xref: /rk3399_rockchip-uboot/drivers/mtd/nand/spi/core.c (revision a8a4d6c05a2e5f52e75e5096f9470aa3d36fd000)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <spi.h>
26 #include <spi-mem.h>
27 #include <linux/mtd/spinand.h>
28 #endif
29 
30 /* SPI NAND index visible in MTD names */
31 static int spi_nand_idx;
32 
33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
34 					  const struct nand_page_io_req *req,
35 					  u16 *column)
36 {
37 	struct nand_device *nand = spinand_to_nand(spinand);
38 	unsigned int shift;
39 
40 	if (nand->memorg.planes_per_lun < 2)
41 		return;
42 
43 	/* The plane number is passed in MSB just above the column address */
44 	shift = fls(nand->memorg.pagesize);
45 	*column |= req->pos.plane << shift;
46 }
47 
48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
49 {
50 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
51 						      spinand->scratchbuf);
52 	int ret;
53 
54 	ret = spi_mem_exec_op(spinand->slave, &op);
55 	if (ret)
56 		return ret;
57 
58 	*val = *spinand->scratchbuf;
59 	return 0;
60 }
61 
62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
63 {
64 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
65 						      spinand->scratchbuf);
66 
67 	*spinand->scratchbuf = val;
68 	return spi_mem_exec_op(spinand->slave, &op);
69 }
70 
71 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
72 {
73 	return spinand_read_reg_op(spinand, REG_STATUS, status);
74 }
75 
76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
77 {
78 	struct nand_device *nand = spinand_to_nand(spinand);
79 
80 	if (WARN_ON(spinand->cur_target < 0 ||
81 		    spinand->cur_target >= nand->memorg.ntargets))
82 		return -EINVAL;
83 
84 	*cfg = spinand->cfg_cache[spinand->cur_target];
85 	return 0;
86 }
87 
88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
89 {
90 	struct nand_device *nand = spinand_to_nand(spinand);
91 	int ret;
92 
93 	if (WARN_ON(spinand->cur_target < 0 ||
94 		    spinand->cur_target >= nand->memorg.ntargets))
95 		return -EINVAL;
96 
97 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
98 		return 0;
99 
100 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
101 	if (ret)
102 		return ret;
103 
104 	spinand->cfg_cache[spinand->cur_target] = cfg;
105 	return 0;
106 }
107 
108 /**
109  * spinand_upd_cfg() - Update the configuration register
110  * @spinand: the spinand device
111  * @mask: the mask encoding the bits to update in the config reg
112  * @val: the new value to apply
113  *
114  * Update the configuration register.
115  *
116  * Return: 0 on success, a negative error code otherwise.
117  */
118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
119 {
120 	int ret;
121 	u8 cfg;
122 
123 	ret = spinand_get_cfg(spinand, &cfg);
124 	if (ret)
125 		return ret;
126 
127 	cfg &= ~mask;
128 	cfg |= val;
129 
130 	return spinand_set_cfg(spinand, cfg);
131 }
132 
133 /**
134  * spinand_select_target() - Select a specific NAND target/die
135  * @spinand: the spinand device
136  * @target: the target/die to select
137  *
138  * Select a new target/die. If chip only has one die, this function is a NOOP.
139  *
140  * Return: 0 on success, a negative error code otherwise.
141  */
142 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
143 {
144 	struct nand_device *nand = spinand_to_nand(spinand);
145 	int ret;
146 
147 	if (WARN_ON(target >= nand->memorg.ntargets))
148 		return -EINVAL;
149 
150 	if (spinand->cur_target == target)
151 		return 0;
152 
153 	if (nand->memorg.ntargets == 1) {
154 		spinand->cur_target = target;
155 		return 0;
156 	}
157 
158 	ret = spinand->select_target(spinand, target);
159 	if (ret)
160 		return ret;
161 
162 	spinand->cur_target = target;
163 	return 0;
164 }
165 
166 static int spinand_init_cfg_cache(struct spinand_device *spinand)
167 {
168 	struct nand_device *nand = spinand_to_nand(spinand);
169 	struct udevice *dev = spinand->slave->dev;
170 	unsigned int target;
171 	int ret;
172 
173 	spinand->cfg_cache = devm_kzalloc(dev,
174 					  sizeof(*spinand->cfg_cache) *
175 					  nand->memorg.ntargets,
176 					  GFP_KERNEL);
177 	if (!spinand->cfg_cache)
178 		return -ENOMEM;
179 
180 	for (target = 0; target < nand->memorg.ntargets; target++) {
181 		ret = spinand_select_target(spinand, target);
182 		if (ret)
183 			return ret;
184 
185 		/*
186 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
187 		 * here to bypass the config cache.
