xref: /rk3399_rockchip-uboot/drivers/mtd/nand/spi/core.c (revision 99011ac49d29f286f3ab55f20c9646a1fb6a4e72)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <spi.h>
26 #include <spi-mem.h>
27 #include <linux/mtd/spinand.h>
28 #endif
29 
30 /* SPI NAND index visible in MTD names */
31 static int spi_nand_idx;
32 
33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
34 					  const struct nand_page_io_req *req,
35 					  u16 *column)
36 {
37 	struct nand_device *nand = spinand_to_nand(spinand);
38 	unsigned int shift;
39 
40 	if (nand->memorg.planes_per_lun < 2)
41 		return;
42 
43 	/* The plane number is passed in MSB just above the column address */
44 	shift = fls(nand->memorg.pagesize);
45 	*column |= req->pos.plane << shift;
46 }
47 
48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
49 {
50 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
51 						      spinand->scratchbuf);
52 	int ret;
53 
54 	ret = spi_mem_exec_op(spinand->slave, &op);
55 	if (ret)
56 		return ret;
57 
58 	*val = *spinand->scratchbuf;
59 	return 0;
60 }
61 
62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
63 {
64 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
65 						      spinand->scratchbuf);
66 
67 	*spinand->scratchbuf = val;
68 	return spi_mem_exec_op(spinand->slave, &op);
69 }
70 
71 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
72 {
73 	return spinand_read_reg_op(spinand, REG_STATUS, status);
74 }
75 
76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
77 {
78 	struct nand_device *nand = spinand_to_nand(spinand);
79 
80 	if (WARN_ON(spinand->cur_target < 0 ||
81 		    spinand->cur_target >= nand->memorg.ntargets))
82 		return -EINVAL;
83 
84 	*cfg = spinand->cfg_cache[spinand->cur_target];
85 	return 0;
86 }
87 
88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
89 {
90 	struct nand_device *nand = spinand_to_nand(spinand);
91 	int ret;
92 
93 	if (WARN_ON(spinand->cur_target < 0 ||
94 		    spinand->cur_target >= nand->memorg.ntargets))
95 		return -EINVAL;
96 
97 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
98 		return 0;
99 
100 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
101 	if (ret)
102 		return ret;
103 
104 	spinand->cfg_cache[spinand->cur_target] = cfg;
105 	return 0;
106 }
107 
108 /**
109  * spinand_upd_cfg() - Update the configuration register
110  * @spinand: the spinand device
111  * @mask: the mask encoding the bits to update in the config reg
112  * @val: the new value to apply
113  *
114  * Update the configuration register.
115  *
116  * Return: 0 on success, a negative error code otherwise.
117  */
118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
119 {
120 	int ret;
121 	u8 cfg;
122 
123 	ret = spinand_get_cfg(spinand, &cfg);
124 	if (ret)
125 		return ret;
126 
127 	cfg &= ~mask;
128 	cfg |= val;
129 
130 	return spinand_set_cfg(spinand, cfg);
131 }
132 
133 /**
134  * spinand_select_target() - Select a specific NAND target/die
135  * @spinand: the spinand device
136  * @target: the target/die to select
137  *
138  * Select a new target/die. If chip only has one die, this function is a NOOP.
139  *
140  * Return: 0 on success, a negative error code otherwise.
141  */
142 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
143 {
144 	struct nand_device *nand = spinand_to_nand(spinand);
145 	int ret;
146 
147 	if (WARN_ON(target >= nand->memorg.ntargets))
148 		return -EINVAL;
149 
150 	if (spinand->cur_target == target)
151 		return 0;
152 
153 	if (nand->memorg.ntargets == 1) {
154 		spinand->cur_target = target;
155 		return 0;
156 	}
157 
158 	ret = spinand->select_target(spinand, target);
159 	if (ret)
160 		return ret;
161 
162 	spinand->cur_target = target;
163 	return 0;
164 }
165 
166 static int spinand_init_cfg_cache(struct spinand_device *spinand)
167 {
168 	struct nand_device *nand = spinand_to_nand(spinand);
169 	struct udevice *dev = spinand->slave->dev;
170 	unsigned int target;
171 	int ret;
172 
173 	spinand->cfg_cache = devm_kzalloc(dev,
174 					  sizeof(*spinand->cfg_cache) *
175 					  nand->memorg.ntargets,
176 					  GFP_KERNEL);
177 	if (!spinand->cfg_cache)
178 		return -ENOMEM;
179 
180 	for (target = 0; target < nand->memorg.ntargets; target++) {
181 		ret = spinand_select_target(spinand, target);
182 		if (ret)
183 			return ret;
184 
185 		/*
186 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
187 		 * here to bypass the config cache.
