xref: /rk3399_rockchip-uboot/drivers/mtd/nand/spi/core.c (revision cd1c982e9a20e1f221cc1158f81fc40d9d0af0c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <spi.h>
26 #include <spi-mem.h>
27 #include <linux/mtd/spinand.h>
28 #endif
29 
30 /* SPI NAND index visible in MTD names */
31 static int spi_nand_idx;
32 
33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
34 					  const struct nand_page_io_req *req,
35 					  u16 *column)
36 {
37 	struct nand_device *nand = spinand_to_nand(spinand);
38 	unsigned int shift;
39 
40 	if (nand->memorg.planes_per_lun < 2)
41 		return;
42 
43 	/* The plane number is passed in MSB just above the column address */
44 	shift = fls(nand->memorg.pagesize);
45 	*column |= req->pos.plane << shift;
46 }
47 
48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
49 {
50 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
51 						      spinand->scratchbuf);
52 	int ret;
53 
54 	ret = spi_mem_exec_op(spinand->slave, &op);
55 	if (ret)
56 		return ret;
57 
58 	*val = *spinand->scratchbuf;
59 	return 0;
60 }
61 
62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
63 {
64 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
65 						      spinand->scratchbuf);
66 
67 	*spinand->scratchbuf = val;
68 	return spi_mem_exec_op(spinand->slave, &op);
69 }
70 
71 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
72 {
73 	return spinand_read_reg_op(spinand, REG_STATUS, status);
74 }
75 
76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
77 {
78 	struct nand_device *nand = spinand_to_nand(spinand);
79 
80 	if (WARN_ON(spinand->cur_target < 0 ||
81 		    spinand->cur_target >= nand->memorg.ntargets))
82 		return -EINVAL;
83 
84 	*cfg = spinand->cfg_cache[spinand->cur_target];
85 	return 0;
86 }
87 
88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
89 {
90 	struct nand_device *nand = spinand_to_nand(spinand);
91 	int ret;
92 
93 	if (WARN_ON(spinand->cur_target < 0 ||
94 		    spinand->cur_target >= nand->memorg.ntargets))
95 		return -EINVAL;
96 
97 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
98 		return 0;
99 
100 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
101 	if (ret)
102 		return ret;
103 
104 	spinand->cfg_cache[spinand->cur_target] = cfg;
105 	return 0;
106 }
107 
108 /**
109  * spinand_upd_cfg() - Update the configuration register
110  * @spinand: the spinand device
111  * @mask: the mask encoding the bits to update in the config reg
112  * @val: the new value to apply
113  *
114  * Update the configuration register.
115  *
116  * Return: 0 on success, a negative error code otherwise.
117  */
118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
119 {
120 	int ret;
121 	u8 cfg;
122 
123 	ret = spinand_get_cfg(spinand, &cfg);
124 	if (ret)
125 		return ret;
126 
127 	cfg &= ~mask;
128 	cfg |= val;
129 
130 	return spinand_set_cfg(spinand, cfg);
131 }
132 
133 /**
134  * spinand_select_target() - Select a specific NAND target/die
135  * @spinand: the spinand device
136  * @target: the target/die to select
137  *
138  * Select a new target/die. If chip only has one die, this function is a NOOP.
139  *
140  * Return: 0 on success, a negative error code otherwise.
141  */
142 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
143 {
144 	struct nand_device *nand = spinand_to_nand(spinand);
145 	int ret;
146 
147 	if (WARN_ON(target >= nand->memorg.ntargets))
148 		return -EINVAL;
149 
150 	if (spinand->cur_target == target)
151 		return 0;
152 
153 	if (nand->memorg.ntargets == 1) {
154 		spinand->cur_target = target;
155 		return 0;
156 	}
157 
158 	ret = spinand->select_target(spinand, target);
159 	if (ret)
160 		return ret;
161 
162 	spinand->cur_target = target;
163 	return 0;
164 }
165 
166 static int spinand_init_cfg_cache(struct spinand_device *spinand)
167 {
168 	struct nand_device *nand = spinand_to_nand(spinand);
169 	struct udevice *dev = spinand->slave->dev;
170 	unsigned int target;
171 	int ret;
172 
173 	spinand->cfg_cache = devm_kzalloc(dev,
174 					  sizeof(*spinand->cfg_cache) *
175 					  nand->memorg.ntargets,
176 					  GFP_KERNEL);
177 	if (!spinand->cfg_cache)
178 		return -ENOMEM;
179 
180 	for (target = 0; target < nand->memorg.ntargets; target++) {
181 		ret = spinand_select_target(spinand, target);
182 		if (ret)
183 			return ret;
184 
185 		/*
186 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
187 		 * here to bypass the config cache.
