xref: /rk3399_rockchip-uboot/drivers/net/cpsw.c (revision 5d81c6df320e40c741f474a54cc6df451e830143)
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <linux/errno.h>
25 #include <asm/gpio.h>
26 #include <asm/io.h>
27 #include <phy.h>
28 #include <asm/arch/cpu.h>
29 #include <dm.h>
30 #include <fdt_support.h>
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 #define BITMASK(bits)		(BIT(bits) - 1)
35 #define PHY_REG_MASK		0x1f
36 #define PHY_ID_MASK		0x1f
37 #define NUM_DESCS		(PKTBUFSRX * 2)
38 #define PKT_MIN			60
39 #define PKT_MAX			(1500 + 14 + 4 + 4)
40 #define CLEAR_BIT		1
41 #define GIGABITEN		BIT(7)
42 #define FULLDUPLEXEN		BIT(0)
43 #define MIIEN			BIT(15)
44 
45 /* reg offset */
46 #define CPSW_HOST_PORT_OFFSET	0x108
47 #define CPSW_SLAVE0_OFFSET	0x208
48 #define CPSW_SLAVE1_OFFSET	0x308
49 #define CPSW_SLAVE_SIZE		0x100
50 #define CPSW_CPDMA_OFFSET	0x800
51 #define CPSW_HW_STATS		0x900
52 #define CPSW_STATERAM_OFFSET	0xa00
53 #define CPSW_CPTS_OFFSET	0xc00
54 #define CPSW_ALE_OFFSET		0xd00
55 #define CPSW_SLIVER0_OFFSET	0xd80
56 #define CPSW_SLIVER1_OFFSET	0xdc0
57 #define CPSW_BD_OFFSET		0x2000
58 #define CPSW_MDIO_DIV		0xff
59 
60 #define AM335X_GMII_SEL_OFFSET	0x630
61 
62 /* DMA Registers */
63 #define CPDMA_TXCONTROL		0x004
64 #define CPDMA_RXCONTROL		0x014
65 #define CPDMA_SOFTRESET		0x01c
66 #define CPDMA_RXFREE		0x0e0
67 #define CPDMA_TXHDP_VER1	0x100
68 #define CPDMA_TXHDP_VER2	0x200
69 #define CPDMA_RXHDP_VER1	0x120
70 #define CPDMA_RXHDP_VER2	0x220
71 #define CPDMA_TXCP_VER1		0x140
72 #define CPDMA_TXCP_VER2		0x240
73 #define CPDMA_RXCP_VER1		0x160
74 #define CPDMA_RXCP_VER2		0x260
75 
76 /* Descriptor mode bits */
77 #define CPDMA_DESC_SOP		BIT(31)
78 #define CPDMA_DESC_EOP		BIT(30)
79 #define CPDMA_DESC_OWNER	BIT(29)
80 #define CPDMA_DESC_EOQ		BIT(28)
81 
82 /*
83  * This timeout definition is a worst-case ultra defensive measure against
84  * unexpected controller lock ups.  Ideally, we should never ever hit this
85  * scenario in practice.
86  */
87 #define MDIO_TIMEOUT            100 /* msecs */
88 #define CPDMA_TIMEOUT		100 /* msecs */
89 
90 struct cpsw_mdio_regs {
91 	u32	version;
92 	u32	control;
93 #define CONTROL_IDLE		BIT(31)
94 #define CONTROL_ENABLE		BIT(30)
95 
96 	u32	alive;
97 	u32	link;
98 	u32	linkintraw;
99 	u32	linkintmasked;
100 	u32	__reserved_0[2];
101 	u32	userintraw;
102 	u32	userintmasked;
103 	u32	userintmaskset;
104 	u32	userintmaskclr;
105 	u32	__reserved_1[20];
106 
107 	struct {
108 		u32		access;
109 		u32		physel;
110 #define USERACCESS_GO		BIT(31)
111 #define USERACCESS_WRITE	BIT(30)
112 #define USERACCESS_ACK		BIT(29)
113 #define USERACCESS_READ		(0)
114 #define USERACCESS_DATA		(0xffff)
115 	} user[0];
116 };
117 
118 struct cpsw_regs {
119 	u32	id_ver;
120 	u32	control;
121 	u32	soft_reset;
122 	u32	stat_port_en;
123 	u32	ptype;
124 };
125 
126 struct cpsw_slave_regs {
127 	u32	max_blks;
128 	u32	blk_cnt;
129 	u32	flow_thresh;
130 	u32	port_vlan;
131 	u32	tx_pri_map;
132 #ifdef CONFIG_AM33XX
133 	u32	gap_thresh;
134 #elif defined(CONFIG_TI814X)
135 	u32	ts_ctl;
136 	u32	ts_seq_ltype;
137 	u32	ts_vlan;
138 #endif
139 	u32	sa_lo;
140 	u32	sa_hi;
141 };
142 
143 struct cpsw_host_regs {
144 	u32	max_blks;
145 	u32	blk_cnt;
146 	u32	flow_thresh;
147 	u32	port_vlan;
148 	u32	tx_pri_map;
149 	u32	cpdma_tx_pri_map;
150 	u32	cpdma_rx_chan_map;
151 };
152 
153 struct cpsw_sliver_regs {
154 	u32	id_ver;
155 	u32	mac_control;
156 	u32	mac_status;
157 	u32	soft_reset;
158 	u32	rx_maxlen;
159 	u32	__reserved_0;
160 	u32	rx_pause;
161 	u32	tx_pause;
162 	u32	__reserved_1;
163 	u32	rx_pri_map;
164 };
165 
166 #define ALE_ENTRY_BITS		68
167 #define ALE_ENTRY_WORDS		DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
168 
169 /* ALE Registers */
170 #define ALE_CONTROL		0x08
171 #define ALE_UNKNOWNVLAN		0x18
172 #define ALE_TABLE_CONTROL	0x20
173 #define ALE_TABLE		0x34
174 #define ALE_PORTCTL		0x40
175 
176 #define ALE_TABLE_WRITE		BIT(31)
177 
178 #define ALE_TYPE_FREE			0
179 #define ALE_TYPE_ADDR			1
180 #define ALE_TYPE_VLAN			2
181 #define ALE_TYPE_VLAN_ADDR		3
182 
183 #define ALE_UCAST_PERSISTANT		0
184 #define ALE_UCAST_UNTOUCHED		1
185 #define ALE_UCAST_OUI			2
186 #define ALE_UCAST_TOUCHED		3
187 
188 #define ALE_MCAST_FWD			0
189 #define ALE_MCAST_BLOCK_LEARN_FWD	1
190 #define ALE_MCAST_FWD_LEARN		2
191 #define ALE_MCAST_FWD_2			3
192 
193 enum cpsw_ale_port_state {
194 	ALE_PORT_STATE_DISABLE	= 0x00,
195 	ALE_PORT_STATE_BLOCK	= 0x01,
196 	ALE_PORT_STATE_LEARN	= 0x02,
197 	ALE_PORT_STATE_FORWARD	= 0x03,
198 };
199 
200 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
201 #define ALE_SECURE	1
202 #define ALE_BLOCKED	2
203 
204 struct cpsw_slave {
205 	struct cpsw_slave_regs		*regs;
206 	struct cpsw_sliver_regs		*sliver;
207 	int				slave_num;
208 	u32				mac_control;
209 	struct cpsw_slave_data		*data;
210 };
211 
212 struct cpdma_desc {
213 	/* hardware fields */
214 	u32			hw_next;
215 	u32			hw_buffer;
216 	u32			hw_len;
217 	u32			hw_mode;
218 	/* software fields */
219 	u32			sw_buffer;
220 	u32			sw_len;
221 };
222 
223 struct cpdma_chan {
224 	struct cpdma_desc	*head, *tail;
