1 /* 2 * CPSW Ethernet Switch Driver 3 * 4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <common.h> 17 #include <command.h> 18 #include <net.h> 19 #include <miiphy.h> 20 #include <malloc.h> 21 #include <net.h> 22 #include <netdev.h> 23 #include <cpsw.h> 24 #include <linux/errno.h> 25 #include <asm/gpio.h> 26 #include <asm/io.h> 27 #include <phy.h> 28 #include <asm/arch/cpu.h> 29 #include <dm.h> 30 #include <fdt_support.h> 31 32 DECLARE_GLOBAL_DATA_PTR; 33 34 #define BITMASK(bits) (BIT(bits) - 1) 35 #define PHY_REG_MASK 0x1f 36 #define PHY_ID_MASK 0x1f 37 #define NUM_DESCS (PKTBUFSRX * 2) 38 #define PKT_MIN 60 39 #define PKT_MAX (1500 + 14 + 4 + 4) 40 #define CLEAR_BIT 1 41 #define GIGABITEN BIT(7) 42 #define FULLDUPLEXEN BIT(0) 43 #define MIIEN BIT(15) 44 45 /* reg offset */ 46 #define CPSW_HOST_PORT_OFFSET 0x108 47 #define CPSW_SLAVE0_OFFSET 0x208 48 #define CPSW_SLAVE1_OFFSET 0x308 49 #define CPSW_SLAVE_SIZE 0x100 50 #define CPSW_CPDMA_OFFSET 0x800 51 #define CPSW_HW_STATS 0x900 52 #define CPSW_STATERAM_OFFSET 0xa00 53 #define CPSW_CPTS_OFFSET 0xc00 54 #define CPSW_ALE_OFFSET 0xd00 55 #define CPSW_SLIVER0_OFFSET 0xd80 56 #define CPSW_SLIVER1_OFFSET 0xdc0 57 #define CPSW_BD_OFFSET 0x2000 58 #define CPSW_MDIO_DIV 0xff 59 60 #define AM335X_GMII_SEL_OFFSET 0x630 61 62 /* DMA Registers */ 63 #define CPDMA_TXCONTROL 0x004 64 #define CPDMA_RXCONTROL 0x014 65 #define CPDMA_SOFTRESET 0x01c 66 #define CPDMA_RXFREE 0x0e0 67 #define CPDMA_TXHDP_VER1 0x100 68 #define CPDMA_TXHDP_VER2 0x200 69 #define CPDMA_RXHDP_VER1 0x120 70 #define CPDMA_RXHDP_VER2 0x220 71 #define CPDMA_TXCP_VER1 0x140 72 #define CPDMA_TXCP_VER2 0x240 73 #define CPDMA_RXCP_VER1 0x160 74 #define CPDMA_RXCP_VER2 0x260 75 76 /* Descriptor mode bits */ 77 #define CPDMA_DESC_SOP BIT(31) 78 #define CPDMA_DESC_EOP BIT(30) 79 #define CPDMA_DESC_OWNER BIT(29) 80 #define CPDMA_DESC_EOQ BIT(28) 81 82 /* 83 * This timeout definition is a worst-case ultra defensive measure against 84 * unexpected controller lock ups. Ideally, we should never ever hit this 85 * scenario in practice. 86 */ 87 #define MDIO_TIMEOUT 100 /* msecs */ 88 #define CPDMA_TIMEOUT 100 /* msecs */ 89 90 struct cpsw_mdio_regs { 91 u32 version; 92 u32 control; 93 #define CONTROL_IDLE BIT(31) 94 #define CONTROL_ENABLE BIT(30) 95 96 u32 alive; 97 u32 link; 98 u32 linkintraw; 99 u32 linkintmasked; 100 u32 __reserved_0[2]; 101 u32 userintraw; 102 u32 userintmasked; 103 u32 userintmaskset; 104 u32 userintmaskclr; 105 u32 __reserved_1[20]; 106 107 struct { 108 u32 access; 109 u32 physel; 110 #define USERACCESS_GO BIT(31) 111 #define USERACCESS_WRITE BIT(30) 112 #define USERACCESS_ACK BIT(29) 113 #define USERACCESS_READ (0) 114 #define USERACCESS_DATA (0xffff) 115 } user[0]; 116 }; 117 118 struct cpsw_regs { 119 u32 id_ver; 120 u32 control; 121 u32 soft_reset; 122 u32 stat_port_en; 123 u32 ptype; 124 }; 125 126 struct cpsw_slave_regs { 127 u32 max_blks; 128 u32 blk_cnt; 129 u32 flow_thresh; 130 u32 port_vlan; 131 u32 tx_pri_map; 132 #ifdef CONFIG_AM33XX 133 u32 gap_thresh; 134 #elif defined(CONFIG_TI814X) 135 u32 ts_ctl; 136 u32 ts_seq_ltype; 137 u32 ts_vlan; 138 #endif 139 u32 sa_lo; 140 u32 sa_hi; 141 }; 142 143 struct cpsw_host_regs { 144 u32 max_blks; 145 u32 blk_cnt; 146 u32 flow_thresh; 147 u32 port_vlan; 148 u32 tx_pri_map; 149 u32 cpdma_tx_pri_map; 150 u32 cpdma_rx_chan_map; 151 }; 152 153 struct cpsw_sliver_regs { 154 u32 id_ver; 155 u32 mac_control; 156 u32 mac_status; 157 u32 soft_reset; 158 u32 rx_maxlen; 159 u32 __reserved_0; 160 u32 rx_pause; 161 u32 tx_pause; 162 u32 __reserved_1; 163 u32 rx_pri_map; 164 }; 165 166 #define ALE_ENTRY_BITS 68 167 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32) 168 169 /* ALE Registers */ 170 #define ALE_CONTROL 0x08 171 #define ALE_UNKNOWNVLAN 0x18 172 #define ALE_TABLE_CONTROL 0x20 173 #define ALE_TABLE 0x34 174 #define ALE_PORTCTL 0x40 175 176 #define ALE_TABLE_WRITE BIT(31) 177 178 #define ALE_TYPE_FREE 0 179 #define ALE_TYPE_ADDR 1 180 #define ALE_TYPE_VLAN 2 181 #define ALE_TYPE_VLAN_ADDR 3 182 183 #define ALE_UCAST_PERSISTANT 0 184 #define ALE_UCAST_UNTOUCHED 1 185 #define ALE_UCAST_OUI 2 186 #define ALE_UCAST_TOUCHED 3 187 188 #define ALE_MCAST_FWD 0 189 #define ALE_MCAST_BLOCK_LEARN_FWD 1 190 #define ALE_MCAST_FWD_LEARN 2 191 #define ALE_MCAST_FWD_2 3 192 193 enum cpsw_ale_port_state { 194 ALE_PORT_STATE_DISABLE = 0x00, 195 ALE_PORT_STATE_BLOCK = 0x01, 196 ALE_PORT_STATE_LEARN = 0x02, 197 ALE_PORT_STATE_FORWARD = 0x03, 198 }; 199 200 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */ 201 #define ALE_SECURE 1 202 #define ALE_BLOCKED 2 203 204 struct cpsw_slave { 205 struct cpsw_slave_regs *regs; 206 struct cpsw_sliver_regs *sliver; 207 int slave_num; 208 u32 mac_control; 209 struct cpsw_slave_data *data; 210 }; 211 212 struct cpdma_desc { 213 /* hardware fields */ 214 u32 hw_next; 