1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #ifndef __UBOOT__ 13 #include <linux/device.h> 14 #include <linux/jiffies.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mtd/spinand.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 #else 23 #include <common.h> 24 #include <errno.h> 25 #include <spi.h> 26 #include <spi-mem.h> 27 #include <linux/mtd/spinand.h> 28 #endif 29 30 /* SPI NAND index visible in MTD names */ 31 static int spi_nand_idx; 32 33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, 34 const struct nand_page_io_req *req, 35 u16 *column) 36 { 37 struct nand_device *nand = spinand_to_nand(spinand); 38 unsigned int shift; 39 40 if (nand->memorg.planes_per_lun < 2) 41 return; 42 43 /* The plane number is passed in MSB just above the column address */ 44 shift = fls(nand->memorg.pagesize); 45 *column |= req->pos.plane << shift; 46 } 47 48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 49 { 50 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 51 spinand->scratchbuf); 52 int ret; 53 54 ret = spi_mem_exec_op(spinand->slave, &op); 55 if (ret) 56 return ret; 57 58 *val = *spinand->scratchbuf; 59 return 0; 60 } 61 62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 63 { 64 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 65 spinand->scratchbuf); 66 67 *spinand->scratchbuf = val; 68 return spi_mem_exec_op(spinand->slave, &op); 69 } 70 71 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 72 { 73 return spinand_read_reg_op(spinand, REG_STATUS, status); 74 } 75 76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 77 { 78 struct nand_device *nand = spinand_to_nand(spinand); 79 80 if (WARN_ON(spinand->cur_target < 0 || 81 spinand->cur_target >= nand->memorg.ntargets)) 82 return -EINVAL; 83 84 *cfg = spinand->cfg_cache[spinand->cur_target]; 85 return 0; 86 } 87 88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 89 { 90 struct nand_device *nand = spinand_to_nand(spinand); 91 int ret; 92 93 if (WARN_ON(spinand->cur_target < 0 || 94 spinand->cur_target >= nand->memorg.ntargets)) 95 return -EINVAL; 96 97 if (spinand->cfg_cache[spinand->cur_target] == cfg) 98 return 0; 99 100 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 101 if (ret) 102 return ret; 103 104 spinand->cfg_cache[spinand->cur_target] = cfg; 105 return 0; 106 } 107 108 /** 109 * spinand_upd_cfg() - Update the configuration register 110 * @spinand: the spinand device 111 * @mask: the mask encoding the bits to update in the config reg 112 * @val: the new value to apply 113 * 114 * Update the configuration register. 115 * 116 * Return: 0 on success, a negative error code otherwise. 117 */ 118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 119 { 120 int ret; 121 u8 cfg; 122 123 ret = spinand_get_cfg(spinand, &cfg); 124 if (ret) 125 return ret; 126 127 cfg &= ~mask; 128 cfg |= val; 129 130 return spinand_set_cfg(spinand, cfg); 131 } 132 133 /** 134 * spinand_select_target() - Select a specific NAND target/die 135 * @spinand: the spinand device 136 * @target: the target/die to select 137 * 138 * Select a new target/die. If chip only has one die, this function is a NOOP. 139 * 140 * Return: 0 on success, a negative error code otherwise. 141 */ 142 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 143 { 144 struct nand_device *nand = spinand_to_nand(spinand); 145 int ret; 146 147 if (WARN_ON(target >= nand->memorg.ntargets)) 148 return -EINVAL; 149 150 if (spinand->cur_target == target) 151 return 0; 152 153 if (nand->memorg.ntargets == 1) { 154 spinand->cur_target = target; 155 return 0; 156 } 157 158 ret = spinand->select_target(spinand, target); 159 if (ret) 160 return ret; 161 162 spinand->cur_target = target; 163 return 0; 164 } 165 166 static int spinand_init_cfg_cache(struct spinand_device *spinand) 167 { 168 struct nand_device *nand = spinand_to_nand(spinand); 169 struct udevice *dev = spinand->slave->dev; 170 unsigned int target; 171 int ret; 172 173 spinand->cfg_cache = devm_kzalloc(dev, 174 sizeof(*spinand->cfg_cache) * 175 nand->memorg.ntargets, 176 GFP_KERNEL); 177 if (!spinand->cfg_cache) 178 return -ENOMEM; 179 180 for (target = 0; target < nand->memorg.ntargets; target++) { 181 ret = spinand_select_target(spinand, target); 182 if (ret) 183 return ret; 184 185 /* 186 * We use spinand_read_reg_op() instead of spinand_get_cfg() 187 * here to bypass the config cache. 