1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #ifndef __UBOOT__ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/ptrace.h> 16 #include <linux/seq_file.h> 17 #include <linux/string.h> 18 #include <linux/timer.h> 19 #include <linux/major.h> 20 #include <linux/fs.h> 21 #include <linux/err.h> 22 #include <linux/ioctl.h> 23 #include <linux/init.h> 24 #include <linux/proc_fs.h> 25 #include <linux/idr.h> 26 #include <linux/backing-dev.h> 27 #include <linux/gfp.h> 28 #include <linux/slab.h> 29 #else 30 #include <linux/err.h> 31 #include <ubi_uboot.h> 32 #endif 33 34 #include <linux/log2.h> 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 #ifndef __UBOOT__ 41 /* 42 * backing device capabilities for non-mappable devices (such as NAND flash) 43 * - permits private mappings, copies are taken of the data 44 */ 45 static struct backing_dev_info mtd_bdi_unmappable = { 46 .capabilities = BDI_CAP_MAP_COPY, 47 }; 48 49 /* 50 * backing device capabilities for R/O mappable devices (such as ROM) 51 * - permits private mappings, copies are taken of the data 52 * - permits non-writable shared mappings 53 */ 54 static struct backing_dev_info mtd_bdi_ro_mappable = { 55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 57 }; 58 59 /* 60 * backing device capabilities for writable mappable devices (such as RAM) 61 * - permits private mappings, copies are taken of the data 62 * - permits non-writable shared mappings 63 */ 64 static struct backing_dev_info mtd_bdi_rw_mappable = { 65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 67 BDI_CAP_WRITE_MAP), 68 }; 69 70 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 71 static int mtd_cls_resume(struct device *dev); 72 73 static struct class mtd_class = { 74 .name = "mtd", 75 .owner = THIS_MODULE, 76 .suspend = mtd_cls_suspend, 77 .resume = mtd_cls_resume, 78 }; 79 #else 80 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 81 82 #define MAX_IDR_ID 64 83 84 struct idr_layer { 85 int used; 86 void *ptr; 87 }; 88 89 struct idr { 90 struct idr_layer id[MAX_IDR_ID]; 91 bool updated; 92 }; 93 94 #define DEFINE_IDR(name) struct idr name; 95 96 void idr_remove(struct idr *idp, int id) 97 { 98 if (idp->id[id].used) { 99 idp->id[id].used = 0; 100 idp->updated = true; 101 } 102 103 return; 104 } 105 void *idr_find(struct idr *idp, int id) 106 { 107 if (idp->id[id].used) 108 return idp->id[id].ptr; 109 110 return NULL; 111 } 112 113 void *idr_get_next(struct idr *idp, int *next) 114 { 115 void *ret; 116 int id = *next; 117 118 ret = idr_find(idp, id); 119 if (ret) { 120 id ++; 121 if (!idp->id[id].used) 122 id = 0; 123 *next = id; 124 } else { 125 *next = 0; 126 } 127 128 return ret; 129 } 130 131 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 132 { 133 struct idr_layer *idl; 134 int i = 0; 135 136 while (i < MAX_IDR_ID) { 137 idl = &idp->id[i]; 138 if (idl->used == 0) { 139 idl->used = 1; 140 idl->ptr = ptr; 141 idp->updated = true; 142 return i; 143 } 144 i++; 145 } 146 return -ENOSPC; 147 } 148 #endif 149 150 static DEFINE_IDR(mtd_idr); 151 152 /* These are exported solely for the purpose of mtd_blkdevs.c. You 153 should not use them for _anything_ else */ 154 DEFINE_MUTEX(mtd_table_mutex); 155 EXPORT_SYMBOL_GPL(mtd_table_mutex); 156 157 struct mtd_info *__mtd_next_device(int i) 158 { 159 return idr_get_next(&mtd_idr, &i); 160 } 161 EXPORT_SYMBOL_GPL(__mtd_next_device); 162 163 bool mtd_dev_list_updated(void) 164 { 165 if (mtd_idr.updated) { 166 mtd_idr.updated = false; 167 return true; 168 } 169 170 return false; 171 } 172 173 #ifndef __UBOOT__ 174 static LIST_HEAD(mtd_notifiers); 175 176 177 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 178 179 /* REVISIT once MTD uses the driver model better, whoever allocates 180 * the mtd_info will probably want to use the release() hook... 181 */ 182 