215 u32 hw_buffer; 216 u32 hw_len; 217 u32 hw_mode; 218 /* software fields */ 219 u32 sw_buffer; 220 u32 sw_len; 221 }; 222 223 struct cpdma_chan { 224 struct cpdma_desc *head, *tail; 225 void *hdp, *cp, *rxfree; 226 }; 227 228 /* AM33xx SoC specific definitions for the CONTROL port */ 229 #define AM33XX_GMII_SEL_MODE_MII 0 230 #define AM33XX_GMII_SEL_MODE_RMII 1 231 #define AM33XX_GMII_SEL_MODE_RGMII 2 232 233 #define AM33XX_GMII_SEL_RGMII1_IDMODE BIT(4) 234 #define AM33XX_GMII_SEL_RGMII2_IDMODE BIT(5) 235 #define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6) 236 #define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7) 237 238 #define GMII_SEL_MODE_MASK 0x3 239 240 #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld) 241 #define desc_read(desc, fld) __raw_readl(&(desc)->fld) 242 #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld)) 243 244 #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld) 245 #define chan_read(chan, fld) __raw_readl((chan)->fld) 246 #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld)) 247 248 #define for_active_slave(slave, priv) \ 249 slave = (priv)->slaves + (priv)->data.active_slave; if (slave) 250 #define for_each_slave(slave, priv) \ 251 for (slave = (priv)->slaves; slave != (priv)->slaves + \ 252 (priv)->data.slaves; slave++) 253 254 struct cpsw_priv { 255 #ifdef CONFIG_DM_ETH 256 struct udevice *dev; 257 #else 258 struct eth_device *dev; 259 #endif 260 struct cpsw_platform_data data; 261 int host_port; 262 263 struct cpsw_regs *regs; 264 void *dma_regs; 265 struct cpsw_host_regs *host_port_regs; 266 void *ale_regs; 267 268 struct cpdma_desc *descs; 269 struct cpdma_desc *desc_free; 270 struct cpdma_chan rx_chan, tx_chan; 271 272 struct cpsw_slave *slaves; 273 struct phy_device *phydev; 274 struct mii_dev *bus; 275 276 u32 phy_mask; 277 }; 278 279 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits) 280 { 281 int idx; 282 283 idx = start / 32; 284 start -= idx * 32; 285 idx = 2 - idx; /* flip */ 286 return (ale_entry[idx] >> start) & BITMASK(bits); 287 } 288 289 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits, 290 u32 value) 291 { 292 int idx; 293 294 value &= BITMASK(bits); 295 idx = start / 32; 296 start -= idx * 32; 297 idx = 2 - idx; /* flip */ 298 ale_entry[idx] &= ~(BITMASK(bits) << start); 299 ale_entry[idx] |= (value << start); 300 } 301 302 #define DEFINE_ALE_FIELD(name, start, bits) \ 303 static inline int cpsw_ale_get_##name(u32 *ale_entry) \ 304 { \ 305 return cpsw_ale_get_field(ale_entry, start, bits); \ 306 } \ 307 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \ 308 { \ 309 cpsw_ale_set_field(ale_entry, start, bits, value); \ 310 } 311 312 DEFINE_ALE_FIELD(entry_type, 60, 2) 313 DEFINE_ALE_FIELD(mcast_state, 62, 2) 314 DEFINE_ALE_FIELD(port_mask, 66, 3) 315 DEFINE_ALE_FIELD(ucast_type, 62, 2) 316 DEFINE_ALE_FIELD(port_num, 66, 2) 317 DEFINE_ALE_FIELD(blocked, 65, 1) 318 DEFINE_ALE_FIELD(secure, 64, 1) 319 DEFINE_ALE_FIELD(mcast, 40, 1) 320 321 /* The MAC address field in the ALE entry cannot be macroized as above */ 322 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr) 323 { 324 int i; 325 326 for (i = 0; i < 6; i++) 327 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8); 328 } 329 330 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr) 331 { 332 int i; 333 334 for (i = 0; i < 6; i++) 335 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]); 336 } 337 338 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry) 339 { 340 int i; 341 342 __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL); 343 344 for (i = 0; i < ALE_ENTRY_WORDS; i++) 345 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i); 346 347 return idx; 348 } 349 350 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry) 351 { 352 int i; 353 354 for (i = 0; i < ALE_ENTRY_WORDS; i++) 355 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i); 356 357 __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL); 358 359 return idx; 360 } 361 362 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr) 363 { 364 u32 ale_entry[ALE_ENTRY_WORDS]; 365 int type, idx; 366 367 for (idx = 0; idx < priv->data.ale_entries; idx++) { 368 u8 entry_addr[6]; 369 370 cpsw_ale_read(priv, idx, ale_entry); 371 type = cpsw_ale_get_entry_type(ale_entry); 372 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) 373 continue; 374 cpsw_ale_get_addr(ale_entry, entry_addr); 375 if (memcmp(entry_addr, addr, 6) == 0) 376 return idx; 377 } 378 return -ENOENT; 379 } 380 381 static int cpsw_ale_match_free(struct cpsw_priv *priv) 382 { 383 u32 ale_entry[ALE_ENTRY_WORDS]; 384 int type, idx; 385 386 for (idx = 0; idx < priv->data.ale_entries; idx++) { 387 cpsw_ale_read(priv, idx, ale_entry); 388 type = cpsw_ale_get_entry_type(ale_entry); 389 if (type == ALE_TYPE_FREE) 390 return idx; 391 } 392 return -ENOENT; 393 } 394 