188 */ 189 ret = spinand_read_reg_op(spinand, REG_CFG, 190 &spinand->cfg_cache[target]); 191 if (ret) 192 return ret; 193 } 194 195 return 0; 196 } 197 198 static int spinand_init_quad_enable(struct spinand_device *spinand) 199 { 200 bool enable = false; 201 202 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 203 return 0; 204 205 if (spinand->op_templates.read_cache->data.buswidth == 4 || 206 spinand->op_templates.write_cache->data.buswidth == 4 || 207 spinand->op_templates.update_cache->data.buswidth == 4) 208 enable = true; 209 210 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 211 enable ? CFG_QUAD_ENABLE : 0); 212 } 213 214 static int spinand_ecc_enable(struct spinand_device *spinand, 215 bool enable) 216 { 217 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 218 enable ? CFG_ECC_ENABLE : 0); 219 } 220 221 static int spinand_write_enable_op(struct spinand_device *spinand) 222 { 223 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 224 225 return spi_mem_exec_op(spinand->slave, &op); 226 } 227 228 static int spinand_load_page_op(struct spinand_device *spinand, 229 const struct nand_page_io_req *req) 230 { 231 struct nand_device *nand = spinand_to_nand(spinand); 232 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 233 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 234 235 return spi_mem_exec_op(spinand->slave, &op); 236 } 237 238 static int spinand_read_from_cache_op(struct spinand_device *spinand, 239 const struct nand_page_io_req *req) 240 { 241 struct spi_mem_op op = *spinand->op_templates.read_cache; 242 struct nand_device *nand = spinand_to_nand(spinand); 243 struct mtd_info *mtd = nanddev_to_mtd(nand); 244 struct nand_page_io_req adjreq = *req; 245 unsigned int nbytes = 0; 246 void *buf = NULL; 247 u16 column = 0; 248 int ret; 249 250 if (req->datalen) { 251 adjreq.datalen = nanddev_page_size(nand); 252 adjreq.dataoffs = 0; 253 adjreq.databuf.in = spinand->databuf; 254 buf = spinand->databuf; 255 nbytes = adjreq.datalen; 256 } 257 258 if (spinand->support_cont_read && req->datalen) { 259 adjreq.datalen = req->datalen; 260 adjreq.dataoffs = 0; 261 adjreq.databuf.in = req->databuf.in; 262 buf = req->databuf.in; 263 nbytes = adjreq.datalen; 264 } 265 266 if (req->ooblen) { 267 adjreq.ooblen = nanddev_per_page_oobsize(nand); 268 adjreq.ooboffs = 0; 269 adjreq.oobbuf.in = spinand->oobbuf; 270 nbytes += nanddev_per_page_oobsize(nand); 271 if (!buf) { 272 buf = spinand->oobbuf; 273 column = nanddev_page_size(nand); 274 } 275 } 276 277 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 278 op.addr.val = column; 279 280 /* 281 * Some controllers are limited in term of max RX data size. In this 282 * case, just repeat the READ_CACHE operation after updating the 283 * column. 284 */ 285 while (nbytes) { 286 op.data.buf.in = buf; 287 op.data.nbytes = nbytes; 288 ret = spi_mem_adjust_op_size(spinand->slave, &op); 289 if (ret) 290 return ret; 291 292 if (spinand->support_cont_read) 293 op.addr.nbytes = 3; 294 ret = spi_mem_exec_op(spinand->slave, &op); 295 if (ret) 296 return ret; 297 298 buf += op.data.nbytes; 299 nbytes -= op.data.nbytes; 300 op.addr.val += op.data.nbytes; 301 } 302 303 if (!spinand->support_cont_read && req->datalen) 304 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen); 305 306 if (req->ooblen) { 307 if (req->mode == MTD_OPS_AUTO_OOB) 308 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 309 spinand->oobbuf, 310 req->ooboffs, 311 req->ooblen); 312 else 313 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 314 req->ooblen); 315 } 316 317 return 0; 318 } 319 320 static int spinand_write_to_cache_op(struct spinand_device *spinand, 321 const struct nand_page_io_req *req) 322 { 323 struct spi_mem_op op = *spinand->op_templates.write_cache; 324 struct nand_device *nand = spinand_to_nand(spinand); 325 struct mtd_info *mtd = nanddev_to_mtd(nand); 326 struct nand_page_io_req adjreq = *req; 327 unsigned int nbytes = 0; 328 void *buf = NULL; 329 u16 column = 0; 330 int ret; 331 332 /* 333 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset 334 * the cache content to 0xFF (depends on vendor implementation), so we 335 * must fill the page cache entirely even if we only want to program 336 * the data portion of the page, otherwise we might corrupt the BBM or 337 * user data previously programmed in OOB area. 338 */ 339 memset(spinand->databuf, 0xff, 340 nanddev_page_size(nand) + 341 nanddev_per_page_oobsize(nand)); 342 343 if (req->datalen) { 344 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 345 req->datalen); 346 adjreq.dataoffs = 0; 347 adjreq.datalen = nanddev_page_size(nand); 348 adjreq.databuf.out = spinand->databuf; 349 nbytes = adjreq.datalen; 350 buf = spinand->databuf; 351 } 352 353 if (req->ooblen) { 354 if (req->mode == MTD_OPS_AUTO_OOB) 355 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 356 spinand->oobbuf, 357 req->ooboffs, 358 req->ooblen); 359 else 360 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 361 req->ooblen); 362 363 adjreq.ooblen = nanddev_per_page_oobsize(nand); 364 adjreq.ooboffs = 0; 365 nbytes += nanddev_per_page_oobsize(nand); 366 if (!buf) { 367 buf = spinand->oobbuf; 368 column = nanddev_page_size(nand); 369 } 370 } 371 372 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 373 374 op = *spinand->op_templates.write_cache; 375 op.addr.val = column; 376 377 /* 378 * Some controllers are limited in term of max TX data size. In this 379 * case, split the operation into one LOAD CACHE and one or more 380 * LOAD RANDOM CACHE. 381 */ 382 while (nbytes) { 383 op.data.buf.out = buf; 384 op.data.nbytes = nbytes; 385 386 ret = spi_mem_adjust_op_size(spinand->slave, &op); 387 if (ret) 388 return ret; 389 390 ret = spi_mem_exec_op(spinand->slave, &op); 391 if (ret) 392 return ret; 393 394 buf += op.data.nbytes; 395 nbytes -= op.data.nbytes; 396 op.addr.val += op.data.nbytes; 397 398 /* 399 * We need to use the RANDOM LOAD CACHE operation if there's 400 * more than one iteration, because the LOAD operation resets 401 * the cache to 0xff. 402 */ 403 if (nbytes) { 404 column = op.addr.val; 405 op = *spinand->op_templates.update_cache; 406 op.addr.val = column; 407 } 408 } 409 410 return 0; 411 } 412 413 static int spinand_program_op(struct spinand_device *spinand, 414 const struct nand_page_io_req *req) 415 { 416 struct nand_device *nand = spinand_to_nand(spinand); 417 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 418 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 419 420 return spi_mem_exec_op(spinand->slave, &op); 421 } 422 423 static int spinand_erase_op(struct spinand_device *spinand, 424 const struct nand_pos *pos) 425 { 426 struct nand_device *nand = &spinand->base; 427 unsigned int row = nanddev_pos_to_row(nand, pos); 428 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 429 430 return spi_mem_exec_op(spinand->slave, &op); 431 } 432 433 static int spinand_wait(struct spinand_device *spinand, u8 *s) 434 { 435 unsigned long start, stop; 436 u8 status; 437 int ret; 438 439 start = get_timer(0); 440 stop = 400; 441 do { 442 ret = spinand_read_status(spinand, &status); 443 if (ret) 444 return ret; 445 446 if (!(status & STATUS_BUSY)) 447 goto out; 448 } while (get_timer(start) < stop); 449 450 /* 451 * Extra read, just in case the STATUS_READY bit has changed 452 * since our last check 453 */ 454 ret = spinand_read_status(spinand, &status); 455 if (ret) 456 return ret; 457 458 out: 459 if (s) 460 *s = status; 461 462 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 463 } 464 465 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, 466 u8 ndummy, u8 *buf) 467 { 468 struct spi_mem_op op = SPINAND_READID_OP( 469 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 470 int ret; 471 472 ret = spi_mem_exec_op(spinand->slave, &op); 473 if (!ret) 474 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 475 476 return ret; 477 } 478 479 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG) 480 static int spinand_reset_op(struct spinand_device *spinand) 481 { 482 struct spi_mem_op op = SPINAND_RESET_OP; 483 int ret; 484 485 ret = spi_mem_exec_op(spinand->slave, &op); 486 if (ret) 487 return ret; 488 489 return spinand_wait(spinand, NULL); 490 } 491 #endif 492 493 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 494 { 495 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 496 } 497 498 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 499 { 500 struct nand_device *nand = spinand_to_nand(spinand); 501 502 if (spinand->eccinfo.get_status) 503 return spinand->eccinfo.get_status(spinand, status); 504 505 switch (status & STATUS_ECC_MASK) { 506 case STATUS_ECC_NO_BITFLIPS: 507 return 0; 508 509 case STATUS_ECC_HAS_BITFLIPS: 510 /* 511 * We have no way to know exactly how many bitflips have been 512 * fixed, so let's return the maximum possible value so that 513 * wear-leveling layers move the data immediately. 