1 /* 2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> 3 * Rohit Choraria <rohitkc@ti.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 #include <common.h> 9 #include <asm/io.h> 10 #include <linux/errno.h> 11 #include <asm/arch/mem.h> 12 #include <linux/mtd/omap_gpmc.h> 13 #include <linux/mtd/nand_ecc.h> 14 #include <linux/bch.h> 15 #include <linux/compiler.h> 16 #include <nand.h> 17 #include <linux/mtd/omap_elm.h> 18 19 #define BADBLOCK_MARKER_LENGTH 2 20 #define SECTOR_BYTES 512 21 #define ECCCLEAR (0x1 << 8) 22 #define ECCRESULTREG1 (0x1 << 0) 23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ 24 #define BCH4_BIT_PAD 4 25 26 #ifdef CONFIG_BCH 27 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, 28 0x97, 0x79, 0xe5, 0x24, 0xb5}; 29 #endif 30 static uint8_t cs_next; 31 static __maybe_unused struct nand_ecclayout omap_ecclayout; 32 33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG) 34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] = 35 { CONFIG_NAND_OMAP_GPMC_WSCFG }; 36 #else 37 /* wscfg is preset to zero since its a static variable */ 38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE]; 39 #endif 40 41 /* 42 * Driver configurations 43 */ 44 struct omap_nand_info { 45 struct bch_control *control; 46 enum omap_ecc ecc_scheme; 47 uint8_t cs; 48 uint8_t ws; /* wait status pin (0,1) */ 49 }; 50 51 /* We are wasting a bit of memory but al least we are safe */ 52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS]; 53 54 /* 55 * omap_nand_hwcontrol - Set the address pointers corretly for the 56 * following address/data/command operation 57 */ 58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, 59 uint32_t ctrl) 60 { 61 register struct nand_chip *this = mtd_to_nand(mtd); 62 struct omap_nand_info *info = nand_get_controller_data(this); 63 int cs = info->cs; 64 65 /* 66 * Point the IO_ADDR to DATA and ADDRESS registers instead 67 * of chip address 68 */ 69 switch (ctrl) { 70 case NAND_CTRL_CHANGE | NAND_CTRL_CLE: 71 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; 72 break; 73 case NAND_CTRL_CHANGE | NAND_CTRL_ALE: 74 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; 75 break; 76 case NAND_CTRL_CHANGE | NAND_NCE: 77 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; 78 break; 79 } 80 81 if (cmd != NAND_CMD_NONE) 82 writeb(cmd, this->IO_ADDR_W); 83 } 84 85 /* Check wait pin as dev ready indicator */ 86 static int omap_dev_ready(struct mtd_info *mtd) 87 { 88 register struct nand_chip *this = mtd_to_nand(mtd); 89 struct omap_nand_info *info = nand_get_controller_data(this); 90 return gpmc_cfg->status & (1 << (8 + info->ws)); 91 } 92 93 /* 94 * gen_true_ecc - This function will generate true ECC value, which 95 * can be used when correcting data read from NAND flash memory core 96 * 97 * @ecc_buf: buffer to store ecc code 98 * 99 * @return: re-formatted ECC value 100 */ 101 static uint32_t gen_true_ecc(uint8_t *ecc_buf) 102 { 103 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | 104 ((ecc_buf[2] & 0x0F) << 8); 105 } 106 107 /* 108 * omap_correct_data - Compares the ecc read from nand spare area with ECC 109 * registers values and corrects one bit error if it has occurred 110 * Further details can be had from OMAP TRM and the following selected links: 111 * http://en.wikipedia.org/wiki/Hamming_code 112 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf 113 * 114 * @mtd: MTD device structure 115 * @dat: page data 116 * @read_ecc: ecc read from nand flash 117 * @calc_ecc: ecc read from ECC registers 118 * 119 * @return 0 if data is OK or corrected, else returns -1 120 */ 121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, 122 uint8_t *read_ecc, uint8_t *calc_ecc) 123 { 124 uint32_t orig_ecc, new_ecc, res, hm; 125 uint16_t parity_bits, byte; 126 uint8_t bit; 127 128 /* Regenerate the orginal ECC */ 129 orig_ecc = gen_true_ecc(read_ecc); 130 new_ecc = gen_true_ecc(calc_ecc); 131 /* Get the XOR of real ecc */ 132 res = orig_ecc ^ new_ecc; 133 if (res) { 134 /* Get the hamming width */ 135 hm = hweight32(res); 136 /* Single bit errors can be corrected! */ 137 if (hm == 12) { 138 /* Correctable data! */ 139 parity_bits = res >> 16; 140 bit = (parity_bits & 0x7); 141 byte = (parity_bits >> 3) & 0x1FF; 142 /* Flip the bit to correct */ 143 dat[byte] ^= (0x1 << bit); 144 } else if (hm == 1) { 145 printf("Error: Ecc is wrong\n"); 146 /* ECC itself is corrupted */ 147 return 2; 148 } else { 149 /* 150 * hm distance != parity pairs OR one, could mean 2 bit 151 * error OR potentially be on a blank page.. 152 * orig_ecc: contains spare area data from nand flash. 