addr, int phy_reg) 491 { 492 int data; 493 u32 reg; 494 495 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) 496 return -EINVAL; 497 498 wait_for_user_access(); 499 reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) | 500 (phy_id << 16)); 501 __raw_writel(reg, &mdio_regs->user[0].access); 502 reg = wait_for_user_access(); 503 504 data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1; 505 return data; 506 } 507 508 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr, 509 int phy_reg, u16 data) 510 { 511 u32 reg; 512 513 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) 514 return -EINVAL; 515 516 wait_for_user_access(); 517 reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) | 518 (phy_id << 16) | (data & USERACCESS_DATA)); 519 __raw_writel(reg, &mdio_regs->user[0].access); 520 wait_for_user_access(); 521 522 return 0; 523 } 524 525 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div) 526 { 527 struct mii_dev *bus = mdio_alloc(); 528 529 mdio_regs = (struct cpsw_mdio_regs *)mdio_base; 530 531 /* set enable and clock divider */ 532 __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control); 533 534 /* 535 * wait for scan logic to settle: 536 * the scan time consists of (a) a large fixed component, and (b) a 537 * small component that varies with the mii bus frequency. These 538 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x 539 * silicon. Since the effect of (b) was found to be largely 540 * negligible, we keep things simple here. 541 */ 542 udelay(1000); 543 544 bus->read = cpsw_mdio_read; 545 bus->write = cpsw_mdio_write; 546 sprintf(bus->name, name); 547 548 mdio_register(bus); 549 } 550 551 /* Set a self-clearing bit in a register, and wait for it to clear */ 552 static inline void setbit_and_wait_for_clear32(void *addr) 553 { 554 __raw_writel(CLEAR_BIT, addr); 555 while (__raw_readl(addr) & CLEAR_BIT) 556 ; 557 } 558 559 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 560 ((mac)[2] << 16) | ((mac)[3] << 24)) 561 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 562 563 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 564 struct cpsw_priv *priv) 565 { 566 __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi); 567 __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo); 568 } 569 570 static void cpsw_slave_update_link(struct cpsw_slave *slave, 571 struct cpsw_priv *priv, int *link) 572 { 573 struct phy_device *phy; 574 u32 mac_control = 0; 575 576 phy = priv->phydev; 577 578 if (!phy) 579 return; 580 581 phy_startup(phy); 582 *link = phy->link; 583 584 if (*link) { /* link up */ 585 mac_control = priv->data.mac_control; 586 if (phy->speed == 1000) 587 mac_control |= GIGABITEN; 588 if (phy->duplex == DUPLEX_FULL) 589 mac_control |= FULLDUPLEXEN; 590 if (phy->speed == 100) 591 mac_control |= MIIEN; 592 } 593 594 if (mac_control == slave->mac_control) 595 return; 596 597 if (mac_control) { 598 printf("link up on port %d, speed %d, %s duplex\n", 599 slave->slave_num, phy->speed, 600 (phy->duplex == DUPLEX_FULL) ? "full" : "half"); 601 } else { 602 printf("link down on port %d\n", slave->slave_num); 603 } 604 605 __raw_writel(mac_control, &slave->sliver->mac_control); 606 slave->mac_control = mac_control; 607 } 608 609 static int cpsw_update_link(struct cpsw_priv *priv) 610 { 611 int link = 0; 612 struct cpsw_slave *slave; 613 614 for_active_slave(slave, priv) 615 cpsw_slave_update_link(slave, priv, &link); 616 617 return link; 618 } 619 620 static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 621 { 622 if (priv->host_port == 0) 623 return slave_num + 1; 624 else 625 return slave_num; 626 } 627 628 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv) 629 { 630 u32 slave_port; 631 632 setbit_and_wait_for_clear32(&slave->sliver->soft_reset); 633 634 /* setup priority mapping */ 635 __raw_writel(0x76543210, &slave->sliver->rx_pri_map); 636 __raw_writel(0x33221100, &slave->regs->tx_pri_map); 637 638 /* setup max packet size, and mac address */ 639 __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen); 640 cpsw_set_slave_mac(slave, priv); 641 642 slave->mac_control = 0; /* no link yet */ 643 644 /* enable forwarding */ 645 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 646 cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD); 647 648 cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port); 649 650 priv->phy_mask |= 1 << slave->data->phy_addr; 651 } 652 653 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv) 654 { 655 struct cpdma_desc *desc = priv->desc_free; 656 657 if (desc) 658 priv->desc_free = desc_read_ptr(desc, hw_next); 659 return desc; 660 } 661 662 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc) 663 { 664 