1 /* 2 * drivers/mtd/nand/raw/nand_util.c 3 * 4 * Copyright (C) 2006 by Weiss-Electronic GmbH. 5 * All rights reserved. 6 * 7 * @author: Guido Classen <clagix@gmail.com> 8 * @descr: NAND Flash support 9 * @references: borrowed heavily from Linux mtd-utils code: 10 * flash_eraseall.c by Arcom Control System Ltd 11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) 12 * and Thomas Gleixner (tglx@linutronix.de) 13 * 14 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by 15 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils 16 * 17 * Copyright 2010 Freescale Semiconductor 18 * 19 * SPDX-License-Identifier: GPL-2.0 20 */ 21 22 #include <common.h> 23 #include <command.h> 24 #include <watchdog.h> 25 #include <malloc.h> 26 #include <memalign.h> 27 #include <div64.h> 28 29 #include <linux/errno.h> 30 #include <linux/mtd/mtd.h> 31 #include <nand.h> 32 #include <jffs2/jffs2.h> 33 34 typedef struct erase_info erase_info_t; 35 typedef struct mtd_info mtd_info_t; 36 37 /* support only for native endian JFFS2 */ 38 #define cpu_to_je16(x) (x) 39 #define cpu_to_je32(x) (x) 40 41 /** 42 * nand_erase_opts: - erase NAND flash with support for various options 43 * (jffs2 formatting) 44 * 45 * @param mtd nand mtd instance to erase 46 * @param opts options, @see struct nand_erase_options 47 * @return 0 in case of success 48 * 49 * This code is ported from flash_eraseall.c from Linux mtd utils by 50 * Arcom Control System Ltd. 51 */ 52 int nand_erase_opts(struct mtd_info *mtd, 53 const nand_erase_options_t *opts) 54 { 55 struct jffs2_unknown_node cleanmarker; 56 erase_info_t erase; 57 unsigned long erase_length, erased_length; /* in blocks */ 58 int result; 59 int percent_complete = -1; 60 const char *mtd_device = mtd->name; 61 struct mtd_oob_ops oob_opts; 62 struct nand_chip *chip = mtd_to_nand(mtd); 63 64 if ((opts->offset & (mtd->erasesize - 1)) != 0) { 65 printf("Attempt to erase non block-aligned data\n"); 66 return -1; 67 } 68 69 memset(&erase, 0, sizeof(erase)); 70 memset(&oob_opts, 0, sizeof(oob_opts)); 71 72 erase.mtd = mtd; 73 erase.len = mtd->erasesize; 74 erase.addr = opts->offset; 75 erase_length = lldiv(opts->length + mtd->erasesize - 1, 76 mtd->erasesize); 77 78 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 79 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 80 cleanmarker.totlen = cpu_to_je32(8); 81 82 /* scrub option allows to erase badblock. To prevent internal 83 * check from erase() method, set block check method to dummy 84 * and disable bad block table while erasing. 85 */ 86 if (opts->scrub) { 87 erase.scrub = opts->scrub; 88 /* 89 * We don't need the bad block table anymore... 90 * after scrub, there are no bad blocks left! 91 */ 92 if (chip->bbt) { 93 kfree(chip->bbt); 94 } 95 chip->bbt = NULL; 96 chip->options &= ~NAND_BBT_SCANNED; 97 } 98 99 for (erased_length = 0; 100 erased_length < erase_length; 101 erase.addr += mtd->erasesize) { 102 103 WATCHDOG_RESET(); 104 105 if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { 106 puts("Size of erase exceeds limit\n"); 107 return -EFBIG; 108 } 109 if (!opts->scrub) { 110 int ret = mtd_block_isbad(mtd, erase.addr); 111 if (ret > 0) { 112 if (!opts->quiet) 113 printf("\rSkipping bad block at " 114 "0x%08llx " 115 " \n", 116 erase.addr); 117 118 if (!opts->spread) 119 erased_length++; 120 121 continue; 122 123 } else if (ret < 0) { 124 printf("\n%s: MTD get bad block failed: %d\n", 125 mtd_device, 126 ret); 127 return -1; 128 } 129 } 130 131 erased_length++; 132 133 result = mtd_erase(mtd, &erase); 134 if (result != 0) { 135 printf("\n%s: MTD Erase failure: %d\n", 136 mtd_device, result); 137 continue; 138 } 139 140 /* format for JFFS2 ? */ 141 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { 142 struct mtd_oob_ops ops; 143 ops.ooblen = 8; 144 ops.datbuf = NULL; 145 ops.oobbuf = (uint8_t *)&cleanmarker; 146 ops.ooboffs = 0; 147 ops.mode = MTD_OPS_AUTO_OOB; 148 149 result = mtd_write_oob(mtd, erase.addr, &ops); 150 if (result != 0) { 151 printf("\n%s: MTD writeoob failure: %d\n", 152 mtd_device, result); 153 continue; 154 } 155 } 156 157 if (!opts->quiet) { 158 unsigned long long n = erased_length * 100ULL; 159 int percent; 160 161 do_div(n, erase_length); 162 percent = (int)n; 163 164 /* output progress message only at whole percent 165 * steps to reduce the number of messages printed 166 * on (slow) serial consoles 167 */ 168 if (percent != percent_complete) { 169 percent_complete = percent; 170 171 printf("\rErasing at 0x%llx -- %3d%% complete.", 172 erase.addr, percent); 173 174 if (opts->jffs2 && result == 0) 175 printf(" Cleanmarker written at 0x%llx.", 176 erase.addr); 177 } 178 } 179 } 180 if (!opts->quiet) 181 printf("\n"); 182 183 return 0; 184 } 185 186 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK 187 188 #define NAND_CMD_LOCK_TIGHT 0x2c 189 #define NAND_CMD_LOCK_STATUS 0x7a 190 191 /****************************************************************************** 192 * Support for locking / unlocking operations of some NAND devices 193 *****************************************************************************/ 194 195 /** 196 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT 197 * state 198 * 199 * @param mtd nand mtd instance 200 * @param tight bring device in lock tight mode 201 * 202 * @return 0 on success, -1 in case of error 203 * 204 * The lock / lock-tight command only applies to the whole chip. To get some 205 * parts of the chip lock and others unlocked use the following sequence: 206 * 207 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) 208 * - Call nand_unlock() once for each consecutive area to be unlocked 209 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) 210 * 211 * If the device is in lock-tight state software can't change the 212 * current active lock/unlock state of all pages. nand_lock() / nand_unlock() 213 * calls will fail. It is only posible to leave lock-tight state by 214 * an hardware signal (low pulse on _WP pin) or by power down. 215 */ 216 int nand_lock(struct mtd_info *mtd, int tight) 217 { 218 int ret = 0; 219 int status; 220 struct nand_chip *chip = mtd_to_nand(mtd); 221 222 /* select the NAND device */ 223 chip->select_chip(mtd, 0); 224 225 /* check the Lock Tight Status */ 226 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); 227 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { 228 printf("nand_lock: Device is locked tight!\n"); 229 ret = -1; 230 goto out; 231 } 232 233 chip->cmdfunc(mtd, 234 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), 235 -1, -1); 236 237 /* call wait ready function */ 238 status = chip->waitfunc(mtd, chip); 239 240 /* see if device thinks it succeeded */ 241 if (status & 0x01) { 242 ret = -1; 243 } 244 245 out: 246 /* de-select the NAND device */ 247 chip->select_chip(mtd, -1); 248 return ret; 249 } 250 251 /** 252 * nand_get_lock_status: - query current lock state from one page of NAND 253 * flash 254 * 255 * @param mtd nand mtd instance 256 * @param offset page address to query (must be page-aligned!) 257 * 258 * @return -1 in case of error 259 * >0 lock status: 260 * bitfield with the following combinations: 261 * NAND_LOCK_STATUS_TIGHT: page in tight state 262 * NAND_LOCK_STATUS_UNLOCK: page unlocked 263 * 264 */ 265 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) 266 { 267 int ret = 0; 268 int chipnr; 269 int page; 270 struct nand_chip *chip = mtd_to_nand(mtd); 271 272 /* select the NAND device */ 273 chipnr = (int)(offset >> chip->chip_shift); 274 chip->select_chip(mtd, chipnr); 275 276 277 if ((offset & (mtd->writesize - 1)) != 0) { 278 printf("nand_get_lock_status: " 279 "Start address must be beginning of " 280 "nand page!