153 * new_ecc: generated ecc while reading data area. 154 * Note: if the ecc = 0, all data bits from which it was 155 * generated are 0xFF. 156 * The 3 byte(24 bits) ecc is generated per 512byte 157 * chunk of a page. If orig_ecc(from spare area) 158 * is 0xFF && new_ecc(computed now from data area)=0x0, 159 * this means that data area is 0xFF and spare area is 160 * 0xFF. A sure sign of a erased page! 161 */ 162 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) 163 return 0; 164 printf("Error: Bad compare! failed\n"); 165 /* detected 2 bit error */ 166 return -EBADMSG; 167 } 168 } 169 return 0; 170 } 171 172 /* 173 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write 174 * @mtd: MTD device structure 175 * @mode: Read/Write mode 176 */ 177 __maybe_unused 178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) 179 { 180 struct nand_chip *nand = mtd_to_nand(mtd); 181 struct omap_nand_info *info = nand_get_controller_data(nand); 182 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0; 183 unsigned int ecc_algo = 0; 184 unsigned int bch_type = 0; 185 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00; 186 u32 ecc_size_config_val = 0; 187 u32 ecc_config_val = 0; 188 int cs = info->cs; 189 190 /* configure GPMC for specific ecc-scheme */ 191 switch (info->ecc_scheme) { 192 case OMAP_ECC_HAM1_CODE_SW: 193 return; 194 case OMAP_ECC_HAM1_CODE_HW: 195 ecc_algo = 0x0; 196 bch_type = 0x0; 197 bch_wrapmode = 0x00; 198 eccsize0 = 0xFF; 199 eccsize1 = 0xFF; 200 break; 201 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 202 case OMAP_ECC_BCH8_CODE_HW: 203 ecc_algo = 0x1; 204 bch_type = 0x1; 205 if (mode == NAND_ECC_WRITE) { 206 bch_wrapmode = 0x01; 207 eccsize0 = 0; /* extra bits in nibbles per sector */ 208 eccsize1 = 28; /* OOB bits in nibbles per sector */ 209 } else { 210 bch_wrapmode = 0x01; 211 eccsize0 = 26; /* ECC bits in nibbles per sector */ 212 eccsize1 = 2; /* non-ECC bits in nibbles per sector */ 213 } 214 break; 215 case OMAP_ECC_BCH16_CODE_HW: 216 ecc_algo = 0x1; 217 bch_type = 0x2; 218 if (mode == NAND_ECC_WRITE) { 219 bch_wrapmode = 0x01; 220 eccsize0 = 0; /* extra bits in nibbles per sector */ 221 eccsize1 = 52; /* OOB bits in nibbles per sector */ 222 } else { 223 bch_wrapmode = 0x01; 224 eccsize0 = 52; /* ECC bits in nibbles per sector */ 225 eccsize1 = 0; /* non-ECC bits in nibbles per sector */ 226 } 227 break; 228 default: 229 return; 230 } 231 /* Clear ecc and enable bits */ 232 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); 233 /* Configure ecc size for BCH */ 234 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12); 235 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config); 236 237 /* Configure device details for BCH engine */ 238 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */ 239 (bch_type << 12) | /* BCH4/BCH8/BCH16 */ 240 (bch_wrapmode << 8) | /* wrap mode */ 241 (dev_width << 7) | /* bus width */ 242 (0x0 << 4) | /* number of sectors */ 243 (cs << 1) | /* ECC CS */ 244 (0x1)); /* enable ECC */ 245 writel(ecc_config_val, &gpmc_cfg->ecc_config); 246 } 247 248 /* 249 * omap_calculate_ecc - Read ECC result 250 * @mtd: MTD structure 251 * @dat: unused 252 * @ecc_code: ecc_code buffer 253 * Using noninverted ECC can be considered ugly since writing a blank 254 * page ie. padding will clear the ECC bytes. This is no problem as 255 * long nobody is trying to write data on the seemingly unused page. 256 * Reading an erased page will produce an ECC mismatch between 257 * generated and read ECC bytes that has to be dealt with separately. 