1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #ifndef __UBOOT__ 13 #include <linux/device.h> 14 #include <linux/jiffies.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mtd/spinand.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 #else 23 #include <common.h> 24 #include <errno.h> 25 #include <spi.h> 26 #include <spi-mem.h> 27 #include <linux/mtd/spinand.h> 28 #endif 29 30 /* SPI NAND index visible in MTD names */ 31 static int spi_nand_idx; 32 33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, 34 const struct nand_page_io_req *req, 35 u16 *column) 36 { 37 struct nand_device *nand = spinand_to_nand(spinand); 38 unsigned int shift; 39 40 if (nand->memorg.planes_per_lun < 2) 41 return; 42 43 /* The plane number is passed in MSB just above the column address */ 44 shift = fls(nand->memorg.pagesize); 45 *column |= req->pos.plane << shift; 46 } 47 48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 49 { 50 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 51 spinand->scratchbuf); 52 int ret; 53 54 ret = spi_mem_exec_op(spinand->slave, &op); 55 if (ret) 56 return ret; 57 58 *val = *spinand->scratchbuf; 59 return 0; 60 } 61 62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 63 { 64 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 65 spinand->scratchbuf); 66 67 *spinand->scratchbuf = val; 68 return spi_mem_exec_op(spinand->slave, &op); 69 } 70 71 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 72 { 73 return spinand_read_reg_op(spinand, REG_STATUS, status); 74 } 75 76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 77 { 78 struct nand_device *nand = spinand_to_nand(spinand); 79 80 if (WARN_ON(spinand->cur_target < 0 || 81 spinand->cur_target >= nand->memorg.ntargets)) 82 return -EINVAL; 83 84 *cfg = spinand->cfg_cache[spinand->cur_target]; 85 return 0; 86 } 87 88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 89 { 90 struct nand_device *nand = spinand_to_nand(spinand); 91 int ret; 92 93 if (WARN_ON(spinand->cur_target < 0 || 94 spinand->cur_target >= nand->memorg.ntargets)) 95 return -EINVAL; 96 97 if (spinand->cfg_cache[spinand->cur_target] == cfg) 98 return 0; 99 100 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 101 if (ret) 102 return ret; 103 104 spinand->cfg_cache[spinand->cur_target] = cfg; 105 return 0; 106 } 107 108 /** 109 * spinand_upd_cfg() - Update the configuration register 110 * @spinand: the spinand device 111 * @mask: the mask encoding the bits to update in the config reg 112 * @val: the new value to apply 113 * 114 * Update the configuration register. 115 * 116 * Return: 0 on success, a negative error code otherwise. 117 */ 118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 119 { 120 int ret; 121 u8 cfg; 122 123 ret = spinand_get_cfg(spinand, &cfg); 124 if (ret) 125 return ret; 126 127 cfg &= ~mask; 128 cfg |= val; 129 130 return spinand_set_cfg(spinand, cfg); 131 } 132 133 /** 134 * spinand_select_target() - Select a specific NAND target/die 135 * @spinand: the spinand device 136 * @target: the target/die to select 137 * 138 * Select a new target/die. If chip only has one die, this function is a NOOP. 139 * 140 * Return: 0 on success, a negative error code otherwise. 141 */ 142 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 143 { 144 struct nand_device *nand = spinand_to_nand(spinand); 145 int ret; 146 147 if (WARN_ON(target >= nand->memorg.ntargets)) 148 return -EINVAL; 149 150 if (spinand->cur_target == target) 151 return 0; 152 153 if (nand->memorg.ntargets == 1) { 154 spinand->cur_target = target; 155 return 0; 156 } 157 158 ret = spinand->select_target(spinand, target); 159 if (ret) 160 return ret; 161 162 spinand->cur_target = target; 163 return 0; 164 } 165 166 static int spinand_init_cfg_cache(struct spinand_device *spinand) 167 { 168 struct nand_device *nand = spinand_to_nand(spinand); 169 struct udevice *dev = spinand->slave->dev; 170 unsigned int target; 171 int ret; 172 173 spinand->cfg_cache = devm_kzalloc(dev, 174 sizeof(*spinand->cfg_cache) * 175 nand->memorg.ntargets, 176 GFP_KERNEL); 177 if (!spinand->cfg_cache) 178 return -ENOMEM; 179 180 for (target = 0; target < nand->memorg.ntargets; target++) { 181 ret = spinand_select_target(spinand, target); 182 if (ret) 183 return ret; 184 185 /* 186 * We use spinand_read_reg_op() instead of spinand_get_cfg() 187 * here to bypass the config cache. 