395 static int cpsw_ale_find_ageable(struct cpsw_priv *priv) 396 { 397 u32 ale_entry[ALE_ENTRY_WORDS]; 398 int type, idx; 399 400 for (idx = 0; idx < priv->data.ale_entries; idx++) { 401 cpsw_ale_read(priv, idx, ale_entry); 402 type = cpsw_ale_get_entry_type(ale_entry); 403 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) 404 continue; 405 if (cpsw_ale_get_mcast(ale_entry)) 406 continue; 407 type = cpsw_ale_get_ucast_type(ale_entry); 408 if (type != ALE_UCAST_PERSISTANT && 409 type != ALE_UCAST_OUI) 410 return idx; 411 } 412 return -ENOENT; 413 } 414 415 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr, 416 int port, int flags) 417 { 418 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; 419 int idx; 420 421 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); 422 cpsw_ale_set_addr(ale_entry, addr); 423 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT); 424 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0); 425 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0); 426 cpsw_ale_set_port_num(ale_entry, port); 427 428 idx = cpsw_ale_match_addr(priv, addr); 429 if (idx < 0) 430 idx = cpsw_ale_match_free(priv); 431 if (idx < 0) 432 idx = cpsw_ale_find_ageable(priv); 433 if (idx < 0) 434 return -ENOMEM; 435 436 cpsw_ale_write(priv, idx, ale_entry); 437 return 0; 438 } 439 440 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr, 441 int port_mask) 442 { 443 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; 444 int idx, mask; 445 446 idx = cpsw_ale_match_addr(priv, addr); 447 if (idx >= 0) 448 cpsw_ale_read(priv, idx, ale_entry); 449 450 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); 451 cpsw_ale_set_addr(ale_entry, addr); 452 cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2); 453 454 mask = cpsw_ale_get_port_mask(ale_entry); 455 port_mask |= mask; 456 cpsw_ale_set_port_mask(ale_entry, port_mask); 457 458 if (idx < 0) 459 idx = cpsw_ale_match_free(priv); 460 if (idx < 0) 461 idx = cpsw_ale_find_ageable(priv); 462 if (idx < 0) 463 return -ENOMEM; 464 465 cpsw_ale_write(priv, idx, ale_entry); 466 return 0; 467 } 468 469 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val) 470 { 471 u32 tmp, mask = BIT(bit); 472 473 tmp = __raw_readl(priv->ale_regs + ALE_CONTROL); 474 tmp &= ~mask; 475 tmp |= val ? mask : 0; 476 __raw_writel(tmp, priv->ale_regs + ALE_CONTROL); 477 } 478 479 #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val) 480 #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val) 481 #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val) 482 483 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port, 484 int val) 485 { 486 int offset = ALE_PORTCTL + 4 * port; 487 u32 tmp, mask = 0x3; 488 489 tmp = __raw_readl(priv->ale_regs + offset); 490 tmp &= ~mask; 491 tmp |= val & mask; 492 __raw_writel(tmp, priv->ale_regs + offset); 493 } 494 495 static struct cpsw_mdio_regs *mdio_regs; 496 497 /* wait until hardware is ready for another user access */ 498 static inline u32 wait_for_user_access(void) 499 { 500 u32 reg = 0; 501 int timeout = MDIO_TIMEOUT; 502 503 while (timeout-- && 504 ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO)) 505 udelay(10); 506 507 if (timeout == -1) { 508 printf("wait_for_user_access Timeout\n"); 509 return -ETIMEDOUT; 510 } 511 return reg; 512 } 513 514 /* wait until hardware state machine is idle */ 515 static inline void wait_for_idle(void) 516 { 517 int timeout = MDIO_TIMEOUT; 518 519 while (timeout-- && 520 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0)) 521 udelay(10); 522 523 if (timeout == -1) 524 printf("wait_for_idle Timeout\n"); 525 } 526 527 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id, 528 int dev_addr, int phy_reg) 529 { 530 int data; 531 u32 reg; 532 533 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) 534 return -EINVAL; 535 536 wait_for_user_access(); 537 reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) | 538 (phy_id << 16)); 539 __raw_writel(reg, &mdio_regs->user[0].access); 540 reg = wait_for_user_access(); 541 542 data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1; 543 return data; 544 } 545 546 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr, 547 int phy_reg, u16 data) 548 { 549 u32 reg; 550 551 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) 552 return -EINVAL; 553 554 wait_for_user_access(); 555 reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) | 556 (phy_id << 16) | (data & USERACCESS_DATA)); 557 __raw_writel(reg, &mdio_regs->user[0].access); 558 wait_for_user_access(); 559 560 return 0; 561 } 562 563 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div) 564 { 565 struct mii_dev *bus = mdio_alloc(); 566 567 mdio_regs = (struct cpsw_mdio_regs *)mdio_base; 568 569 /* set enable and clock divider */ 570 __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control); 571 572 /* 573 * wait for scan logic to settle: 574 * the scan time consists of (a) a large fixed component, and (b) a 575 * small component that varies with the mii bus frequency. These 576 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x 577 * silicon. Since the effect of (b) was found to be largely 578 * negligible, we keep things simple here. 579 */ 580 udelay(1000); 581 582 bus->read = cpsw_mdio_read; 583 bus->write = cpsw_mdio_write; 584 strcpy(bus->name, name); 585 586 mdio_register(bus); 587 } 588 589 /* Set a self-clearing bit in a register, and wait for it to clear */ 590 static inline void setbit_and_wait_for_clear32(void *addr) 591 { 592 __raw_writel(CLEAR_BIT, addr); 593 while (__raw_readl(addr) & CLEAR_BIT) 594 ; 595 } 596 597 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 598 ((mac)[2] << 16) | ((mac)[3] << 24)) 599 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 600 601 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 602 struct cpsw_priv *priv) 603 { 604 #ifdef CONFIG_DM_ETH 605 struct eth_pdata *pdata = dev_get_platdata(priv->dev); 606 607 writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi); 608 writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo); 609 #else 610 __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi); 611 __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo); 612 #endif 613 } 614 615 static void cpsw_slave_update_link(struct cpsw_slave *slave, 616 struct cpsw_priv *priv, int *link) 617 { 618 struct phy_device *phy; 619 u32 mac_control = 0; 620 621 phy = priv->phydev; 622 623 if (!phy) 624 return; 625 626 phy_startup(phy); 627 *link = phy->link; 628 629 if (*link) { /* link up */ 630 mac_control = priv->data.mac_control; 631 if (phy->speed == 1000) 632 mac_control |= GIGABITEN; 633 if (phy->duplex == DUPLEX_FULL) 634 mac_control |= FULLDUPLEXEN; 635 if (phy->speed == 100) 636 mac_control |= MIIEN; 637 } 638 639 if (mac_control == slave->mac_control) 640 return; 641 642 if (mac_control) { 643 printf("link up on port %d, speed %d, %s duplex\n", 644 slave->slave_num, phy->speed, 645 (phy->duplex == DUPLEX_FULL) ? "full" : "half"); 646 } else { 647 printf("link down on port %d\n", slave->slave_num); 648 } 649 650 __raw_writel(mac_control, &slave->sliver->mac_control); 651 slave->mac_control = mac_control; 652 } 653 654 static int cpsw_update_link(struct cpsw_priv *priv) 655 { 656 int link = 0; 657 struct cpsw_slave *slave; 658 659 for_active_slave(slave, priv) 660 cpsw_slave_update_link(slave, priv, &link); 661 662 return link; 663 } 664 665 static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 666 { 667 if (priv->host_port == 0) 668 return slave_num + 1; 669 else 670 return slave_num; 671 } 672 673 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv) 674 { 675 u32 slave_port; 676 677 setbit_and_wait_for_clear32(&slave->sliver->soft_reset); 678 679 /* setup priority mapping */ 680 __raw_writel(0x76543210, &slave->sliver->rx_pri_map); 681 __raw_writel(0x33221100, &slave->regs->tx_pri_map); 682 683 /* setup max packet size, and mac address */ 684 __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen); 685 cpsw_set_slave_mac(slave, priv); 686 687 slave->mac_control = 0; /* no link yet */ 688 689 /* enable forwarding */ 690 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 691 cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD); 692 693 cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port); 694 695 priv->phy_mask |= 1 << slave->data->phy_addr; 696 } 697 698 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv) 699 { 700 struct cpdma_desc *desc = priv->desc_free; 701 702 if (desc) 703 priv->desc_free = desc_read_ptr(desc, hw_next); 704 return desc; 705 } 706 707 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc) 708 { 709 if (desc) { 710 desc_write(desc, hw_next, priv->desc_free); 711 priv->desc_free = desc; 712 } 713 } 714 715 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan, 716 void *buffer, int len) 717 { 718 struct cpdma_desc *desc, *prev; 719 u32 mode; 720 721 desc = cpdma_desc_alloc(priv); 722 if (!desc) 723 return -ENOMEM; 724 725 if (len < PKT_MIN) 726 len = PKT_MIN; 727 728 mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP; 729 730 desc_write(desc, hw_next, 0); 731 desc_write(desc, hw_buffer, buffer); 732 desc_write(desc, hw_len, len); 733 desc_write(desc, hw_mode, mode | len); 734 desc_write(desc, sw_buffer, buffer); 735 desc_write(desc, sw_len, len); 736 737 if (!chan->head) { 738 /* simple case - first packet enqueued */ 739 chan->head = desc; 740 chan->tail = desc; 741 chan_write(chan, hdp, desc); 742 goto done; 743 } 744 745 /* not the first packet - enqueue at the tail */ 746 prev = chan->tail; 747 desc_write(prev, hw_next, desc); 748 chan->tail = desc; 749 750 /* next check if EOQ has been triggered already */ 751 if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ) 