258 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC 259 * is used, the result of read will be 0x0 while the ECC offsets of the 260 * spare area will be 0xFF which will result in an ECC mismatch. 261 */ 262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, 263 uint8_t *ecc_code) 264 { 265 struct nand_chip *chip = mtd_to_nand(mtd); 266 struct omap_nand_info *info = nand_get_controller_data(chip); 267 const uint32_t *ptr; 268 uint32_t val = 0; 269 int8_t i = 0, j; 270 271 switch (info->ecc_scheme) { 272 case OMAP_ECC_HAM1_CODE_HW: 273 val = readl(&gpmc_cfg->ecc1_result); 274 ecc_code[0] = val & 0xFF; 275 ecc_code[1] = (val >> 16) & 0xFF; 276 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); 277 break; 278 #ifdef CONFIG_BCH 279 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 280 #endif 281 case OMAP_ECC_BCH8_CODE_HW: 282 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3]; 283 val = readl(ptr); 284 ecc_code[i++] = (val >> 0) & 0xFF; 285 ptr--; 286 for (j = 0; j < 3; j++) { 287 val = readl(ptr); 288 ecc_code[i++] = (val >> 24) & 0xFF; 289 ecc_code[i++] = (val >> 16) & 0xFF; 290 ecc_code[i++] = (val >> 8) & 0xFF; 291 ecc_code[i++] = (val >> 0) & 0xFF; 292 ptr--; 293 } 294 break; 295 case OMAP_ECC_BCH16_CODE_HW: 296 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]); 297 ecc_code[i++] = (val >> 8) & 0xFF; 298 ecc_code[i++] = (val >> 0) & 0xFF; 299 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]); 300 ecc_code[i++] = (val >> 24) & 0xFF; 301 ecc_code[i++] = (val >> 16) & 0xFF; 302 ecc_code[i++] = (val >> 8) & 0xFF; 303 ecc_code[i++] = (val >> 0) & 0xFF; 304 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]); 305 ecc_code[i++] = (val >> 24) & 0xFF; 306 ecc_code[i++] = (val >> 16) & 0xFF; 307 ecc_code[i++] = (val >> 8) & 0xFF; 308 ecc_code[i++] = (val >> 0) & 0xFF; 309 for (j = 3; j >= 0; j--) { 310 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j] 311 ); 312 ecc_code[i++] = (val >> 24) & 0xFF; 313 ecc_code[i++] = (val >> 16) & 0xFF; 314 ecc_code[i++] = (val >> 8) & 0xFF; 315 ecc_code[i++] = (val >> 0) & 0xFF; 316 } 317 break; 318 default: 319 return -EINVAL; 320 } 321 /* ECC scheme specific syndrome customizations */ 322 switch (info->ecc_scheme) { 323 case OMAP_ECC_HAM1_CODE_HW: 324 break; 325 #ifdef CONFIG_BCH 326 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 327 328 for (i = 0; i < chip->ecc.bytes; i++) 329 *(ecc_code + i) = *(ecc_code + i) ^ 330 bch8_polynomial[i]; 331 break; 332 #endif 333 case OMAP_ECC_BCH8_CODE_HW: 334 ecc_code[chip->ecc.bytes - 1] = 0x00; 335 break; 336 case OMAP_ECC_BCH16_CODE_HW: 337 break; 338 default: 339 return -EINVAL; 340 } 341 return 0; 342 } 343 344 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH 345 346 #define PREFETCH_CONFIG1_CS_SHIFT 24 347 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 348 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) 349 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) 350 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) 351 #define ENABLE_PREFETCH (1 << 7) 352 353 /** 354 * omap_prefetch_enable - configures and starts prefetch transfer 355 * @fifo_th: fifo threshold to be used for read/ write 356 * @count: number of bytes to be transferred 357 * @is_write: prefetch read(0) or write post(1) mode 358 * @cs: chip select to use 359 */ 360 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs) 361 { 362 uint32_t val; 363 364 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) 365 return -EINVAL; 366 367 if (readl(&gpmc_cfg->prefetch_control)) 368 return -EBUSY; 369 370 /* Set the amount of bytes to be prefetched */ 371 writel(count, &gpmc_cfg->prefetch_config2); 372 373 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) | 374 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH; 375 writel(val, &gpmc_cfg->prefetch_config1); 376 377 /* Start the prefetch engine */ 378 writel(1, &gpmc_cfg->prefetch_control); 379 380 return 0; 381 } 382 383 /** 384 * omap_prefetch_reset - disables and stops the prefetch engine 385 */ 386 static void omap_prefetch_reset(void) 387 { 388 writel(0, &gpmc_cfg->prefetch_control); 389 writel(0, &gpmc_cfg->prefetch_config1); 390 } 