225 	void			*hdp, *cp, *rxfree;
226 };
227 
228 /* AM33xx SoC specific definitions for the CONTROL port */
229 #define AM33XX_GMII_SEL_MODE_MII	0
230 #define AM33XX_GMII_SEL_MODE_RMII	1
231 #define AM33XX_GMII_SEL_MODE_RGMII	2
232 
233 #define AM33XX_GMII_SEL_RGMII1_IDMODE	BIT(4)
234 #define AM33XX_GMII_SEL_RGMII2_IDMODE	BIT(5)
235 #define AM33XX_GMII_SEL_RMII1_IO_CLK_EN	BIT(6)
236 #define AM33XX_GMII_SEL_RMII2_IO_CLK_EN	BIT(7)
237 
238 #define GMII_SEL_MODE_MASK		0x3
239 
240 #define desc_write(desc, fld, val)	__raw_writel((u32)(val), &(desc)->fld)
241 #define desc_read(desc, fld)		__raw_readl(&(desc)->fld)
242 #define desc_read_ptr(desc, fld)	((void *)__raw_readl(&(desc)->fld))
243 
244 #define chan_write(chan, fld, val)	__raw_writel((u32)(val), (chan)->fld)
245 #define chan_read(chan, fld)		__raw_readl((chan)->fld)
246 #define chan_read_ptr(chan, fld)	((void *)__raw_readl((chan)->fld))
247 
248 #define for_active_slave(slave, priv) \
249 	slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
250 #define for_each_slave(slave, priv) \
251 	for (slave = (priv)->slaves; slave != (priv)->slaves + \
252 				(priv)->data.slaves; slave++)
253 
254 struct cpsw_priv {
255 #ifdef CONFIG_DM_ETH
256 	struct udevice			*dev;
257 #else
258 	struct eth_device		*dev;
259 #endif
260 	struct cpsw_platform_data	data;
261 	int				host_port;
262 
263 	struct cpsw_regs		*regs;
264 	void				*dma_regs;
265 	struct cpsw_host_regs		*host_port_regs;
266 	void				*ale_regs;
267 
268 	struct cpdma_desc		*descs;
269 	struct cpdma_desc		*desc_free;
270 	struct cpdma_chan		rx_chan, tx_chan;
271 
272 	struct cpsw_slave		*slaves;
273 	struct phy_device		*phydev;
274 	struct mii_dev			*bus;
275 
276 	u32				phy_mask;
277 };
278 
279 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
280 {
281 	int idx;
282 
283 	idx    = start / 32;
284 	start -= idx * 32;
285 	idx    = 2 - idx; /* flip */
286 	return (ale_entry[idx] >> start) & BITMASK(bits);
287 }
288 
289 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
290 				      u32 value)
291 {
292 	int idx;
293 
294 	value &= BITMASK(bits);
295 	idx    = start / 32;
296 	start -= idx * 32;
297 	idx    = 2 - idx; /* flip */
298 	ale_entry[idx] &= ~(BITMASK(bits) << start);
299 	ale_entry[idx] |=  (value << start);
300 }
301 
302 #define DEFINE_ALE_FIELD(name, start, bits)				\
303 static inline int cpsw_ale_get_##name(u32 *ale_entry)			\
304 {									\
305 	return cpsw_ale_get_field(ale_entry, start, bits);		\
306 }									\
307 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)	\
308 {									\
309 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
310 }
311 
312 DEFINE_ALE_FIELD(entry_type,		60,	2)
313 DEFINE_ALE_FIELD(mcast_state,		62,	2)
314 DEFINE_ALE_FIELD(port_mask,		66,	3)
315 DEFINE_ALE_FIELD(ucast_type,		62,	2)
316 DEFINE_ALE_FIELD(port_num,		66,	2)
317 DEFINE_ALE_FIELD(blocked,		65,	1)
318 DEFINE_ALE_FIELD(secure,		64,	1)
319 DEFINE_ALE_FIELD(mcast,			40,	1)
320 
321 /* The MAC address field in the ALE entry cannot be macroized as above */
322 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
323 {
324 	int i;
325 
326 	for (i = 0; i < 6; i++)
327 		addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
328 }
329 
330 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
331 {
332 	int i;
333 
334 	for (i = 0; i < 6; i++)
335 		cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
336 }
337 
338 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
339 {
340 	int i;
341 
342 	__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
343 
344 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
345 		ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
346 
347 	return idx;
348 }
349 
350 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
351 {
352 	int i;
353 
354 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
355 		__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
356 
357 	__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
358 
359 	return idx;
360 }
361 
362 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
363 {
364 	u32 ale_entry[ALE_ENTRY_WORDS];
365 	int type, idx;
366 
367 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
368 		u8 entry_addr[6];
369 
370 		cpsw_ale_read(priv, idx, ale_entry);
371 		type = cpsw_ale_get_entry_type(ale_entry);
372 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
373 			continue;
374 		cpsw_ale_get_addr(ale_entry, entry_addr);
375 		if (memcmp(entry_addr, addr, 6) == 0)
376 			return idx;
377 	}
378 	return -ENOENT;
379 }
380 
381 static int cpsw_ale_match_free(struct cpsw_priv *priv)
382 {
383 	u32 ale_entry[ALE_ENTRY_WORDS];
384 	int type, idx;
385 
386 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
387 		cpsw_ale_read(priv, idx, ale_entry);
388 		type = cpsw_ale_get_entry_type(ale_entry);
389 		if (type == ALE_TYPE_FREE)
390 			return idx;
391 	}
392 	return -ENOENT;
393 }
394 
395 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
396 {
397 	u32 ale_entry[ALE_ENTRY_WORDS];
398 	int type, idx;
399 
400 	for (idx = 0; idx < priv->data.ale_entries; idx++) {
401 		cpsw_ale_read(priv, idx, ale_entry);
402 		type = cpsw_ale_get_entry_type(ale_entry);