188 		 */
189 		ret = spinand_read_reg_op(spinand, REG_CFG,
190 					  &spinand->cfg_cache[target]);
191 		if (ret)
192 			return ret;
193 	}
194 
195 	return 0;
196 }
197 
198 static int spinand_init_quad_enable(struct spinand_device *spinand)
199 {
200 	bool enable = false;
201 
202 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
203 		return 0;
204 
205 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
206 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
207 	    spinand->op_templates.update_cache->data.buswidth == 4)
208 		enable = true;
209 
210 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
211 			       enable ? CFG_QUAD_ENABLE : 0);
212 }
213 
214 static int spinand_ecc_enable(struct spinand_device *spinand,
215 			      bool enable)
216 {
217 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
218 			       enable ? CFG_ECC_ENABLE : 0);
219 }
220 
221 static int spinand_write_enable_op(struct spinand_device *spinand)
222 {
223 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
224 
225 	return spi_mem_exec_op(spinand->slave, &op);
226 }
227 
228 static int spinand_load_page_op(struct spinand_device *spinand,
229 				const struct nand_page_io_req *req)
230 {
231 	struct nand_device *nand = spinand_to_nand(spinand);
232 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
233 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
234 
235 	return spi_mem_exec_op(spinand->slave, &op);
236 }
237 
238 static int spinand_read_from_cache_op(struct spinand_device *spinand,
239 				      const struct nand_page_io_req *req)
240 {
241 	struct spi_mem_op op = *spinand->op_templates.read_cache;
242 	struct nand_device *nand = spinand_to_nand(spinand);
243 	struct mtd_info *mtd = nanddev_to_mtd(nand);
244 	struct nand_page_io_req adjreq = *req;
245 	unsigned int nbytes = 0;
246 	void *buf = NULL;
247 	u16 column = 0;
248 	int ret;
249 
250 	if (req->datalen) {
251 		adjreq.datalen = nanddev_page_size(nand);
252 		adjreq.dataoffs = 0;
253 		adjreq.databuf.in = spinand->databuf;
254 		buf = spinand->databuf;
255 		nbytes = adjreq.datalen;
256 	}
257 
258 	if (req->ooblen) {
259 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
260 		adjreq.ooboffs = 0;
261 		adjreq.oobbuf.in = spinand->oobbuf;
262 		nbytes += nanddev_per_page_oobsize(nand);
263 		if (!buf) {
264 			buf = spinand->oobbuf;
265 			column = nanddev_page_size(nand);
266 		}
267 	}
268 
269 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
270 	op.addr.val = column;
271 
272 	/*
273 	 * Some controllers are limited in term of max RX data size. In this
274 	 * case, just repeat the READ_CACHE operation after updating the
275 	 * column.
276 	 */
277 	while (nbytes) {
278 		op.data.buf.in = buf;
279 		op.data.nbytes = nbytes;
280 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
281 		if (ret)
282 			return ret;
283 
284 		ret = spi_mem_exec_op(spinand->slave, &op);
285 		if (ret)
286 			return ret;
287 
288 		buf += op.data.nbytes;
289 		nbytes -= op.data.nbytes;
290 		op.addr.val += op.data.nbytes;
291 	}
292 
293 	if (req->datalen)
294 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
295 		       req->datalen);
296 
297 	if (req->ooblen) {
298 		if (req->mode == MTD_OPS_AUTO_OOB)
299 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
300 						    spinand->oobbuf,
301 						    req->ooboffs,
302 						    req->ooblen);
303 		else
304 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
305 			       req->ooblen);
306 	}
307 
308 	return 0;
309 }
310 
311 static int spinand_write_to_cache_op(struct spinand_device *spinand,
312 				     const struct nand_page_io_req *req)
313 {
314 	struct spi_mem_op op = *spinand->op_templates.write_cache;
315 	struct nand_device *nand = spinand_to_nand(spinand);
316 	struct mtd_info *mtd = nanddev_to_mtd(nand);
317 	struct nand_page_io_req adjreq = *req;
318 	unsigned int nbytes = 0;
319 	void *buf = NULL;
320 	u16 column = 0;
321 	int ret;
322 
323 	memset(spinand->databuf, 0xff,
324 	       nanddev_page_size(nand) +
325 	       nanddev_per_page_oobsize(nand));
326 
327 	if (req->datalen) {
328 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
329 		       req->datalen);
330 		adjreq.dataoffs = 0;
331 		adjreq.datalen = nanddev_page_size(nand);
332 		adjreq.databuf.out = spinand->databuf;
333 		nbytes = adjreq.datalen;
334 		buf = spinand->databuf;
335 	}
336 
337 	if (req->ooblen) {
338 		if (req->mode == MTD_OPS_AUTO_OOB)
339 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
340 						    spinand->oobbuf,
341 						    req->ooboffs,
342 						    req->ooblen);
343 		else
344 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
345 			       req->ooblen);
346 
347 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
348 		adjreq.ooboffs = 0;
349 		nbytes += nanddev_per_page_oobsize(nand);
350 		if (!buf) {
351 			buf = spinand->oobbuf;
352 			column = nanddev_page_size(nand);
353 		}
354 	}
355 
356 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
357 
358 	op = *spinand->op_templates.write_cache;
359 	op.addr.val = column;
360 
361 	/*
362 	 * Some controllers are limited in term of max TX data size. In this
363 	 * case, split the operation into one LOAD CACHE and one or more
364 	 * LOAD RANDOM CACHE.