391 392 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len) 393 { 394 int ret; 395 uint32_t cnt; 396 struct omap_nand_info *info = nand_get_controller_data(chip); 397 398 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs); 399 if (ret < 0) 400 return ret; 401 402 do { 403 int i; 404 405 cnt = readl(&gpmc_cfg->prefetch_status); 406 cnt = PREFETCH_STATUS_FIFO_CNT(cnt); 407 408 for (i = 0; i < cnt / 4; i++) { 409 *buf++ = readl(CONFIG_SYS_NAND_BASE); 410 len -= 4; 411 } 412 } while (len); 413 414 omap_prefetch_reset(); 415 416 return 0; 417 } 418 419 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len) 420 { 421 struct nand_chip *chip = mtd_to_nand(mtd); 422 423 if (chip->options & NAND_BUSWIDTH_16) 424 nand_read_buf16(mtd, buf, len); 425 else 426 nand_read_buf(mtd, buf, len); 427 } 428 429 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len) 430 { 431 int ret; 432 uint32_t head, tail; 433 struct nand_chip *chip = mtd_to_nand(mtd); 434 435 /* 436 * If the destination buffer is unaligned, start with reading 437 * the overlap byte-wise. 438 */ 439 head = ((uint32_t) buf) % 4; 440 if (head) { 441 omap_nand_read(mtd, buf, head); 442 buf += head; 443 len -= head; 444 } 445 446 /* 447 * Only transfer multiples of 4 bytes in a pre-fetched fashion. 448 * If there's a residue, care for it byte-wise afterwards. 449 */ 450 tail = len % 4; 451 452 ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail); 453 if (ret < 0) { 454 /* fallback in case the prefetch engine is busy */ 455 omap_nand_read(mtd, buf, len); 456 } else if (tail) { 457 buf += len - tail; 458 omap_nand_read(mtd, buf, tail); 459 } 460 } 461 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */ 462 463 #ifdef CONFIG_NAND_OMAP_ELM 464 /* 465 * omap_reverse_list - re-orders list elements in reverse order [internal] 466 * @list: pointer to start of list 467 * @length: length of list 468 */ 469 static void omap_reverse_list(u8 *list, unsigned int length) 470 { 471 unsigned int i, j; 472 unsigned int half_length = length / 2; 473 u8 tmp; 474 for (i = 0, j = length - 1; i < half_length; i++, j--) { 475 tmp = list[i]; 476 list[i] = list[j]; 477 list[j] = tmp; 478 } 479 } 480 481 /* 482 * omap_correct_data_bch - Compares the ecc read from nand spare area 483 * with ECC registers values and corrects one bit error if it has occurred 484 * 485 * @mtd: MTD device structure 486 * @dat: page data 487 * @read_ecc: ecc read from nand flash (ignored) 488 * @calc_ecc: ecc read from ECC registers 489 * 490 * @return 0 if data is OK or corrected, else returns -1 491 */ 492 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat, 493 uint8_t *read_ecc, uint8_t *calc_ecc) 494 { 495 struct nand_chip *chip = mtd_to_nand(mtd); 496 struct omap_nand_info *info = nand_get_controller_data(chip); 497 struct nand_ecc_ctrl *ecc = &chip->ecc; 498 uint32_t error_count = 0, error_max; 499 uint32_t error_loc[ELM_MAX_ERROR_COUNT]; 500 enum bch_level bch_type; 501 uint32_t i, ecc_flag = 0; 502 uint8_t count; 503 uint32_t byte_pos, bit_pos; 504 int err = 0; 505 506 /* check calculated ecc */ 507 for (i = 0; i < ecc->bytes && !ecc_flag; i++) { 508 if (calc_ecc[i] != 0x00) 509 ecc_flag = 1; 510 } 511 if (!ecc_flag) 512 return 0; 513 514 /* check for whether its a erased-page */ 515 ecc_flag = 0; 516 for (i = 0; i < ecc->bytes && !ecc_flag; i++) { 517 if (read_ecc[i] != 0xff) 518 ecc_flag = 1; 519 } 520 if (!ecc_flag) 521 return 0; 522 523 /* 524 * while reading ECC result we read it in big endian. 525 * Hence while loading to ELM we have rotate to get the right endian. 