188 		 */
189 		ret = spinand_read_reg_op(spinand, REG_CFG,
190 					  &spinand->cfg_cache[target]);
191 		if (ret)
192 			return ret;
193 	}
194 
195 	return 0;
196 }
197 
198 static int spinand_init_quad_enable(struct spinand_device *spinand)
199 {
200 	bool enable = false;
201 
202 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
203 		return 0;
204 
205 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
206 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
207 	    spinand->op_templates.update_cache->data.buswidth == 4)
208 		enable = true;
209 
210 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
211 			       enable ? CFG_QUAD_ENABLE : 0);
212 }
213 
214 static int spinand_ecc_enable(struct spinand_device *spinand,
215 			      bool enable)
216 {
217 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
218 			       enable ? CFG_ECC_ENABLE : 0);
219 }
220 
221 static int spinand_write_enable_op(struct spinand_device *spinand)
222 {
223 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
224 
225 	return spi_mem_exec_op(spinand->slave, &op);
226 }
227 
228 static int spinand_load_page_op(struct spinand_device *spinand,
229 				const struct nand_page_io_req *req)
230 {
231 	struct nand_device *nand = spinand_to_nand(spinand);
232 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
233 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
234 
235 	return spi_mem_exec_op(spinand->slave, &op);
236 }
237 
238 static int spinand_read_from_cache_op(struct spinand_device *spinand,
239 				      const struct nand_page_io_req *req)
240 {
241 	struct spi_mem_op op = *spinand->op_templates.read_cache;
242 	struct nand_device *nand = spinand_to_nand(spinand);
243 	struct mtd_info *mtd = nanddev_to_mtd(nand);
244 	struct nand_page_io_req adjreq = *req;
245 	unsigned int nbytes = 0;
246 	void *buf = NULL;
247 	u16 column = 0;
248 	int ret;
249 
250 	if (req->datalen) {
251 		adjreq.datalen = nanddev_page_size(nand);
252 		adjreq.dataoffs = 0;
253 		adjreq.databuf.in = spinand->databuf;
254 		buf = spinand->databuf;
255 		nbytes = adjreq.datalen;
256 	}
257 
258 	if (spinand->support_cont_read && req->datalen) {
259 		adjreq.datalen = req->datalen;
260 		adjreq.dataoffs = 0;
261 		adjreq.databuf.in = req->databuf.in;
262 		buf = req->databuf.in;
263 		nbytes = adjreq.datalen;
264 	}
265 
266 	if (req->ooblen) {
267 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
268 		adjreq.ooboffs = 0;
269 		adjreq.oobbuf.in = spinand->oobbuf;
270 		nbytes += nanddev_per_page_oobsize(nand);
271 		if (!buf) {
272 			buf = spinand->oobbuf;
273 			column = nanddev_page_size(nand);
274 		}
275 	}
276 
277 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
278 	op.addr.val = column;
279 
280 	/*
281 	 * Some controllers are limited in term of max RX data size. In this
282 	 * case, just repeat the READ_CACHE operation after updating the
283 	 * column.
284 	 */
285 	while (nbytes) {
286 		op.data.buf.in = buf;
287 		op.data.nbytes = nbytes;
288 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
289 		if (ret)
290 			return ret;
291 
292 		ret = spi_mem_exec_op(spinand->slave, &op);
293 		if (ret)
294 			return ret;
295 
296 		buf += op.data.nbytes;
297 		nbytes -= op.data.nbytes;
298 		op.addr.val += op.data.nbytes;
299 	}
300 
301 	if (!spinand->support_cont_read && req->datalen)
302 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen);
303 
304 	if (req->ooblen) {
305 		if (req->mode == MTD_OPS_AUTO_OOB)
306 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
307 						    spinand->oobbuf,
308 						    req->ooboffs,
309 						    req->ooblen);
310 		else
311 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
312 			       req->ooblen);
313 	}
314 
315 	return 0;
316 }
317 
318 static int spinand_write_to_cache_op(struct spinand_device *spinand,
319 				     const struct nand_page_io_req *req)
320 {
321 	struct spi_mem_op op = *spinand->op_templates.write_cache;
322 	struct nand_device *nand = spinand_to_nand(spinand);
323 	struct mtd_info *mtd = nanddev_to_mtd(nand);
324 	struct nand_page_io_req adjreq = *req;
325 	unsigned int nbytes = 0;
326 	void *buf = NULL;
327 	u16 column = 0;
328 	int ret;
329 
330 	/*
331 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
332 	 * the cache content to 0xFF (depends on vendor implementation), so we
333 	 * must fill the page cache entirely even if we only want to program
334 	 * the data portion of the page, otherwise we might corrupt the BBM or
335 	 * user data previously programmed in OOB area.
336 	 */
337 	memset(spinand->databuf, 0xff,
338 	       nanddev_page_size(nand) +
339 	       nanddev_per_page_oobsize(nand));
340 
341 	if (req->datalen) {
342 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
343 		       req->datalen);
344 		adjreq.dataoffs = 0;
345 		adjreq.datalen = nanddev_page_size(nand);
346 		adjreq.databuf.out = spinand->databuf;
347 		nbytes = adjreq.datalen;
348 		buf = spinand->databuf;
349 	}
350 
351 	if (req->ooblen) {
352 		if (req->mode == MTD_OPS_AUTO_OOB)
353 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
354 						    spinand->oobbuf,
355 						    req->ooboffs,
356 						    req->ooblen);
357 		else
358 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
359 			       req->ooblen);
360 
361 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
362 		adjreq.ooboffs = 0;
363 		nbytes += nanddev_per_page_oobsize(nand);
364 		if (!buf) {
365 			buf = spinand->oobbuf;
366 			column = nanddev_page_size(nand);
367 		}
368 	}
369 
370 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
371 
372 	op = *spinand->op_templates.write_cache;
373 	op.addr.val = column;
374 
375 	/*
376 	 * Some controllers are limited in term of max TX data size. In this
377 	 * case, split the operation into one LOAD CACHE and one or more
378 	 * LOAD RANDOM CACHE.