188 */ 189 ret = spinand_read_reg_op(spinand, REG_CFG, 190 &spinand->cfg_cache[target]); 191 if (ret) 192 return ret; 193 } 194 195 return 0; 196 } 197 198 static int spinand_init_quad_enable(struct spinand_device *spinand) 199 { 200 bool enable = false; 201 202 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 203 return 0; 204 205 if (spinand->op_templates.read_cache->data.buswidth == 4 || 206 spinand->op_templates.write_cache->data.buswidth == 4 || 207 spinand->op_templates.update_cache->data.buswidth == 4) 208 enable = true; 209 210 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 211 enable ? CFG_QUAD_ENABLE : 0); 212 } 213 214 static int spinand_ecc_enable(struct spinand_device *spinand, 215 bool enable) 216 { 217 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 218 enable ? CFG_ECC_ENABLE : 0); 219 } 220 221 static int spinand_write_enable_op(struct spinand_device *spinand) 222 { 223 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 224 225 return spi_mem_exec_op(spinand->slave, &op); 226 } 227 228 static int spinand_load_page_op(struct spinand_device *spinand, 229 const struct nand_page_io_req *req) 230 { 231 struct nand_device *nand = spinand_to_nand(spinand); 232 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 233 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 234 235 return spi_mem_exec_op(spinand->slave, &op); 236 } 237 238 static int spinand_read_from_cache_op(struct spinand_device *spinand, 239 const struct nand_page_io_req *req) 240 { 241 struct spi_mem_op op = *spinand->op_templates.read_cache; 242 struct nand_device *nand = spinand_to_nand(spinand); 243 struct mtd_info *mtd = nanddev_to_mtd(nand); 244 struct nand_page_io_req adjreq = *req; 245 unsigned int nbytes = 0; 246 void *buf = NULL; 247 u16 column = 0; 248 int ret; 249 250 if (req->datalen) { 251 adjreq.datalen = nanddev_page_size(nand); 252 adjreq.dataoffs = 0; 253 adjreq.databuf.in = spinand->databuf; 254 buf = spinand->databuf; 255 nbytes = adjreq.datalen; 256 } 257 258 if (req->ooblen) { 259 adjreq.ooblen = nanddev_per_page_oobsize(nand); 260 adjreq.ooboffs = 0; 261 adjreq.oobbuf.in = spinand->oobbuf; 262 nbytes += nanddev_per_page_oobsize(nand); 263 if (!buf) { 264 buf = spinand->oobbuf; 265 column = nanddev_page_size(nand); 266 } 267 } 268 269 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 270 op.addr.val = column; 271 272 /* 273 * Some controllers are limited in term of max RX data size. In this 274 * case, just repeat the READ_CACHE operation after updating the 275 * column. 276 */ 277 while (nbytes) { 278 op.data.buf.in = buf; 279 op.data.nbytes = nbytes; 280 ret = spi_mem_adjust_op_size(spinand->slave, &op); 281 if (ret) 282 return ret; 283 284 ret = spi_mem_exec_op(spinand->slave, &op); 285 if (ret) 286 return ret; 287 288 buf += op.data.nbytes; 289 nbytes -= op.data.nbytes; 290 op.addr.val += op.data.nbytes; 291 } 292 293 if (req->datalen) 294 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 295 req->datalen); 296 297 if (req->ooblen) { 298 if (req->mode == MTD_OPS_AUTO_OOB) 299 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 300 spinand->oobbuf, 301 req->ooboffs, 302 req->ooblen); 303 else 304 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 305 req->ooblen); 306 } 307 308 return 0; 309 } 310 311 static int spinand_write_to_cache_op(struct spinand_device *spinand, 312 const struct nand_page_io_req *req) 313 { 314 struct spi_mem_op op = *spinand->op_templates.write_cache; 315 struct nand_device *nand = spinand_to_nand(spinand); 316 struct mtd_info *mtd = nanddev_to_mtd(nand); 317 struct nand_page_io_req adjreq = *req; 318 unsigned int nbytes = 0; 319 void *buf = NULL; 320 u16 column = 0; 321 int ret; 322 323 memset(spinand->databuf, 0xff, 324 nanddev_page_size(nand) + 325 nanddev_per_page_oobsize(nand)); 326 327 if (req->datalen) { 328 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 329 req->datalen); 330 adjreq.dataoffs = 0; 331 adjreq.datalen = nanddev_page_size(nand); 332 adjreq.databuf.out = spinand->databuf; 333 nbytes = adjreq.datalen; 334 buf = spinand->databuf; 335 } 336 337 if (req->ooblen) { 