188 		 */
189 		ret = spinand_read_reg_op(spinand, REG_CFG,
190 					  &spinand->cfg_cache[target]);
191 		if (ret)
192 			return ret;
193 	}
194 
195 	return 0;
196 }
197 
198 static int spinand_init_quad_enable(struct spinand_device *spinand)
199 {
200 	bool enable = false;
201 
202 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
203 		return 0;
204 
205 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
206 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
207 	    spinand->op_templates.update_cache->data.buswidth == 4)
208 		enable = true;
209 
210 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
211 			       enable ? CFG_QUAD_ENABLE : 0);
212 }
213 
214 static int spinand_ecc_enable(struct spinand_device *spinand,
215 			      bool enable)
216 {
217 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
218 			       enable ? CFG_ECC_ENABLE : 0);
219 }
220 
221 static int spinand_write_enable_op(struct spinand_device *spinand)
222 {
223 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
224 
225 	return spi_mem_exec_op(spinand->slave, &op);
226 }
227 
228 static int spinand_load_page_op(struct spinand_device *spinand,
229 				const struct nand_page_io_req *req)
230 {
231 	struct nand_device *nand = spinand_to_nand(spinand);
232 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
233 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
234 
235 	return spi_mem_exec_op(spinand->slave, &op);
236 }
237 
238 static int spinand_read_from_cache_op(struct spinand_device *spinand,
239 				      const struct nand_page_io_req *req)
240 {
241 	struct spi_mem_op op = *spinand->op_templates.read_cache;
242 	struct nand_device *nand = spinand_to_nand(spinand);
243 	struct mtd_info *mtd = nanddev_to_mtd(nand);
244 	struct nand_page_io_req adjreq = *req;
245 	unsigned int nbytes = 0;
246 	void *buf = NULL;
247 	u16 column = 0;
248 	int ret;
249 
250 	if (req->datalen) {
251 		adjreq.datalen = nanddev_page_size(nand);
252 		adjreq.dataoffs = 0;
253 		adjreq.databuf.in = spinand->databuf;
254 		buf = spinand->databuf;
255 		nbytes = adjreq.datalen;
256 	}
257 
258 	if (spinand->support_cont_read && req->datalen) {
259 		adjreq.datalen = req->datalen;
260 		adjreq.dataoffs = 0;
261 		adjreq.databuf.in = req->databuf.in;
262 		buf = req->databuf.in;
263 		nbytes = adjreq.datalen;
264 	}
265 
266 	if (req->ooblen) {
267 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
268 		adjreq.ooboffs = 0;
269 		adjreq.oobbuf.in = spinand->oobbuf;
270 		nbytes += nanddev_per_page_oobsize(nand);
271 		if (!buf) {
272 			buf = spinand->oobbuf;
273 			column = nanddev_page_size(nand);
274 		}
275 	}
276 
277 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
278 	op.addr.val = column;
279 
280 	/*
281 	 * Some controllers are limited in term of max RX data size. In this
282 	 * case, just repeat the READ_CACHE operation after updating the
283 	 * column.
284 	 */
285 	while (nbytes) {
286 		op.data.buf.in = buf;
287 		op.data.nbytes = nbytes;
288 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
289 		if (ret)
290 			return ret;
291 
292 		ret = spi_mem_exec_op(spinand->slave, &op);
293 		if (ret)
294 			return ret;
295 
296 		buf += op.data.nbytes;
297 		nbytes -= op.data.nbytes;
298 		op.addr.val += op.data.nbytes;
299 	}
300 
301 	if (!spinand->support_cont_read && req->datalen)
302 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen);
303 
304 	if (req->ooblen) {
305 		if (req->mode == MTD_OPS_AUTO_OOB)
306 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
307 						    spinand->oobbuf,
308 						    req->ooboffs,
309 						    req->ooblen);
310 		else
311 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
312 			       req->ooblen);
313 	}
314 
315 	return 0;
316 }
317 
318 static int spinand_write_to_cache_op(struct spinand_device *spinand,
319 				     const struct nand_page_io_req *req)
320 {
321 	struct spi_mem_op op = *spinand->op_templates.write_cache;
322 	struct nand_device *nand = spinand_to_nand(spinand);
323 	struct mtd_info *mtd = nanddev_to_mtd(nand);
324 	struct nand_page_io_req adjreq = *req;
325 	unsigned int nbytes = 0;
326 	void *buf = NULL;
327 	u16 column = 0;
328 	int ret;
329 
330 	/*
331 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
332 	 * the cache content to 0xFF (depends on vendor implementation), so we
333 	 * must fill the page cache entirely even if we only want to program
334 	 * the data portion of the page, otherwise we might corrupt the BBM or
335 	 * user data previously programmed in OOB area.
336 	 */
337 	memset(spinand->databuf, 0xff,
338 	       nanddev_page_size(nand) +
339 	       nanddev_per_page_oobsize(nand));
340 
341 	if (req->datalen) {
342 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
343 		       req->datalen);
344 		adjreq.dataoffs = 0;
345 		adjreq.datalen = nanddev_page_size(nand);
346 		adjreq.databuf.out = spinand->databuf;
347 		nbytes = adjreq.datalen;
348 		buf = spinand->databuf;
349 	}
350 
351 	if (req->ooblen) {
352 		if (req->mode == MTD_OPS_AUTO_OOB)
353 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
354 						    spinand->oobbuf,
355 						    req->ooboffs,
356 						    req->ooblen);
357 		else
358 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
359 			       req->ooblen);
360 
361 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
362 		adjreq.ooboffs = 0;
363 		nbytes += nanddev_per_page_oobsize(nand);
364 		if (!buf) {
365 			buf = spinand->oobbuf;
366 			column = nanddev_page_size(nand);
367 		}
368 	}
369 
370 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
371 
372 	op = *spinand->op_templates.write_cache;
373 	op.addr.val = column;
374 
375 	/*
376 	 * Some controllers are limited in term of max TX data size. In this
377 	 * case, split the operation into one LOAD CACHE and one or more
378 	 * LOAD RANDOM CACHE.