403 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
404 			continue;
405 		if (cpsw_ale_get_mcast(ale_entry))
406 			continue;
407 		type = cpsw_ale_get_ucast_type(ale_entry);
408 		if (type != ALE_UCAST_PERSISTANT &&
409 		    type != ALE_UCAST_OUI)
410 			return idx;
411 	}
412 	return -ENOENT;
413 }
414 
415 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
416 			      int port, int flags)
417 {
418 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
419 	int idx;
420 
421 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
422 	cpsw_ale_set_addr(ale_entry, addr);
423 	cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
424 	cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
425 	cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
426 	cpsw_ale_set_port_num(ale_entry, port);
427 
428 	idx = cpsw_ale_match_addr(priv, addr);
429 	if (idx < 0)
430 		idx = cpsw_ale_match_free(priv);
431 	if (idx < 0)
432 		idx = cpsw_ale_find_ageable(priv);
433 	if (idx < 0)
434 		return -ENOMEM;
435 
436 	cpsw_ale_write(priv, idx, ale_entry);
437 	return 0;
438 }
439 
440 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
441 			      int port_mask)
442 {
443 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
444 	int idx, mask;
445 
446 	idx = cpsw_ale_match_addr(priv, addr);
447 	if (idx >= 0)
448 		cpsw_ale_read(priv, idx, ale_entry);
449 
450 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
451 	cpsw_ale_set_addr(ale_entry, addr);
452 	cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
453 
454 	mask = cpsw_ale_get_port_mask(ale_entry);
455 	port_mask |= mask;
456 	cpsw_ale_set_port_mask(ale_entry, port_mask);
457 
458 	if (idx < 0)
459 		idx = cpsw_ale_match_free(priv);
460 	if (idx < 0)
461 		idx = cpsw_ale_find_ageable(priv);
462 	if (idx < 0)
463 		return -ENOMEM;
464 
465 	cpsw_ale_write(priv, idx, ale_entry);
466 	return 0;
467 }
468 
469 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
470 {
471 	u32 tmp, mask = BIT(bit);
472 
473 	tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
474 	tmp &= ~mask;
475 	tmp |= val ? mask : 0;
476 	__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
477 }
478 
479 #define cpsw_ale_enable(priv, val)	cpsw_ale_control(priv, 31, val)
480 #define cpsw_ale_clear(priv, val)	cpsw_ale_control(priv, 30, val)
481 #define cpsw_ale_vlan_aware(priv, val)	cpsw_ale_control(priv,  2, val)
482 
483 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
484 				       int val)
485 {
486 	int offset = ALE_PORTCTL + 4 * port;
487 	u32 tmp, mask = 0x3;
488 
489 	tmp  = __raw_readl(priv->ale_regs + offset);
490 	tmp &= ~mask;
491 	tmp |= val & mask;
492 	__raw_writel(tmp, priv->ale_regs + offset);
493 }
494 
495 static struct cpsw_mdio_regs *mdio_regs;
496 
497 /* wait until hardware is ready for another user access */
498 static inline u32 wait_for_user_access(void)
499 {
500 	u32 reg = 0;
501 	int timeout = MDIO_TIMEOUT;
502 
503 	while (timeout-- &&
504 	((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
505 		udelay(10);
506 
507 	if (timeout == -1) {
508 		printf("wait_for_user_access Timeout\n");
509 		return -ETIMEDOUT;
510 	}
511 	return reg;
512 }
513 
514 /* wait until hardware state machine is idle */
515 static inline void wait_for_idle(void)
516 {
517 	int timeout = MDIO_TIMEOUT;
518 
519 	while (timeout-- &&
520 		((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
521 		udelay(10);
522 
523 	if (timeout == -1)
524 		printf("wait_for_idle Timeout\n");
525 }
526 
527 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
528 				int dev_addr, int phy_reg)
529 {
530 	int data;
531 	u32 reg;
532 
533 	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
534 		return -EINVAL;
535 
536 	wait_for_user_access();
537 	reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
538 	       (phy_id << 16));
539 	__raw_writel(reg, &mdio_regs->user[0].access);
540 	reg = wait_for_user_access();
541 
542 	data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
543 	return data;
544 }
545 
546 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
547 				int phy_reg, u16 data)
548 {
549 	u32 reg;
550 
551 	if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
552 		return -EINVAL;
553 
554 	wait_for_user_access();
555 	reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
556 		   (phy_id << 16) | (data & USERACCESS_DATA));
557 	__raw_writel(reg, &mdio_regs->user[0].access);
558 	wait_for_user_access();
559 
560 	return 0;
561 }
562 
563 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
564 {
565 	struct mii_dev *bus = mdio_alloc();
566 
567 	mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
568 
569 	/* set enable and clock divider */
570 	__raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
571 
572 	/*
573 	 * wait for scan logic to settle:
574 	 * the scan time consists of (a) a large fixed component, and (b) a
575 	 * small component that varies with the mii bus frequency.  These
576 	 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
577 	 * silicon.  Since the effect of (b) was found to be largely
578 	 * negligible, we keep things simple here.