338 if (req->mode == MTD_OPS_AUTO_OOB) 339 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 340 spinand->oobbuf, 341 req->ooboffs, 342 req->ooblen); 343 else 344 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 345 req->ooblen); 346 347 adjreq.ooblen = nanddev_per_page_oobsize(nand); 348 adjreq.ooboffs = 0; 349 nbytes += nanddev_per_page_oobsize(nand); 350 if (!buf) { 351 buf = spinand->oobbuf; 352 column = nanddev_page_size(nand); 353 } 354 } 355 356 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 357 358 op = *spinand->op_templates.write_cache; 359 op.addr.val = column; 360 361 /* 362 * Some controllers are limited in term of max TX data size. In this 363 * case, split the operation into one LOAD CACHE and one or more 364 * LOAD RANDOM CACHE. 365 */ 366 while (nbytes) { 367 op.data.buf.out = buf; 368 op.data.nbytes = nbytes; 369 370 ret = spi_mem_adjust_op_size(spinand->slave, &op); 371 if (ret) 372 return ret; 373 374 ret = spi_mem_exec_op(spinand->slave, &op); 375 if (ret) 376 return ret; 377 378 buf += op.data.nbytes; 379 nbytes -= op.data.nbytes; 380 op.addr.val += op.data.nbytes; 381 382 /* 383 * We need to use the RANDOM LOAD CACHE operation if there's 384 * more than one iteration, because the LOAD operation resets 385 * the cache to 0xff. 386 */ 387 if (nbytes) { 388 column = op.addr.val; 389 op = *spinand->op_templates.update_cache; 390 op.addr.val = column; 391 } 392 } 393 394 return 0; 395 } 396 397 static int spinand_program_op(struct spinand_device *spinand, 398 const struct nand_page_io_req *req) 399 { 400 struct nand_device *nand = spinand_to_nand(spinand); 401 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 402 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 403 404 return spi_mem_exec_op(spinand->slave, &op); 405 } 406 407 static int spinand_erase_op(struct spinand_device *spinand, 408 const struct nand_pos *pos) 409 { 410 struct nand_device *nand = &spinand->base; 411 unsigned int row = nanddev_pos_to_row(nand, pos); 412 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 413 414 return spi_mem_exec_op(spinand->slave, &op); 415 } 416 417 static int spinand_wait(struct spinand_device *spinand, u8 *s) 418 { 419 unsigned long start, stop; 420 u8 status; 421 int ret; 422 423 start = get_timer(0); 424 stop = 400; 425 do { 426 ret = spinand_read_status(spinand, &status); 427 if (ret) 428 return ret; 429 430 if (!(status & STATUS_BUSY)) 431 goto out; 432 } while (get_timer(start) < stop); 433 434 /* 435 * Extra read, just in case the STATUS_READY bit has changed 436 * since our last check 437 */ 438 ret = spinand_read_status(spinand, &status); 439 if (ret) 440 return ret; 441 442 out: 443 if (s) 444 *s = status; 445 446 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 447 } 448 449 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, 450 u8 ndummy, u8 *buf) 451 { 452 struct spi_mem_op op = SPINAND_READID_OP( 453 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 454 int ret; 455 456 ret = spi_mem_exec_op(spinand->slave, &op); 457 if (!ret) 458 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 459 460 return ret; 461 } 462 463 static int spinand_reset_op(struct spinand_device *spinand) 464 { 465 struct spi_mem_op op = SPINAND_RESET_OP; 466 int ret; 467 468 ret = spi_mem_exec_op(spinand->slave, &op); 469 if (ret) 470 return ret; 471 472 return spinand_wait(spinand, NULL); 473 } 474 475 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 476 { 477 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 478 } 479 480 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 481 { 482 struct nand_device *nand = spinand_to_nand(spinand); 483 484 if (spinand->eccinfo.get_status) 485 return spinand->eccinfo.get_status(spinand, status); 486 487 switch (status & STATUS_ECC_MASK) { 488 case STATUS_ECC_NO_BITFLIPS: 489 return 0; 490 491 case STATUS_ECC_HAS_BITFLIPS: 492 /* 493 * We have no way to know exactly how many bitflips have been 494 * fixed, so let's return the maximum possible value so that 495 * wear-leveling layers move the data immediately. 