514 */ 515 return nand->eccreq.strength; 516 517 case STATUS_ECC_UNCOR_ERROR: 518 return -EBADMSG; 519 520 default: 521 break; 522 } 523 524 return -EINVAL; 525 } 526 527 static int spinand_read_page(struct spinand_device *spinand, 528 const struct nand_page_io_req *req, 529 bool ecc_enabled) 530 { 531 u8 status = 0; 532 int ret; 533 534 ret = spinand_load_page_op(spinand, req); 535 if (ret) 536 return ret; 537 538 ret = spinand_wait(spinand, &status); 539 /* 540 * When there is data outside of OIP in the status, the status data is 541 * inaccurate and needs to be reconfirmed 542 */ 543 if (spinand->id.data[0] == 0x01 && status && !ret) 544 ret = spinand_wait(spinand, &status); 545 if (ret < 0) 546 return ret; 547 548 ret = spinand_read_from_cache_op(spinand, req); 549 if (ret) 550 return ret; 551 552 if (spinand->support_cont_read && !(spinand->slave->mode & SPI_DMA_PREPARE)) 553 spinand_wait(spinand, &status); 554 555 if (!ecc_enabled) 556 return 0; 557 558 return spinand_check_ecc_status(spinand, status); 559 } 560 561 static int spinand_write_page(struct spinand_device *spinand, 562 const struct nand_page_io_req *req) 563 { 564 u8 status; 565 int ret; 566 567 ret = spinand_write_enable_op(spinand); 568 if (ret) 569 return ret; 570 571 ret = spinand_write_to_cache_op(spinand, req); 572 if (ret) 573 return ret; 574 575 ret = spinand_program_op(spinand, req); 576 if (ret) 577 return ret; 578 579 ret = spinand_wait(spinand, &status); 580 if (!ret && (status & STATUS_PROG_FAILED)) 581 ret = -EIO; 582 583 return ret; 584 } 585 586 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 587 struct mtd_oob_ops *ops) 588 { 589 struct spinand_device *spinand = mtd_to_spinand(mtd); 590 struct nand_device *nand = mtd_to_nanddev(mtd); 591 unsigned int max_bitflips = 0; 592 struct nand_io_iter iter; 593 bool enable_ecc = false; 594 bool ecc_failed = false; 595 int ret = 0; 596 597 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 598 enable_ecc = true; 599 600 #ifndef __UBOOT__ 601 mutex_lock(&spinand->lock); 602 #endif 603 604 nanddev_io_for_each_page(nand, from, ops, &iter) { 605 ret = spinand_select_target(spinand, iter.req.pos.target); 606 if (ret) 607 break; 608 609 ret = spinand_ecc_enable(spinand, enable_ecc); 610 if (ret) 611 break; 612 613 if (spinand->support_cont_read) { 614 iter.req.datalen = ops->len; 615 iter.req.ooblen = 0; 616 } 617 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 618 if (ret < 0 && ret != -EBADMSG) 619 break; 620 621 if (ret == -EBADMSG) { 622 ecc_failed = true; 623 mtd->ecc_stats.failed++; 624 } else { 625 mtd->ecc_stats.corrected += ret; 626 max_bitflips = max_t(unsigned int, max_bitflips, ret); 627 } 628 629 ret = 0; 630 if (spinand->support_cont_read) { 631 ops->retlen = ops->len; 632 ops->oobretlen = ops->ooblen; 633 break; 634 } 635 636 ops->retlen += iter.req.datalen; 637 ops->oobretlen += iter.req.ooblen; 638 } 639 640 #ifndef __UBOOT__ 641 mutex_unlock(&spinand->lock); 642 #endif 643 if (ecc_failed && !ret) 644 ret = -EBADMSG; 645 646 return ret ? ret : max_bitflips; 647 } 648 649 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 650 struct mtd_oob_ops *ops) 651 { 652 struct spinand_device *spinand = mtd_to_spinand(mtd); 653 struct nand_device *nand = mtd_to_nanddev(mtd); 654 struct nand_io_iter iter; 655 bool enable_ecc = false; 656 int ret = 0; 657 658 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 659 enable_ecc = true; 660 661 #ifndef __UBOOT__ 662 mutex_lock(&spinand->lock); 663 #endif 664 665 nanddev_io_for_each_page(nand, to, ops, &iter) { 666 ret = spinand_select_target(spinand, iter.req.pos.target); 667 if (ret) 668 break; 669 670 ret = spinand_ecc_enable(spinand, enable_ecc); 671 if (ret) 672 break; 673 674 ret = spinand_write_page(spinand, &iter.req); 675 if (ret) 676 break; 677 678 ops->retlen += iter.req.datalen; 679 ops->oobretlen += iter.req.ooblen; 680 } 681 682 #ifndef __UBOOT__ 683 mutex_unlock(&spinand->lock); 684 #endif 685 686 return ret; 687 } 688 689 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 690 { 691 struct spinand_device *spinand = nand_to_spinand(nand); 692 u8 marker[2] = { }; 693 struct nand_page_io_req req = { 694 .pos = *pos, 695 .ooblen = sizeof(marker), 696 .ooboffs = 0, 697 .oobbuf.in = marker, 698 .mode = MTD_OPS_RAW, 699 }; 700 701 spinand_select_target(spinand, pos->target); 702 spinand_read_page(spinand, &req, false); 703 if (marker[0] != 0xff || marker[1] != 0xff) 704 return true; 705 706 return false; 707 } 708 709 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 710 { 711 struct nand_device *nand = mtd_to_nanddev(mtd); 712 #ifndef __UBOOT__ 713 struct spinand_device *spinand = nand_to_spinand(nand); 714 #endif 715 struct nand_pos pos; 716 int ret; 717 718 nanddev_offs_to_pos(nand, offs, &pos); 719 #ifndef __UBOOT__ 720 mutex_lock(&spinand->lock); 721 #endif 722 ret = nanddev_isbad(nand, &pos); 723 #ifndef __UBOOT__ 724 mutex_unlock(&spinand->lock); 725 #endif 726 return ret; 727 } 728 729 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 730 { 731 struct spinand_device *spinand = nand_to_spinand(nand); 732 u8 marker[2] = { 0, 0 }; 733 struct nand_page_io_req req = { 734 .pos = *pos, 735 .ooboffs = 0, 736 .ooblen = sizeof(marker), 737 .oobbuf.out = marker, 738 .mode = MTD_OPS_RAW, 739 }; 740 int ret; 741 742 ret = spinand_select_target(spinand, pos->target); 743 if (ret) 744 return ret; 745 746 ret = spinand_write_enable_op(spinand); 747 if (ret) 748 return ret; 749 750 return spinand_write_page(spinand, &req); 751 } 752 753 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 754 { 755 struct nand_device *nand = mtd_to_nanddev(mtd); 756 #ifndef __UBOOT__ 757 struct spinand_device *spinand = nand_to_spinand(nand); 758 #endif 759 struct nand_pos pos; 760 int ret; 761 762 nanddev_offs_to_pos(nand, offs, &pos); 763 #ifndef __UBOOT__ 764 mutex_lock(&spinand->lock); 765 #endif 766 ret = nanddev_markbad(nand, &pos); 767 #ifndef __UBOOT__ 768 mutex_unlock(&spinand->lock); 769 #endif 770 return ret; 771 } 772 773 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 774 { 775 struct spinand_device *spinand = nand_to_spinand(nand); 776 u8 status; 777 int ret; 778 779 ret = spinand_select_target(spinand, pos->target); 780 if (ret) 781 return ret; 782 783 ret = spinand_write_enable_op(spinand); 784 if (ret) 785 return ret; 786 787 ret = spinand_erase_op(spinand, pos); 788 if (ret) 789 return ret; 790 791 ret = spinand_wait(spinand, &status); 792 if (!ret && (status & STATUS_ERASE_FAILED)) 793 ret = -EIO; 794 795 return ret; 796 } 797 798 static int spinand_mtd_erase(struct mtd_info *mtd, 799 struct erase_info *einfo) 800 { 801 #ifndef __UBOOT__ 802 struct spinand_device *spinand = mtd_to_spinand(mtd); 803 #endif 804 int ret; 805 806 #ifndef __UBOOT__ 807 mutex_lock(&spinand->lock); 808 #endif 809 ret = nanddev_mtd_erase(mtd, einfo); 810 #ifndef __UBOOT__ 811 mutex_unlock(&spinand->lock); 812 #endif 813 814 return ret; 815 } 816 817 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 818 { 819 #ifndef __UBOOT__ 820 struct spinand_device *spinand = mtd_to_spinand(mtd); 821 #endif 822 struct nand_device *nand = mtd_to_nanddev(mtd); 823 struct nand_pos pos; 824 int ret; 825 826 nanddev_offs_to_pos(nand, offs, &pos); 827 #ifndef __UBOOT__ 828 mutex_lock(&spinand->lock); 829 #endif 830 ret = nanddev_isreserved(nand, &pos); 831 #ifndef __UBOOT__ 832 mutex_unlock(&spinand->lock); 833 #endif 834 835 return ret; 836 } 837 838 const struct spi_mem_op * 839 spinand_find_supported_op(struct spinand_device *spinand, 840 const struct spi_mem_op *ops, 841 unsigned int nops) 842 { 843 unsigned int i; 844 845 for (i = 0; i < nops; i++) { 846 if (spi_mem_supports_op(spinand->slave, &ops[i])) 847 return &ops[i]; 848 } 849 850 return NULL; 851 } 852 853 static const struct nand_ops spinand_ops = { 854 .erase = spinand_erase, 855 .markbad = spinand_markbad, 856 .isbad = spinand_isbad, 857 }; 858 859 static const struct spinand_manufacturer *spinand_manufacturers[] = { 860 #ifdef CONFIG_SPI_NAND_GIGADEVICE 861 &gigadevice_spinand_manufacturer, 862 #endif 863 #ifdef CONFIG_SPI_NAND_MACRONIX 864 ¯onix_spinand_manufacturer, 865 #endif 866 #ifdef CONFIG_SPI_NAND_MICRON 867 µn_spinand_manufacturer, 868 #endif 869 #ifdef CONFIG_SPI_NAND_TOSHIBA 870 &toshiba_spinand_manufacturer, 871 #endif 872 #ifdef CONFIG_SPI_NAND_WINBOND 873 &winbond_spinand_manufacturer, 874 #endif 875 #ifdef CONFIG_SPI_NAND_DOSILICON 876 &dosilicon_spinand_manufacturer, 877 #endif 878 #ifdef CONFIG_SPI_NAND_ESMT 879 &esmt_spinand_manufacturer, 880 #endif 881 #ifdef CONFIG_SPI_NAND_XINCUN 882 &xincun_spinand_manufacturer, 883 #endif 884 #ifdef CONFIG_SPI_NAND_XTX 885 &xtx_spinand_manufacturer, 886 #endif 887 #ifdef CONFIG_SPI_NAND_HYF 888 &hyf_spinand_manufacturer, 889 #endif 890 #ifdef CONFIG_SPI_NAND_FMSH 891 &fmsh_spinand_manufacturer, 892 #endif 893 #ifdef CONFIG_SPI_NAND_FORESEE 894 &foresee_spinand_manufacturer, 895 #endif 896 #ifdef CONFIG_SPI_NAND_BIWIN 897 &biwin_spinand_manufacturer, 898 #endif 899 #ifdef CONFIG_SPI_NAND_ETRON 900 &etron_spinand_manufacturer, 901 #endif 902 #ifdef CONFIG_SPI_NAND_JSC 903 &jsc_spinand_manufacturer, 