579 	 */
580 	udelay(1000);
581 
582 	bus->read = cpsw_mdio_read;
583 	bus->write = cpsw_mdio_write;
584 	strcpy(bus->name, name);
585 
586 	mdio_register(bus);
587 }
588 
589 /* Set a self-clearing bit in a register, and wait for it to clear */
590 static inline void setbit_and_wait_for_clear32(void *addr)
591 {
592 	__raw_writel(CLEAR_BIT, addr);
593 	while (__raw_readl(addr) & CLEAR_BIT)
594 		;
595 }
596 
597 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
598 			 ((mac)[2] << 16) | ((mac)[3] << 24))
599 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
600 
601 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
602 			       struct cpsw_priv *priv)
603 {
604 #ifdef CONFIG_DM_ETH
605 	struct eth_pdata *pdata = dev_get_platdata(priv->dev);
606 
607 	writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
608 	writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
609 #else
610 	__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
611 	__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
612 #endif
613 }
614 
615 static void cpsw_slave_update_link(struct cpsw_slave *slave,
616 				   struct cpsw_priv *priv, int *link)
617 {
618 	struct phy_device *phy;
619 	u32 mac_control = 0;
620 
621 	phy = priv->phydev;
622 
623 	if (!phy)
624 		return;
625 
626 	phy_startup(phy);
627 	*link = phy->link;
628 
629 	if (*link) { /* link up */
630 		mac_control = priv->data.mac_control;
631 		if (phy->speed == 1000)
632 			mac_control |= GIGABITEN;
633 		if (phy->duplex == DUPLEX_FULL)
634 			mac_control |= FULLDUPLEXEN;
635 		if (phy->speed == 100)
636 			mac_control |= MIIEN;
637 	}
638 
639 	if (mac_control == slave->mac_control)
640 		return;
641 
642 	if (mac_control) {
643 		printf("link up on port %d, speed %d, %s duplex\n",
644 				slave->slave_num, phy->speed,
645 				(phy->duplex == DUPLEX_FULL) ? "full" : "half");
646 	} else {
647 		printf("link down on port %d\n", slave->slave_num);
648 	}
649 
650 	__raw_writel(mac_control, &slave->sliver->mac_control);
651 	slave->mac_control = mac_control;
652 }
653 
654 static int cpsw_update_link(struct cpsw_priv *priv)
655 {
656 	int link = 0;
657 	struct cpsw_slave *slave;
658 
659 	for_active_slave(slave, priv)
660 		cpsw_slave_update_link(slave, priv, &link);
661 
662 	return link;
663 }
664 
665 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
666 {
667 	if (priv->host_port == 0)
668 		return slave_num + 1;
669 	else
670 		return slave_num;
671 }
672 
673 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
674 {
675 	u32     slave_port;
676 
677 	setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
678 
679 	/* setup priority mapping */
680 	__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
681 	__raw_writel(0x33221100, &slave->regs->tx_pri_map);
682 
683 	/* setup max packet size, and mac address */
684 	__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
685 	cpsw_set_slave_mac(slave, priv);
686 
687 	slave->mac_control = 0;	/* no link yet */
688 
689 	/* enable forwarding */
690 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
691 	cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
692 
693 	cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
694 
695 	priv->phy_mask |= 1 << slave->data->phy_addr;
696 }
697 
698 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
699 {
700 	struct cpdma_desc *desc = priv->desc_free;
701 
702 	if (desc)
703 		priv->desc_free = desc_read_ptr(desc, hw_next);
704 	return desc;
705 }
706 
707 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
708 {
709 	if (desc) {
710 		desc_write(desc, hw_next, priv->desc_free);
711 		priv->desc_free = desc;
712 	}
713 }
714 
715 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
716 			void *buffer, int len)
717 {
718 	struct cpdma_desc *desc, *prev;
719 	u32 mode;
720 
721 	desc = cpdma_desc_alloc(priv);
722 	if (!desc)
723 		return -ENOMEM;
724 
725 	if (len < PKT_MIN)
726 		len = PKT_MIN;
727 
728 	mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
729 
730 	desc_write(desc, hw_next,   0);
731 	desc_write(desc, hw_buffer, buffer);
732 	desc_write(desc, hw_len,    len);
733 	desc_write(desc, hw_mode,   mode | len);
734 	desc_write(desc, sw_buffer, buffer);
735 	desc_write(desc, sw_len,    len);
736 
737 	if (!chan->head) {
738 		/* simple case - first packet enqueued */
739 		chan->head = desc;
740 		chan->tail = desc;
741 		chan_write(chan, hdp, desc);
742 		goto done;
743 	}
744 
745 	/* not the first packet - enqueue at the tail */
746 	prev = chan->tail;
747 	desc_write(prev, hw_next, desc);
748 	chan->tail = desc;
749 
750 	/* next check if EOQ has been triggered already */
751 	if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
752 		chan_write(chan, hdp, desc);
753 
754 done:
755 	if (chan->rxfree)
756 		chan_write(chan, rxfree, 1);
757 	return 0;
758 }
759 
760 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
761 			 void **buffer, int *len)
762 {
763 	struct cpdma_desc *desc = chan->head;
764 	u32 status;
765 