526 */ 527 switch (info->ecc_scheme) { 528 case OMAP_ECC_BCH8_CODE_HW: 529 bch_type = BCH_8_BIT; 530 omap_reverse_list(calc_ecc, ecc->bytes - 1); 531 break; 532 case OMAP_ECC_BCH16_CODE_HW: 533 bch_type = BCH_16_BIT; 534 omap_reverse_list(calc_ecc, ecc->bytes); 535 break; 536 default: 537 return -EINVAL; 538 } 539 /* use elm module to check for errors */ 540 elm_config(bch_type); 541 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc); 542 if (err) 543 return err; 544 545 /* correct bch error */ 546 for (count = 0; count < error_count; count++) { 547 switch (info->ecc_scheme) { 548 case OMAP_ECC_BCH8_CODE_HW: 549 /* 14th byte in ECC is reserved to match ROM layout */ 550 error_max = SECTOR_BYTES + (ecc->bytes - 1); 551 break; 552 case OMAP_ECC_BCH16_CODE_HW: 553 error_max = SECTOR_BYTES + ecc->bytes; 554 break; 555 default: 556 return -EINVAL; 557 } 558 byte_pos = error_max - (error_loc[count] / 8) - 1; 559 bit_pos = error_loc[count] % 8; 560 if (byte_pos < SECTOR_BYTES) { 561 dat[byte_pos] ^= 1 << bit_pos; 562 debug("nand: bit-flip corrected @data=%d\n", byte_pos); 563 } else if (byte_pos < error_max) { 564 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos; 565 debug("nand: bit-flip corrected @oob=%d\n", byte_pos - 566 SECTOR_BYTES); 567 } else { 568 err = -EBADMSG; 569 printf("nand: error: invalid bit-flip location\n"); 570 } 571 } 572 return (err) ? err : error_count; 573 } 574 575 /** 576 * omap_read_page_bch - hardware ecc based page read function 577 * @mtd: mtd info structure 578 * @chip: nand chip info structure 579 * @buf: buffer to store read data 580 * @oob_required: caller expects OOB data read to chip->oob_poi 581 * @page: page number to read 582 * 583 */ 584 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, 585 uint8_t *buf, int oob_required, int page) 586 { 587 int i, eccsize = chip->ecc.size; 588 int eccbytes = chip->ecc.bytes; 589 int eccsteps = chip->ecc.steps; 590 uint8_t *p = buf; 591 uint8_t *ecc_calc = chip->buffers->ecccalc; 592 uint8_t *ecc_code = chip->buffers->ecccode; 593 uint32_t *eccpos = chip->ecc.layout->eccpos; 594 uint8_t *oob = chip->oob_poi; 595 uint32_t data_pos; 596 uint32_t oob_pos; 597 598 data_pos = 0; 599 /* oob area start */ 600 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; 601 oob += chip->ecc.layout->eccpos[0]; 602 603 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize, 604 oob += eccbytes) { 605 chip->ecc.hwctl(mtd, NAND_ECC_READ); 606 /* read data */ 607 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1); 608 chip->read_buf(mtd, p, eccsize); 609 610 /* read respective ecc from oob area */ 611 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); 612 chip->read_buf(mtd, oob, eccbytes); 613 /* read syndrome */ 614 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 615 616 data_pos += eccsize; 617 oob_pos += eccbytes; 618 } 619 620 for (i = 0; i < chip->ecc.total; i++) 621 ecc_code[i] = chip->oob_poi[eccpos[i]]; 622 623 eccsteps = chip->ecc.steps; 624 p = buf; 625 626 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 627 int stat; 628 629 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 630 if (stat < 0) 631 mtd->ecc_stats.failed++; 632 else 633 mtd->ecc_stats.corrected += stat; 634 } 635 return 0; 636 } 637 #endif /* CONFIG_NAND_OMAP_ELM */ 638 639 /* 640 * OMAP3 BCH8 support (with BCH library) 641 */ 642 #ifdef CONFIG_BCH 643 /** 644 * omap_correct_data_bch_sw - Decode received data and correct errors 645 * @mtd: MTD device structure 646 * @data: page data 647 * @read_ecc: ecc read from nand flash 648 * @calc_ecc: ecc read from HW ECC registers 649 */ 650 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data, 651 u_char *read_ecc, u_char *calc_ecc) 652 { 653 int i, count; 654 /* cannot correct more than 8 errors */ 655 unsigned int errloc[8]; 656 struct nand_chip *chip = mtd_to_nand(mtd); 657 struct omap_nand_info *info = nand_get_controller_data(chip); 658 659 count = decode_bch(info->control, NULL, SECTOR_BYTES, 660 read_ecc, calc_ecc, NULL, errloc); 661 if (count > 0) { 662 /* correct errors */ 663 for (i = 0; i < count; i++) { 664 /* correct data only, not ecc bytes */ 665 if (errloc[i] < SECTOR_BYTES << 3) 666 data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7); 667 debug("corrected bitflip %u\n", errloc[i]); 668 #ifdef DEBUG 669 puts("read_ecc: "); 670 /* 671 * BCH8 have 13 bytes of ECC; BCH4 needs adoption 672 * here! 673 */ 674 for (i = 0; i < 13; i++) 675 printf("%02x ", read_ecc[i]); 676 puts("\n"); 677 puts("calc_ecc: "); 678 for (i = 0; i < 13; i++) 679 printf("%02x ", calc_ecc[i]); 680 puts("\n"); 681 #endif 682 } 683 } else if (count < 0) { 684 