365 	 */
366 	while (nbytes) {
367 		op.data.buf.out = buf;
368 		op.data.nbytes = nbytes;
369 
370 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
371 		if (ret)
372 			return ret;
373 
374 		ret = spi_mem_exec_op(spinand->slave, &op);
375 		if (ret)
376 			return ret;
377 
378 		buf += op.data.nbytes;
379 		nbytes -= op.data.nbytes;
380 		op.addr.val += op.data.nbytes;
381 
382 		/*
383 		 * We need to use the RANDOM LOAD CACHE operation if there's
384 		 * more than one iteration, because the LOAD operation resets
385 		 * the cache to 0xff.
386 		 */
387 		if (nbytes) {
388 			column = op.addr.val;
389 			op = *spinand->op_templates.update_cache;
390 			op.addr.val = column;
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 static int spinand_program_op(struct spinand_device *spinand,
398 			      const struct nand_page_io_req *req)
399 {
400 	struct nand_device *nand = spinand_to_nand(spinand);
401 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
402 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
403 
404 	return spi_mem_exec_op(spinand->slave, &op);
405 }
406 
407 static int spinand_erase_op(struct spinand_device *spinand,
408 			    const struct nand_pos *pos)
409 {
410 	struct nand_device *nand = &spinand->base;
411 	unsigned int row = nanddev_pos_to_row(nand, pos);
412 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
413 
414 	return spi_mem_exec_op(spinand->slave, &op);
415 }
416 
417 static int spinand_wait(struct spinand_device *spinand, u8 *s)
418 {
419 	unsigned long start, stop;
420 	u8 status;
421 	int ret;
422 
423 	start = get_timer(0);
424 	stop = 400;
425 	do {
426 		ret = spinand_read_status(spinand, &status);
427 		if (ret)
428 			return ret;
429 
430 		if (!(status & STATUS_BUSY))
431 			goto out;
432 	} while (get_timer(start) < stop);
433 
434 	/*
435 	 * Extra read, just in case the STATUS_READY bit has changed
436 	 * since our last check
437 	 */
438 	ret = spinand_read_status(spinand, &status);
439 	if (ret)
440 		return ret;
441 
442 out:
443 	if (s)
444 		*s = status;
445 
446 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
447 }
448 
449 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
450 {
451 	struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
452 						 SPINAND_MAX_ID_LEN);
453 	int ret;
454 
455 	ret = spi_mem_exec_op(spinand->slave, &op);
456 	if (!ret)
457 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
458 
459 	return ret;
460 }
461 
462 static int spinand_reset_op(struct spinand_device *spinand)
463 {
464 	struct spi_mem_op op = SPINAND_RESET_OP;
465 	int ret;
466 
467 	ret = spi_mem_exec_op(spinand->slave, &op);
468 	if (ret)
469 		return ret;
470 
471 	return spinand_wait(spinand, NULL);
472 }
473 
474 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
475 {
476 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
477 }
478 
479 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
480 {
481 	struct nand_device *nand = spinand_to_nand(spinand);
482 
483 	if (spinand->eccinfo.get_status)
484 		return spinand->eccinfo.get_status(spinand, status);
485 
486 	switch (status & STATUS_ECC_MASK) {
487 	case STATUS_ECC_NO_BITFLIPS:
488 		return 0;
489 
490 	case STATUS_ECC_HAS_BITFLIPS:
491 		/*
492 		 * We have no way to know exactly how many bitflips have been
493 		 * fixed, so let's return the maximum possible value so that
494 		 * wear-leveling layers move the data immediately.