if (desc) { 665 desc_write(desc, hw_next, priv->desc_free); 666 priv->desc_free = desc; 667 } 668 } 669 670 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan, 671 void *buffer, int len) 672 { 673 struct cpdma_desc *desc, *prev; 674 u32 mode; 675 676 desc = cpdma_desc_alloc(priv); 677 if (!desc) 678 return -ENOMEM; 679 680 if (len < PKT_MIN) 681 len = PKT_MIN; 682 683 mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP; 684 685 desc_write(desc, hw_next, 0); 686 desc_write(desc, hw_buffer, buffer); 687 desc_write(desc, hw_len, len); 688 desc_write(desc, hw_mode, mode | len); 689 desc_write(desc, sw_buffer, buffer); 690 desc_write(desc, sw_len, len); 691 692 if (!chan->head) { 693 /* simple case - first packet enqueued */ 694 chan->head = desc; 695 chan->tail = desc; 696 chan_write(chan, hdp, desc); 697 goto done; 698 } 699 700 /* not the first packet - enqueue at the tail */ 701 prev = chan->tail; 702 desc_write(prev, hw_next, desc); 703 chan->tail = desc; 704 705 /* next check if EOQ has been triggered already */ 706 if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ) 707 chan_write(chan, hdp, desc); 708 709 done: 710 if (chan->rxfree) 711 chan_write(chan, rxfree, 1); 712 return 0; 713 } 714 715 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan, 716 void **buffer, int *len) 717 { 718 struct cpdma_desc *desc = chan->head; 719 u32 status; 720 721 if (!desc) 722 return -ENOENT; 723 724 status = desc_read(desc, hw_mode); 725 726 if (len) 727 *len = status & 0x7ff; 728 729 if (buffer) 730 *buffer = desc_read_ptr(desc, sw_buffer); 731 732 if (status & CPDMA_DESC_OWNER) { 733 if (chan_read(chan, hdp) == 0) { 734 if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER) 735 chan_write(chan, hdp, desc); 736 } 737 738 return -EBUSY; 739 } 740 741 chan->head = desc_read_ptr(desc, hw_next); 742 chan_write(chan, cp, desc); 743 744 cpdma_desc_free(priv, desc); 745 return 0; 746 } 747 748 static int cpsw_init(struct eth_device *dev, bd_t *bis) 749 { 750 struct cpsw_priv *priv = dev->priv; 751 struct cpsw_slave *slave; 752 int i, ret; 753 754 /* soft reset the controller and initialize priv */ 755 setbit_and_wait_for_clear32(&priv->regs->soft_reset); 756 757 /* initialize and reset the address lookup engine */ 758 cpsw_ale_enable(priv, 1); 759 cpsw_ale_clear(priv, 1); 760 cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */ 761 762 /* setup host port priority mapping */ 763 __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map); 764 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 765 766 /* disable priority elevation and enable statistics on all ports */ 767 __raw_writel(0, &priv->regs->ptype); 768 769 /* enable statistics collection only on the host port */ 770 __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en); 771 __raw_writel(0x7, &priv->regs->stat_port_en); 772 773 cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD); 774 775 cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port, 776 ALE_SECURE); 777 cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port); 778 779 for_active_slave(slave, priv) 780 cpsw_slave_init(slave, priv); 781 782 cpsw_update_link(priv); 783 784 /* init descriptor pool */ 785 for (i = 0; i < NUM_DESCS; i++) { 786 desc_write(&priv->descs[i], hw_next, 787 (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]); 788 } 789 priv->desc_free = &priv->descs[0]; 790 791 /* initialize channels */ 792 if (priv->data.version == CPSW_CTRL_VERSION_2) { 793 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); 794 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2; 795 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2; 796 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; 797 798 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); 799 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2; 800 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2; 801 } else { 802 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); 803 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1; 804 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1; 805 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; 806 807 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); 808 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1; 809 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1; 810 } 811 812 /* clear dma state */ 813 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); 814 815 if (priv->data.version == CPSW_CTRL_VERSION_2) { 816 for (i = 0; i < priv->data.channels; i++) { 817 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4 818 * i); 819 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 820 * i); 821 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4 