puts("ecc unrecoverable error\n"); 685 } 686 return count; 687 } 688 689 /** 690 * omap_free_bch - Release BCH ecc resources 691 * @mtd: MTD device structure 692 */ 693 static void __maybe_unused omap_free_bch(struct mtd_info *mtd) 694 { 695 struct nand_chip *chip = mtd_to_nand(mtd); 696 struct omap_nand_info *info = nand_get_controller_data(chip); 697 698 if (info->control) { 699 free_bch(info->control); 700 info->control = NULL; 701 } 702 } 703 #endif /* CONFIG_BCH */ 704 705 /** 706 * omap_select_ecc_scheme - configures driver for particular ecc-scheme 707 * @nand: NAND chip device structure 708 * @ecc_scheme: ecc scheme to configure 709 * @pagesize: number of main-area bytes per page of NAND device 710 * @oobsize: number of OOB/spare bytes per page of NAND device 711 */ 712 static int omap_select_ecc_scheme(struct nand_chip *nand, 713 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) { 714 struct omap_nand_info *info = nand_get_controller_data(nand); 715 struct nand_ecclayout *ecclayout = &omap_ecclayout; 716 int eccsteps = pagesize / SECTOR_BYTES; 717 int i; 718 719 switch (ecc_scheme) { 720 case OMAP_ECC_HAM1_CODE_SW: 721 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n"); 722 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are 723 * initialized in nand_scan_tail(), so just set ecc.mode */ 724 info->control = NULL; 725 nand->ecc.mode = NAND_ECC_SOFT; 726 nand->ecc.layout = NULL; 727 nand->ecc.size = 0; 728 break; 729 730 case OMAP_ECC_HAM1_CODE_HW: 731 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n"); 732 /* check ecc-scheme requirements before updating ecc info */ 733 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { 734 printf("nand: error: insufficient OOB: require=%d\n", ( 735 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH)); 736 return -EINVAL; 737 } 738 info->control = NULL; 739 /* populate ecc specific fields */ 740 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); 741 nand->ecc.mode = NAND_ECC_HW; 742 nand->ecc.strength = 1; 743 nand->ecc.size = SECTOR_BYTES; 744 nand->ecc.bytes = 3; 745 nand->ecc.hwctl = omap_enable_hwecc; 746 nand->ecc.correct = omap_correct_data; 747 nand->ecc.calculate = omap_calculate_ecc; 748 /* define ecc-layout */ 749 ecclayout->eccbytes = nand->ecc.bytes * eccsteps; 750 for (i = 0; i < ecclayout->eccbytes; i++) { 751 if (nand->options & NAND_BUSWIDTH_16) 752 ecclayout->eccpos[i] = i + 2; 753 else 754 ecclayout->eccpos[i] = i + 1; 755 } 756 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; 757 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - 758 BADBLOCK_MARKER_LENGTH; 759 break; 760 761 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 762 #ifdef CONFIG_BCH 763 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); 764 /* check ecc-scheme requirements before updating ecc info */ 765 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { 766 printf("nand: error: insufficient OOB: require=%d\n", ( 767 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH)); 768 return -EINVAL; 769 } 770 /* check if BCH S/W library can be used for error detection */ 771 info->control = init_bch(13, 8, 0x201b); 772 if (!info->control) { 773 printf("nand: error: could not init_bch()\n"); 774 return -ENODEV; 775 } 776 /* populate ecc specific fields */ 777 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); 778 nand->ecc.mode = NAND_ECC_HW; 779 nand->ecc.strength = 8; 780 nand->ecc.size = SECTOR_BYTES; 781 nand->ecc.bytes = 13; 782 nand->ecc.hwctl = omap_enable_hwecc; 783 nand->ecc.correct = omap_correct_data_bch_sw; 784 nand->ecc.calculate = omap_calculate_ecc; 785 /* define ecc-layout */ 786 ecclayout->eccbytes = nand->ecc.bytes * eccsteps; 787 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH; 788 for (i = 1; i < ecclayout->eccbytes; i++) { 789 if (i % nand->ecc.bytes) 790 ecclayout->eccpos[i] = 791 ecclayout->eccpos[i - 1] + 1; 792 else 793 ecclayout->eccpos[i] = 794 ecclayout->eccpos[i - 1] + 2; 795 } 796 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; 797 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - 798 BADBLOCK_MARKER_LENGTH; 799 