379 	 */
380 	while (nbytes) {
381 		op.data.buf.out = buf;
382 		op.data.nbytes = nbytes;
383 
384 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
385 		if (ret)
386 			return ret;
387 
388 		ret = spi_mem_exec_op(spinand->slave, &op);
389 		if (ret)
390 			return ret;
391 
392 		buf += op.data.nbytes;
393 		nbytes -= op.data.nbytes;
394 		op.addr.val += op.data.nbytes;
395 
396 		/*
397 		 * We need to use the RANDOM LOAD CACHE operation if there's
398 		 * more than one iteration, because the LOAD operation resets
399 		 * the cache to 0xff.
400 		 */
401 		if (nbytes) {
402 			column = op.addr.val;
403 			op = *spinand->op_templates.update_cache;
404 			op.addr.val = column;
405 		}
406 	}
407 
408 	return 0;
409 }
410 
411 static int spinand_program_op(struct spinand_device *spinand,
412 			      const struct nand_page_io_req *req)
413 {
414 	struct nand_device *nand = spinand_to_nand(spinand);
415 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
416 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
417 
418 	return spi_mem_exec_op(spinand->slave, &op);
419 }
420 
421 static int spinand_erase_op(struct spinand_device *spinand,
422 			    const struct nand_pos *pos)
423 {
424 	struct nand_device *nand = &spinand->base;
425 	unsigned int row = nanddev_pos_to_row(nand, pos);
426 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
427 
428 	return spi_mem_exec_op(spinand->slave, &op);
429 }
430 
431 static int spinand_wait(struct spinand_device *spinand, u8 *s)
432 {
433 	unsigned long start, stop;
434 	u8 status;
435 	int ret;
436 
437 	start = get_timer(0);
438 	stop = 400;
439 	do {
440 		ret = spinand_read_status(spinand, &status);
441 		if (ret)
442 			return ret;
443 
444 		if (!(status & STATUS_BUSY))
445 			goto out;
446 	} while (get_timer(start) < stop);
447 
448 	/*
449 	 * Extra read, just in case the STATUS_READY bit has changed
450 	 * since our last check
451 	 */
452 	ret = spinand_read_status(spinand, &status);
453 	if (ret)
454 		return ret;
455 
456 out:
457 	if (s)
458 		*s = status;
459 
460 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
461 }
462 
463 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
464 			      u8 ndummy, u8 *buf)
465 {
466 	struct spi_mem_op op = SPINAND_READID_OP(
467 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
468 	int ret;
469 
470 	ret = spi_mem_exec_op(spinand->slave, &op);
471 	if (!ret)
472 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
473 
474 	return ret;
475 }
476 
477 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
478 static int spinand_reset_op(struct spinand_device *spinand)
479 {
480 	struct spi_mem_op op = SPINAND_RESET_OP;
481 	int ret;
482 
483 	ret = spi_mem_exec_op(spinand->slave, &op);
484 	if (ret)
485 		return ret;
486 
487 	return spinand_wait(spinand, NULL);
488 }
489 #endif
490 
491 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
492 {
493 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
494 }
495 
496 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
497 {
498 	struct nand_device *nand = spinand_to_nand(spinand);
499 
500 	if (spinand->eccinfo.get_status)
501 		return spinand->eccinfo.get_status(spinand, status);
502 
503 	switch (status & STATUS_ECC_MASK) {
504 	case STATUS_ECC_NO_BITFLIPS:
505 		return 0;
506 
507 	case STATUS_ECC_HAS_BITFLIPS:
508 		/*
509 		 * We have no way to know exactly how many bitflips have been
510 		 * fixed, so let's return the maximum possible value so that
511 		 * wear-leveling layers move the data immediately.
512 		 */
513 		return nand->eccreq.strength;
514 
515 	case STATUS_ECC_UNCOR_ERROR:
516 		return -EBADMSG;
517 
518 	default:
519 		break;
520 	}
521 
522 	return -EINVAL;
523 }
524 
525 static int spinand_read_page(struct spinand_device *spinand,
526 			     const struct nand_page_io_req *req,
527 			     bool ecc_enabled)
528 {
529 	u8 status = 0;
530 	int ret;
531 
532 	ret = spinand_load_page_op(spinand, req);
533 	if (ret)
534 		return ret;
535 
536 	ret = spinand_wait(spinand, &status);
537 	/*
538 	 * When there is data outside of OIP in the status, the status data is
539 	 * inaccurate and needs to be reconfirmed
540 	 */
541 	if (spinand->id.data[0] == 0x01 && status && !ret)
542 		ret = spinand_wait(spinand, &status);
543 	if (ret < 0)
544 		return ret;
545 
546 	ret = spinand_read_from_cache_op(spinand, req);