\n"); 281 ret = -1; 282 goto out; 283 } 284 285 /* check the Lock Status */ 286 page = (int)(offset >> chip->page_shift); 287 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); 288 289 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT 290 | NAND_LOCK_STATUS_UNLOCK); 291 292 out: 293 /* de-select the NAND device */ 294 chip->select_chip(mtd, -1); 295 return ret; 296 } 297 298 /** 299 * nand_unlock: - Unlock area of NAND pages 300 * only one consecutive area can be unlocked at one time! 301 * 302 * @param mtd nand mtd instance 303 * @param start start byte address 304 * @param length number of bytes to unlock (must be a multiple of 305 * page size mtd->writesize) 306 * @param allexcept if set, unlock everything not selected 307 * 308 * @return 0 on success, -1 in case of error 309 */ 310 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, 311 int allexcept) 312 { 313 int ret = 0; 314 int chipnr; 315 int status; 316 int page; 317 struct nand_chip *chip = mtd_to_nand(mtd); 318 319 debug("nand_unlock%s: start: %08llx, length: %zd!\n", 320 allexcept ? " (allexcept)" : "", start, length); 321 322 /* select the NAND device */ 323 chipnr = (int)(start >> chip->chip_shift); 324 chip->select_chip(mtd, chipnr); 325 326 /* check the WP bit */ 327 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 328 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { 329 printf("nand_unlock: Device is write protected!\n"); 330 ret = -1; 331 goto out; 332 } 333 334 /* check the Lock Tight Status */ 335 page = (int)(start >> chip->page_shift); 336 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); 337 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { 338 printf("nand_unlock: Device is locked tight!\n"); 339 ret = -1; 340 goto out; 341 } 342 343 if ((start & (mtd->erasesize - 1)) != 0) { 344 printf("nand_unlock: Start address must be beginning of " 345 "nand block!\n"); 346 ret = -1; 347 goto out; 348 } 349 350 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { 351 printf("nand_unlock: Length must be a multiple of nand block " 352 "size %08x!\n", mtd->erasesize); 353 ret = -1; 354 goto out; 355 } 356 357 /* 358 * Set length so that the last address is set to the 359 * starting address of the last block 360 */ 361 length -= mtd->erasesize; 362 363 /* submit address of first page to unlock */ 364 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); 365 366 /* submit ADDRESS of LAST page to unlock */ 367 page += (int)(length >> chip->page_shift); 368 369 /* 370 * Page addresses for unlocking are supposed to be block-aligned. 371 * At least some NAND chips use the low bit to indicate that the 372 * page range should be inverted. 373 */ 374 if (allexcept) 375 page |= 1; 376 377 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); 378 379 /* call wait ready function */ 380 status = chip->waitfunc(mtd, chip); 381 /* see if device thinks it succeeded */ 382 if (status & 0x01) { 383 /* there was an error */ 384 ret = -1; 385 goto out; 386 } 387 388 out: 389 /* de-select the NAND device */ 390 chip->select_chip(mtd, -1); 391 return ret; 392 } 393 #endif 394 395 /** 396 * check_skip_len 397 * 398 * Check if there are any bad blocks, and whether length including bad 399 * blocks fits into device 400 * 401 * @param mtd nand mtd instance 402 * @param offset offset in flash 403 * @param length image length 404 * @param used length of flash needed for the requested length 405 * @return 0 if the image fits and there are no bad blocks 406 * 1 if the image fits, but there are bad blocks 407 * -1 if the image does not fit 408 */ 409 static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length, 410 size_t *used) 411 { 412 size_t len_excl_bad = 0; 413 int ret = 0; 414 415 while (len_excl_bad < length) { 416 size_t block_len, block_off; 417 loff_t block_start; 418 419 if (offset >= mtd->size) 420 return -1; 421 422 block_start = offset & ~(loff_t)(mtd->erasesize - 1); 423 block_off = offset & (mtd->erasesize - 1); 424 block_len = mtd->erasesize - block_off; 425 426 if (!nand_block_isbad(mtd, block_start)) 427 len_excl_bad += block_len; 428 else 429 ret = 1; 430 431 offset += block_len; 432 *used += block_len; 433 } 434 435 /* If the length is not a multiple of block_len, adjust. */ 436 if (len_excl_bad > length) 437 *used -= (len_excl_bad - length); 438 439 return ret; 440 } 441 442 #ifdef CONFIG_CMD_NAND_TRIMFFS 443 static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf, 444 const size_t *len) 445 { 446 size_t l = *len; 447 ssize_t i; 448 449 for (i = l - 1; i >= 0; i--) 450 if (buf[i] != 0xFF) 451 break; 452 453 /* The resulting length