break; 800 #else 801 printf("nand: error: CONFIG_BCH required for ECC\n"); 802 return -EINVAL; 803 #endif 804 805 case OMAP_ECC_BCH8_CODE_HW: 806 #ifdef CONFIG_NAND_OMAP_ELM 807 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n"); 808 /* check ecc-scheme requirements before updating ecc info */ 809 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { 810 printf("nand: error: insufficient OOB: require=%d\n", ( 811 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH)); 812 return -EINVAL; 813 } 814 /* intialize ELM for ECC error detection */ 815 elm_init(); 816 info->control = NULL; 817 /* populate ecc specific fields */ 818 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); 819 nand->ecc.mode = NAND_ECC_HW; 820 nand->ecc.strength = 8; 821 nand->ecc.size = SECTOR_BYTES; 822 nand->ecc.bytes = 14; 823 nand->ecc.hwctl = omap_enable_hwecc; 824 nand->ecc.correct = omap_correct_data_bch; 825 nand->ecc.calculate = omap_calculate_ecc; 826 nand->ecc.read_page = omap_read_page_bch; 827 /* define ecc-layout */ 828 ecclayout->eccbytes = nand->ecc.bytes * eccsteps; 829 for (i = 0; i < ecclayout->eccbytes; i++) 830 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; 831 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; 832 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - 833 BADBLOCK_MARKER_LENGTH; 834 break; 835 #else 836 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); 837 return -EINVAL; 838 #endif 839 840 case OMAP_ECC_BCH16_CODE_HW: 841 #ifdef CONFIG_NAND_OMAP_ELM 842 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n"); 843 /* check ecc-scheme requirements before updating ecc info */ 844 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { 845 printf("nand: error: insufficient OOB: require=%d\n", ( 846 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH)); 847 return -EINVAL; 848 } 849 /* intialize ELM for ECC error detection */ 850 elm_init(); 851 /* populate ecc specific fields */ 852 nand->ecc.mode = NAND_ECC_HW; 853 nand->ecc.size = SECTOR_BYTES; 854 nand->ecc.bytes = 26; 855 nand->ecc.strength = 16; 856 nand->ecc.hwctl = omap_enable_hwecc; 857 nand->ecc.correct = omap_correct_data_bch; 858 nand->ecc.calculate = omap_calculate_ecc; 859 nand->ecc.read_page = omap_read_page_bch; 860 /* define ecc-layout */ 861 ecclayout->eccbytes = nand->ecc.bytes * eccsteps; 862 for (i = 0; i < ecclayout->eccbytes; i++) 863 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; 864 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; 865 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes - 866 BADBLOCK_MARKER_LENGTH; 867 break; 868 #else 869 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); 870 return -EINVAL; 871 #endif 872 default: 873 debug("nand: error: ecc scheme not enabled or supported\n"); 874 return -EINVAL; 875 } 876 877 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */ 878 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW) 879 nand->ecc.layout = ecclayout; 880 881 info->ecc_scheme = ecc_scheme; 882 return 0; 883 } 884 885 #ifndef CONFIG_SPL_BUILD 886 /* 887 * omap_nand_switch_ecc - switch the ECC operation between different engines 888 * (h/w and s/w) and different algorithms (hamming and BCHx) 889 * 890 * @hardware - true if one of the HW engines should be used 891 * @eccstrength - the number of bits that could be corrected 892 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16) 893 */ 894 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength) 895 { 896 struct nand_chip *nand; 897 struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device); 898 int err = 0; 899 900 if (!mtd) { 901 printf("nand: error: no NAND devices found\n"); 902 return -ENODEV; 903 } 904 905 nand = mtd_to_nand(mtd); 906 nand->options |= NAND_OWN_BUFFERS; 907 nand->options &= ~NAND_SUBPAGE_READ; 908 /* Setup the ecc configurations again */ 909 if (hardware) { 910 if (eccstrength == 1) { 911 err = omap_select_ecc_scheme(nand, 912 OMAP_ECC_HAM1_CODE_HW, 913 mtd->writesize, mtd->oobsize); 914 } else if (eccstrength == 8) { 915 err = omap_select_ecc_scheme(nand, 916 OMAP_ECC_BCH8_CODE_HW, 917 