495 		 */
496 		return nand->eccreq.strength;
497 
498 	case STATUS_ECC_UNCOR_ERROR:
499 		return -EBADMSG;
500 
501 	default:
502 		break;
503 	}
504 
505 	return -EINVAL;
506 }
507 
508 static int spinand_read_page(struct spinand_device *spinand,
509 			     const struct nand_page_io_req *req,
510 			     bool ecc_enabled)
511 {
512 	u8 status;
513 	int ret;
514 
515 	ret = spinand_load_page_op(spinand, req);
516 	if (ret)
517 		return ret;
518 
519 	ret = spinand_wait(spinand, &status);
520 	if (ret < 0)
521 		return ret;
522 
523 	ret = spinand_read_from_cache_op(spinand, req);
524 	if (ret)
525 		return ret;
526 
527 	if (!ecc_enabled)
528 		return 0;
529 
530 	return spinand_check_ecc_status(spinand, status);
531 }
532 
533 static int spinand_write_page(struct spinand_device *spinand,
534 			      const struct nand_page_io_req *req)
535 {
536 	u8 status;
537 	int ret;
538 
539 	ret = spinand_write_enable_op(spinand);
540 	if (ret)
541 		return ret;
542 
543 	ret = spinand_write_to_cache_op(spinand, req);
544 	if (ret)
545 		return ret;
546 
547 	ret = spinand_program_op(spinand, req);
548 	if (ret)
549 		return ret;
550 
551 	ret = spinand_wait(spinand, &status);
552 	if (!ret && (status & STATUS_PROG_FAILED))
553 		ret = -EIO;
554 
555 	return ret;
556 }
557 
558 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
559 			    struct mtd_oob_ops *ops)
560 {
561 	struct spinand_device *spinand = mtd_to_spinand(mtd);
562 	struct nand_device *nand = mtd_to_nanddev(mtd);
563 	unsigned int max_bitflips = 0;
564 	struct nand_io_iter iter;
565 	bool enable_ecc = false;
566 	bool ecc_failed = false;
567 	int ret = 0;
568 
569 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
570 		enable_ecc = true;
571 
572 #ifndef __UBOOT__
573 	mutex_lock(&spinand->lock);
574 #endif
575 
576 	nanddev_io_for_each_page(nand, from, ops, &iter) {
577 		ret = spinand_select_target(spinand, iter.req.pos.target);
578 		if (ret)
579 			break;
580 
581 		ret = spinand_ecc_enable(spinand, enable_ecc);
582 		if (ret)
583 			break;
584 
585 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
586 		if (ret < 0 && ret != -EBADMSG)
587 			break;
588 
589 		if (ret == -EBADMSG) {
590 			ecc_failed = true;
591 			mtd->ecc_stats.failed++;
592 			ret = 0;
593 		} else {
594 			mtd->ecc_stats.corrected += ret;
595 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
596 		}
597 
598 		ops->retlen += iter.req.datalen;
599 		ops->oobretlen += iter.req.ooblen;
600 	}
601 
602 #ifndef __UBOOT__
603 	mutex_unlock(&spinand->lock);
604 #endif
605 	if (ecc_failed && !ret)
606 		ret = -EBADMSG;
607 
608 	return ret ? ret : max_bitflips;
609 }
610 
611 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
612 			     struct mtd_oob_ops *ops)
613 {
614 	struct spinand_device *spinand = mtd_to_spinand(mtd);
615 	struct nand_device *nand = mtd_to_nanddev(mtd);
616 	struct nand_io_iter iter;
617 	bool enable_ecc = false;
618 	int ret = 0;
619 
620 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
621 		enable_ecc = true;
622 
623 #ifndef __UBOOT__
624 	mutex_lock(&spinand->lock);
625 #endif
626 
627 	nanddev_io_for_each_page(nand, to, ops, &iter) {
628 		ret = spinand_select_target(spinand, iter.req.pos.target);
629 		if (ret)
630 			break;
631 
632 		ret = spinand_ecc_enable(spinand, enable_ecc);
633 		if (ret)
634 			break;
635 
636 		ret = spinand_write_page(spinand, &iter.req);
637 		if (ret)
638 			break;
639 
640 		ops->retlen += iter.req.datalen;
641 		ops->oobretlen += iter.req.ooblen;
642 	}
643 
644 #ifndef __UBOOT__
645 	mutex_unlock(&spinand->lock);
646 #endif
647 
648 	return ret;
649 }
650 
651 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
652 {
653 	struct spinand_device *spinand = nand_to_spinand(nand);
654 	u8 marker[2] = { };
655 	struct nand_page_io_req req = {
656 		.pos = *pos,