766 	if (!desc)
767 		return -ENOENT;
768 
769 	status = desc_read(desc, hw_mode);
770 
771 	if (len)
772 		*len = status & 0x7ff;
773 
774 	if (buffer)
775 		*buffer = desc_read_ptr(desc, sw_buffer);
776 
777 	if (status & CPDMA_DESC_OWNER) {
778 		if (chan_read(chan, hdp) == 0) {
779 			if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
780 				chan_write(chan, hdp, desc);
781 		}
782 
783 		return -EBUSY;
784 	}
785 
786 	chan->head = desc_read_ptr(desc, hw_next);
787 	chan_write(chan, cp, desc);
788 
789 	cpdma_desc_free(priv, desc);
790 	return 0;
791 }
792 
793 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
794 {
795 	struct cpsw_slave	*slave;
796 	int i, ret;
797 
798 	/* soft reset the controller and initialize priv */
799 	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
800 
801 	/* initialize and reset the address lookup engine */
802 	cpsw_ale_enable(priv, 1);
803 	cpsw_ale_clear(priv, 1);
804 	cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
805 
806 	/* setup host port priority mapping */
807 	__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
808 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
809 
810 	/* disable priority elevation and enable statistics on all ports */
811 	__raw_writel(0, &priv->regs->ptype);
812 
813 	/* enable statistics collection only on the host port */
814 	__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
815 	__raw_writel(0x7, &priv->regs->stat_port_en);
816 
817 	cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
818 
819 	cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
820 	cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
821 
822 	for_active_slave(slave, priv)
823 		cpsw_slave_init(slave, priv);
824 
825 	cpsw_update_link(priv);
826 
827 	/* init descriptor pool */
828 	for (i = 0; i < NUM_DESCS; i++) {
829 		desc_write(&priv->descs[i], hw_next,
830 			   (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
831 	}
832 	priv->desc_free = &priv->descs[0];
833 
834 	/* initialize channels */
835 	if (priv->data.version == CPSW_CTRL_VERSION_2) {
836 		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
837 		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
838 		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
839 		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
840 
841 		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
842 		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
843 		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
844 	} else {
845 		memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
846 		priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
847 		priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
848 		priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
849 
850 		memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
851 		priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
852 		priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
853 	}
854 
855 	/* clear dma state */
856 	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
857 
858 	if (priv->data.version == CPSW_CTRL_VERSION_2) {
859 		for (i = 0; i < priv->data.channels; i++) {
860 			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
861 					* i);
862 			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
863 					* i);
864 			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
865 					* i);
866 			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
867 					* i);
868 			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
869 					* i);
870 		}
871 	} else {
872 		for (i = 0; i < priv->data.channels; i++) {
873 			__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
874 					* i);
875 			__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
876 					* i);
877 			__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
878 					* i);
879 			__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
880 					* i);
881 			__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
882 					* i);
883 
884 		}
885 	}
886 
887 	__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
888 	__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
889 
890 	/* submit rx descs */
891 	for (i = 0; i < PKTBUFSRX; i++) {
892 		ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
893 				   PKTSIZE);
894 		if (ret < 0) {
895 			printf("error %d submitting rx desc\n", ret);
896 			break;
897 		}
898 	}
899 
900 	return 0;
901 }
902 
903 static void _cpsw_halt(struct cpsw_priv *priv)
904 {
905 	writel(0, priv->dma_regs + CPDMA_TXCONTROL);
906 	writel(0, priv->dma_regs + CPDMA_RXCONTROL);
907 
908 	/* soft reset the controller and initialize priv */
909 	setbit_and_wait_for_clear32(&priv->regs->soft_reset);
910 
911 	/* clear dma state */
912 	setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
913 
914 }
915 
916 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
917 {
918 	void *buffer;
919 	int len;
920 	int timeout = CPDMA_TIMEOUT;
921 
922 	flush_dcache_range((unsigned long)packet,