mtd->writesize, mtd->oobsize); 918 } else if (eccstrength == 16) { 919 err = omap_select_ecc_scheme(nand, 920 OMAP_ECC_BCH16_CODE_HW, 921 mtd->writesize, mtd->oobsize); 922 } else { 923 printf("nand: error: unsupported ECC scheme\n"); 924 return -EINVAL; 925 } 926 } else { 927 if (eccstrength == 1) { 928 err = omap_select_ecc_scheme(nand, 929 OMAP_ECC_HAM1_CODE_SW, 930 mtd->writesize, mtd->oobsize); 931 } else if (eccstrength == 8) { 932 err = omap_select_ecc_scheme(nand, 933 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW, 934 mtd->writesize, mtd->oobsize); 935 } else { 936 printf("nand: error: unsupported ECC scheme\n"); 937 return -EINVAL; 938 } 939 } 940 941 /* Update NAND handling after ECC mode switch */ 942 if (!err) 943 err = nand_scan_tail(mtd); 944 return err; 945 } 946 #endif /* CONFIG_SPL_BUILD */ 947 948 /* 949 * Board-specific NAND initialization. The following members of the 950 * argument are board-specific: 951 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device 952 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device 953 * - cmd_ctrl: hardwarespecific function for accesing control-lines 954 * - waitfunc: hardwarespecific function for accesing device ready/busy line 955 * - ecc.hwctl: function to enable (reset) hardware ecc generator 956 * - ecc.mode: mode of ecc, see defines 957 * - chip_delay: chip dependent delay for transfering data from array to 958 * read regs (tR) 959 * - options: various chip options. They can partly be set to inform 960 * nand_scan about special functionality. See the defines for further 961 * explanation 962 */ 963 int board_nand_init(struct nand_chip *nand) 964 { 965 int32_t gpmc_config = 0; 966 int cs = cs_next++; 967 int err = 0; 968 /* 969 * xloader/Uboot's gpmc configuration would have configured GPMC for 970 * nand type of memory. The following logic scans and latches on to the 971 * first CS with NAND type memory. 972 * TBD: need to make this logic generic to handle multiple CS NAND 973 * devices. 974 */ 975 while (cs < GPMC_MAX_CS) { 976 /* Check if NAND type is set */ 977 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { 978 /* Found it!! */ 979 break; 980 } 981 cs++; 982 } 983 if (cs >= GPMC_MAX_CS) { 984 printf("nand: error: Unable to find NAND settings in " 985 "GPMC Configuration - quitting\n"); 986 return -ENODEV; 987 } 988 989 gpmc_config = readl(&gpmc_cfg->config); 990 /* Disable Write protect */ 991 gpmc_config |= 0x10; 992 writel(gpmc_config, &gpmc_cfg->config); 993 994 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; 995 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; 996 omap_nand_info[cs].control = NULL; 997 omap_nand_info[cs].cs = cs; 998 omap_nand_info[cs].ws = wscfg[cs]; 999 nand_set_controller_data(nand, &omap_nand_info[cs]); 1000 nand->cmd_ctrl = omap_nand_hwcontrol; 1001 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG; 1002 nand->chip_delay = 100; 1003 nand->ecc.layout = &omap_ecclayout; 1004 1005 /* configure driver and controller based on NAND device bus-width */ 1006 gpmc_config = readl(&gpmc_cfg->cs[cs].config1); 1007 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) 1008 nand->options |= NAND_BUSWIDTH_16; 1009 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1); 1010 #else 1011 nand->options &= ~NAND_BUSWIDTH_16; 1012 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1); 1013 #endif 1014 /* select ECC scheme */ 1015 #if defined(CONFIG_NAND_OMAP_ECCSCHEME) 1016 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME, 1017 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE); 1018 #else 1019 /* pagesize and oobsize are not required to configure sw ecc-scheme */ 1020 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, 1021 0, 0); 1022 #endif 1023 if (err) 1024 return err; 1025 1026 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH 1027 nand->read_buf = omap_nand_read_prefetch; 1028 #else 1029 if (nand->options & NAND_BUSWIDTH_16) 1030 nand->read_buf = nand_read_buf16; 1031 else 1032 nand->read_buf = nand_read_buf; 1033 #endif 1034 1035 nand->dev_ready = omap_dev_ready; 1036 1037 return 0; 1038 } 1039