547 	if (ret)
548 		return ret;
549 
550 	if (spinand->support_cont_read && !(spinand->slave->mode & SPI_DMA_PREPARE))
551 		spinand_wait(spinand, &status);
552 
553 	if (!ecc_enabled)
554 		return 0;
555 
556 	return spinand_check_ecc_status(spinand, status);
557 }
558 
559 static int spinand_write_page(struct spinand_device *spinand,
560 			      const struct nand_page_io_req *req)
561 {
562 	u8 status;
563 	int ret;
564 
565 	ret = spinand_write_enable_op(spinand);
566 	if (ret)
567 		return ret;
568 
569 	ret = spinand_write_to_cache_op(spinand, req);
570 	if (ret)
571 		return ret;
572 
573 	ret = spinand_program_op(spinand, req);
574 	if (ret)
575 		return ret;
576 
577 	ret = spinand_wait(spinand, &status);
578 	if (!ret && (status & STATUS_PROG_FAILED))
579 		ret = -EIO;
580 
581 	return ret;
582 }
583 
584 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
585 			    struct mtd_oob_ops *ops)
586 {
587 	struct spinand_device *spinand = mtd_to_spinand(mtd);
588 	struct nand_device *nand = mtd_to_nanddev(mtd);
589 	unsigned int max_bitflips = 0;
590 	struct nand_io_iter iter;
591 	bool enable_ecc = false;
592 	bool ecc_failed = false;
593 	int ret = 0;
594 	bool cont_real = spinand->support_cont_read;
595 
596 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
597 		enable_ecc = true;
598 
599 #ifndef __UBOOT__
600 	mutex_lock(&spinand->lock);
601 #endif
602 
603 	nanddev_io_for_each_page(nand, from, ops, &iter) {
604 		ret = spinand_select_target(spinand, iter.req.pos.target);
605 		if (ret)
606 			break;
607 
608 		ret = spinand_ecc_enable(spinand, enable_ecc);
609 		if (ret)
610 			break;
611 
612 		/* For misaligned situations, temporarily disable the cont read capability */
613 		if (iter.req.dataoffs)
614 			spinand->support_cont_read = false;
615 		else
616 			spinand->support_cont_read = cont_real;
617 
618 		if (spinand->support_cont_read) {
619 			iter.req.datalen = ops->len;
620 			iter.req.ooblen = 0;
621 		}
622 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
623 		if (ret < 0 && ret != -EBADMSG)
624 			break;
625 
626 		if (ret == -EBADMSG) {
627 			ecc_failed = true;
628 			mtd->ecc_stats.failed++;
629 		} else {
630 			mtd->ecc_stats.corrected += ret;
631 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
632 		}
633 
634 		ret = 0;
635 		if (spinand->support_cont_read) {
636 			ops->retlen = ops->len;
637 			ops->oobretlen = ops->ooblen;
638 			break;
639 		}
640 
641 		ops->retlen += iter.req.datalen;
642 		ops->oobretlen += iter.req.ooblen;
643 	}
644 
645 #ifndef __UBOOT__
646 	mutex_unlock(&spinand->lock);
647 #endif
648 	if (ecc_failed && !ret)
649 		ret = -EBADMSG;
650 
651 	spinand->support_cont_read = cont_real;
652 
653 	return ret ? ret : max_bitflips;
654 }
655 
656 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
657 			     struct mtd_oob_ops *ops)
658 {
659 	struct spinand_device *spinand = mtd_to_spinand(mtd);
660 	struct nand_device *nand = mtd_to_nanddev(mtd);
661 	struct nand_io_iter iter;
662 	bool enable_ecc = false;
663 	int ret = 0;
664 
665 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
666 		enable_ecc = true;
667 
668 #ifndef __UBOOT__
669 	mutex_lock(&spinand->lock);
670 #endif
671 
672 	nanddev_io_for_each_page(nand, to, ops, &iter) {
673 		ret = spinand_select_target(spinand, iter.req.pos.target);
674 		if (ret)
675 			break;
676 
677 		ret = spinand_ecc_enable(spinand, enable_ecc);
678 		if (ret)
679 			break;
680 
681 		ret = spinand_write_page(spinand, &iter.req);
682 		if (ret)
683 			break;
684 
685 		ops->retlen += iter.req.datalen;
686 		ops->oobretlen += iter.req.ooblen;
687 	}
688 
689 #ifndef __UBOOT__
690 	mutex_unlock(&spinand->lock);
691 #endif
692 
693 	return ret;
694 }
695 
696 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
697 {
698 	struct spinand_device *spinand = nand_to_spinand(nand);
699 	u8 marker[2] = { };
700 	struct nand_page_io_req req = {
701 		.pos = *pos,
702 		.ooblen = sizeof(marker),
703 		.ooboffs = 0,
704 		.oobbuf.in = marker,
705 		.mode = MTD_OPS_RAW,
706 	};
707 
708 	spinand_select_target(spinand, pos->target);
709 	spinand_read_page(spinand, &req, false);
710 	if (marker[0] != 0xff || marker[1] != 0xff)
711 		return true;
712 
713 	return false;
714 }
715 
716 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
717 {