822 * i); 823 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4 824 * i); 825 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4 826 * i); 827 } 828 } else { 829 for (i = 0; i < priv->data.channels; i++) { 830 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4 831 * i); 832 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 833 * i); 834 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4 835 * i); 836 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4 837 * i); 838 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4 839 * i); 840 841 } 842 } 843 844 __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL); 845 __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL); 846 847 /* submit rx descs */ 848 for (i = 0; i < PKTBUFSRX; i++) { 849 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i], 850 PKTSIZE); 851 if (ret < 0) { 852 printf("error %d submitting rx desc\n", ret); 853 break; 854 } 855 } 856 857 return 0; 858 } 859 860 static void cpsw_halt(struct eth_device *dev) 861 { 862 struct cpsw_priv *priv = dev->priv; 863 864 writel(0, priv->dma_regs + CPDMA_TXCONTROL); 865 writel(0, priv->dma_regs + CPDMA_RXCONTROL); 866 867 /* soft reset the controller and initialize priv */ 868 setbit_and_wait_for_clear32(&priv->regs->soft_reset); 869 870 /* clear dma state */ 871 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); 872 873 priv->data.control(0); 874 } 875 876 static int cpsw_send(struct eth_device *dev, void *packet, int length) 877 { 878 struct cpsw_priv *priv = dev->priv; 879 void *buffer; 880 int len; 881 int timeout = CPDMA_TIMEOUT; 882 883 flush_dcache_range((unsigned long)packet, 884 (unsigned long)packet + length); 885 886 /* first reap completed packets */ 887 while (timeout-- && 888 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0)) 889 ; 890 891 if (timeout == -1) { 892 printf("cpdma_process timeout\n"); 893 return -ETIMEDOUT; 894 } 895 896 return cpdma_submit(priv, &priv->tx_chan, packet, length); 897 } 898 899 static int cpsw_recv(struct eth_device *dev) 900 { 901 struct cpsw_priv *priv = dev->priv; 902 void *buffer; 903 int len; 904 905 while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) { 906 invalidate_dcache_range((unsigned long)buffer, 907 (unsigned long)buffer + PKTSIZE_ALIGN); 908 net_process_received_packet(buffer, len); 909 cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE); 910 } 911 912 return 0; 913 } 914 915 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num, 916 struct cpsw_priv *priv) 917 { 918 void *regs = priv->regs; 919 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 920 slave->slave_num = slave_num; 921 slave->data = data; 922 slave->regs = regs + data->slave_reg_ofs; 923 slave->sliver = regs + data->sliver_reg_ofs; 924 } 925 926 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave) 927 { 928 struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv; 929 struct phy_device *phydev; 930 u32 supported = PHY_GBIT_FEATURES; 931 932 phydev = phy_connect(priv->bus, 933 slave->data->phy_addr, 934 dev, 935 slave->data->phy_if); 936 937 if (!phydev) 938 return -1; 939 940 phydev->supported &= supported; 941 phydev->advertising = phydev->supported; 942 943 priv->phydev = phydev; 944 phy_config(phydev); 945 946 return 1; 947 } 948 949 int cpsw_register(struct cpsw_platform_data *data) 950 { 951 struct cpsw_priv *priv; 952 struct cpsw_slave *slave; 953 void *regs = (void *)data->cpsw_base; 954 struct eth_device *dev; 955 956 dev = calloc(sizeof(*dev), 1); 957 if (!dev) 958 return -ENOMEM; 959 960 priv = calloc(sizeof(*priv), 1); 961 if (!priv) { 962 free(dev); 963 return -ENOMEM; 964 } 965 966 priv->data = *data; 967 priv->dev = dev; 968 969 priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves); 970 if (!priv->slaves) { 971 free(dev); 972 free(priv); 973 return -ENOMEM; 974 } 975 976 priv->host_port = data->host_port_num; 977 priv->regs = regs; 978 priv->host_port_regs = regs + data->host_port_reg_ofs; 979 priv->dma_regs = regs + data->cpdma_reg_ofs; 980 priv->ale_regs = regs + data->ale_reg_ofs; 981 priv->descs = (void *)regs + data->bd_ram_ofs; 982 983 int idx = 0; 984 985 for_each_slave(slave, priv) { 986 cpsw_slave_setup(slave, idx, priv); 987 idx = idx + 1; 988 } 989 990 strcpy(dev->name, "cpsw"); 991 dev->iobase = 0; 992 dev->init = cpsw_init; 993 dev->halt = cpsw_halt; 994 dev->send = cpsw_send; 995 dev->recv = cpsw_recv; 996 dev->priv = priv; 997 998 eth_register(dev); 999 1000 cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div); 1001 priv->bus = miiphy_get_dev_by_name(dev->name); 1002 for_active_slave(slave, priv) 1003 cpsw_phy_init(dev, slave); 1004 1005 return 1; 1006 } 1007