752 chan_write(chan, hdp, desc); 753 754 done: 755 if (chan->rxfree) 756 chan_write(chan, rxfree, 1); 757 return 0; 758 } 759 760 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan, 761 void **buffer, int *len) 762 { 763 struct cpdma_desc *desc = chan->head; 764 u32 status; 765 766 if (!desc) 767 return -ENOENT; 768 769 status = desc_read(desc, hw_mode); 770 771 if (len) 772 *len = status & 0x7ff; 773 774 if (buffer) 775 *buffer = desc_read_ptr(desc, sw_buffer); 776 777 if (status & CPDMA_DESC_OWNER) { 778 if (chan_read(chan, hdp) == 0) { 779 if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER) 780 chan_write(chan, hdp, desc); 781 } 782 783 return -EBUSY; 784 } 785 786 chan->head = desc_read_ptr(desc, hw_next); 787 chan_write(chan, cp, desc); 788 789 cpdma_desc_free(priv, desc); 790 return 0; 791 } 792 793 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr) 794 { 795 struct cpsw_slave *slave; 796 int i, ret; 797 798 /* soft reset the controller and initialize priv */ 799 setbit_and_wait_for_clear32(&priv->regs->soft_reset); 800 801 /* initialize and reset the address lookup engine */ 802 cpsw_ale_enable(priv, 1); 803 cpsw_ale_clear(priv, 1); 804 cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */ 805 806 /* setup host port priority mapping */ 807 __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map); 808 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 809 810 /* disable priority elevation and enable statistics on all ports */ 811 __raw_writel(0, &priv->regs->ptype); 812 813 /* enable statistics collection only on the host port */ 814 __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en); 815 __raw_writel(0x7, &priv->regs->stat_port_en); 816 817 cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD); 818 819 cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE); 820 cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port); 821 822 for_active_slave(slave, priv) 823 cpsw_slave_init(slave, priv); 824 825 cpsw_update_link(priv); 826 827 /* init descriptor pool */ 828 for (i = 0; i < NUM_DESCS; i++) { 829 desc_write(&priv->descs[i], hw_next, 830 (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]); 831 } 832 priv->desc_free = &priv->descs[0]; 833 834 /* initialize channels */ 835 if (priv->data.version == CPSW_CTRL_VERSION_2) { 836 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); 837 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2; 838 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2; 839 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; 840 841 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); 842 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2; 843 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2; 844 } else { 845 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); 846 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1; 847 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1; 848 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; 849 850 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); 851 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1; 852 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1; 853 } 854 855 /* clear dma state */ 856 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); 857 858 if (priv->data.version == CPSW_CTRL_VERSION_2) { 859 for (i = 0; i < priv->data.channels; i++) { 860 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4 861 * i); 862 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 863 * i); 864 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4 865 * i); 866 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4 867 * i); 868 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4 869 * i); 870 } 871 } else { 872 for (i = 0; i < priv->data.channels; i++) { 873 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4 874 * i); 875 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 876 * i); 877 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4 878 * i); 879 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4 880 * i); 881 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4 882 * i); 883 884 } 885 } 886 887 __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL); 888 __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL); 889 890 /* submit rx descs */ 891 for (i = 0; i < PKTBUFSRX; i++) { 892 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i], 893 PKTSIZE); 894 if (ret < 0) { 895 printf("error %d submitting rx desc\n", ret); 896 break; 897 } 898 } 899 900 return 0; 901 } 902 903 static void _cpsw_halt(struct cpsw_priv *priv) 904 { 905 writel(0, priv->dma_regs + CPDMA_TXCONTROL); 906 writel(0, priv->dma_regs + CPDMA_RXCONTROL); 907 908 /* soft reset the controller and initialize priv */ 909 setbit_and_wait_for_clear32(&priv->regs->soft_reset); 910 911 /* clear dma