must be aligned to the minimum flash I/O size */ 454 l = i + 1; 455 l = (l + mtd->writesize - 1) / mtd->writesize; 456 l *= mtd->writesize; 457 458 /* 459 * since the input length may be unaligned, prevent access past the end 460 * of the buffer 461 */ 462 return min(l, *len); 463 } 464 #endif 465 466 /** 467 * nand_verify_page_oob: 468 * 469 * Verify a page of NAND flash, including the OOB. 470 * Reads page of NAND and verifies the contents and OOB against the 471 * values in ops. 472 * 473 * @param mtd nand mtd instance 474 * @param ops MTD operations, including data to verify 475 * @param ofs offset in flash 476 * @return 0 in case of success 477 */ 478 int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops, 479 loff_t ofs) 480 { 481 int rval; 482 struct mtd_oob_ops vops; 483 size_t verlen = mtd->writesize + mtd->oobsize; 484 485 memcpy(&vops, ops, sizeof(vops)); 486 487 vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen); 488 489 if (!vops.datbuf) 490 return -ENOMEM; 491 492 vops.oobbuf = vops.datbuf + mtd->writesize; 493 494 rval = mtd_read_oob(mtd, ofs, &vops); 495 if (!rval) 496 rval = memcmp(ops->datbuf, vops.datbuf, vops.len); 497 if (!rval) 498 rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen); 499 500 free(vops.datbuf); 501 502 return rval ? -EIO : 0; 503 } 504 505 /** 506 * nand_verify: 507 * 508 * Verify a region of NAND flash. 509 * Reads NAND in page-sized chunks and verifies the contents against 510 * the contents of a buffer. The offset into the NAND must be 511 * page-aligned, and the function doesn't handle skipping bad blocks. 512 * 513 * @param mtd nand mtd instance 514 * @param ofs offset in flash 515 * @param len buffer length 516 * @param buf buffer to read from 517 * @return 0 in case of success 518 */ 519 int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf) 520 { 521 int rval = 0; 522 size_t verofs; 523 size_t verlen = mtd->writesize; 524 uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen); 525 526 if (!verbuf) 527 return -ENOMEM; 528 529 /* Read the NAND back in page-size groups to limit malloc size */ 530 for (verofs = ofs; verofs < ofs + len; 531 verofs += verlen, buf += verlen) { 532 verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs)); 533 rval = nand_read(mtd, verofs, &verlen, verbuf); 534 if (!rval || (rval == -EUCLEAN)) 535 rval = memcmp(buf, verbuf, verlen); 536 537 if (rval) 538 break; 539 } 540 541 free(verbuf); 542 543 return rval ? -EIO : 0; 544 } 545 546 547 548 /** 549 * nand_write_skip_bad: 550 * 551 * Write image to NAND flash. 552 * Blocks that are marked bad are skipped and the is written to the next 553 * block instead as long as the image is short enough to fit even after 554 * skipping the bad blocks. Due to bad blocks we may not be able to 555 * perform the requested write. In the case where the write would 556 * extend beyond the end of the NAND device, both length and actual (if 557 * not NULL) are set to 0. In the case where the write would extend 558 * beyond the limit we are passed, length is set to 0 and actual is set 559 * to the required length. 560 * 561 * @param mtd nand mtd instance 562 * @param offset offset in flash 563 * @param length buffer length 564 * @param actual set to size required to write length worth of 565 * buffer or 0 on error, if not NULL 566 * @param lim maximum size that actual may be in order to not 567 * exceed the buffer 568 * @param buffer buffer to read from 569 * @param flags flags modifying the behaviour of the write to NAND 570 * @return 0 in case of success 571 */ 572 int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, 573 size_t *actual, loff_t lim, u_char *buffer, int flags) 574 { 575 int rval = 0, blocksize; 576 size_t left_to_write = *length; 577 size_t used_for_write = 0; 578 u_char *p_buffer = buffer; 579 int need_skip; 580 581 if (actual) 582 *actual = 0; 583 584 blocksize = mtd->erasesize; 585 586 /* 587 * nand_write() handles unaligned, partial page writes. 588 * 589 * We allow length to be unaligned, for convenience in 590 * using the $filesize variable. 