923 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
924 
925 	/* first reap completed packets */
926 	while (timeout-- &&
927 		(cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
928 		;
929 
930 	if (timeout == -1) {
931 		printf("cpdma_process timeout\n");
932 		return -ETIMEDOUT;
933 	}
934 
935 	return cpdma_submit(priv, &priv->tx_chan, packet, length);
936 }
937 
938 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
939 {
940 	void *buffer;
941 	int len;
942 	int ret = -EAGAIN;
943 
944 	ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
945 	if (ret < 0)
946 		return ret;
947 
948 	invalidate_dcache_range((unsigned long)buffer,
949 				(unsigned long)buffer + PKTSIZE_ALIGN);
950 	*pkt = buffer;
951 
952 	return len;
953 }
954 
955 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
956 			    struct cpsw_priv *priv)
957 {
958 	void			*regs = priv->regs;
959 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
960 	slave->slave_num = slave_num;
961 	slave->data	= data;
962 	slave->regs	= regs + data->slave_reg_ofs;
963 	slave->sliver	= regs + data->sliver_reg_ofs;
964 }
965 
966 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
967 {
968 	struct phy_device *phydev;
969 	u32 supported = PHY_GBIT_FEATURES;
970 
971 	phydev = phy_connect(priv->bus,
972 			slave->data->phy_addr,
973 			priv->dev,
974 			slave->data->phy_if);
975 
976 	if (!phydev)
977 		return -1;
978 
979 	phydev->supported &= supported;
980 	phydev->advertising = phydev->supported;
981 
982 #ifdef CONFIG_DM_ETH
983 	if (slave->data->phy_of_handle)
984 		phydev->dev->of_offset = slave->data->phy_of_handle;
985 #endif
986 
987 	priv->phydev = phydev;
988 	phy_config(phydev);
989 
990 	return 1;
991 }
992 
993 int _cpsw_register(struct cpsw_priv *priv)
994 {
995 	struct cpsw_slave	*slave;
996 	struct cpsw_platform_data *data = &priv->data;
997 	void			*regs = (void *)data->cpsw_base;
998 
999 	priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
1000 	if (!priv->slaves) {
1001 		return -ENOMEM;
1002 	}
1003 
1004 	priv->host_port		= data->host_port_num;
1005 	priv->regs		= regs;
1006 	priv->host_port_regs	= regs + data->host_port_reg_ofs;
1007 	priv->dma_regs		= regs + data->cpdma_reg_ofs;
1008 	priv->ale_regs		= regs + data->ale_reg_ofs;
1009 	priv->descs		= (void *)regs + data->bd_ram_ofs;
1010 
1011 	int idx = 0;
1012 
1013 	for_each_slave(slave, priv) {
1014 		cpsw_slave_setup(slave, idx, priv);
1015 		idx = idx + 1;
1016 	}
1017 
1018 	cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
1019 	priv->bus = miiphy_get_dev_by_name(priv->dev->name);
1020 	for_active_slave(slave, priv)
1021 		cpsw_phy_init(priv, slave);
1022 
1023 	return 0;
1024 }
1025 
1026 #ifndef CONFIG_DM_ETH
1027 static int cpsw_init(struct eth_device *dev, bd_t *bis)
1028 {
1029 	struct cpsw_priv	*priv = dev->priv;
1030 
1031 	return _cpsw_init(priv, dev->enetaddr);
1032 }
1033 
1034 static void cpsw_halt(struct eth_device *dev)
1035 {
1036 	struct cpsw_priv *priv = dev->priv;
1037 
1038 	return _cpsw_halt(priv);
1039 }
1040 
1041 static int cpsw_send(struct eth_device *dev, void *packet, int length)
1042 {
1043 	struct cpsw_priv	*priv = dev->priv;
1044 
1045 	return _cpsw_send(priv, packet, length);
1046 }
1047 
1048 static int cpsw_recv(struct eth_device *dev)
1049 {
1050 	struct cpsw_priv *priv = dev->priv;
1051 	uchar *pkt = NULL;
1052 	int len;
1053 
1054 	len = _cpsw_recv(priv, &pkt);
1055 
1056 	if (len > 0) {
1057 		net_process_received_packet(pkt, len);
1058 		cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
1059 	}
1060 
1061 	return len;
1062 }
1063 
1064 int cpsw_register(struct cpsw_platform_data *data)
1065 {
1066 	struct cpsw_priv	*priv;
1067 	struct eth_device	*dev;
1068 	int ret;
1069 
1070 	dev = calloc(sizeof(*dev), 1);
1071 	if (!dev)
1072 		return -ENOMEM;
1073 
1074 	priv = calloc(sizeof(*priv), 1);
1075 	if (!priv) {
1076 		free(dev);
1077 		return -ENOMEM;
1078 	}
1079 
1080 	priv->dev = dev;
1081 	priv->data = *data;
1082 
1083 	strcpy(dev->name, "cpsw");
1084 	dev->iobase	= 0;
1085 	dev->init	= cpsw_init;
1086 	dev->halt	= cpsw_halt;
1087 	dev->send	= cpsw_send;
1088 	dev->recv	= cpsw_recv;
1089 	dev->priv	= priv;
1090 
1091 	eth_register(dev);
1092 
1093 	ret = _cpsw_register(priv);
1094 	if (ret < 0) {
1095 		eth_unregister(dev);
1096 		free(dev);
1097 		free(priv);
1098 		return ret;
1099 	}
1100 
1101 	return 1;
1102 }
1103 #else
1104 static int cpsw_eth_start(struct udevice *dev)
1105 {
1106 	struct eth_pdata *pdata = dev_get_platdata(dev);
1107 	struct cpsw_priv *priv = dev_get_priv(dev);
1108 
1109 	return _cpsw_init(priv, pdata->enetaddr);
1110 }
1111 
1112 static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
1113 {
1114 	struct cpsw_priv *priv = dev_get_priv(dev);
1115 
1116 	return _cpsw_send(priv, packet, length);
1117 }
1118 
1119 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
1120 {
1121 	struct cpsw_priv *priv = dev_get_priv(dev);
1122 
1123 	return _cpsw_recv(priv, packetp);