904 #endif 905 #ifdef CONFIG_SPI_NAND_SILICONGO 906 &silicongo_spinand_manufacturer, 907 #endif 908 #ifdef CONFIG_SPI_NAND_UNIM 909 &unim_spinand_manufacturer, 910 &unim_zl_spinand_manufacturer, 911 #endif 912 #ifdef CONFIG_SPI_NAND_SKYHIGH 913 &skyhigh_spinand_manufacturer, 914 #endif 915 #ifdef CONFIG_SPI_NAND_GSTO 916 &gsto_spinand_manufacturer, 917 #endif 918 #ifdef CONFIG_SPI_NAND_ZBIT 919 &zbit_spinand_manufacturer, 920 #endif 921 }; 922 923 static int spinand_manufacturer_match(struct spinand_device *spinand, 924 enum spinand_readid_method rdid_method) 925 { 926 u8 *id = spinand->id.data; 927 unsigned int i; 928 int ret; 929 930 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 931 const struct spinand_manufacturer *manufacturer = 932 spinand_manufacturers[i]; 933 934 if (id[0] != manufacturer->id) 935 continue; 936 937 ret = spinand_match_and_init(spinand, 938 manufacturer->chips, 939 manufacturer->nchips, 940 rdid_method); 941 if (ret < 0) 942 continue; 943 944 spinand->manufacturer = manufacturer; 945 return 0; 946 } 947 return -ENOTSUPP; 948 } 949 950 static int spinand_id_detect(struct spinand_device *spinand) 951 { 952 u8 *id = spinand->id.data; 953 int ret; 954 955 ret = spinand_read_id_op(spinand, 0, 0, id); 956 if (ret) 957 return ret; 958 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); 959 if (!ret) 960 return 0; 961 962 ret = spinand_read_id_op(spinand, 1, 0, id); 963 if (ret) 964 return ret; 965 ret = spinand_manufacturer_match(spinand, 966 SPINAND_READID_METHOD_OPCODE_ADDR); 967 if (!ret) 968 return 0; 969 970 ret = spinand_read_id_op(spinand, 0, 1, id); 971 if (ret) 972 return ret; 973 ret = spinand_manufacturer_match(spinand, 974 SPINAND_READID_METHOD_OPCODE_DUMMY); 975 976 return ret; 977 } 978 979 static int spinand_manufacturer_init(struct spinand_device *spinand) 980 { 981 if (spinand->manufacturer->ops->init) 982 return spinand->manufacturer->ops->init(spinand); 983 984 return 0; 985 } 986 987 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 988 { 989 /* Release manufacturer private data */ 990 if (spinand->manufacturer->ops->cleanup) 991 return spinand->manufacturer->ops->cleanup(spinand); 992 } 993 994 static const struct spi_mem_op * 995 spinand_select_op_variant(struct spinand_device *spinand, 996 const struct spinand_op_variants *variants) 997 { 998 struct nand_device *nand = spinand_to_nand(spinand); 999 unsigned int i; 1000 1001 for (i = 0; i < variants->nops; i++) { 1002 struct spi_mem_op op = variants->ops[i]; 1003 unsigned int nbytes; 1004 int ret; 1005 1006 nbytes = nanddev_per_page_oobsize(nand) + 1007 nanddev_page_size(nand); 1008 1009 while (nbytes) { 1010 op.data.nbytes = nbytes; 1011 ret = spi_mem_adjust_op_size(spinand->slave, &op); 1012 if (ret) 1013 break; 1014 1015 if (!spi_mem_supports_op(spinand->slave, &op)) 1016 break; 1017 1018 nbytes -= op.data.nbytes; 1019 } 1020 1021 if (!nbytes) 1022 return &variants->ops[i]; 1023 } 1024 1025 return NULL; 1026 } 1027 1028 /** 1029 * spinand_match_and_init() - Try to find a match between a device ID and an 1030 * entry in a spinand_info table 1031 * @spinand: SPI NAND object 1032 * @table: SPI NAND device description table 1033 * @table_size: size of the device description table 1034 * @rdid_method: read id method to match 1035 * 1036 * Match between a device ID retrieved through the READ_ID command and an 1037 * entry in the SPI NAND description table. If a match is found, the spinand 1038 * object will be initialized with information provided by the matching 1039 * spinand_info entry. 1040 * 1041 * Return: 0 on success, a negative error code otherwise. 1042 */ 1043 int spinand_match_and_init(struct spinand_device *spinand, 1044 const struct spinand_info *table, 1045 unsigned int table_size, 1046 enum spinand_readid_method rdid_method) 1047 { 1048 u8 *id = spinand->id.data; 1049 struct nand_device *nand = spinand_to_nand(spinand); 1050 unsigned int i; 1051 1052 for (i = 0; i < table_size; i++) { 1053 const struct spinand_info *info = &table[i]; 1054 const struct spi_mem_op *op; 1055 1056 if (rdid_method != info->devid.method) 1057 continue; 1058 1059 if (memcmp(id + 1, info->devid.id, info->devid.len)) 1060 continue; 1061 1062 nand->memorg = table[i].memorg; 1063 nand->eccreq = table[i].eccreq; 1064 spinand->eccinfo = table[i].eccinfo; 1065 spinand->flags = table[i].flags; 1066 spinand->id.len = 1 + table[i].devid.len; 1067 spinand->select_target = table[i].select_target; 1068 1069 op = spinand_select_op_variant(spinand, 1070 info->op_variants.read_cache); 1071 if (!op) 1072 return -ENOTSUPP; 1073 1074 spinand->op_templates.read_cache = op; 1075 1076 op = spinand_select_op_variant(spinand, 1077 info->op_variants.write_cache); 1078 if (!op) 1079 return -ENOTSUPP; 1080 1081 spinand->op_templates.write_cache = op; 1082 1083 op = spinand_select_op_variant(spinand, 1084 info->op_variants.update_cache); 1085 spinand->op_templates.update_cache = op; 1086 1087 return 0; 1088 } 1089 1090 return -ENOTSUPP; 1091 } 1092 1093 static int spinand_detect(struct spinand_device *spinand) 1094 { 1095 struct nand_device *nand = spinand_to_nand(spinand); 1096 int ret; 1097 1098 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG) 1099 ret = spinand_reset_op(spinand); 1100 if (ret) 1101 return ret; 1102 #endif 1103 1104 ret = spinand_id_detect(spinand); 1105 if (ret) { 1106 dev_err(dev, "unknown raw ID %x %x %x\n", 1107 spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]); 1108 return ret; 1109 } 1110 dev_err(dev, "SPI Nand ID %x %x %x\n", 1111 spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]); 1112 1113 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 1114 dev_err(dev, 1115 "SPI NANDs with more than one die must implement ->select_target()\n"); 1116 return -EINVAL; 1117 } 1118 1119 dev_info(spinand->slave->dev, 1120 "%s SPI NAND was found.\n", spinand->manufacturer->name); 1121 dev_info(spinand->slave->dev, 1122 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 1123 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 1124 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 1125 1126 return 0; 1127 } 1128 1129 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 1130 struct mtd_oob_region *region) 1131 { 1132 return -ERANGE; 1133 } 1134 1135 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 1136 struct mtd_oob_region *region) 1137 { 1138 if (section) 1139 return -ERANGE; 1140 1141 /* Reserve 2 bytes for the BBM. */ 1142 region->offset = 2; 1143 region->length = 62; 1144 1145 return 0; 1146 } 1147 1148 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 1149 .ecc = spinand_noecc_ooblayout_ecc, 1150 .rfree = spinand_noecc_ooblayout_free, 1151 }; 1152 1153 static int spinand_init(struct spinand_device *spinand) 1154 { 1155 struct mtd_info *mtd = spinand_to_mtd(spinand); 1156 struct nand_device *nand = mtd_to_nanddev(mtd); 1157 int ret, i; 1158 1159 /* 1160 * We need a scratch buffer because the spi_mem interface requires that 1161 * buf passed in spi_mem_op->data.buf be DMA-able. 1162 */ 1163 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 1164 if (!spinand->scratchbuf) 1165 return -ENOMEM; 1166 1167 ret = spinand_detect(spinand); 1168 if (ret) 1169 goto err_free_bufs; 1170 1171 /* 1172 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 1173 * may use this buffer for DMA access. 1174 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 1175 */ 1176 spinand->databuf = kzalloc(nanddev_page_size(nand) + 1177 nanddev_per_page_oobsize(nand), 1178 GFP_KERNEL); 1179 if (!spinand->databuf) { 1180 ret = -ENOMEM; 1181 goto err_free_bufs; 1182 } 1183 1184 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 1185 1186 ret = spinand_init_cfg_cache(spinand); 1187 if (ret) 1188 goto err_free_bufs; 1189 1190 ret = spinand_init_quad_enable(spinand); 1191 if (ret) 1192 goto err_free_bufs; 1193 1194 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1195 if (ret) 1196 goto err_free_bufs; 1197 1198 ret = spinand_manufacturer_init(spinand); 1199 if (ret) { 1200 dev_err(dev, 1201 "Failed to initialize the SPI NAND chip (err = %d)\n", 1202 ret); 1203 goto err_free_bufs; 1204 } 1205 1206 /* After power up, all blocks are locked, so unlock them here. */ 1207 for (i = 0; i < nand->memorg.ntargets; i++) { 1208 ret = spinand_select_target(spinand, i); 1209 if (ret) 1210 goto err_free_bufs; 1211 1212 /* HWP_EN must be enabled first before block unlock region is set */ 1213 if (spinand->id.data[0] == 0x01) { 1214 ret = spinand_lock_block(spinand, HWP_EN); 1215 if (ret) 1216 goto err_free_bufs; 1217 } 1218 1219 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1220 if (ret) 1221 goto err_free_bufs; 1222 } 1223 1224 nand->bbt.option = NANDDEV_BBT_USE_FLASH; 1225 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1226 if (ret) 1227 goto err_manuf_cleanup; 1228 1229 /* 1230 * Right now, we don't support ECC, so let the whole oob 1231 * area is available for user. 1232 */ 1233 mtd->_read_oob = spinand_mtd_read; 