379 	 */
380 	while (nbytes) {
381 		op.data.buf.out = buf;
382 		op.data.nbytes = nbytes;
383 
384 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
385 		if (ret)
386 			return ret;
387 
388 		ret = spi_mem_exec_op(spinand->slave, &op);
389 		if (ret)
390 			return ret;
391 
392 		buf += op.data.nbytes;
393 		nbytes -= op.data.nbytes;
394 		op.addr.val += op.data.nbytes;
395 
396 		/*
397 		 * We need to use the RANDOM LOAD CACHE operation if there's
398 		 * more than one iteration, because the LOAD operation resets
399 		 * the cache to 0xff.
400 		 */
401 		if (nbytes) {
402 			column = op.addr.val;
403 			op = *spinand->op_templates.update_cache;
404 			op.addr.val = column;
405 		}
406 	}
407 
408 	return 0;
409 }
410 
411 static int spinand_program_op(struct spinand_device *spinand,
412 			      const struct nand_page_io_req *req)
413 {
414 	struct nand_device *nand = spinand_to_nand(spinand);
415 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
416 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
417 
418 	return spi_mem_exec_op(spinand->slave, &op);
419 }
420 
421 static int spinand_erase_op(struct spinand_device *spinand,
422 			    const struct nand_pos *pos)
423 {
424 	struct nand_device *nand = &spinand->base;
425 	unsigned int row = nanddev_pos_to_row(nand, pos);
426 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
427 
428 	return spi_mem_exec_op(spinand->slave, &op);
429 }
430 
431 static int spinand_wait(struct spinand_device *spinand, u8 *s)
432 {
433 	unsigned long start, stop;
434 	u8 status;
435 	int ret;
436 
437 	start = get_timer(0);
438 	stop = 400;
439 	do {
440 		ret = spinand_read_status(spinand, &status);
441 		if (ret)
442 			return ret;
443 
444 		if (!(status & STATUS_BUSY))
445 			goto out;
446 	} while (get_timer(start) < stop);
447 
448 	/*
449 	 * Extra read, just in case the STATUS_READY bit has changed
450 	 * since our last check
451 	 */
452 	ret = spinand_read_status(spinand, &status);
453 	if (ret)
454 		return ret;
455 
456 out:
457 	if (s)
458 		*s = status;
459 
460 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
461 }
462 
463 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
464 			      u8 ndummy, u8 *buf)
465 {
466 	struct spi_mem_op op = SPINAND_READID_OP(
467 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
468 	int ret;
469 
470 	ret = spi_mem_exec_op(spinand->slave, &op);
471 	if (!ret)
472 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
473 
474 	return ret;
475 }
476 
477 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
478 static int spinand_reset_op(struct spinand_device *spinand)
479 {
480 	struct spi_mem_op op = SPINAND_RESET_OP;
481 	int ret;
482 
483 	ret = spi_mem_exec_op(spinand->slave, &op);
484 	if (ret)
485 		return ret;
486 
487 	return spinand_wait(spinand, NULL);
488 }
489 #endif
490 
491 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
492 {
493 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
494 }
495 
496 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
497 {
498 	struct nand_device *nand = spinand_to_nand(spinand);
499 
500 	if (spinand->eccinfo.get_status)
501 		return spinand->eccinfo.get_status(spinand, status);
502 
503 	switch (status & STATUS_ECC_MASK) {
504 	case STATUS_ECC_NO_BITFLIPS:
505 		return 0;
506 
507 	case STATUS_ECC_HAS_BITFLIPS:
508 		/*
509 		 * We have no way to know exactly how many bitflips have been
510 		 * fixed, so let's return the maximum possible value so that
511 		 * wear-leveling layers move the data immediately.
512 		 */
513 		return nand->eccreq.strength;
514 
515 	case STATUS_ECC_UNCOR_ERROR:
516 		return -EBADMSG;
517 
518 	default:
519 		break;
520 	}
521 
522 	return -EINVAL;
523 }
524 
525 static int spinand_read_page(struct spinand_device *spinand,
526 			     const struct nand_page_io_req *req,
527 			     bool ecc_enabled)
528 {
529 	u8 status = 0;
530 	int ret;
531 
532 	ret = spinand_load_page_op(spinand, req);
533 	if (ret)
534 		return ret;
535 
536 	ret = spinand_wait(spinand, &status);
537 	/*
538 	 * When there is data outside of OIP in the status, the status data is
539 	 * inaccurate and needs to be reconfirmed
540 	 */
541 	if (spinand->id.data[0] == 0x01 && status && !ret)
542 		ret = spinand_wait(spinand, &status);
543 	if (ret < 0)
544 		return ret;
545 
546 	ret = spinand_read_from_cache_op(spinand, req);