718 	struct nand_device *nand = mtd_to_nanddev(mtd);
719 #ifndef __UBOOT__
720 	struct spinand_device *spinand = nand_to_spinand(nand);
721 #endif
722 	struct nand_pos pos;
723 	int ret;
724 
725 	nanddev_offs_to_pos(nand, offs, &pos);
726 #ifndef __UBOOT__
727 	mutex_lock(&spinand->lock);
728 #endif
729 	ret = nanddev_isbad(nand, &pos);
730 #ifndef __UBOOT__
731 	mutex_unlock(&spinand->lock);
732 #endif
733 	return ret;
734 }
735 
736 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
737 {
738 	struct spinand_device *spinand = nand_to_spinand(nand);
739 	u8 marker[2] = { 0, 0 };
740 	struct nand_page_io_req req = {
741 		.pos = *pos,
742 		.ooboffs = 0,
743 		.ooblen = sizeof(marker),
744 		.oobbuf.out = marker,
745 		.mode = MTD_OPS_RAW,
746 	};
747 	int ret;
748 
749 	ret = spinand_select_target(spinand, pos->target);
750 	if (ret)
751 		return ret;
752 
753 	ret = spinand_write_enable_op(spinand);
754 	if (ret)
755 		return ret;
756 
757 	return spinand_write_page(spinand, &req);
758 }
759 
760 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
761 {
762 	struct nand_device *nand = mtd_to_nanddev(mtd);
763 #ifndef __UBOOT__
764 	struct spinand_device *spinand = nand_to_spinand(nand);
765 #endif
766 	struct nand_pos pos;
767 	int ret;
768 
769 	nanddev_offs_to_pos(nand, offs, &pos);
770 #ifndef __UBOOT__
771 	mutex_lock(&spinand->lock);
772 #endif
773 	ret = nanddev_markbad(nand, &pos);
774 #ifndef __UBOOT__
775 	mutex_unlock(&spinand->lock);
776 #endif
777 	return ret;
778 }
779 
780 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
781 {
782 	struct spinand_device *spinand = nand_to_spinand(nand);
783 	u8 status;
784 	int ret;
785 
786 	ret = spinand_select_target(spinand, pos->target);
787 	if (ret)
788 		return ret;
789 
790 	ret = spinand_write_enable_op(spinand);
791 	if (ret)
792 		return ret;
793 
794 	ret = spinand_erase_op(spinand, pos);
795 	if (ret)
796 		return ret;
797 
798 	ret = spinand_wait(spinand, &status);
799 	if (!ret && (status & STATUS_ERASE_FAILED))
800 		ret = -EIO;
801 
802 	return ret;
803 }
804 
805 static int spinand_mtd_erase(struct mtd_info *mtd,
806 			     struct erase_info *einfo)
807 {
808 #ifndef __UBOOT__
809 	struct spinand_device *spinand = mtd_to_spinand(mtd);
810 #endif
811 	int ret;
812 
813 #ifndef __UBOOT__
814 	mutex_lock(&spinand->lock);
815 #endif
816 	ret = nanddev_mtd_erase(mtd, einfo);
817 #ifndef __UBOOT__
818 	mutex_unlock(&spinand->lock);
819 #endif
820 
821 	return ret;
822 }
823 
824 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
825 {
826 #ifndef __UBOOT__
827 	struct spinand_device *spinand = mtd_to_spinand(mtd);
828 #endif
829 	struct nand_device *nand = mtd_to_nanddev(mtd);
830 	struct nand_pos pos;
831 	int ret;
832 
833 	nanddev_offs_to_pos(nand, offs, &pos);
834 #ifndef __UBOOT__
835 	mutex_lock(&spinand->lock);
836 #endif
837 	ret = nanddev_isreserved(nand, &pos);
838 #ifndef __UBOOT__
839 	mutex_unlock(&spinand->lock);
840 #endif
841 
842 	return ret;
843 }
844 
845 const struct spi_mem_op *
846 spinand_find_supported_op(struct spinand_device *spinand,
847 			  const struct spi_mem_op *ops,
848 			  unsigned int nops)
849 {
850 	unsigned int i;
851 
852 	for (i = 0; i < nops; i++) {
853 		if (spi_mem_supports_op(spinand->slave, &ops[i]))
854 			return &ops[i];
855 	}
856 
857 	return NULL;
858 }
859 
860 static const struct nand_ops spinand_ops = {
861 	.erase = spinand_erase,
862 	.markbad = spinand_markbad,
863 	.isbad = spinand_isbad,
864 };
865 
866 static const struct spinand_manufacturer *spinand_manufacturers[] = {
867 #ifdef CONFIG_SPI_NAND_GIGADEVICE
868 	&gigadevice_spinand_manufacturer,
869 #endif
870 #ifdef CONFIG_SPI_NAND_MACRONIX
871 	&macronix_spinand_manufacturer,
872 #endif
873 #ifdef CONFIG_SPI_NAND_MICRON
874 	&micron_spinand_manufacturer,
875 #endif
876 #ifdef CONFIG_SPI_NAND_TOSHIBA
877 	&toshiba_spinand_manufacturer,
878 #endif
879 #ifdef CONFIG_SPI_NAND_WINBOND
880 	&winbond_spinand_manufacturer,
881 #endif
882 #ifdef CONFIG_SPI_NAND_DOSILICON
883 	&dosilicon_spinand_manufacturer,
884 #endif
885 #ifdef CONFIG_SPI_NAND_ESMT
886 	&esmt_spinand_manufacturer,
887 #endif
888 #ifdef CONFIG_SPI_NAND_XINCUN
889 	&xincun_spinand_manufacturer,
890 #endif
891 #ifdef CONFIG_SPI_NAND_XTX
892 	&xtx_spinand_manufacturer,
893 #endif
894 #ifdef CONFIG_SPI_NAND_HYF