496 */ 497 return nand->eccreq.strength; 498 499 case STATUS_ECC_UNCOR_ERROR: 500 return -EBADMSG; 501 502 default: 503 break; 504 } 505 506 return -EINVAL; 507 } 508 509 static int spinand_read_page(struct spinand_device *spinand, 510 const struct nand_page_io_req *req, 511 bool ecc_enabled) 512 { 513 u8 status; 514 int ret; 515 516 ret = spinand_load_page_op(spinand, req); 517 if (ret) 518 return ret; 519 520 ret = spinand_wait(spinand, &status); 521 if (ret < 0) 522 return ret; 523 524 ret = spinand_read_from_cache_op(spinand, req); 525 if (ret) 526 return ret; 527 528 if (!ecc_enabled) 529 return 0; 530 531 return spinand_check_ecc_status(spinand, status); 532 } 533 534 static int spinand_write_page(struct spinand_device *spinand, 535 const struct nand_page_io_req *req) 536 { 537 u8 status; 538 int ret; 539 540 ret = spinand_write_enable_op(spinand); 541 if (ret) 542 return ret; 543 544 ret = spinand_write_to_cache_op(spinand, req); 545 if (ret) 546 return ret; 547 548 ret = spinand_program_op(spinand, req); 549 if (ret) 550 return ret; 551 552 ret = spinand_wait(spinand, &status); 553 if (!ret && (status & STATUS_PROG_FAILED)) 554 ret = -EIO; 555 556 return ret; 557 } 558 559 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 560 struct mtd_oob_ops *ops) 561 { 562 struct spinand_device *spinand = mtd_to_spinand(mtd); 563 struct nand_device *nand = mtd_to_nanddev(mtd); 564 unsigned int max_bitflips = 0; 565 struct nand_io_iter iter; 566 bool enable_ecc = false; 567 bool ecc_failed = false; 568 int ret = 0; 569 570 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 571 enable_ecc = true; 572 573 #ifndef __UBOOT__ 574 mutex_lock(&spinand->lock); 575 #endif 576 577 nanddev_io_for_each_page(nand, from, ops, &iter) { 578 ret = spinand_select_target(spinand, iter.req.pos.target); 579 if (ret) 580 break; 581 582 ret = spinand_ecc_enable(spinand, enable_ecc); 583 if (ret) 584 break; 585 586 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 587 if (ret < 0 && ret != -EBADMSG) 588 break; 589 590 if (ret == -EBADMSG) { 591 ecc_failed = true; 592 mtd->ecc_stats.failed++; 593 ret = 0; 594 } else { 595 mtd->ecc_stats.corrected += ret; 596 max_bitflips = max_t(unsigned int, max_bitflips, ret); 597 } 598 599 ops->retlen += iter.req.datalen; 600 ops->oobretlen += iter.req.ooblen; 601 } 602 603 #ifndef __UBOOT__ 604 mutex_unlock(&spinand->lock); 605 #endif 606 if (ecc_failed && !ret) 607 ret = -EBADMSG; 608 609 return ret ? ret : max_bitflips; 610 } 611 612 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 613 struct mtd_oob_ops *ops) 614 { 615 struct spinand_device *spinand = mtd_to_spinand(mtd); 616 struct nand_device *nand = mtd_to_nanddev(mtd); 617 struct nand_io_iter iter; 618 bool enable_ecc = false; 619 int ret = 0; 620 621 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 622 enable_ecc = true; 623 624 #ifndef __UBOOT__ 625 mutex_lock(&spinand->lock); 626 #endif 627 628 nanddev_io_for_each_page(nand, to, ops, &iter) { 629 ret = spinand_select_target(spinand, iter.req.pos.target); 630 if (ret) 631 break; 632 633 ret = spinand_ecc_enable(spinand, enable_ecc); 634 if (ret) 635 break; 636 637 ret = spinand_write_page(spinand, &iter.req); 638 if (ret) 639 break; 640 641 ops->retlen += iter.req.datalen; 642 ops->oobretlen += iter.req.ooblen; 643 } 644 645 #ifndef __UBOOT__ 646 mutex_unlock(&spinand->lock); 647 #endif 648 649 return ret; 650 } 651 652 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 653 { 654 struct spinand_device *spinand = nand_to_spinand(nand); 655 u8 marker[2] = { }; 656 struct nand_page_io_req req = { 657 .pos = *pos, 658 .ooblen = sizeof(marker), 659 .ooboffs = 0, 660 .oobbuf.in = marker, 661 .mode = MTD_OPS_RAW, 662 }; 663 664 spinand_select_target(spinand, pos->target); 665 spinand_read_page(spinand, &req, false); 666 if (marker[0] != 0xff || marker[1] != 0xff) 667 return true; 668 669 return false; 670 } 671 672 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 673 { 674 struct nand_device *nand = mtd_to_nanddev(mtd); 675 #ifndef __UBOOT__ 676 struct spinand_device *spinand = nand_to_spinand(nand); 677 #endif 678 struct nand_pos pos; 679 int ret; 680 681 nanddev_offs_to_pos(nand, offs, &pos); 682 #ifndef __UBOOT__ 683 mutex_lock(&spinand->lock); 684 #endif 685 ret = nanddev_isbad(nand, &pos); 686 #ifndef __UBOOT__ 687 mutex_unlock(&spinand->lock); 688 #endif 689 return ret; 690 } 691 692 