547 	if (ret)
548 		return ret;
549 
550 	if (spinand->support_cont_read && !(spinand->slave->mode & SPI_DMA_PREPARE))
551 		spinand_wait(spinand, &status);
552 
553 	if (!ecc_enabled)
554 		return 0;
555 
556 	return spinand_check_ecc_status(spinand, status);
557 }
558 
559 static int spinand_write_page(struct spinand_device *spinand,
560 			      const struct nand_page_io_req *req)
561 {
562 	u8 status;
563 	int ret;
564 
565 	ret = spinand_write_enable_op(spinand);
566 	if (ret)
567 		return ret;
568 
569 	ret = spinand_write_to_cache_op(spinand, req);
570 	if (ret)
571 		return ret;
572 
573 	ret = spinand_program_op(spinand, req);
574 	if (ret)
575 		return ret;
576 
577 	ret = spinand_wait(spinand, &status);
578 	if (!ret && (status & STATUS_PROG_FAILED))
579 		ret = -EIO;
580 
581 	return ret;
582 }
583 
584 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
585 			    struct mtd_oob_ops *ops)
586 {
587 	struct spinand_device *spinand = mtd_to_spinand(mtd);
588 	struct nand_device *nand = mtd_to_nanddev(mtd);
589 	unsigned int max_bitflips = 0;
590 	struct nand_io_iter iter;
591 	bool enable_ecc = false;
592 	bool ecc_failed = false;
593 	int ret = 0;
594 	bool cont_real = spinand->support_cont_read;
595 
596 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
597 		enable_ecc = true;
598 
599 #ifndef __UBOOT__
600 	mutex_lock(&spinand->lock);
601 #endif
602 
603 	nanddev_io_for_each_page(nand, from, ops, &iter) {
604 		ret = spinand_select_target(spinand, iter.req.pos.target);
605 		if (ret)
606 			break;
607 
608 		ret = spinand_ecc_enable(spinand, enable_ecc);
609 		if (ret)
610 			break;
611 
612 		/* For misaligned situations, temporarily disable the cont read capability */
613 		if (iter.req.dataoffs)
614 			spinand->support_cont_read = false;
615 		else
616 			spinand->support_cont_read = cont_real;
617 
618 		if (spinand->support_cont_read) {
619 			iter.req.datalen = ops->len;
620 			iter.req.ooblen = 0;
621 		}
622 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
623 		if (ret < 0 && ret != -EBADMSG)
624 			break;
625 
626 		if (ret == -EBADMSG) {
627 			ecc_failed = true;
628 			mtd->ecc_stats.failed++;
629 		} else {
630 			mtd->ecc_stats.corrected += ret;
631 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
632 		}
633 
634 		ret = 0;
635 		if (spinand->support_cont_read) {
636 			ops->retlen = ops->len;
637 			ops->oobretlen = ops->ooblen;
638 			break;
639 		}
640 
641 		ops->retlen += iter.req.datalen;
642 		ops->oobretlen += iter.req.ooblen;
643 	}
644 
645 #ifndef __UBOOT__
646 	mutex_unlock(&spinand->lock);
647 #endif
648 	if (ecc_failed && !ret)
649 		ret = -EBADMSG;
650 
651 	spinand->support_cont_read = cont_real;
652 
653 	return ret ? ret : max_bitflips;
654 }
655 
656 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
657 			     struct mtd_oob_ops *ops)
658 {
659 	struct spinand_device *spinand = mtd_to_spinand(mtd);
660 	struct nand_device *nand = mtd_to_nanddev(mtd);
661 	struct nand_io_iter iter;
662 	bool enable_ecc = false;
663 	int ret = 0;
664 
665 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
666 		enable_ecc = true;
667 
668 #ifndef __UBOOT__
669 	mutex_lock(&spinand->lock);
670 #endif
671 
672 	nanddev_io_for_each_page(nand, to, ops, &iter) {
673 		ret = spinand_select_target(spinand, iter.req.pos.target);
674 		if (ret)
675 			break;
676 
677 		ret = spinand_ecc_enable(spinand, enable_ecc);
678 		if (ret)
679 			break;
680 
681 		ret = spinand_write_page(spinand, &iter.req);
682 		if (ret)
683 			break;
684 
685 		ops->retlen += iter.req.datalen;
686 		ops->oobretlen += iter.req.ooblen;
687 	}
688 
689 #ifndef __UBOOT__
690 	mutex_unlock(&spinand->lock);
691 #endif
692 
693 	return ret;
694 }
695 
696 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
697 {
698 	struct spinand_device *spinand = nand_to_spinand(nand);
699 	u8 marker[2] = { };
700 	struct nand_page_io_req req = {
701 		.pos = *pos,
702 		.ooblen = sizeof(marker),
703 		.ooboffs = 0,
704 		.oobbuf.in = marker,
705 		.mode = MTD_OPS_RAW,
706 	};
707 
708 	spinand_select_target(spinand, pos->target);
709 	spinand_read_page(spinand, &req, false);
710 	if (marker[0] != 0xff || marker[1] != 0xff)
711 		return true;
712 
713 	return false;
714 }
715 
716 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
717 {
718 	struct nand_device *nand = mtd_to_nanddev(mtd);