591 * 592 * However, starting at an unaligned offset makes the 593 * semantics of bad block skipping ambiguous (really, 594 * you should only start a block skipping access at a 595 * partition boundary). So don't try to handle that. 596 */ 597 if ((offset & (mtd->writesize - 1)) != 0) { 598 printf("Attempt to write non page-aligned data\n"); 599 *length = 0; 600 return -EINVAL; 601 } 602 603 need_skip = check_skip_len(mtd, offset, *length, &used_for_write); 604 605 if (actual) 606 *actual = used_for_write; 607 608 if (need_skip < 0) { 609 printf("Attempt to write outside the flash area\n"); 610 *length = 0; 611 return -EINVAL; 612 } 613 614 if (used_for_write > lim) { 615 puts("Size of write exceeds partition or device limit\n"); 616 *length = 0; 617 return -EFBIG; 618 } 619 620 if (!need_skip && !(flags & WITH_DROP_FFS)) { 621 rval = nand_write(mtd, offset, length, buffer); 622 623 if ((flags & WITH_WR_VERIFY) && !rval) 624 rval = nand_verify(mtd, offset, *length, buffer); 625 626 if (rval == 0) 627 return 0; 628 629 *length = 0; 630 printf("NAND write to offset %llx failed %d\n", 631 offset, rval); 632 return rval; 633 } 634 635 while (left_to_write > 0) { 636 size_t block_offset = offset & (mtd->erasesize - 1); 637 size_t write_size, truncated_write_size; 638 639 WATCHDOG_RESET(); 640 641 if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) { 642 printf("Skip bad block 0x%08llx\n", 643 offset & ~(mtd->erasesize - 1)); 644 offset += mtd->erasesize - block_offset; 645 continue; 646 } 647 648 if (left_to_write < (blocksize - block_offset)) 649 write_size = left_to_write; 650 else 651 write_size = blocksize - block_offset; 652 653 truncated_write_size = write_size; 654 #ifdef CONFIG_CMD_NAND_TRIMFFS 655 if (flags & WITH_DROP_FFS) 656 truncated_write_size = drop_ffs(mtd, p_buffer, 657 &write_size); 658 #endif 659 660 rval = nand_write(mtd, offset, &truncated_write_size, 661 p_buffer); 662 663 if ((flags & WITH_WR_VERIFY) && !rval) 664 rval = nand_verify(mtd, offset, 665 truncated_write_size, p_buffer); 666 667 offset += write_size; 668 p_buffer += write_size; 669 670 if (rval != 0) { 671 printf("NAND write to offset %llx failed %d\n", 672 offset, rval); 673 *length -= left_to_write; 674 return rval; 675 } 676 677 left_to_write -= write_size; 678 } 679 680 return 0; 681 } 682 683 /** 684 * nand_read_skip_bad: 685 * 686 * Read image from NAND flash. 687 * Blocks that are marked bad are skipped and the next block is read 688 * instead as long as the image is short enough to fit even after 689 * skipping the bad blocks. Due to bad blocks we may not be able to 690 * perform the requested read. In the case where the read would extend 691 * beyond the end of the NAND device, both length and actual (if not 692 * NULL) are set to 0. In the case where the read would extend beyond 693 * the limit we are passed, length is set to 0 and actual is set to the 694 * required length. 695 * 696 * @param mtd nand mtd instance 697 * @param offset offset in flash 698 * @param length buffer length, on return holds number of read bytes 699 * @param actual set to size required to read length worth of buffer or 0 700 * on error, if not NULL 701 * @param lim maximum size that actual may be in order to not exceed the 702 * buffer 703 * @param buffer buffer to write to 704 * @return 0 in case of success 705 */ 706 int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, 707 size_t *actual, loff_t lim, u_char *buffer) 708 { 709 int rval; 710 size_t left_to_read = *length; 711 size_t used_for_read = 0; 712 u_char *p_buffer = buffer; 713 int need_skip; 714 715 need_skip = check_skip_len(mtd, offset, *length, &used_for_read); 716 717 if (actual) 718 *actual = used_for_read; 719 720 if (need_skip < 0) { 721 printf("Attempt to read outside the flash area\n"); 722 *length = 0; 723 return -EINVAL; 724 } 725 726 if (used_for_read > lim) { 727 puts("Size of read exceeds partition or device limit\n"); 728 *length = 0; 729 return -EFBIG; 730 } 731 732 if (!need_skip) { 733 rval = nand_read(mtd, offset, length, buffer); 734 if (!rval || rval == -EUCLEAN) 735 return 0; 736 737 *length = 0; 