state */ 912 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); 913 914 } 915 916 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length) 917 { 918 void *buffer; 919 int len; 920 int timeout = CPDMA_TIMEOUT; 921 922 flush_dcache_range((unsigned long)packet, 923 (unsigned long)packet + ALIGN(length, PKTALIGN)); 924 925 /* first reap completed packets */ 926 while (timeout-- && 927 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0)) 928 ; 929 930 if (timeout == -1) { 931 printf("cpdma_process timeout\n"); 932 return -ETIMEDOUT; 933 } 934 935 return cpdma_submit(priv, &priv->tx_chan, packet, length); 936 } 937 938 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt) 939 { 940 void *buffer; 941 int len; 942 int ret = -EAGAIN; 943 944 ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len); 945 if (ret < 0) 946 return ret; 947 948 invalidate_dcache_range((unsigned long)buffer, 949 (unsigned long)buffer + PKTSIZE_ALIGN); 950 *pkt = buffer; 951 952 return len; 953 } 954 955 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num, 956 struct cpsw_priv *priv) 957 { 958 void *regs = priv->regs; 959 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 960 slave->slave_num = slave_num; 961 slave->data = data; 962 slave->regs = regs + data->slave_reg_ofs; 963 slave->sliver = regs + data->sliver_reg_ofs; 964 } 965 966 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave) 967 { 968 struct phy_device *phydev; 969 u32 supported = PHY_GBIT_FEATURES; 970 971 phydev = phy_connect(priv->bus, 972 slave->data->phy_addr, 973 priv->dev, 974 slave->data->phy_if); 975 976 if (!phydev) 977 return -1; 978 979 phydev->supported &= supported; 980 phydev->advertising = phydev->supported; 981 982 #ifdef CONFIG_DM_ETH 983 if (slave->data->phy_of_handle) 984 dev_set_of_offset(phydev->dev, slave->data->phy_of_handle); 985 #endif 986 987 priv->phydev = phydev; 988 phy_config(phydev); 989 990 return 1; 991 } 992 993 int _cpsw_register(struct cpsw_priv *priv) 994 { 995 struct cpsw_slave *slave; 996 struct cpsw_platform_data *data = &priv->data; 997 void *regs = (void *)data->cpsw_base; 998 999 priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves); 1000 if (!priv->slaves) { 1001 return -ENOMEM; 1002 } 1003 1004 priv->host_port = data->host_port_num; 1005 priv->regs = regs; 1006 priv->host_port_regs = regs + data->host_port_reg_ofs; 1007 priv->dma_regs = regs + data->cpdma_reg_ofs; 1008 priv->ale_regs = regs + data->ale_reg_ofs; 1009 priv->descs = (void *)regs + data->bd_ram_ofs; 1010 1011 int idx = 0; 1012 1013 for_each_slave(slave, priv) { 1014 cpsw_slave_setup(slave, idx, priv); 1015 idx = idx + 1; 1016 } 1017 1018 cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div); 1019 priv->bus = miiphy_get_dev_by_name(priv->dev->name); 1020 for_active_slave(slave, priv) 1021 cpsw_phy_init(priv, slave); 1022 1023 return 0; 1024 } 1025 1026 #ifndef CONFIG_DM_ETH 1027 static int cpsw_init(struct eth_device *dev, bd_t *bis) 1028 { 1029 struct cpsw_priv *priv = dev->priv; 1030 1031 return _cpsw_init(priv, dev->enetaddr); 1032 } 1033 1034 static void cpsw_halt(struct eth_device *dev) 1035 { 1036 struct cpsw_priv *priv = dev->priv; 1037 1038 return _cpsw_halt(priv); 1039 } 1040 1041 static int cpsw_send(struct eth_device *dev, void *packet, int length) 1042 { 1043 struct cpsw_priv *priv = dev->priv; 1044 1045 return _cpsw_send(priv, packet, length); 1046 } 1047 1048 static int cpsw_recv(struct eth_device *dev) 1049 { 1050 struct cpsw_priv *priv = dev->priv; 1051 uchar *pkt = NULL; 1052 int len; 1053 1054 len = _cpsw_recv(priv, &pkt); 1055 1056 if (len > 0) { 1057 net_process_received_packet(pkt, len); 1058 cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE); 1059 } 1060 1061 return len; 1062 } 1063 1064 int cpsw_register(struct cpsw_platform_data *data) 1065 { 1066 struct cpsw_priv *priv; 1067 struct eth_device *dev; 1068 int ret; 1069 1070 dev = calloc(sizeof(*dev), 1); 1071 if (!dev) 1072 return -ENOMEM; 1073 1074 priv = calloc(sizeof(*priv), 1); 1075 if (!priv) { 1076 free(dev); 1077 return -ENOMEM; 1078 } 1079 1080 priv->dev = dev; 1081 priv->data = *data; 1082 1083 strcpy(dev->name, "cpsw"); 1084 dev->iobase = 0; 1085 dev->init = cpsw_init; 1086 dev->halt = cpsw_halt; 1087 dev->send = cpsw_send; 1088 dev->recv = cpsw_recv; 1089 dev->priv = priv; 1090 1091 eth_register(dev); 1092 1093 ret = _cpsw_register(priv); 1094 if (ret < 0) { 1095 eth_unregister(dev); 1096 free(dev); 1097 free(priv); 1098 return ret; 1099 } 1100 1101 return 1; 1102 } 1103 #else 1104 static int cpsw_eth_start(struct udevice *dev) 1105 { 1106 struct eth_pdata *pdata = dev_get_platdata(dev); 1107 struct cpsw_priv *priv = dev_get_priv(dev); 1108 1109 return _cpsw_init(priv, pdata->enetaddr); 1110 } 1111 1112 static int cpsw_eth_send(struct udevice *dev, void *packet, int length) 1113 { 1114 struct