895 	&hyf_spinand_manufacturer,
896 #endif
897 #ifdef CONFIG_SPI_NAND_FMSH
898 	&fmsh_spinand_manufacturer,
899 #endif
900 #ifdef CONFIG_SPI_NAND_FORESEE
901 	&foresee_spinand_manufacturer,
902 #endif
903 #ifdef CONFIG_SPI_NAND_BIWIN
904 	&biwin_spinand_manufacturer,
905 #endif
906 #ifdef CONFIG_SPI_NAND_ETRON
907 	&etron_spinand_manufacturer,
908 #endif
909 #ifdef CONFIG_SPI_NAND_JSC
910 	&jsc_spinand_manufacturer,
911 #endif
912 #ifdef CONFIG_SPI_NAND_SILICONGO
913 	&silicongo_spinand_manufacturer,
914 #endif
915 #ifdef CONFIG_SPI_NAND_UNIM
916 	&unim_spinand_manufacturer,
917 	&unim_zl_spinand_manufacturer,
918 #endif
919 #ifdef CONFIG_SPI_NAND_SKYHIGH
920 	&skyhigh_spinand_manufacturer,
921 #endif
922 #ifdef CONFIG_SPI_NAND_GSTO
923 	&gsto_spinand_manufacturer,
924 #endif
925 #ifdef CONFIG_SPI_NAND_ZBIT
926 	&zbit_spinand_manufacturer,
927 #endif
928 #ifdef CONFIG_SPI_NAND_HIKSEMI
929 	&hiksemi_spinand_manufacturer,
930 #endif
931 };
932 
933 static int spinand_manufacturer_match(struct spinand_device *spinand,
934 				      enum spinand_readid_method rdid_method)
935 {
936 	u8 *id = spinand->id.data;
937 	unsigned int i;
938 	int ret;
939 
940 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
941 		const struct spinand_manufacturer *manufacturer =
942 			spinand_manufacturers[i];
943 
944 		if (id[0] != manufacturer->id)
945 			continue;
946 
947 		ret = spinand_match_and_init(spinand,
948 					     manufacturer->chips,
949 					     manufacturer->nchips,
950 					     rdid_method);
951 		if (ret < 0)
952 			continue;
953 
954 		spinand->manufacturer = manufacturer;
955 		return 0;
956 	}
957 	return -ENOTSUPP;
958 }
959 
960 static int spinand_id_detect(struct spinand_device *spinand)
961 {
962 	u8 *id = spinand->id.data;
963 	int ret;
964 
965 	ret = spinand_read_id_op(spinand, 0, 0, id);
966 	if (ret)
967 		return ret;
968 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
969 	if (!ret)
970 		return 0;
971 
972 	ret = spinand_read_id_op(spinand, 1, 0, id);
973 	if (ret)
974 		return ret;
975 	ret = spinand_manufacturer_match(spinand,
976 					 SPINAND_READID_METHOD_OPCODE_ADDR);
977 	if (!ret)
978 		return 0;
979 
980 	ret = spinand_read_id_op(spinand, 0, 1, id);
981 	if (ret)
982 		return ret;
983 	ret = spinand_manufacturer_match(spinand,
984 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
985 
986 	return ret;
987 }
988 
989 static int spinand_manufacturer_init(struct spinand_device *spinand)
990 {
991 	if (spinand->manufacturer->ops->init)
992 		return spinand->manufacturer->ops->init(spinand);
993 
994 	return 0;
995 }
996 
997 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
998 {
999 	/* Release manufacturer private data */
1000 	if (spinand->manufacturer->ops->cleanup)
1001 		return spinand->manufacturer->ops->cleanup(spinand);
1002 }
1003 
1004 static const struct spi_mem_op *
1005 spinand_select_op_variant(struct spinand_device *spinand,
1006 			  const struct spinand_op_variants *variants)
1007 {
1008 	struct nand_device *nand = spinand_to_nand(spinand);
1009 	unsigned int i;
1010 
1011 	for (i = 0; i < variants->nops; i++) {
1012 		struct spi_mem_op op = variants->ops[i];
1013 		unsigned int nbytes;
1014 		int ret;
1015 
1016 		nbytes = nanddev_per_page_oobsize(nand) +
1017 			 nanddev_page_size(nand);
1018 
1019 		while (nbytes) {
1020 			op.data.nbytes = nbytes;
1021 			ret = spi_mem_adjust_op_size(spinand->slave, &op);
1022 			if (ret)
1023 				break;
1024 
1025 			if (!spi_mem_supports_op(spinand->slave, &op))
1026 				break;
1027 
1028 			nbytes -= op.data.nbytes;
1029 		}
1030 
1031 		if (!nbytes)
1032 			return &variants->ops[i];
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
1038 /**
1039  * spinand_match_and_init() - Try to find a match between a device ID and an
1040  *			      entry in a spinand_info table
1041  * @spinand: SPI NAND object
1042  * @table: SPI NAND device description table
1043  * @table_size: size of the device description table
1044  * @rdid_method: read id method to match
1045  *
1046  * Match between a device ID retrieved through the READ_ID command and an
1047  * entry in the SPI NAND description table. If a match is found, the spinand
1048  * object will be initialized with information provided by the matching
1049  * spinand_info entry.
1050  *
1051  * Return: 0 on success, a negative error code otherwise.