657 		.ooblen = sizeof(marker),
658 		.ooboffs = 0,
659 		.oobbuf.in = marker,
660 		.mode = MTD_OPS_RAW,
661 	};
662 
663 	spinand_select_target(spinand, pos->target);
664 	spinand_read_page(spinand, &req, false);
665 	if (marker[0] != 0xff || marker[1] != 0xff)
666 		return true;
667 
668 	return false;
669 }
670 
671 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
672 {
673 	struct nand_device *nand = mtd_to_nanddev(mtd);
674 #ifndef __UBOOT__
675 	struct spinand_device *spinand = nand_to_spinand(nand);
676 #endif
677 	struct nand_pos pos;
678 	int ret;
679 
680 	nanddev_offs_to_pos(nand, offs, &pos);
681 #ifndef __UBOOT__
682 	mutex_lock(&spinand->lock);
683 #endif
684 	ret = nanddev_isbad(nand, &pos);
685 #ifndef __UBOOT__
686 	mutex_unlock(&spinand->lock);
687 #endif
688 	return ret;
689 }
690 
691 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
692 {
693 	struct spinand_device *spinand = nand_to_spinand(nand);
694 	u8 marker[2] = { 0, 0 };
695 	struct nand_page_io_req req = {
696 		.pos = *pos,
697 		.ooboffs = 0,
698 		.ooblen = sizeof(marker),
699 		.oobbuf.out = marker,
700 		.mode = MTD_OPS_RAW,
701 	};
702 	int ret;
703 
704 	ret = spinand_select_target(spinand, pos->target);
705 	if (ret)
706 		return ret;
707 
708 	ret = spinand_write_enable_op(spinand);
709 	if (ret)
710 		return ret;
711 
712 	return spinand_write_page(spinand, &req);
713 }
714 
715 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
716 {
717 	struct nand_device *nand = mtd_to_nanddev(mtd);
718 #ifndef __UBOOT__
719 	struct spinand_device *spinand = nand_to_spinand(nand);
720 #endif
721 	struct nand_pos pos;
722 	int ret;
723 
724 	nanddev_offs_to_pos(nand, offs, &pos);
725 #ifndef __UBOOT__
726 	mutex_lock(&spinand->lock);
727 #endif
728 	ret = nanddev_markbad(nand, &pos);
729 #ifndef __UBOOT__
730 	mutex_unlock(&spinand->lock);
731 #endif
732 	return ret;
733 }
734 
735 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
736 {
737 	struct spinand_device *spinand = nand_to_spinand(nand);
738 	u8 status;
739 	int ret;
740 
741 	ret = spinand_select_target(spinand, pos->target);
742 	if (ret)
743 		return ret;
744 
745 	ret = spinand_write_enable_op(spinand);
746 	if (ret)
747 		return ret;
748 
749 	ret = spinand_erase_op(spinand, pos);
750 	if (ret)
751 		return ret;
752 
753 	ret = spinand_wait(spinand, &status);
754 	if (!ret && (status & STATUS_ERASE_FAILED))
755 		ret = -EIO;
756 
757 	return ret;
758 }
759 
760 static int spinand_mtd_erase(struct mtd_info *mtd,
761 			     struct erase_info *einfo)
762 {
763 #ifndef __UBOOT__
764 	struct spinand_device *spinand = mtd_to_spinand(mtd);
765 #endif
766 	int ret;
767 
768 #ifndef __UBOOT__
769 	mutex_lock(&spinand->lock);
770 #endif
771 	ret = nanddev_mtd_erase(mtd, einfo);
772 #ifndef __UBOOT__
773 	mutex_unlock(&spinand->lock);
774 #endif
775 
776 	return ret;
777 }
778 
779 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
780 {
781 #ifndef __UBOOT__
782 	struct spinand_device *spinand = mtd_to_spinand(mtd);
783 #endif
784 	struct nand_device *nand = mtd_to_nanddev(mtd);
785 	struct nand_pos pos;
786 	int ret;
787 
788 	nanddev_offs_to_pos(nand, offs, &pos);
789 #ifndef __UBOOT__
790 	mutex_lock(&spinand->lock);
791 #endif
792 	ret = nanddev_isreserved(nand, &pos);
793 #ifndef __UBOOT__
794 	mutex_unlock(&spinand->lock);
795 #endif
796 
797 	return ret;
798 }
799 
800 const struct spi_mem_op *
801 spinand_find_supported_op(struct spinand_device *spinand,
802 			  const struct spi_mem_op *ops,
803 			  unsigned int nops)
804 {
805 	unsigned int i;
806 
807 	for (i = 0; i < nops; i++) {
808 		if (spi_mem_supports_op(spinand->slave, &ops[i]))
809 			return &ops[i];
810 	}
811 
812 	return NULL;
813 }
814 
815 static const struct nand_ops spinand_ops = {
816 	.erase = spinand_erase,
817 	.markbad = spinand_markbad,
818 	.isbad = spinand_isbad,