static void mtd_release(struct device *dev) 183 { 184 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 185 dev_t index = MTD_DEVT(mtd->index); 186 187 /* remove /dev/mtdXro node if needed */ 188 if (index) 189 device_destroy(&mtd_class, index + 1); 190 } 191 192 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 196 return mtd ? mtd_suspend(mtd) : 0; 197 } 198 199 static int mtd_cls_resume(struct device *dev) 200 { 201 struct mtd_info *mtd = dev_get_drvdata(dev); 202 203 if (mtd) 204 mtd_resume(mtd); 205 return 0; 206 } 207 208 static ssize_t mtd_type_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 char *type; 213 214 switch (mtd->type) { 215 case MTD_ABSENT: 216 type = "absent"; 217 break; 218 case MTD_RAM: 219 type = "ram"; 220 break; 221 case MTD_ROM: 222 type = "rom"; 223 break; 224 case MTD_NORFLASH: 225 type = "nor"; 226 break; 227 case MTD_NANDFLASH: 228 type = "nand"; 229 break; 230 case MTD_DATAFLASH: 231 type = "dataflash"; 232 break; 233 case MTD_UBIVOLUME: 234 type = "ubi"; 235 break; 236 case MTD_MLCNANDFLASH: 237 type = "mlc-nand"; 238 break; 239 default: 240 type = "unknown"; 241 } 242 243 return snprintf(buf, PAGE_SIZE, "%s\n", type); 244 } 245 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 246 247 static ssize_t mtd_flags_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct mtd_info *mtd = dev_get_drvdata(dev); 251 252 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 253 254 } 255 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 256 257 static ssize_t mtd_size_show(struct device *dev, 258 struct device_attribute *attr, char *buf) 259 { 260 struct mtd_info *mtd = dev_get_drvdata(dev); 261 262 return snprintf(buf, PAGE_SIZE, "%llu\n", 263 (unsigned long long)mtd->size); 264 265 } 266 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 267 268 static ssize_t mtd_erasesize_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct mtd_info *mtd = dev_get_drvdata(dev); 272 273 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 274 275 } 276 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 277 278 static ssize_t mtd_writesize_show(struct device *dev, 279 struct device_attribute *attr, char *buf) 280 { 281 struct mtd_info *mtd = dev_get_drvdata(dev); 282 283 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 284 285 } 286 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 287 288 static ssize_t mtd_subpagesize_show(struct device *dev, 289 struct device_attribute *attr, char *buf) 290 { 291 struct mtd_info *mtd = dev_get_drvdata(dev); 292 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 293 294 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 295 296 } 297 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 298 299 static ssize_t mtd_oobsize_show(struct device *dev, 300 struct device_attribute *attr, char *buf) 301 { 302 struct mtd_info *mtd = dev_get_drvdata(dev); 303 304 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 305 306 } 307 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 308 309 static ssize_t mtd_numeraseregions_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct mtd_info *mtd = dev_get_drvdata(dev); 313 314 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 315 316 } 317 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 318 NULL); 319 320 static ssize_t mtd_name_show(struct device *dev, 321 struct device_attribute *attr, char *buf) 322 { 323 struct mtd_info *mtd = dev_get_drvdata(dev); 324 325 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 326 327 } 328 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 329 330 static ssize_t mtd_ecc_strength_show(struct device *dev, 331 struct device_attribute *attr, char *buf) 332 { 333 struct mtd_info *mtd = dev_get_drvdata(dev); 334 335 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 336 } 337 