738 printf("NAND read from offset %llx failed %d\n", 739 offset, rval); 740 return rval; 741 } 742 743 while (left_to_read > 0) { 744 size_t block_offset = offset & (mtd->erasesize - 1); 745 size_t read_length; 746 747 WATCHDOG_RESET(); 748 749 if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) { 750 printf("Skipping bad block 0x%08llx\n", 751 offset & ~(mtd->erasesize - 1)); 752 offset += mtd->erasesize - block_offset; 753 continue; 754 } 755 756 if (left_to_read < (mtd->erasesize - block_offset)) 757 read_length = left_to_read; 758 else 759 read_length = mtd->erasesize - block_offset; 760 761 rval = nand_read(mtd, offset, &read_length, p_buffer); 762 if (rval && rval != -EUCLEAN) { 763 printf("NAND read from offset %llx failed %d\n", 764 offset, rval); 765 *length -= left_to_read; 766 return rval; 767 } 768 769 left_to_read -= read_length; 770 offset += read_length; 771 p_buffer += read_length; 772 } 773 774 return 0; 775 } 776 777 #ifdef CONFIG_CMD_NAND_TORTURE 778 779 /** 780 * check_pattern: 781 * 782 * Check if buffer contains only a certain byte pattern. 783 * 784 * @param buf buffer to check 785 * @param patt the pattern to check 786 * @param size buffer size in bytes 787 * @return 1 if there are only patt bytes in buf 788 * 0 if something else was found 789 */ 790 static int check_pattern(const u_char *buf, u_char patt, int size) 791 { 792 int i; 793 794 for (i = 0; i < size; i++) 795 if (buf[i] != patt) 796 return 0; 797 return 1; 798 } 799 800 /** 801 * nand_torture: 802 * 803 * Torture a block of NAND flash. 804 * This is useful to determine if a block that caused a write error is still 805 * good or should be marked as bad. 806 * 807 * @param mtd nand mtd instance 808 * @param offset offset in flash 809 * @return 0 if the block is still good 810 */ 811 int nand_torture(struct mtd_info *mtd, loff_t offset) 812 { 813 u_char patterns[] = {0xa5, 0x5a, 0x00}; 814 struct erase_info instr = { 815 .mtd = mtd, 816 .addr = offset, 817 .len = mtd->erasesize, 818 }; 819 size_t retlen; 820 int err, ret = -1, i, patt_count; 821 u_char *buf; 822 823 if ((offset & (mtd->erasesize - 1)) != 0) { 824 puts("Attempt to torture a block at a non block-aligned offset\n"); 825 return -EINVAL; 826 } 827 828 if (offset + mtd->erasesize > mtd->size) { 829 puts("Attempt to torture a block outside the flash area\n"); 830 return -EINVAL; 831 } 832 833 patt_count = ARRAY_SIZE(patterns); 834 835 buf = malloc_cache_aligned(mtd->erasesize); 836 if (buf == NULL) { 837 puts("Out of memory for erase block buffer\n"); 838 return -ENOMEM; 839 } 840 841 for (i = 0; i < patt_count; i++) { 842 err = mtd_erase(mtd, &instr); 843 if (err) { 844 printf("%s: erase() failed for block at 0x%llx: %d\n", 845 mtd->name, instr.addr, err); 846 goto out; 847 } 848 849 /* Make sure the block contains only 0xff bytes */ 850 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); 851 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { 852 printf("%s: read() failed for block at 0x%llx: %d\n", 853 mtd->name, instr.addr, err); 854 goto out; 855 } 856 857 err = check_pattern(buf, 0xff, mtd->erasesize); 858 if (!err) { 859 printf("Erased block at 0x%llx, but a non-0xff byte was found\n", 860 offset); 861 ret = -EIO; 862 goto out; 863 } 864 865 /* Write a pattern and check it */ 866 memset(buf, patterns[i], mtd->erasesize); 867 err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf); 868 if (err || retlen != mtd->erasesize) { 869 printf("%s: write() failed for block at 0x%llx: %d\n", 870 mtd->name, instr.addr, err); 871 goto out; 872 } 873 874 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); 875 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { 876 printf("%s: read() failed for block at 0x%llx: %d\n", 877 mtd->name, instr.addr, err); 878 goto out; 879 } 880 881 err = check_pattern(buf, patterns[i], mtd->erasesize); 882 if (!err) { 883 printf("Pattern 0x%.2x checking failed for block at " 884 "0x%llx\n", patterns[i], offset); 885 ret = -EIO; 886 goto out; 887 } 888 } 889 890 ret = 0; 891 892 out: 893 free(buf); 894 return ret; 895 } 896 897 #endif 898