719 #ifndef __UBOOT__
720 	struct spinand_device *spinand = nand_to_spinand(nand);
721 #endif
722 	struct nand_pos pos;
723 	int ret;
724 
725 	nanddev_offs_to_pos(nand, offs, &pos);
726 #ifndef __UBOOT__
727 	mutex_lock(&spinand->lock);
728 #endif
729 	ret = nanddev_isbad(nand, &pos);
730 #ifndef __UBOOT__
731 	mutex_unlock(&spinand->lock);
732 #endif
733 	return ret;
734 }
735 
736 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
737 {
738 	struct spinand_device *spinand = nand_to_spinand(nand);
739 	u8 marker[2] = { 0, 0 };
740 	struct nand_page_io_req req = {
741 		.pos = *pos,
742 		.ooboffs = 0,
743 		.ooblen = sizeof(marker),
744 		.oobbuf.out = marker,
745 		.mode = MTD_OPS_RAW,
746 	};
747 	int ret;
748 
749 	ret = spinand_select_target(spinand, pos->target);
750 	if (ret)
751 		return ret;
752 
753 	ret = spinand_write_enable_op(spinand);
754 	if (ret)
755 		return ret;
756 
757 	return spinand_write_page(spinand, &req);
758 }
759 
760 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
761 {
762 	struct nand_device *nand = mtd_to_nanddev(mtd);
763 #ifndef __UBOOT__
764 	struct spinand_device *spinand = nand_to_spinand(nand);
765 #endif
766 	struct nand_pos pos;
767 	int ret;
768 
769 	nanddev_offs_to_pos(nand, offs, &pos);
770 #ifndef __UBOOT__
771 	mutex_lock(&spinand->lock);
772 #endif
773 	ret = nanddev_markbad(nand, &pos);
774 #ifndef __UBOOT__
775 	mutex_unlock(&spinand->lock);
776 #endif
777 	return ret;
778 }
779 
780 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
781 {
782 	struct spinand_device *spinand = nand_to_spinand(nand);
783 	u8 status;
784 	int ret;
785 
786 	ret = spinand_select_target(spinand, pos->target);
787 	if (ret)
788 		return ret;
789 
790 	ret = spinand_write_enable_op(spinand);
791 	if (ret)
792 		return ret;
793 
794 	ret = spinand_erase_op(spinand, pos);
795 	if (ret)
796 		return ret;
797 
798 	ret = spinand_wait(spinand, &status);
799 	if (!ret && (status & STATUS_ERASE_FAILED))
800 		ret = -EIO;
801 
802 	return ret;
803 }
804 
805 static int spinand_mtd_erase(struct mtd_info *mtd,
806 			     struct erase_info *einfo)
807 {
808 #ifndef __UBOOT__
809 	struct spinand_device *spinand = mtd_to_spinand(mtd);
810 #endif
811 	int ret;
812 
813 #ifndef __UBOOT__
814 	mutex_lock(&spinand->lock);
815 #endif
816 	ret = nanddev_mtd_erase(mtd, einfo);
817 #ifndef __UBOOT__
818 	mutex_unlock(&spinand->lock);
819 #endif
820 
821 	return ret;
822 }
823 
824 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
825 {
826 #ifndef __UBOOT__
827 	struct spinand_device *spinand = mtd_to_spinand(mtd);
828 #endif
829 	struct nand_device *nand = mtd_to_nanddev(mtd);
830 	struct nand_pos pos;
831 	int ret;
832 
833 	nanddev_offs_to_pos(nand, offs, &pos);
834 #ifndef __UBOOT__
835 	mutex_lock(&spinand->lock);
836 #endif
837 	ret = nanddev_isreserved(nand, &pos);
838 #ifndef __UBOOT__
839 	mutex_unlock(&spinand->lock);
840 #endif
841 
842 	return ret;
843 }
844 
845 const struct spi_mem_op *
846 spinand_find_supported_op(struct spinand_device *spinand,
847 			  const struct spi_mem_op *ops,
848 			  unsigned int nops)
849 {
850 	unsigned int i;
851 
852 	for (i = 0; i < nops; i++) {
853 		if (spi_mem_supports_op(spinand->slave, &ops[i]))
854 			return &ops[i];
855 	}
856 
857 	return NULL;
858 }
859 
860 static const struct nand_ops spinand_ops = {
861 	.erase = spinand_erase,
862 	.markbad = spinand_markbad,
863 	.isbad = spinand_isbad,
864 };
865 
866 static const struct spinand_manufacturer *spinand_manufacturers[] = {
867 #ifdef CONFIG_SPI_NAND_GIGADEVICE
868 	&gigadevice_spinand_manufacturer,
869 #endif
870 #ifdef CONFIG_SPI_NAND_MACRONIX
871 	&macronix_spinand_manufacturer,
872 #endif
873 #ifdef CONFIG_SPI_NAND_MICRON
874 	&micron_spinand_manufacturer,
875 #endif
876 #ifdef CONFIG_SPI_NAND_TOSHIBA
877 	&toshiba_spinand_manufacturer,
878 #endif
879 #ifdef CONFIG_SPI_NAND_WINBOND
880 	&winbond_spinand_manufacturer,
881 #endif
882 #ifdef CONFIG_SPI_NAND_DOSILICON
883 	&dosilicon_spinand_manufacturer,
884 #endif
885 #ifdef CONFIG_SPI_NAND_ESMT
886 	&esmt_spinand_manufacturer,
887 #endif
888 #ifdef CONFIG_SPI_NAND_XINCUN
889 	&xincun_spinand_manufacturer,
890 #endif
891 #ifdef CONFIG_SPI_NAND_XTX
892 	&xtx_spinand_manufacturer,
893 #endif
894 #ifdef CONFIG_SPI_NAND_HYF
895 	&hyf_spinand_manufacturer,
896 #endif
897 #ifdef CONFIG_SPI_NAND_FMSH