1124 }
1125 
1126 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
1127 				   int length)
1128 {
1129 	struct cpsw_priv *priv = dev_get_priv(dev);
1130 
1131 	return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
1132 }
1133 
1134 static void cpsw_eth_stop(struct udevice *dev)
1135 {
1136 	struct cpsw_priv *priv = dev_get_priv(dev);
1137 
1138 	return _cpsw_halt(priv);
1139 }
1140 
1141 
1142 static int cpsw_eth_probe(struct udevice *dev)
1143 {
1144 	struct cpsw_priv *priv = dev_get_priv(dev);
1145 
1146 	priv->dev = dev;
1147 
1148 	return _cpsw_register(priv);
1149 }
1150 
1151 static const struct eth_ops cpsw_eth_ops = {
1152 	.start		= cpsw_eth_start,
1153 	.send		= cpsw_eth_send,
1154 	.recv		= cpsw_eth_recv,
1155 	.free_pkt	= cpsw_eth_free_pkt,
1156 	.stop		= cpsw_eth_stop,
1157 };
1158 
1159 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
1160 {
1161 	return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL,
1162 						  false);
1163 }
1164 
1165 static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv,
1166 				 phy_interface_t phy_mode)
1167 {
1168 	u32 reg;
1169 	u32 mask;
1170 	u32 mode = 0;
1171 	bool rgmii_id = false;
1172 	int slave = priv->data.active_slave;
1173 
1174 	reg = readl(priv->data.gmii_sel);
1175 
1176 	switch (phy_mode) {
1177 	case PHY_INTERFACE_MODE_RMII:
1178 		mode = AM33XX_GMII_SEL_MODE_RMII;
1179 		break;
1180 
1181 	case PHY_INTERFACE_MODE_RGMII:
1182 		mode = AM33XX_GMII_SEL_MODE_RGMII;
1183 		break;
1184 	case PHY_INTERFACE_MODE_RGMII_ID:
1185 	case PHY_INTERFACE_MODE_RGMII_RXID:
1186 	case PHY_INTERFACE_MODE_RGMII_TXID:
1187 		mode = AM33XX_GMII_SEL_MODE_RGMII;
1188 		rgmii_id = true;
1189 		break;
1190 
1191 	case PHY_INTERFACE_MODE_MII:
1192 	default:
1193 		mode = AM33XX_GMII_SEL_MODE_MII;
1194 		break;
1195 	};
1196 
1197 	mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6);
1198 	mode <<= slave * 2;
1199 
1200 	if (priv->data.rmii_clock_external) {
1201 		if (slave == 0)
1202 			mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
1203 		else
1204 			mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
1205 	}
1206 
1207 	if (rgmii_id) {
1208 		if (slave == 0)
1209 			mode |= AM33XX_GMII_SEL_RGMII1_IDMODE;
1210 		else
1211 			mode |= AM33XX_GMII_SEL_RGMII2_IDMODE;
1212 	}
1213 
1214 	reg &= ~mask;
1215 	reg |= mode;
1216 
1217 	writel(reg, priv->data.gmii_sel);
1218 }
1219 
1220 static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv,
1221 				 phy_interface_t phy_mode)
1222 {
1223 	u32 reg;
1224 	u32 mask;
1225 	u32 mode = 0;
1226 	int slave = priv->data.active_slave;
1227 
1228 	reg = readl(priv->data.gmii_sel);
1229 
1230 	switch (phy_mode) {
1231 	case PHY_INTERFACE_MODE_RMII:
1232 		mode = AM33XX_GMII_SEL_MODE_RMII;
1233 		break;
1234 
1235 	case PHY_INTERFACE_MODE_RGMII:
1236 	case PHY_INTERFACE_MODE_RGMII_ID:
1237 	case PHY_INTERFACE_MODE_RGMII_RXID:
1238 	case PHY_INTERFACE_MODE_RGMII_TXID:
1239 		mode = AM33XX_GMII_SEL_MODE_RGMII;
1240 		break;
1241 
1242 	case PHY_INTERFACE_MODE_MII:
1243 	default:
1244 		mode = AM33XX_GMII_SEL_MODE_MII;
1245 		break;
1246 	};
1247 
1248 	switch (slave) {
1249 	case 0:
1250 		mask = GMII_SEL_MODE_MASK;
1251 		break;
1252 	case 1:
1253 		mask = GMII_SEL_MODE_MASK << 4;
1254 		mode <<= 4;
1255 		break;
1256 	default:
1257 		dev_err(priv->dev, "invalid slave number...\n");
1258 		return;
1259 	}
1260 
1261 	if (priv->data.rmii_clock_external)
1262 		dev_err(priv->dev, "RMII External clock is not supported\n");
1263 
1264 	reg &= ~mask;
1265 	reg |= mode;
1266 
1267 	writel(reg, priv->data.gmii_sel);
1268 }
1269 
1270 static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat,
1271 			 phy_interface_t phy_mode)
1272 {
1273 	if (!strcmp(compat, "ti,am3352-cpsw-phy-sel"))
1274 		cpsw_gmii_sel_am3352(priv, phy_mode);
1275 	if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel"))
1276 		cpsw_gmii_sel_am3352(priv, phy_mode);
1277 	else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel"))
1278 		cpsw_gmii_sel_dra7xx(priv, phy_mode);
1279 }
1280 
1281 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
1282 {
1283 	struct eth_pdata *pdata = dev_get_platdata(dev);
1284 	struct cpsw_priv *priv = dev_get_priv(dev);
1285 	struct gpio_desc *mode_gpios;
1286 	const char *phy_mode;
1287 	const char *phy_sel_compat = NULL;
1288 	const void *fdt = gd->fdt_blob;
1289 	int node = dev->of_offset;
1290 	int subnode;
1291 	int slave_index = 0;
1292 	int active_slave;
1293 	int num_mode_gpios;
1294 	int ret;
1295 
1296 	pdata->iobase = dev_get_addr(dev);
1297 	priv->data.version = CPSW_CTRL_VERSION_2;
1298 	priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
1299 	priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
1300 	priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
1301 	priv->data.mdio_div = CPSW_MDIO_DIV;
1302 	priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
1303 
1304 	pdata->phy_interface = -1;
1305 
1306 	priv->data.cpsw_base = pdata->iobase;