1052  */
1053 int spinand_match_and_init(struct spinand_device *spinand,
1054 			   const struct spinand_info *table,
1055 			   unsigned int table_size,
1056 			   enum spinand_readid_method rdid_method)
1057 {
1058 	u8 *id = spinand->id.data;
1059 	struct nand_device *nand = spinand_to_nand(spinand);
1060 	unsigned int i;
1061 
1062 	for (i = 0; i < table_size; i++) {
1063 		const struct spinand_info *info = &table[i];
1064 		const struct spi_mem_op *op;
1065 
1066 		if (rdid_method != info->devid.method)
1067 			continue;
1068 
1069 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1070 			continue;
1071 
1072 		nand->memorg = table[i].memorg;
1073 		nand->eccreq = table[i].eccreq;
1074 		spinand->eccinfo = table[i].eccinfo;
1075 		spinand->flags = table[i].flags;
1076 		spinand->id.len = 1 + table[i].devid.len;
1077 		spinand->select_target = table[i].select_target;
1078 
1079 		op = spinand_select_op_variant(spinand,
1080 					       info->op_variants.read_cache);
1081 		if (!op)
1082 			return -ENOTSUPP;
1083 
1084 		spinand->op_templates.read_cache = op;
1085 
1086 		op = spinand_select_op_variant(spinand,
1087 					       info->op_variants.write_cache);
1088 		if (!op)
1089 			return -ENOTSUPP;
1090 
1091 		spinand->op_templates.write_cache = op;
1092 
1093 		op = spinand_select_op_variant(spinand,
1094 					       info->op_variants.update_cache);
1095 		spinand->op_templates.update_cache = op;
1096 
1097 		return 0;
1098 	}
1099 
1100 	return -ENOTSUPP;
1101 }
1102 
1103 static int spinand_detect(struct spinand_device *spinand)
1104 {
1105 	struct nand_device *nand = spinand_to_nand(spinand);
1106 	int ret;
1107 
1108 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
1109 	ret = spinand_reset_op(spinand);
1110 	if (ret)
1111 		return ret;
1112 #endif
1113 
1114 	ret = spinand_id_detect(spinand);
1115 	if (ret) {
1116 		dev_err(dev, "unknown raw ID %x %x %x\n",
1117 			spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1118 		return ret;
1119 	}
1120 	dev_err(dev, "SPI Nand ID %x %x %x\n",
1121 		spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1122 
1123 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1124 		dev_err(dev,
1125 			"SPI NANDs with more than one die must implement ->select_target()\n");
1126 		return -EINVAL;
1127 	}
1128 
1129 	dev_info(spinand->slave->dev,
1130 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1131 	dev_info(spinand->slave->dev,
1132 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1133 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1134 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1135 
1136 	return 0;
1137 }
1138 
1139 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
1140 				       struct mtd_oob_region *region)
1141 {
1142 	return -ERANGE;
1143 }
1144 
1145 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1146 					struct mtd_oob_region *region)
1147 {
1148 	if (section)
1149 		return -ERANGE;
1150 
1151 	/* Reserve 2 bytes for the BBM. */
1152 	region->offset = 2;
1153 	region->length = 62;
1154 
1155 	return 0;
1156 }
1157 
1158 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1159 	.ecc = spinand_noecc_ooblayout_ecc,
1160 	.rfree = spinand_noecc_ooblayout_free,
1161 };
1162 
1163 static int spinand_init(struct spinand_device *spinand)
1164 {
1165 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1166 	struct nand_device *nand = mtd_to_nanddev(mtd);
1167 	int ret, i;
1168 
1169 	/*
1170 	 * We need a scratch buffer because the spi_mem interface requires that
1171 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1172 	 */
1173 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1174 	if (!spinand->scratchbuf)
1175 		return -ENOMEM;
1176 
1177 	ret = spinand_detect(spinand);
1178 	if (ret)
1179 		goto err_free_bufs;
1180 
1181 	/*
1182 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1183 	 * may use this buffer for DMA access.
1184 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1185 	 */
1186 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1187 			       nanddev_per_page_oobsize(nand),
1188 			       GFP_KERNEL);
1189 	if (!spinand->databuf) {
1190 		ret = -ENOMEM;
1191 		goto err_free_bufs;
1192 	}
1193 
1194 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1195 
1196 	ret = spinand_init_cfg_cache(spinand);
1197 	if (ret)
1198 		goto err_free_bufs;
1199 
1200 	ret = spinand_init_quad_enable(spinand);
1201 	if (ret)
1202 		goto err_free_bufs;
1203 
1204 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1205 	if (ret)
1206 		goto err_free_bufs;
1207 
1208 	ret = spinand_manufacturer_init(spinand);
1209 	if (ret) {
1210 		dev_err(dev,
1211 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1212 			ret);
1213 		goto err_free_bufs;
1214 	}
1215 
1216 	/* After power up, all blocks are locked, so unlock them here. */
1217 	for (i = 0; i < nand->memorg.ntargets; i++) {
1218 		ret = spinand_select_target(spinand, i);
1219 		if (ret)
1220 			goto err_free_bufs;
1221 
1222 		/* HWP_EN must be enabled first before block unlock region is set */
1223 		if (spinand->id.data[0] == 0x01) {
1224 			ret = spinand_lock_block(spinand, HWP_EN);
1225 			if (ret)
1226 				goto err_free_bufs;
1227 		}
1228 
1229 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1230 		if (ret)
1231 			goto err_free_bufs;
1232 	}
1233 
1234 	nand->bbt.option = NANDDEV_BBT_USE_FLASH;
1235 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1236 	if (ret)
1237 		goto err_manuf_cleanup;
1238 
1239 	/*
1240 	 * Right now, we don't support ECC, so let the whole oob
1241 	 * area is available for user.