898 	&fmsh_spinand_manufacturer,
899 #endif
900 #ifdef CONFIG_SPI_NAND_FORESEE
901 	&foresee_spinand_manufacturer,
902 #endif
903 #ifdef CONFIG_SPI_NAND_BIWIN
904 	&biwin_spinand_manufacturer,
905 #endif
906 #ifdef CONFIG_SPI_NAND_ETRON
907 	&etron_spinand_manufacturer,
908 #endif
909 #ifdef CONFIG_SPI_NAND_JSC
910 	&jsc_spinand_manufacturer,
911 #endif
912 #ifdef CONFIG_SPI_NAND_SILICONGO
913 	&silicongo_spinand_manufacturer,
914 #endif
915 #ifdef CONFIG_SPI_NAND_UNIM
916 	&unim_spinand_manufacturer,
917 	&unim_zl_spinand_manufacturer,
918 #endif
919 #ifdef CONFIG_SPI_NAND_SKYHIGH
920 	&skyhigh_spinand_manufacturer,
921 #endif
922 #ifdef CONFIG_SPI_NAND_GSTO
923 	&gsto_spinand_manufacturer,
924 #endif
925 #ifdef CONFIG_SPI_NAND_ZBIT
926 	&zbit_spinand_manufacturer,
927 #endif
928 #ifdef CONFIG_SPI_NAND_HIKSEMI
929 	&hiksemi_spinand_manufacturer,
930 #endif
931 #ifdef CONFIG_SPI_NAND_KINGSTON
932 	&kingston_spinand_manufacturer,
933 #endif
934 };
935 
936 static int spinand_manufacturer_match(struct spinand_device *spinand,
937 				      enum spinand_readid_method rdid_method)
938 {
939 	u8 *id = spinand->id.data;
940 	unsigned int i;
941 	int ret;
942 
943 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
944 		const struct spinand_manufacturer *manufacturer =
945 			spinand_manufacturers[i];
946 
947 		if (id[0] != manufacturer->id)
948 			continue;
949 
950 		ret = spinand_match_and_init(spinand,
951 					     manufacturer->chips,
952 					     manufacturer->nchips,
953 					     rdid_method);
954 		if (ret < 0)
955 			continue;
956 
957 		spinand->manufacturer = manufacturer;
958 		return 0;
959 	}
960 	return -ENOTSUPP;
961 }
962 
963 static int spinand_id_detect(struct spinand_device *spinand)
964 {
965 	u8 *id = spinand->id.data;
966 	int ret;
967 
968 	ret = spinand_read_id_op(spinand, 0, 0, id);
969 	if (ret)
970 		return ret;
971 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
972 	if (!ret)
973 		return 0;
974 
975 	ret = spinand_read_id_op(spinand, 1, 0, id);
976 	if (ret)
977 		return ret;
978 	ret = spinand_manufacturer_match(spinand,
979 					 SPINAND_READID_METHOD_OPCODE_ADDR);
980 	if (!ret)
981 		return 0;
982 
983 	ret = spinand_read_id_op(spinand, 0, 1, id);
984 	if (ret)
985 		return ret;
986 	ret = spinand_manufacturer_match(spinand,
987 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
988 
989 	return ret;
990 }
991 
992 static int spinand_manufacturer_init(struct spinand_device *spinand)
993 {
994 	if (spinand->manufacturer->ops->init)
995 		return spinand->manufacturer->ops->init(spinand);
996 
997 	return 0;
998 }
999 
1000 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1001 {
1002 	/* Release manufacturer private data */
1003 	if (spinand->manufacturer->ops->cleanup)
1004 		return spinand->manufacturer->ops->cleanup(spinand);
1005 }
1006 
1007 static const struct spi_mem_op *
1008 spinand_select_op_variant(struct spinand_device *spinand,
1009 			  const struct spinand_op_variants *variants)
1010 {
1011 	struct nand_device *nand = spinand_to_nand(spinand);
1012 	unsigned int i;
1013 
1014 	for (i = 0; i < variants->nops; i++) {
1015 		struct spi_mem_op op = variants->ops[i];
1016 		unsigned int nbytes;
1017 		int ret;
1018 
1019 		nbytes = nanddev_per_page_oobsize(nand) +
1020 			 nanddev_page_size(nand);
1021 
1022 		while (nbytes) {
1023 			op.data.nbytes = nbytes;
1024 			ret = spi_mem_adjust_op_size(spinand->slave, &op);
1025 			if (ret)
1026 				break;
1027 
1028 			if (!spi_mem_supports_op(spinand->slave, &op))
1029 				break;
1030 
1031 			nbytes -= op.data.nbytes;
1032 		}
1033 
1034 		if (!nbytes)
1035 			return &variants->ops[i];
1036 	}
1037 
1038 	return NULL;
1039 }
1040 
1041 /**
1042  * spinand_match_and_init() - Try to find a match between a device ID and an
1043  *			      entry in a spinand_info table
1044  * @spinand: SPI NAND object
1045  * @table: SPI NAND device description table
1046  * @table_size: size of the device description table
1047  * @rdid_method: read id method to match
1048  *
1049  * Match between a device ID retrieved through the READ_ID command and an
1050  * entry in the SPI NAND description table. If a match is found, the spinand
1051  * object will be initialized with information provided by the matching
1052  * spinand_info entry.
1053  *
1054  * Return: 0 on success, a negative error code otherwise.