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 693 { 694 struct spinand_device *spinand = nand_to_spinand(nand); 695 u8 marker[2] = { 0, 0 }; 696 struct nand_page_io_req req = { 697 .pos = *pos, 698 .ooboffs = 0, 699 .ooblen = sizeof(marker), 700 .oobbuf.out = marker, 701 .mode = MTD_OPS_RAW, 702 }; 703 int ret; 704 705 ret = spinand_select_target(spinand, pos->target); 706 if (ret) 707 return ret; 708 709 return spinand_write_page(spinand, &req); 710 } 711 712 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 713 { 714 struct nand_device *nand = mtd_to_nanddev(mtd); 715 #ifndef __UBOOT__ 716 struct spinand_device *spinand = nand_to_spinand(nand); 717 #endif 718 struct nand_pos pos; 719 int ret; 720 721 nanddev_offs_to_pos(nand, offs, &pos); 722 #ifndef __UBOOT__ 723 mutex_lock(&spinand->lock); 724 #endif 725 ret = nanddev_markbad(nand, &pos); 726 #ifndef __UBOOT__ 727 mutex_unlock(&spinand->lock); 728 #endif 729 return ret; 730 } 731 732 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 733 { 734 struct spinand_device *spinand = nand_to_spinand(nand); 735 u8 status; 736 int ret; 737 738 ret = spinand_select_target(spinand, pos->target); 739 if (ret) 740 return ret; 741 742 ret = spinand_write_enable_op(spinand); 743 if (ret) 744 return ret; 745 746 ret = spinand_erase_op(spinand, pos); 747 if (ret) 748 return ret; 749 750 ret = spinand_wait(spinand, &status); 751 if (!ret && (status & STATUS_ERASE_FAILED)) 752 ret = -EIO; 753 754 return ret; 755 } 756 757 static int spinand_mtd_erase(struct mtd_info *mtd, 758 struct erase_info *einfo) 759 { 760 #ifndef __UBOOT__ 761 struct spinand_device *spinand = mtd_to_spinand(mtd); 762 #endif 763 int ret; 764 765 #ifndef __UBOOT__ 766 mutex_lock(&spinand->lock); 767 #endif 768 ret = nanddev_mtd_erase(mtd, einfo); 769 #ifndef __UBOOT__ 770 mutex_unlock(&spinand->lock); 771 #endif 772 773 return ret; 774 } 775 776 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 777 { 778 #ifndef __UBOOT__ 779 struct spinand_device *spinand = mtd_to_spinand(mtd); 780 #endif 781 struct nand_device *nand = mtd_to_nanddev(mtd); 782 struct nand_pos pos; 783 int ret; 784 785 nanddev_offs_to_pos(nand, offs, &pos); 786 #ifndef __UBOOT__ 787 mutex_lock(&spinand->lock); 788 #endif 789 ret = nanddev_isreserved(nand, &pos); 790 #ifndef __UBOOT__ 791 mutex_unlock(&spinand->lock); 792 #endif 793 794 return ret; 795 } 796 797 const struct spi_mem_op * 798 spinand_find_supported_op(struct spinand_device *spinand, 799 const struct spi_mem_op *ops, 800 unsigned int nops) 801 { 802 unsigned int i; 803 804 for (i = 0; i < nops; i++) { 805 if (spi_mem_supports_op(spinand->slave, &ops[i])) 806 return &ops[i]; 807 } 808 809 return NULL; 810 } 811 812 static const struct nand_ops spinand_ops = { 813 .erase = spinand_erase, 814 .markbad = spinand_markbad, 815 .isbad = spinand_isbad, 816 }; 817 818 static const struct spinand_manufacturer *spinand_manufacturers[] = { 819 #ifdef CONFIG_SPI_NAND_GIGADEVICE 820 &gigadevice_spinand_manufacturer, 821 #endif 822 #ifdef CONFIG_SPI_NAND_MACRONIX 823 ¯onix_spinand_manufacturer, 824 #endif 825 #ifdef CONFIG_SPI_NAND_MICRON 826 µn_spinand_manufacturer, 827 #endif 828 #ifdef CONFIG_SPI_NAND_TOSHIBA 829 &toshiba_spinand_manufacturer, 830 #endif 831 #ifdef CONFIG_SPI_NAND_WINBOND 832 &winbond_spinand_manufacturer, 833 #endif 834 #ifdef CONFIG_SPI_NAND_DOSILICON 835 &dosilicon_spinand_manufacturer, 836 #endif 837 #ifdef CONFIG_SPI_NAND_ESMT 838 &esmt_spinand_manufacturer, 839 #endif 840 #ifdef CONFIG_SPI_NAND_XINCUN 841 &xincun_spinand_manufacturer, 842 #endif 843 #ifdef CONFIG_SPI_NAND_XTX 844 &xtx_spinand_manufacturer, 845 #endif 846 #ifdef CONFIG_SPI_NAND_HYF 847 &hyf_spinand_manufacturer, 848 #endif 849 #ifdef CONFIG_SPI_NAND_FMSH 850 &fmsh_spinand_manufacturer, 851 #endif 852 #ifdef CONFIG_SPI_NAND_FORESEE 853 &foresee_spinand_manufacturer, 854 #endif 855 #ifdef CONFIG_SPI_NAND_BIWIN 856 &biwin_spinand_manufacturer, 857 #endif 858 #ifdef CONFIG_SPI_NAND_ETRON 859 &etron_spinand_manufacturer, 860 #endif 861 #ifdef CONFIG_SPI_NAND_JSC 862 &jsc_spinand_manufacturer, 863 #endif 864 #ifdef CONFIG_SPI_NAND_SILICONGO 865 &silicongo_spinand_manufacturer, 866 #endif 867 #ifdef CONFIG_SPI_NAND_UNIM 868 &unim_spinand_manufacturer, 869 #endif 