819 };
820 
821 static const struct spinand_manufacturer *spinand_manufacturers[] = {
822 	&gigadevice_spinand_manufacturer,
823 	&macronix_spinand_manufacturer,
824 	&micron_spinand_manufacturer,
825 	&toshiba_spinand_manufacturer,
826 	&winbond_spinand_manufacturer,
827 };
828 
829 static int spinand_manufacturer_detect(struct spinand_device *spinand)
830 {
831 	unsigned int i;
832 	int ret;
833 
834 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
835 		ret = spinand_manufacturers[i]->ops->detect(spinand);
836 		if (ret > 0) {
837 			spinand->manufacturer = spinand_manufacturers[i];
838 			return 0;
839 		} else if (ret < 0) {
840 			return ret;
841 		}
842 	}
843 
844 	return -ENOTSUPP;
845 }
846 
847 static int spinand_manufacturer_init(struct spinand_device *spinand)
848 {
849 	if (spinand->manufacturer->ops->init)
850 		return spinand->manufacturer->ops->init(spinand);
851 
852 	return 0;
853 }
854 
855 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
856 {
857 	/* Release manufacturer private data */
858 	if (spinand->manufacturer->ops->cleanup)
859 		return spinand->manufacturer->ops->cleanup(spinand);
860 }
861 
862 static const struct spi_mem_op *
863 spinand_select_op_variant(struct spinand_device *spinand,
864 			  const struct spinand_op_variants *variants)
865 {
866 	struct nand_device *nand = spinand_to_nand(spinand);
867 	unsigned int i;
868 
869 	for (i = 0; i < variants->nops; i++) {
870 		struct spi_mem_op op = variants->ops[i];
871 		unsigned int nbytes;
872 		int ret;
873 
874 		nbytes = nanddev_per_page_oobsize(nand) +
875 			 nanddev_page_size(nand);
876 
877 		while (nbytes) {
878 			op.data.nbytes = nbytes;
879 			ret = spi_mem_adjust_op_size(spinand->slave, &op);
880 			if (ret)
881 				break;
882 
883 			if (!spi_mem_supports_op(spinand->slave, &op))
884 				break;
885 
886 			nbytes -= op.data.nbytes;
887 		}
888 
889 		if (!nbytes)
890 			return &variants->ops[i];
891 	}
892 
893 	return NULL;
894 }
895 
896 /**
897  * spinand_match_and_init() - Try to find a match between a device ID and an
898  *			      entry in a spinand_info table
899  * @spinand: SPI NAND object
900  * @table: SPI NAND device description table
901  * @table_size: size of the device description table
902  *
903  * Should be used by SPI NAND manufacturer drivers when they want to find a
904  * match between a device ID retrieved through the READ_ID command and an
905  * entry in the SPI NAND description table. If a match is found, the spinand
906  * object will be initialized with information provided by the matching
907  * spinand_info entry.
908  *
909  * Return: 0 on success, a negative error code otherwise.
910  */
911 int spinand_match_and_init(struct spinand_device *spinand,
912 			   const struct spinand_info *table,
913 			   unsigned int table_size, u8 devid)
914 {
915 	struct nand_device *nand = spinand_to_nand(spinand);
916 	unsigned int i;
917 
918 	for (i = 0; i < table_size; i++) {
919 		const struct spinand_info *info = &table[i];
920 		const struct spi_mem_op *op;
921 
922 		if (devid != info->devid)
923 			continue;
924 
925 		nand->memorg = table[i].memorg;
926 		nand->eccreq = table[i].eccreq;
927 		spinand->eccinfo = table[i].eccinfo;
928 		spinand->flags = table[i].flags;
929 		spinand->select_target = table[i].select_target;
930 
931 		op = spinand_select_op_variant(spinand,
932 					       info->op_variants.read_cache);
933 		if (!op)
934 			return -ENOTSUPP;
935 
936 		spinand->op_templates.read_cache = op;
937 
938 		op = spinand_select_op_variant(spinand,
939 					       info->op_variants.write_cache);
940 		if (!op)
941 			return -ENOTSUPP;
942 
943 		spinand->op_templates.write_cache = op;
944 
945 		op = spinand_select_op_variant(spinand,
946 					       info->op_variants.update_cache);
947 		spinand->op_templates.update_cache = op;