1055  */
1056 int spinand_match_and_init(struct spinand_device *spinand,
1057 			   const struct spinand_info *table,
1058 			   unsigned int table_size,
1059 			   enum spinand_readid_method rdid_method)
1060 {
1061 	u8 *id = spinand->id.data;
1062 	struct nand_device *nand = spinand_to_nand(spinand);
1063 	unsigned int i;
1064 
1065 	for (i = 0; i < table_size; i++) {
1066 		const struct spinand_info *info = &table[i];
1067 		const struct spi_mem_op *op;
1068 
1069 		if (rdid_method != info->devid.method)
1070 			continue;
1071 
1072 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1073 			continue;
1074 
1075 		nand->memorg = table[i].memorg;
1076 		nand->eccreq = table[i].eccreq;
1077 		spinand->eccinfo = table[i].eccinfo;
1078 		spinand->flags = table[i].flags;
1079 		spinand->id.len = 1 + table[i].devid.len;
1080 		spinand->select_target = table[i].select_target;
1081 
1082 		op = spinand_select_op_variant(spinand,
1083 					       info->op_variants.read_cache);
1084 		if (!op)
1085 			return -ENOTSUPP;
1086 
1087 		spinand->op_templates.read_cache = op;
1088 
1089 		op = spinand_select_op_variant(spinand,
1090 					       info->op_variants.write_cache);
1091 		if (!op)
1092 			return -ENOTSUPP;
1093 
1094 		spinand->op_templates.write_cache = op;
1095 
1096 		op = spinand_select_op_variant(spinand,
1097 					       info->op_variants.update_cache);
1098 		spinand->op_templates.update_cache = op;
1099 
1100 		return 0;
1101 	}
1102 
1103 	return -ENOTSUPP;
1104 }
1105 
1106 static int spinand_detect(struct spinand_device *spinand)
1107 {
1108 	struct nand_device *nand = spinand_to_nand(spinand);
1109 	int ret;
1110 
1111 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
1112 	ret = spinand_reset_op(spinand);
1113 	if (ret)
1114 		return ret;
1115 #endif
1116 
1117 	ret = spinand_id_detect(spinand);
1118 	if (ret) {
1119 		dev_err(dev, "unknown raw ID %x %x %x\n",
1120 			spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1121 		return ret;
1122 	}
1123 	dev_err(dev, "SPI Nand ID %x %x %x\n",
1124 		spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1125 
1126 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1127 		dev_err(dev,
1128 			"SPI NANDs with more than one die must implement ->select_target()\n");
1129 		return -EINVAL;
1130 	}
1131 
1132 	dev_info(spinand->slave->dev,
1133 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1134 	dev_info(spinand->slave->dev,
1135 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1136 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1137 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1138 
1139 	return 0;
1140 }
1141 
1142 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
1143 				       struct mtd_oob_region *region)
1144 {
1145 	return -ERANGE;
1146 }
1147 
1148 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1149 					struct mtd_oob_region *region)
1150 {
1151 	if (section)
1152 		return -ERANGE;
1153 
1154 	/* Reserve 2 bytes for the BBM. */
1155 	region->offset = 2;
1156 	region->length = 62;
1157 
1158 	return 0;
1159 }
1160 
1161 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1162 	.ecc = spinand_noecc_ooblayout_ecc,
1163 	.rfree = spinand_noecc_ooblayout_free,
1164 };
1165 
1166 static int spinand_init(struct spinand_device *spinand)
1167 {
1168 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1169 	struct nand_device *nand = mtd_to_nanddev(mtd);
1170 	int ret, i;
1171 
1172 	/*
1173 	 * We need a scratch buffer because the spi_mem interface requires that
1174 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1175 	 */
1176 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1177 	if (!spinand->scratchbuf)
1178 		return -ENOMEM;
1179 
1180 	ret = spinand_detect(spinand);
1181 	if (ret)
1182 		goto err_free_bufs;
1183 
1184 	/*
1185 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1186 	 * may use this buffer for DMA access.
1187 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1188 	 */
1189 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1190 			       nanddev_per_page_oobsize(nand),
1191 			       GFP_KERNEL);
1192 	if (!spinand->databuf) {
1193 		ret = -ENOMEM;
1194 		goto err_free_bufs;
1195 	}
1196 
1197 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1198 
1199 	ret = spinand_init_cfg_cache(spinand);
1200 	if (ret)
1201 		goto err_free_bufs;
1202 
1203 	ret = spinand_init_quad_enable(spinand);
1204 	if (ret)
1205 		goto err_free_bufs;
1206 
1207 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1208 	if (ret)
1209 		goto err_free_bufs;
1210 
1211 	ret = spinand_manufacturer_init(spinand);
1212 	if (ret) {
1213 		dev_err(dev,
1214 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1215 			ret);
1216 		goto err_free_bufs;
1217 	}
1218 
1219 	/* After power up, all blocks are locked, so unlock them here. */
1220 	for (i = 0; i < nand->memorg.ntargets; i++) {
1221 		ret = spinand_select_target(spinand, i);
1222 		if (ret)
1223 			goto err_free_bufs;
1224 
1225 		/* HWP_EN must be enabled first before block unlock region is set */
1226 		if (spinand->id.data[0] == 0x01) {
1227 			ret = spinand_lock_block(spinand, HWP_EN);
1228 			if (ret)
1229 				goto err_free_bufs;
1230 		}
1231 
1232 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1233 		if (ret)
1234 			goto err_free_bufs;
1235 	}
1236 
1237 	nand->bbt.option = NANDDEV_BBT_USE_FLASH;
1238 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1239 	if (ret)
1240 		goto err_manuf_cleanup;
1241 
1242 	/*
1243 	 * Right now, we don't support ECC, so let the whole oob
1244 	 * area is available for user.