1307 	priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
1308 	if (priv->data.channels <= 0) {
1309 		printf("error: cpdma_channels not found in dt\n");
1310 		return -ENOENT;
1311 	}
1312 
1313 	priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
1314 	if (priv->data.slaves <= 0) {
1315 		printf("error: slaves not found in dt\n");
1316 		return -ENOENT;
1317 	}
1318 	priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
1319 				       priv->data.slaves);
1320 
1321 	priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
1322 	if (priv->data.ale_entries <= 0) {
1323 		printf("error: ale_entries not found in dt\n");
1324 		return -ENOENT;
1325 	}
1326 
1327 	priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
1328 	if (priv->data.bd_ram_ofs <= 0) {
1329 		printf("error: bd_ram_size not found in dt\n");
1330 		return -ENOENT;
1331 	}
1332 
1333 	priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
1334 	if (priv->data.mac_control <= 0) {
1335 		printf("error: ale_entries not found in dt\n");
1336 		return -ENOENT;
1337 	}
1338 
1339 	num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
1340 	if (num_mode_gpios > 0) {
1341 		mode_gpios = malloc(sizeof(struct gpio_desc) *
1342 				    num_mode_gpios);
1343 		gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
1344 					  num_mode_gpios, GPIOD_IS_OUT);
1345 		free(mode_gpios);
1346 	}
1347 
1348 	active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
1349 	priv->data.active_slave = active_slave;
1350 
1351 	fdt_for_each_subnode(subnode, fdt, node) {
1352 		int len;
1353 		const char *name;
1354 
1355 		name = fdt_get_name(fdt, subnode, &len);
1356 		if (!strncmp(name, "mdio", 4)) {
1357 			u32 mdio_base;
1358 
1359 			mdio_base = cpsw_get_addr_by_node(fdt, subnode);
1360 			if (mdio_base == FDT_ADDR_T_NONE) {
1361 				error("Not able to get MDIO address space\n");
1362 				return -ENOENT;
1363 			}
1364 			priv->data.mdio_base = mdio_base;
1365 		}
1366 
1367 		if (!strncmp(name, "slave", 5)) {
1368 			u32 phy_id[2];
1369 
1370 			if (slave_index >= priv->data.slaves)
1371 				continue;
1372 			phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
1373 			if (phy_mode)
1374 				priv->data.slave_data[slave_index].phy_if =
1375 					phy_get_interface_by_name(phy_mode);
1376 
1377 			priv->data.slave_data[slave_index].phy_of_handle =
1378 				fdtdec_lookup_phandle(fdt, subnode,
1379 						      "phy-handle");
1380 
1381 			if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
1382 				priv->data.slave_data[slave_index].phy_addr =
1383 						fdtdec_get_int(gd->fdt_blob,
1384 							       priv->data.slave_data[slave_index].phy_of_handle,
1385 							       "reg", -1);
1386 			} else {
1387 				fdtdec_get_int_array(fdt, subnode, "phy_id",
1388 						     phy_id, 2);
1389 				priv->data.slave_data[slave_index].phy_addr =
1390 						phy_id[1];
1391 			}
1392 			slave_index++;
1393 		}
1394 
1395 		if (!strncmp(name, "cpsw-phy-sel", 12)) {
1396 			priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
1397 								    subnode);
1398 
1399 			if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
1400 				error("Not able to get gmii_sel reg address\n");
1401 				return -ENOENT;
1402 			}
1403 
1404 			if (fdt_get_property(fdt, subnode, "rmii-clock-ext",
1405 					     NULL))
1406 				priv->data.rmii_clock_external = true;
1407 
1408 			phy_sel_compat = fdt_getprop(fdt, subnode, "compatible",
1409 						     NULL);
1410 			if (!phy_sel_compat) {
1411 				error("Not able to get gmii_sel compatible\n");
1412 				return -ENOENT;
1413 			}
1414 		}
1415 	}
1416 
1417 	priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
1418 	priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
1419 
1420 	if (priv->data.slaves == 2) {
1421 		priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
1422 		priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
1423 	}
1424 
1425 	ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
1426 	if (ret < 0) {
1427 		error("cpsw read efuse mac failed\n");
1428 		return ret;
1429 	}
1430 
1431 	pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
1432 	if (pdata->phy_interface == -1) {
1433 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1434 		return -EINVAL;
1435 	}
1436 
1437 	/* Select phy interface in control module */
1438 	cpsw_phy_sel(priv, phy_sel_compat, pdata->phy_interface);
1439 
1440 	return 0;
1441 }
1442 
1443 
1444 static const struct udevice_id cpsw_eth_ids[] = {
1445 	{ .compatible = "ti,cpsw" },
1446 	{ .compatible = "ti,am335x-cpsw" },
1447 	{ }
1448 };
1449 
1450 U_BOOT_DRIVER(eth_cpsw) = {
1451 	.name	= "eth_cpsw",
1452 	.id	= UCLASS_ETH,
1453 	.of_match = cpsw_eth_ids,
1454 	.ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
1455 	.probe	= cpsw_eth_probe,
1456 	.ops	= &cpsw_eth_ops,
1457 	.priv_auto_alloc_size = sizeof(struct cpsw_priv),
1458 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1459 	.flags = DM_FLAG_ALLOC_PRIV_DMA,
1460 };
1461 #endif /* CONFIG_DM_ETH */
1462