1234 mtd->_write_oob = spinand_mtd_write; 1235 mtd->_block_isbad = spinand_mtd_block_isbad; 1236 mtd->_block_markbad = spinand_mtd_block_markbad; 1237 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1238 mtd->_erase = spinand_mtd_erase; 1239 1240 if (spinand->eccinfo.ooblayout) 1241 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1242 else 1243 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1244 1245 ret = mtd_ooblayout_count_freebytes(mtd); 1246 if (ret < 0) 1247 goto err_cleanup_nanddev; 1248 1249 mtd->oobavail = ret; 1250 1251 /* Propagate ECC information to mtd_info */ 1252 mtd->ecc_strength = nand->eccreq.strength; 1253 mtd->ecc_step_size = nand->eccreq.step_size; 1254 1255 return 0; 1256 1257 err_cleanup_nanddev: 1258 nanddev_cleanup(nand); 1259 1260 err_manuf_cleanup: 1261 spinand_manufacturer_cleanup(spinand); 1262 1263 err_free_bufs: 1264 kfree(spinand->databuf); 1265 kfree(spinand->scratchbuf); 1266 return ret; 1267 } 1268 1269 static void spinand_cleanup(struct spinand_device *spinand) 1270 { 1271 struct nand_device *nand = spinand_to_nand(spinand); 1272 1273 nanddev_cleanup(nand); 1274 spinand_manufacturer_cleanup(spinand); 1275 kfree(spinand->databuf); 1276 kfree(spinand->scratchbuf); 1277 } 1278 1279 static int spinand_bind(struct udevice *udev) 1280 { 1281 int ret = 0; 1282 1283 #ifdef CONFIG_MTD_BLK 1284 struct udevice *bdev; 1285 1286 ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD, 1287 BLK_MTD_SPI_NAND, 512, 0, &bdev); 1288 if (ret) 1289 printf("Cannot create block device\n"); 1290 #endif 1291 return ret; 1292 } 1293 1294 static int spinand_probe(struct udevice *dev) 1295 { 1296 struct spinand_device *spinand = dev_get_priv(dev); 1297 struct spi_slave *slave = dev_get_parent_priv(dev); 1298 struct mtd_info *mtd = dev_get_uclass_priv(dev); 1299 struct nand_device *nand = spinand_to_nand(spinand); 1300 int ret; 1301 1302 #ifndef __UBOOT__ 1303 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1304 GFP_KERNEL); 1305 if (!spinand) 1306 return -ENOMEM; 1307 1308 spinand->spimem = mem; 1309 spi_mem_set_drvdata(mem, spinand); 1310 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1311 mutex_init(&spinand->lock); 1312 1313 mtd = spinand_to_mtd(spinand); 1314 mtd->dev.parent = &mem->spi->dev; 1315 #else 1316 nand->mtd = mtd; 1317 mtd->priv = nand; 1318 mtd->dev = dev; 1319 mtd->name = malloc(20); 1320 if (!mtd->name) 1321 return -ENOMEM; 1322 sprintf(mtd->name, "spi-nand%d", spi_nand_idx++); 1323 spinand->slave = slave; 1324 spinand_set_of_node(spinand, dev->node.np); 1325 #endif 1326 1327 ret = spinand_init(spinand); 1328 if (ret) 1329 return ret; 1330 1331 #ifndef __UBOOT__ 1332 ret = mtd_device_register(mtd, NULL, 0); 1333 #else 1334 ret = add_mtd_device(mtd); 1335 #endif 1336 if (ret) 1337 goto err_spinand_cleanup; 1338 1339 return 0; 1340 1341 err_spinand_cleanup: 1342 spinand_cleanup(spinand); 1343 1344 return ret; 1345 } 1346 1347 #ifndef __UBOOT__ 1348 static int spinand_remove(struct udevice *slave) 1349 { 1350 struct spinand_device *spinand; 1351 struct mtd_info *mtd; 1352 int ret; 1353 1354 spinand = spi_mem_get_drvdata(slave); 1355 mtd = spinand_to_mtd(spinand); 1356 free(mtd->name); 1357 1358 ret = mtd_device_unregister(mtd); 1359 if (ret) 1360 return ret; 1361 1362 spinand_cleanup(spinand); 1363 1364 return 0; 1365 } 1366 1367 static const struct spi_device_id spinand_ids[] = { 1368 { .name = "spi-nand" }, 1369 { /* sentinel */ }, 1370 }; 1371 1372 #ifdef CONFIG_OF 1373 static const struct of_device_id spinand_of_ids[] = { 1374 { .compatible = "spi-nand" }, 1375 { /* sentinel */ }, 1376 }; 1377 #endif 1378 1379 static struct spi_mem_driver spinand_drv = { 1380 .spidrv = { 1381 .id_table = spinand_ids, 1382 .driver = { 1383 .name = "spi-nand", 1384 .of_match_table = of_match_ptr(spinand_of_ids), 1385 }, 1386 }, 1387 .probe = spinand_probe, 1388 .remove = spinand_remove, 1389 }; 1390 module_spi_mem_driver(spinand_drv); 1391 1392 MODULE_DESCRIPTION("SPI NAND framework"); 1393 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1394 MODULE_LICENSE("GPL v2"); 1395 #endif /* __UBOOT__ */ 1396 1397 static const struct udevice_id spinand_ids[] = { 1398 { .compatible = "spi-nand" }, 1399 { /* sentinel */ }, 1400 }; 1401 1402 U_BOOT_DRIVER(spinand) = { 1403 .name = "spi_nand", 1404 .id = UCLASS_MTD, 1405 .of_match = spinand_ids, 1406 .bind = spinand_bind, 1407 .priv_auto_alloc_size = sizeof(struct spinand_device), 1408 .probe = spinand_probe, 1409 }; 1410