cpsw_priv *priv = dev_get_priv(dev); 1115 1116 return _cpsw_send(priv, packet, length); 1117 } 1118 1119 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp) 1120 { 1121 struct cpsw_priv *priv = dev_get_priv(dev); 1122 1123 return _cpsw_recv(priv, packetp); 1124 } 1125 1126 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet, 1127 int length) 1128 { 1129 struct cpsw_priv *priv = dev_get_priv(dev); 1130 1131 return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE); 1132 } 1133 1134 static void cpsw_eth_stop(struct udevice *dev) 1135 { 1136 struct cpsw_priv *priv = dev_get_priv(dev); 1137 1138 return _cpsw_halt(priv); 1139 } 1140 1141 1142 static int cpsw_eth_probe(struct udevice *dev) 1143 { 1144 struct cpsw_priv *priv = dev_get_priv(dev); 1145 1146 priv->dev = dev; 1147 1148 return _cpsw_register(priv); 1149 } 1150 1151 static const struct eth_ops cpsw_eth_ops = { 1152 .start = cpsw_eth_start, 1153 .send = cpsw_eth_send, 1154 .recv = cpsw_eth_recv, 1155 .free_pkt = cpsw_eth_free_pkt, 1156 .stop = cpsw_eth_stop, 1157 }; 1158 1159 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node) 1160 { 1161 return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL, 1162 false); 1163 } 1164 1165 static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv, 1166 phy_interface_t phy_mode) 1167 { 1168 u32 reg; 1169 u32 mask; 1170 u32 mode = 0; 1171 bool rgmii_id = false; 1172 int slave = priv->data.active_slave; 1173 1174 reg = readl(priv->data.gmii_sel); 1175 1176 switch (phy_mode) { 1177 case PHY_INTERFACE_MODE_RMII: 1178 mode = AM33XX_GMII_SEL_MODE_RMII; 1179 break; 1180 1181 case PHY_INTERFACE_MODE_RGMII: 1182 mode = AM33XX_GMII_SEL_MODE_RGMII; 1183 break; 1184 case PHY_INTERFACE_MODE_RGMII_ID: 1185 case PHY_INTERFACE_MODE_RGMII_RXID: 1186 case PHY_INTERFACE_MODE_RGMII_TXID: 1187 mode = AM33XX_GMII_SEL_MODE_RGMII; 1188 rgmii_id = true; 1189 break; 1190 1191 case PHY_INTERFACE_MODE_MII: 1192 default: 1193 mode = AM33XX_GMII_SEL_MODE_MII; 1194 break; 1195 }; 1196 1197 mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6); 1198 mode <<= slave * 2; 1199 1200 if (priv->data.rmii_clock_external) { 1201 if (slave == 0) 1202 mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN; 1203 else 1204 mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN; 1205 } 1206 1207 if (rgmii_id) { 1208 if (slave == 0) 1209 mode |= AM33XX_GMII_SEL_RGMII1_IDMODE; 1210 else 1211 mode |= AM33XX_GMII_SEL_RGMII2_IDMODE; 1212 } 1213 1214 reg &= ~mask; 1215 reg |= mode; 1216 1217 writel(reg, priv->data.gmii_sel); 1218 } 1219 1220 static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv, 1221 phy_interface_t phy_mode) 1222 { 1223 u32 reg; 1224 u32 mask; 1225 u32 mode = 0; 1226 int slave = priv->data.active_slave; 1227 1228 reg = readl(priv->data.gmii_sel); 1229 1230 switch (phy_mode) { 1231 case PHY_INTERFACE_MODE_RMII: 1232 mode = AM33XX_GMII_SEL_MODE_RMII; 1233 break; 1234 1235 case PHY_INTERFACE_MODE_RGMII: 1236 case PHY_INTERFACE_MODE_RGMII_ID: 1237 case PHY_INTERFACE_MODE_RGMII_RXID: 1238 case PHY_INTERFACE_MODE_RGMII_TXID: 1239 mode = AM33XX_GMII_SEL_MODE_RGMII; 1240 break; 1241 1242 case PHY_INTERFACE_MODE_MII: 1243 default: 1244 mode = AM33XX_GMII_SEL_MODE_MII; 1245 break; 1246 }; 1247 1248 switch (slave) { 1249 case 0: 1250 mask = GMII_SEL_MODE_MASK; 1251 break; 1252 case 1: 1253 mask = GMII_SEL_MODE_MASK << 4; 1254 mode <<= 4; 1255 break; 1256 default: 1257 dev_err(priv->dev, "invalid slave number...\n"); 1258 return; 1259 } 1260 1261 if (priv->data.rmii_clock_external) 1262 dev_err(priv->dev, "RMII External clock is not supported\n"); 1263 1264 reg &= ~mask; 1265 reg |= mode; 1266 1267 writel(reg, priv->data.gmii_sel); 1268 } 1269 1270 static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat, 1271 phy_interface_t phy_mode) 1272 { 1273 if (!strcmp(compat, "ti,am3352-cpsw-phy-sel")) 1274 cpsw_gmii_sel_am3352(priv, phy_mode); 1275 if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel")) 1276 cpsw_gmii_sel_am3352(priv, phy_mode); 1277 else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel")) 1278 cpsw_gmii_sel_dra7xx(priv, phy_mode); 1279 } 1280 1281 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev) 1282 { 1283 struct eth_pdata *pdata = dev_get_platdata(dev); 1284 struct cpsw_priv *priv = dev_get_priv(dev); 1285 struct gpio_desc *mode_gpios; 1286 const char *phy_mode; 1287 const char *phy_sel_compat = NULL; 1288 const void *fdt = gd->fdt_blob; 1289 int node = dev_of_offset(dev); 1290 int subnode; 1291 int slave_index = 0; 1292 int active_slave; 1293 int num_mode_gpios; 1294 int ret; 1295 1296 pdata->iobase = dev_get_addr(dev); 1297 priv->data.version = CPSW_CTRL_VERSION_2; 1298 priv->data.bd_ram_ofs = CPSW_BD_OFFSET; 1299 priv->data.ale_reg_ofs = CPSW_ALE_OFFSET; 1300 priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET; 1301 priv->data.mdio_div = CPSW_MDIO_DIV; 1302 priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET, 1303 1304 pdata->phy_interface = -1; 1305 1306 priv->data.cpsw_base = pdata->iobase; 1307 priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1); 1308 if (priv->data.channels <= 0) { 1309 printf("error: cpdma_channels not found in dt\n"); 1310 return -ENOENT; 1311 } 1312 1313 priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1); 1314 if (priv->data.slaves <= 0) { 1315 printf("error: slaves not found in dt\n"); 1316 return -ENOENT; 1317 } 1318 priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) * 1319 priv->data.slaves); 1320 1321 priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1); 1322 if (priv->data.ale_entries <= 0) { 1323 printf("error: ale_entries not found in dt\n"); 1324 return -ENOENT; 1325 } 1326 1327 priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1); 1328 if (priv->data.bd_ram_ofs <= 0) { 1329 printf("error: bd_ram_size not found in dt\n"); 1330 return -ENOENT; 1331 } 1332 1333 priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1); 1334 if (priv->data.mac_control <= 0) { 1335 printf("error: ale_entries not found in dt\n"); 1336 return -ENOENT; 1337 } 1338 1339 num_mode_gpios = gpio_get_list_count(dev, "mode-gpios"); 1340 if (num_mode_gpios > 0) { 1341 mode_gpios = malloc(sizeof(struct gpio_desc) * 1342 num_mode_gpios); 1343 gpio_request_list_by_name(dev, "mode-gpios", mode_gpios, 1344 num_mode_gpios, GPIOD_IS_OUT); 1345 free(mode_gpios); 1346 } 1347 1348 active_slave = fdtdec_get_int(fdt, node, "active_slave", 0); 1349 priv->data.active_slave = active_slave; 1350 1351 fdt_for_each_subnode(subnode, fdt, node) { 1352 int len; 1353 const char *name; 1354 1355 name = fdt_get_name(fdt, subnode, &len); 1356 if (!strncmp(name, "mdio", 4)) { 1357 u32 mdio_base; 1358 1359 mdio_base = cpsw_get_addr_by_node(fdt, subnode); 1360 if (mdio_base == FDT_ADDR_T_NONE) { 1361 error("Not able to get MDIO address space\n"); 1362 return -ENOENT; 1363 } 1364 priv->data.mdio_base = mdio_base; 1365 } 1366 1367 if (!strncmp(name, "slave", 5)) { 1368 u32 phy_id[2]; 1369 1370 if (slave_index >= priv->data.slaves) 1371 continue; 1372 phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL); 1373 if (phy_mode) 1374 priv->data.slave_data[slave_index].phy_if = 1375 phy_get_interface_by_name(phy_mode); 1376 1377 priv->data.slave_data[slave_index].phy_of_handle = 1378 fdtdec_lookup_phandle(fdt, subnode, 1379 "phy-handle"); 1380 1381 if (priv->data.slave_data[slave_index].phy_of_handle >= 0) { 1382 priv->data.slave_data[slave_index].phy_addr = 1383 fdtdec_get_int(gd->fdt_blob, 1384 priv->data.slave_data[slave_index].phy_of_handle, 1385 "reg", -1); 1386 } else { 1387 fdtdec_get_int_array(fdt, subnode, "phy_id", 1388 phy_id, 2); 1389 priv->data.slave_data[slave_index].phy_addr = 1390 phy_id[1]; 1391 } 1392 slave_index++; 1393 } 1394 1395 if (!strncmp(name, "cpsw-phy-sel", 12)) { 1396 priv->data.gmii_sel = cpsw_get_addr_by_node(fdt, 1397 subnode); 1398 1399 if (priv->data.gmii_sel == FDT_ADDR_T_NONE) { 1400 error("Not able to get gmii_sel reg address\n"); 1401 return -ENOENT; 1402 } 1403 1404 if (fdt_get_property(fdt, subnode, "rmii-clock-ext", 1405 NULL)) 1406 priv->data.rmii_clock_external = true; 1407 1408 phy_sel_compat = fdt_getprop(fdt, subnode, "compatible", 1409 NULL); 1410 if (!phy_sel_compat) { 1411 error("Not able to get gmii_sel compatible\n"); 1412 return -ENOENT; 1413 } 1414 } 1415 } 1416 1417 priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET; 1418 priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET; 1419 1420 if (priv->data.slaves == 2) { 1421 priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET; 1422 priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET; 1423 } 1424 1425 ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr); 1426 if (ret < 0) { 1427 error("cpsw read efuse mac failed\n"); 1428 return ret; 1429 } 1430 1431 pdata->phy_interface = priv->data.slave_data[active_slave].phy_if; 1432 if (pdata->phy_interface == -1) { 1433 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 1434 return -EINVAL; 1435 } 1436 1437 /* Select phy interface in control module */ 1438 cpsw_phy_sel(priv, phy_sel_compat, pdata->phy_interface); 1439 1440 return 0; 1441 } 1442 1443 1444 static const struct udevice_id cpsw_eth_ids[] = { 1445 { .compatible = "ti,cpsw" }, 1446 { .compatible = "ti,am335x-cpsw" }, 1447 { } 1448 }; 1449 1450 U_BOOT_DRIVER(eth_cpsw) = { 1451 .name = "eth_cpsw", 1452 .id = UCLASS_ETH, 1453 .of_match = cpsw_eth_ids, 1454 .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata, 1455 .probe = cpsw_eth_probe, 1456 .ops = &cpsw_eth_ops, 1457 .priv_auto_alloc_size = sizeof(struct cpsw_priv), 1458 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 1459 .flags = DM_FLAG_ALLOC_PRIV_DMA, 1460 }; 1461 #endif /* CONFIG_DM_ETH */ 1462