948 
949 		return 0;
950 	}
951 
952 	return -ENOTSUPP;
953 }
954 
955 static int spinand_detect(struct spinand_device *spinand)
956 {
957 	struct nand_device *nand = spinand_to_nand(spinand);
958 	int ret;
959 
960 	ret = spinand_reset_op(spinand);
961 	if (ret)
962 		return ret;
963 
964 	ret = spinand_read_id_op(spinand, spinand->id.data);
965 	if (ret)
966 		return ret;
967 
968 	spinand->id.len = SPINAND_MAX_ID_LEN;
969 
970 	ret = spinand_manufacturer_detect(spinand);
971 	if (ret) {
972 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
973 			spinand->id.data);
974 		return ret;
975 	}
976 
977 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
978 		dev_err(dev,
979 			"SPI NANDs with more than one die must implement ->select_target()\n");
980 		return -EINVAL;
981 	}
982 
983 	dev_info(spinand->slave->dev,
984 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
985 	dev_info(spinand->slave->dev,
986 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
987 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
988 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
989 
990 	return 0;
991 }
992 
993 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
994 				       struct mtd_oob_region *region)
995 {
996 	return -ERANGE;
997 }
998 
999 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1000 					struct mtd_oob_region *region)
1001 {
1002 	if (section)
1003 		return -ERANGE;
1004 
1005 	/* Reserve 2 bytes for the BBM. */
1006 	region->offset = 2;
1007 	region->length = 62;
1008 
1009 	return 0;
1010 }
1011 
1012 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1013 	.ecc = spinand_noecc_ooblayout_ecc,
1014 	.rfree = spinand_noecc_ooblayout_free,
1015 };
1016 
1017 static int spinand_init(struct spinand_device *spinand)
1018 {
1019 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1020 	struct nand_device *nand = mtd_to_nanddev(mtd);
1021 	int ret, i;
1022 
1023 	/*
1024 	 * We need a scratch buffer because the spi_mem interface requires that
1025 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1026 	 */
1027 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1028 	if (!spinand->scratchbuf)
1029 		return -ENOMEM;
1030 
1031 	ret = spinand_detect(spinand);
1032 	if (ret)
1033 		goto err_free_bufs;
1034 
1035 	/*
1036 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1037 	 * may use this buffer for DMA access.
1038 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1039 	 */
1040 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1041 			       nanddev_per_page_oobsize(nand),
1042 			       GFP_KERNEL);
1043 	if (!spinand->databuf) {
1044 		ret = -ENOMEM;
1045 		goto err_free_bufs;
1046 	}
1047 
1048 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1049 
1050 	ret = spinand_init_cfg_cache(spinand);
1051 	if (ret)
1052 		goto err_free_bufs;
1053 
1054 	ret = spinand_init_quad_enable(spinand);
1055 	if (ret)
1056 		goto err_free_bufs;
1057 
1058 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1059 	if (ret)
1060 		goto err_free_bufs;
1061 
1062 	ret = spinand_manufacturer_init(spinand);
1063 	if (ret) {
1064 		dev_err(dev,
1065 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1066 			ret);
1067 		goto err_free_bufs;
1068 	}
1069 
1070 	/* After power up, all blocks are locked, so unlock them here. */
1071 	for (i = 0; i < nand->memorg.ntargets; i++) {
1072 		ret = spinand_select_target(spinand, i);
1073 		if (ret)
1074 			goto err_free_bufs;
1075 
1076 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1077 		if (ret)
1078 			goto err_free_bufs;
1079 	}
1080 
1081 	nand->bbt.option = NANDDEV_BBT_USE_FLASH;
1082 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1083 	if (ret)
1084 		goto err_manuf_cleanup;
1085 
1086 	/*
1087 	 * Right now, we don't support ECC, so let the whole oob
1088 	 * area is available for user.