1245 	 */
1246 	mtd->_read_oob = spinand_mtd_read;
1247 	mtd->_write_oob = spinand_mtd_write;
1248 	mtd->_block_isbad = spinand_mtd_block_isbad;
1249 	mtd->_block_markbad = spinand_mtd_block_markbad;
1250 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1251 	mtd->_erase = spinand_mtd_erase;
1252 
1253 	if (spinand->eccinfo.ooblayout)
1254 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1255 	else
1256 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1257 
1258 	ret = mtd_ooblayout_count_freebytes(mtd);
1259 	if (ret < 0)
1260 		goto err_cleanup_nanddev;
1261 
1262 	mtd->oobavail = ret;
1263 
1264 	/* Propagate ECC information to mtd_info */
1265 	mtd->ecc_strength = nand->eccreq.strength;
1266 	mtd->ecc_step_size = nand->eccreq.step_size;
1267 
1268 	return 0;
1269 
1270 err_cleanup_nanddev:
1271 	nanddev_cleanup(nand);
1272 
1273 err_manuf_cleanup:
1274 	spinand_manufacturer_cleanup(spinand);
1275 
1276 err_free_bufs:
1277 	kfree(spinand->databuf);
1278 	kfree(spinand->scratchbuf);
1279 	return ret;
1280 }
1281 
1282 static void spinand_cleanup(struct spinand_device *spinand)
1283 {
1284 	struct nand_device *nand = spinand_to_nand(spinand);
1285 
1286 	nanddev_cleanup(nand);
1287 	spinand_manufacturer_cleanup(spinand);
1288 	kfree(spinand->databuf);
1289 	kfree(spinand->scratchbuf);
1290 }
1291 
1292 static int spinand_bind(struct udevice *udev)
1293 {
1294 	int ret = 0;
1295 
1296 #ifdef CONFIG_MTD_BLK
1297 	struct udevice *bdev;
1298 
1299 	ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD,
1300 				 BLK_MTD_SPI_NAND, 512, 0, &bdev);
1301 	if (ret)
1302 		printf("Cannot create block device\n");
1303 #endif
1304 	return ret;
1305 }
1306 
1307 static int spinand_probe(struct udevice *dev)
1308 {
1309 	struct spinand_device *spinand = dev_get_priv(dev);
1310 	struct spi_slave *slave = dev_get_parent_priv(dev);
1311 	struct mtd_info *mtd = dev_get_uclass_priv(dev);
1312 	struct nand_device *nand = spinand_to_nand(spinand);
1313 	int ret;
1314 
1315 #ifndef __UBOOT__
1316 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1317 			       GFP_KERNEL);
1318 	if (!spinand)
1319 		return -ENOMEM;
1320 
1321 	spinand->spimem = mem;
1322 	spi_mem_set_drvdata(mem, spinand);
1323 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1324 	mutex_init(&spinand->lock);
1325 
1326 	mtd = spinand_to_mtd(spinand);
1327 	mtd->dev.parent = &mem->spi->dev;
1328 #else
1329 	nand->mtd = mtd;
1330 	mtd->priv = nand;
1331 	mtd->dev = dev;
1332 	mtd->name = malloc(20);
1333 	if (!mtd->name)
1334 		return -ENOMEM;
1335 	sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1336 	spinand->slave = slave;
1337 	spinand_set_of_node(spinand, dev->node.np);
1338 #endif
1339 
1340 	ret = spinand_init(spinand);
1341 	if (ret)
1342 		return ret;
1343 
1344 #ifndef __UBOOT__
1345 	ret = mtd_device_register(mtd, NULL, 0);
1346 #else
1347 	ret = add_mtd_device(mtd);
1348 #endif
1349 	if (ret)
1350 		goto err_spinand_cleanup;
1351 
1352 	return 0;
1353 
1354 err_spinand_cleanup:
1355 	spinand_cleanup(spinand);
1356 
1357 	return ret;
1358 }
1359 
1360 #ifndef __UBOOT__
1361 static int spinand_remove(struct udevice *slave)
1362 {
1363 	struct spinand_device *spinand;
1364 	struct mtd_info *mtd;
1365 	int ret;
1366 
1367 	spinand = spi_mem_get_drvdata(slave);
1368 	mtd = spinand_to_mtd(spinand);
1369 	free(mtd->name);
1370 
1371 	ret = mtd_device_unregister(mtd);
1372 	if (ret)
1373 		return ret;
1374 
1375 	spinand_cleanup(spinand);
1376 
1377 	return 0;
1378 }
1379 
1380 static const struct spi_device_id spinand_ids[] = {
1381 	{ .name = "spi-nand" },
1382 	{ /* sentinel */ },
1383 };
1384 
1385 #ifdef CONFIG_OF
1386 static const struct of_device_id spinand_of_ids[] = {
1387 	{ .compatible = "spi-nand" },
1388 	{ /* sentinel */ },
1389 };
1390 #endif
1391 
1392 static struct spi_mem_driver spinand_drv = {
1393 	.spidrv = {
1394 		.id_table = spinand_ids,
1395 		.driver = {
1396 			.name = "spi-nand",
1397 			.of_match_table = of_match_ptr(spinand_of_ids),
1398 		},
1399 	},
1400 	.probe = spinand_probe,
1401 	.remove = spinand_remove,
1402 };
1403 module_spi_mem_driver(spinand_drv);
1404 
1405 MODULE_DESCRIPTION("SPI NAND framework");
1406 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1407 MODULE_LICENSE("GPL v2");
1408 #endif /* __UBOOT__ */
1409 
1410 static const struct udevice_id spinand_ids[] = {
1411 	{ .compatible = "spi-nand" },
1412 	{ /* sentinel */ },
1413 };
1414 
1415 U_BOOT_DRIVER(spinand) = {
1416 	.name = "spi_nand",
1417 	.id = UCLASS_MTD,
1418 	.of_match = spinand_ids,
1419 	.bind	= spinand_bind,
1420 	.priv_auto_alloc_size = sizeof(struct spinand_device),
1421 	.probe = spinand_probe,
1422 };
1423