870 #ifdef CONFIG_SPI_NAND_SKYHIGH 871 &skyhigh_spinand_manufacturer, 872 #endif 873 #ifdef CONFIG_SPI_NAND_GSTO 874 &gsto_spinand_manufacturer, 875 #endif 876 }; 877 878 static int spinand_manufacturer_match(struct spinand_device *spinand, 879 enum spinand_readid_method rdid_method) 880 { 881 u8 *id = spinand->id.data; 882 unsigned int i; 883 int ret; 884 885 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 886 const struct spinand_manufacturer *manufacturer = 887 spinand_manufacturers[i]; 888 889 if (id[0] != manufacturer->id) 890 continue; 891 892 ret = spinand_match_and_init(spinand, 893 manufacturer->chips, 894 manufacturer->nchips, 895 rdid_method); 896 if (ret < 0) 897 continue; 898 899 spinand->manufacturer = manufacturer; 900 return 0; 901 } 902 return -ENOTSUPP; 903 } 904 905 static int spinand_id_detect(struct spinand_device *spinand) 906 { 907 u8 *id = spinand->id.data; 908 int ret; 909 910 ret = spinand_read_id_op(spinand, 0, 0, id); 911 if (ret) 912 return ret; 913 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); 914 if (!ret) 915 return 0; 916 917 ret = spinand_read_id_op(spinand, 1, 0, id); 918 if (ret) 919 return ret; 920 ret = spinand_manufacturer_match(spinand, 921 SPINAND_READID_METHOD_OPCODE_ADDR); 922 if (!ret) 923 return 0; 924 925 ret = spinand_read_id_op(spinand, 0, 1, id); 926 if (ret) 927 return ret; 928 ret = spinand_manufacturer_match(spinand, 929 SPINAND_READID_METHOD_OPCODE_DUMMY); 930 931 return ret; 932 } 933 934 static int spinand_manufacturer_init(struct spinand_device *spinand) 935 { 936 if (spinand->manufacturer->ops->init) 937 return spinand->manufacturer->ops->init(spinand); 938 939 return 0; 940 } 941 942 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 943 { 944 /* Release manufacturer private data */ 945 if (spinand->manufacturer->ops->cleanup) 946 return spinand->manufacturer->ops->cleanup(spinand); 947 } 948 949 static const struct spi_mem_op * 950 spinand_select_op_variant(struct spinand_device *spinand, 951 const struct spinand_op_variants *variants) 952 { 953 struct nand_device *nand = spinand_to_nand(spinand); 954 unsigned int i; 955 956 for (i = 0; i < variants->nops; i++) { 957 struct spi_mem_op op = variants->ops[i]; 958 unsigned int nbytes; 959 int ret; 960 961 nbytes = nanddev_per_page_oobsize(nand) + 962 nanddev_page_size(nand); 963 964 while (nbytes) { 965 op.data.nbytes = nbytes; 966 ret = spi_mem_adjust_op_size(spinand->slave, &op); 967 if (ret) 968 break; 969 970 if (!spi_mem_supports_op(spinand->slave, &op)) 971 break; 972 973 nbytes -= op.data.nbytes; 974 } 975 976 if (!nbytes) 977 return &variants->ops[i]; 978 } 979 980 return NULL; 981 } 982 983 /** 984 * spinand_match_and_init() - Try to find a match between a device ID and an 985 * entry in a spinand_info table 986 * @spinand: SPI NAND object 987 * @table: SPI NAND device description table 988 * @table_size: size of the device description table 989 * @rdid_method: read id method to match 990 * 991 * Match between a device ID retrieved through the READ_ID command and an 992 * entry in the SPI NAND description table. If a match is found, the spinand 993 * object will be initialized with information provided by the matching 994 * spinand_info entry. 995 * 996 * Return: 0 on success, a negative error code otherwise. 997 */ 998 int spinand_match_and_init(struct spinand_device *spinand, 999 const struct spinand_info *table, 1000 unsigned int table_size, 1001 enum spinand_readid_method rdid_method) 1002 { 1003 u8 *id = spinand->id.data; 1004 struct nand_device *nand = spinand_to_nand(spinand); 1005 unsigned int i; 1006 1007 for (i = 0; i < table_size; i++) { 1008 const struct spinand_info *info = &table[i]; 1009 const struct spi_mem_op *op; 1010 1011 if (rdid_method != info->devid.method) 1012 continue; 1013 1014 if (memcmp(id + 1, info->devid.id, info->devid.len)) 1015 continue; 1016 1017 nand->memorg = table[i].memorg; 1018 nand->eccreq = table[i].eccreq; 1019 spinand->eccinfo = table[i].eccinfo; 1020 spinand->flags = table[i].flags; 1021 spinand->id.len = 1 + table[i].devid.len; 1022 spinand->select_target = table[i].select_target; 1023 1024 op = spinand_select_op_variant(spinand, 1025 info->op_variants.read_cache); 1026 if (!op) 1027 return -ENOTSUPP; 1028 1029 spinand->op_templates.read_cache = op; 1030 1031 op = spinand_select_op_variant(spinand, 1032 info->op_variants.write_cache); 1033 if (!op) 1034 return -ENOTSUPP; 1035 1036 spinand->op_templates.write_cache = op; 1037 1038 op = spinand_select_op_variant(spinand, 1039 info->op_variants.update_cache); 1040 spinand->op_templates.update_cache = op; 1041 1042 return 0; 1043 } 1044 1045 return -ENOTSUPP; 1046 } 1047 1048 static int spinand_detect(struct spinand_device *spinand) 1049 { 1050 struct nand_device *nand = spinand_to_nand(spinand); 1051 int ret; 1052 1053 ret = spinand_reset_op(spinand); 1054 if (ret) 1055 return ret; 1056 1057 ret = spinand_id_detect(spinand); 1058 if (ret) { 1059 dev_err(dev, "unknown raw ID %x %x %x\n", 1060 spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]); 1061 return ret; 1062 } 1063 1064 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 1065 dev_err(dev, 1066 "SPI NANDs with more than one die must implement ->select_target()\n"); 1067 return -EINVAL; 1068 } 1069 1070 dev_info(spinand->slave->dev, 1071 "%s SPI NAND was found.\n", spinand->manufacturer->name); 1072 dev_info(spinand->slave->dev, 1073 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 1074 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 1075 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 1076 1077 return 0; 1078 } 1079 1080 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 1081 struct mtd_oob_region *region) 1082 { 1083 return -ERANGE; 1084 } 1085 1086 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 1087 struct mtd_oob_region *region) 1088 { 1089 if (section) 1090 return -ERANGE; 1091 1092 /* Reserve 2 bytes for the BBM. */ 1093 region->offset = 2; 1094 region->length = 62; 1095 1096 return 0; 1097 } 1098 1099 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 1100 .ecc = spinand_noecc_ooblayout_ecc, 1101 .rfree = spinand_noecc_ooblayout_free, 1102 }; 1103 1104 static int spinand_init(struct spinand_device *spinand) 1105 { 1106 struct mtd_info *mtd = spinand_to_mtd(spinand); 1107 struct nand_device *nand = mtd_to_nanddev(mtd); 1108 int ret, i; 1109 1110 /* 1111 * We need a scratch buffer because the spi_mem interface requires that 1112 * buf passed in spi_mem_op->data.buf be DMA-able. 1113 */ 1114 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 1115 if (!spinand->scratchbuf) 1116 return -ENOMEM; 1117 1118 ret = spinand_detect(spinand); 1119 if (ret) 1120 goto err_free_bufs; 1121 1122 /* 1123 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 1124 * may use this buffer for DMA access. 1125 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 1126 */ 1127 spinand->databuf = kzalloc(nanddev_page_size(nand) + 1128 nanddev_per_page_oobsize(nand), 1129 GFP_KERNEL); 1130 if (!spinand->databuf) { 1131 ret = -ENOMEM; 1132 goto err_free_bufs; 1133 } 1134 1135 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 1136 1137 ret = spinand_init_cfg_cache(spinand); 1138 if (ret) 1139 goto err_free_bufs; 1140 1141 ret = spinand_init_quad_enable(spinand); 1142 if (ret) 1143 goto err_free_bufs; 1144 1145 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1146 if (ret) 1147 goto err_free_bufs; 1148 1149 ret = spinand_manufacturer_init(spinand); 1150 if (ret) { 1151 dev_err(dev, 1152 "Failed to initialize the SPI NAND chip (err = %d)\n", 1153 ret); 1154 goto err_free_bufs; 1155 } 1156 1157 /* After power up, all blocks are locked, so unlock them here. */ 1158 for (i = 0; i < nand->memorg.ntargets; i++) { 1159 ret = spinand_select_target(spinand, i); 1160 if (ret) 1161 goto err_free_bufs; 1162 1163 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1164 if (ret) 1165 goto err_free_bufs; 1166 } 1167 1168 nand->bbt.option = NANDDEV_BBT_USE_FLASH; 1169 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1170 if (ret) 1171 goto err_manuf_cleanup; 1172 1173 /* 1174 * Right now, we don't support ECC, so let the whole oob 1175 * area is available for user. 1176 */ 1177 mtd->_read_oob = spinand_mtd_read; 1178 mtd->_write_oob = spinand_mtd_write; 1179 mtd->_block_isbad = spinand_mtd_block_isbad; 1180 mtd->_block_markbad = spinand_mtd_block_markbad; 1181 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1182 mtd->_erase = spinand_mtd_erase; 