1242 	 */
1243 	mtd->_read_oob = spinand_mtd_read;
1244 	mtd->_write_oob = spinand_mtd_write;
1245 	mtd->_block_isbad = spinand_mtd_block_isbad;
1246 	mtd->_block_markbad = spinand_mtd_block_markbad;
1247 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1248 	mtd->_erase = spinand_mtd_erase;
1249 
1250 	if (spinand->eccinfo.ooblayout)
1251 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1252 	else
1253 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1254 
1255 	ret = mtd_ooblayout_count_freebytes(mtd);
1256 	if (ret < 0)
1257 		goto err_cleanup_nanddev;
1258 
1259 	mtd->oobavail = ret;
1260 
1261 	/* Propagate ECC information to mtd_info */
1262 	mtd->ecc_strength = nand->eccreq.strength;
1263 	mtd->ecc_step_size = nand->eccreq.step_size;
1264 
1265 	return 0;
1266 
1267 err_cleanup_nanddev:
1268 	nanddev_cleanup(nand);
1269 
1270 err_manuf_cleanup:
1271 	spinand_manufacturer_cleanup(spinand);
1272 
1273 err_free_bufs:
1274 	kfree(spinand->databuf);
1275 	kfree(spinand->scratchbuf);
1276 	return ret;
1277 }
1278 
1279 static void spinand_cleanup(struct spinand_device *spinand)
1280 {
1281 	struct nand_device *nand = spinand_to_nand(spinand);
1282 
1283 	nanddev_cleanup(nand);
1284 	spinand_manufacturer_cleanup(spinand);
1285 	kfree(spinand->databuf);
1286 	kfree(spinand->scratchbuf);
1287 }
1288 
1289 static int spinand_bind(struct udevice *udev)
1290 {
1291 	int ret = 0;
1292 
1293 #ifdef CONFIG_MTD_BLK
1294 	struct udevice *bdev;
1295 
1296 	ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD,
1297 				 BLK_MTD_SPI_NAND, 512, 0, &bdev);
1298 	if (ret)
1299 		printf("Cannot create block device\n");
1300 #endif
1301 	return ret;
1302 }
1303 
1304 static int spinand_probe(struct udevice *dev)
1305 {
1306 	struct spinand_device *spinand = dev_get_priv(dev);
1307 	struct spi_slave *slave = dev_get_parent_priv(dev);
1308 	struct mtd_info *mtd = dev_get_uclass_priv(dev);
1309 	struct nand_device *nand = spinand_to_nand(spinand);
1310 	int ret;
1311 
1312 #ifndef __UBOOT__
1313 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1314 			       GFP_KERNEL);
1315 	if (!spinand)
1316 		return -ENOMEM;
1317 
1318 	spinand->spimem = mem;
1319 	spi_mem_set_drvdata(mem, spinand);
1320 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1321 	mutex_init(&spinand->lock);
1322 
1323 	mtd = spinand_to_mtd(spinand);
1324 	mtd->dev.parent = &mem->spi->dev;
1325 #else
1326 	nand->mtd = mtd;
1327 	mtd->priv = nand;
1328 	mtd->dev = dev;
1329 	mtd->name = malloc(20);
1330 	if (!mtd->name)
1331 		return -ENOMEM;
1332 	sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1333 	spinand->slave = slave;
1334 	spinand_set_of_node(spinand, dev->node.np);
1335 #endif
1336 
1337 	ret = spinand_init(spinand);
1338 	if (ret)
1339 		return ret;
1340 
1341 #ifndef __UBOOT__
1342 	ret = mtd_device_register(mtd, NULL, 0);
1343 #else
1344 	ret = add_mtd_device(mtd);
1345 #endif
1346 	if (ret)
1347 		goto err_spinand_cleanup;
1348 
1349 	return 0;
1350 
1351 err_spinand_cleanup:
1352 	spinand_cleanup(spinand);
1353 
1354 	return ret;
1355 }
1356 
1357 #ifndef __UBOOT__
1358 static int spinand_remove(struct udevice *slave)
1359 {
1360 	struct spinand_device *spinand;
1361 	struct mtd_info *mtd;
1362 	int ret;
1363 
1364 	spinand = spi_mem_get_drvdata(slave);
1365 	mtd = spinand_to_mtd(spinand);
1366 	free(mtd->name);
1367 
1368 	ret = mtd_device_unregister(mtd);
1369 	if (ret)
1370 		return ret;
1371 
1372 	spinand_cleanup(spinand);
1373 
1374 	return 0;
1375 }
1376 
1377 static const struct spi_device_id spinand_ids[] = {
1378 	{ .name = "spi-nand" },
1379 	{ /* sentinel */ },
1380 };
1381 
1382 #ifdef CONFIG_OF
1383 static const struct of_device_id spinand_of_ids[] = {
1384 	{ .compatible = "spi-nand" },
1385 	{ /* sentinel */ },
1386 };
1387 #endif
1388 
1389 static struct spi_mem_driver spinand_drv = {
1390 	.spidrv = {
1391 		.id_table = spinand_ids,
1392 		.driver = {
1393 			.name = "spi-nand",
1394 			.of_match_table = of_match_ptr(spinand_of_ids),
1395 		},
1396 	},
1397 	.probe = spinand_probe,
1398 	.remove = spinand_remove,
1399 };
1400 module_spi_mem_driver(spinand_drv);
1401 
1402 MODULE_DESCRIPTION("SPI NAND framework");
1403 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1404 MODULE_LICENSE("GPL v2");
1405 #endif /* __UBOOT__ */
1406 
1407 static const struct udevice_id spinand_ids[] = {
1408 	{ .compatible = "spi-nand" },
1409 	{ /* sentinel */ },
1410 };
1411 
1412 U_BOOT_DRIVER(spinand) = {
1413 	.name = "spi_nand",
1414 	.id = UCLASS_MTD,
1415 	.of_match = spinand_ids,
1416 	.bind	= spinand_bind,
1417 	.priv_auto_alloc_size = sizeof(struct spinand_device),
1418 	.probe = spinand_probe,
1419 };
1420