1089 	 */
1090 	mtd->_read_oob = spinand_mtd_read;
1091 	mtd->_write_oob = spinand_mtd_write;
1092 	mtd->_block_isbad = spinand_mtd_block_isbad;
1093 	mtd->_block_markbad = spinand_mtd_block_markbad;
1094 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1095 	mtd->_erase = spinand_mtd_erase;
1096 
1097 	if (spinand->eccinfo.ooblayout)
1098 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1099 	else
1100 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1101 
1102 	ret = mtd_ooblayout_count_freebytes(mtd);
1103 	if (ret < 0)
1104 		goto err_cleanup_nanddev;
1105 
1106 	mtd->oobavail = ret;
1107 
1108 	/* Propagate ECC information to mtd_info */
1109 	mtd->ecc_strength = nand->eccreq.strength;
1110 	mtd->ecc_step_size = nand->eccreq.step_size;
1111 
1112 	return 0;
1113 
1114 err_cleanup_nanddev:
1115 	nanddev_cleanup(nand);
1116 
1117 err_manuf_cleanup:
1118 	spinand_manufacturer_cleanup(spinand);
1119 
1120 err_free_bufs:
1121 	kfree(spinand->databuf);
1122 	kfree(spinand->scratchbuf);
1123 	return ret;
1124 }
1125 
1126 static void spinand_cleanup(struct spinand_device *spinand)
1127 {
1128 	struct nand_device *nand = spinand_to_nand(spinand);
1129 
1130 	nanddev_cleanup(nand);
1131 	spinand_manufacturer_cleanup(spinand);
1132 	kfree(spinand->databuf);
1133 	kfree(spinand->scratchbuf);
1134 }
1135 
1136 static int spinand_bind(struct udevice *udev)
1137 {
1138 	int ret = 0;
1139 
1140 #ifdef CONFIG_MTD_BLK
1141 	struct udevice *bdev;
1142 
1143 	ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD,
1144 				 1, 512, 0, &bdev);
1145 	if (ret)
1146 		printf("Cannot create block device\n");
1147 #endif
1148 	return ret;
1149 }
1150 
1151 static int spinand_probe(struct udevice *dev)
1152 {
1153 	struct spinand_device *spinand = dev_get_priv(dev);
1154 	struct spi_slave *slave = dev_get_parent_priv(dev);
1155 	struct mtd_info *mtd = dev_get_uclass_priv(dev);
1156 	struct nand_device *nand = spinand_to_nand(spinand);
1157 	int ret;
1158 
1159 #ifndef __UBOOT__
1160 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1161 			       GFP_KERNEL);
1162 	if (!spinand)
1163 		return -ENOMEM;
1164 
1165 	spinand->spimem = mem;
1166 	spi_mem_set_drvdata(mem, spinand);
1167 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1168 	mutex_init(&spinand->lock);
1169 
1170 	mtd = spinand_to_mtd(spinand);
1171 	mtd->dev.parent = &mem->spi->dev;
1172 #else
1173 	nand->mtd = mtd;
1174 	mtd->priv = nand;
1175 	mtd->dev = dev;
1176 	mtd->name = malloc(20);
1177 	if (!mtd->name)
1178 		return -ENOMEM;
1179 	sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1180 	spinand->slave = slave;
1181 	spinand_set_of_node(spinand, dev->node.np);
1182 #endif
1183 
1184 	ret = spinand_init(spinand);
1185 	if (ret)
1186 		return ret;
1187 
1188 #ifndef __UBOOT__
1189 	ret = mtd_device_register(mtd, NULL, 0);
1190 #else
1191 	ret = add_mtd_device(mtd);
1192 #endif
1193 	if (ret)
1194 		goto err_spinand_cleanup;
1195 
1196 	return 0;
1197 
1198 err_spinand_cleanup:
1199 	spinand_cleanup(spinand);
1200 
1201 	return ret;
1202 }
1203 
1204 #ifndef __UBOOT__
1205 static int spinand_remove(struct udevice *slave)
1206 {
1207 	struct spinand_device *spinand;
1208 	struct mtd_info *mtd;
1209 	int ret;
1210 
1211 	spinand = spi_mem_get_drvdata(slave);
1212 	mtd = spinand_to_mtd(spinand);
1213 	free(mtd->name);
1214 
1215 	ret = mtd_device_unregister(mtd);
1216 	if (ret)
1217 		return ret;
1218 
1219 	spinand_cleanup(spinand);
1220 
1221 	return 0;
1222 }
1223 
1224 static const struct spi_device_id spinand_ids[] = {
1225 	{ .name = "spi-nand" },
1226 	{ /* sentinel */ },
1227 };
1228 
1229 #ifdef CONFIG_OF
1230 static const struct of_device_id spinand_of_ids[] = {
1231 	{ .compatible = "spi-nand" },
1232 	{ /* sentinel */ },
1233 };
1234 #endif
1235 
1236 static struct spi_mem_driver spinand_drv = {
1237 	.spidrv = {
1238 		.id_table = spinand_ids,
1239 		.driver = {
1240 			.name = "spi-nand",
1241 			.of_match_table = of_match_ptr(spinand_of_ids),
1242 		},
1243 	},
1244 	.probe = spinand_probe,
1245 	.remove = spinand_remove,
1246 };
1247 module_spi_mem_driver(spinand_drv);
1248 
1249 MODULE_DESCRIPTION("SPI NAND framework");
1250 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1251 MODULE_LICENSE("GPL v2");
1252 #endif /* __UBOOT__ */
1253 
1254 static const struct udevice_id spinand_ids[] = {
1255 	{ .compatible = "spi-nand" },
1256 	{ /* sentinel */ },
1257 };
1258 
1259 U_BOOT_DRIVER(spinand) = {
1260 	.name = "spi_nand",
1261 	.id = UCLASS_MTD,
1262 	.of_match = spinand_ids,
1263 	.bind	= spinand_bind,
1264 	.priv_auto_alloc_size = sizeof(struct spinand_device),
1265 	.probe = spinand_probe,
1266 };
1267