1183 1184 if (spinand->eccinfo.ooblayout) 1185 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1186 else 1187 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1188 1189 ret = mtd_ooblayout_count_freebytes(mtd); 1190 if (ret < 0) 1191 goto err_cleanup_nanddev; 1192 1193 mtd->oobavail = ret; 1194 1195 /* Propagate ECC information to mtd_info */ 1196 mtd->ecc_strength = nand->eccreq.strength; 1197 mtd->ecc_step_size = nand->eccreq.step_size; 1198 1199 return 0; 1200 1201 err_cleanup_nanddev: 1202 nanddev_cleanup(nand); 1203 1204 err_manuf_cleanup: 1205 spinand_manufacturer_cleanup(spinand); 1206 1207 err_free_bufs: 1208 kfree(spinand->databuf); 1209 kfree(spinand->scratchbuf); 1210 return ret; 1211 } 1212 1213 static void spinand_cleanup(struct spinand_device *spinand) 1214 { 1215 struct nand_device *nand = spinand_to_nand(spinand); 1216 1217 nanddev_cleanup(nand); 1218 spinand_manufacturer_cleanup(spinand); 1219 kfree(spinand->databuf); 1220 kfree(spinand->scratchbuf); 1221 } 1222 1223 static int spinand_bind(struct udevice *udev) 1224 { 1225 int ret = 0; 1226 1227 #ifdef CONFIG_MTD_BLK 1228 struct udevice *bdev; 1229 1230 ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD, 1231 BLK_MTD_SPI_NAND, 512, 0, &bdev); 1232 if (ret) 1233 printf("Cannot create block device\n"); 1234 #endif 1235 return ret; 1236 } 1237 1238 static int spinand_probe(struct udevice *dev) 1239 { 1240 struct spinand_device *spinand = dev_get_priv(dev); 1241 struct spi_slave *slave = dev_get_parent_priv(dev); 1242 struct mtd_info *mtd = dev_get_uclass_priv(dev); 1243 struct nand_device *nand = spinand_to_nand(spinand); 1244 int ret; 1245 1246 #ifndef __UBOOT__ 1247 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1248 GFP_KERNEL); 1249 if (!spinand) 1250 return -ENOMEM; 1251 1252 spinand->spimem = mem; 1253 spi_mem_set_drvdata(mem, spinand); 1254 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1255 mutex_init(&spinand->lock); 1256 1257 mtd = spinand_to_mtd(spinand); 1258 mtd->dev.parent = &mem->spi->dev; 1259 #else 1260 nand->mtd = mtd; 1261 mtd->priv = nand; 1262 mtd->dev = dev; 1263 mtd->name = malloc(20); 1264 if (!mtd->name) 1265 return -ENOMEM; 1266 sprintf(mtd->name, "spi-nand%d", spi_nand_idx++); 1267 spinand->slave = slave; 1268 spinand_set_of_node(spinand, dev->node.np); 1269 #endif 1270 1271 ret = spinand_init(spinand); 1272 if (ret) 1273 return ret; 1274 1275 #ifndef __UBOOT__ 1276 ret = mtd_device_register(mtd, NULL, 0); 1277 #else 1278 ret = add_mtd_device(mtd); 1279 #endif 1280 if (ret) 1281 goto err_spinand_cleanup; 1282 1283 return 0; 1284 1285 err_spinand_cleanup: 1286 spinand_cleanup(spinand); 1287 1288 return ret; 1289 } 1290 1291 #ifndef __UBOOT__ 1292 static int spinand_remove(struct udevice *slave) 1293 { 1294 struct spinand_device *spinand; 1295 struct mtd_info *mtd; 1296 int ret; 1297 1298 spinand = spi_mem_get_drvdata(slave); 1299 mtd = spinand_to_mtd(spinand); 1300 free(mtd->name); 1301 1302 ret = mtd_device_unregister(mtd); 1303 if (ret) 1304 return ret; 1305 1306 spinand_cleanup(spinand); 1307 1308 return 0; 1309 } 1310 1311 static const struct spi_device_id spinand_ids[] = { 1312 { .name = "spi-nand" }, 1313 { /* sentinel */ }, 1314 }; 1315 1316 #ifdef CONFIG_OF 1317 static const struct of_device_id spinand_of_ids[] = { 1318 { .compatible = "spi-nand" }, 1319 { /* sentinel */ }, 1320 }; 1321 #endif 1322 1323 static struct spi_mem_driver spinand_drv = { 1324 .spidrv = { 1325 .id_table = spinand_ids, 1326 .driver = { 1327 .name = "spi-nand", 1328 .of_match_table = of_match_ptr(spinand_of_ids), 1329 }, 1330 }, 1331 .probe = spinand_probe, 1332 .remove = spinand_remove, 1333 }; 1334 module_spi_mem_driver(spinand_drv); 1335 1336 MODULE_DESCRIPTION("SPI NAND framework"); 1337 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1338 MODULE_LICENSE("GPL v2"); 1339 #endif /* __UBOOT__ */ 1340 1341 static const struct udevice_id spinand_ids[] = { 1342 { .compatible = "spi-nand" }, 1343 { /* sentinel */ }, 1344 }; 1345 1346 U_BOOT_DRIVER(spinand) = { 1347 .name = "spi_nand", 1348 .id = UCLASS_MTD, 1349 .of_match = spinand_ids, 1350 .bind = spinand_bind, 1351 .priv_auto_alloc_size = sizeof(struct spinand_device), 1352 .probe = spinand_probe, 1353 }; 1354