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 338 339 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 340 struct device_attribute *attr, 341 char *buf) 342 { 343 struct mtd_info *mtd = dev_get_drvdata(dev); 344 345 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 346 } 347 348 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 349 struct device_attribute *attr, 350 const char *buf, size_t count) 351 { 352 struct mtd_info *mtd = dev_get_drvdata(dev); 353 unsigned int bitflip_threshold; 354 int retval; 355 356 retval = kstrtouint(buf, 0, &bitflip_threshold); 357 if (retval) 358 return retval; 359 360 mtd->bitflip_threshold = bitflip_threshold; 361 return count; 362 } 363 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 364 mtd_bitflip_threshold_show, 365 mtd_bitflip_threshold_store); 366 367 static ssize_t mtd_ecc_step_size_show(struct device *dev, 368 struct device_attribute *attr, char *buf) 369 { 370 struct mtd_info *mtd = dev_get_drvdata(dev); 371 372 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 373 374 } 375 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 376 377 static struct attribute *mtd_attrs[] = { 378 &dev_attr_type.attr, 379 &dev_attr_flags.attr, 380 &dev_attr_size.attr, 381 &dev_attr_erasesize.attr, 382 &dev_attr_writesize.attr, 383 &dev_attr_subpagesize.attr, 384 &dev_attr_oobsize.attr, 385 &dev_attr_numeraseregions.attr, 386 &dev_attr_name.attr, 387 &dev_attr_ecc_strength.attr, 388 &dev_attr_ecc_step_size.attr, 389 &dev_attr_bitflip_threshold.attr, 390 NULL, 391 }; 392 ATTRIBUTE_GROUPS(mtd); 393 394 static struct device_type mtd_devtype = { 395 .name = "mtd", 396 .groups = mtd_groups, 397 .release = mtd_release, 398 }; 399 #endif 400 401 /** 402 * add_mtd_device - register an MTD device 403 * @mtd: pointer to new MTD device info structure 404 * 405 * Add a device to the list of MTD devices present in the system, and 406 * notify each currently active MTD 'user' of its arrival. Returns 407 * zero on success or 1 on failure, which currently will only happen 408 * if there is insufficient memory or a sysfs error. 409 */ 410 411 int add_mtd_device(struct mtd_info *mtd) 412 { 413 #ifndef __UBOOT__ 414 struct mtd_notifier *not; 415 #endif 416 int i, error; 417 418 #ifndef __UBOOT__ 419 if (!mtd->backing_dev_info) { 420 switch (mtd->type) { 421 case MTD_RAM: 422 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 423 break; 424 case MTD_ROM: 425 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 426 break; 427 default: 428 mtd->backing_dev_info = &mtd_bdi_unmappable; 429 break; 430 } 431 } 432 #endif 433 434 BUG_ON(mtd->writesize == 0); 435 mutex_lock(&mtd_table_mutex); 436 437 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 438 if (i < 0) 439 goto fail_locked; 440 441 mtd->index = i; 442 mtd->usecount = 0; 443 444 INIT_LIST_HEAD(&mtd->partitions); 445 446 /* default value if not set by driver */ 447 if (mtd->bitflip_threshold == 0) 448 mtd->bitflip_threshold = mtd->ecc_strength; 449 450 if (is_power_of_2(mtd->erasesize)) 451 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 452 else 453 mtd->erasesize_shift = 0; 454 455 if (is_power_of_2(mtd->writesize)) 456 mtd->writesize_shift = ffs(mtd->writesize) - 1; 457 else 458 mtd->writesize_shift = 0; 459 460 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 461 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 462 463 /* Some chips always power up locked. Unlock them now */ 464 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 465 error = mtd_unlock(mtd, 0, mtd->size); 466 if (error && error != -EOPNOTSUPP) 467 printk(KERN_WARNING 468 "%s: unlock failed, writes may not work\n", 469 mtd->name); 470 } 471 472 #ifndef __UBOOT__ 473 /* Caller should have set dev.parent to match the 474 * physical device. 475 */ 476 mtd->dev.type = &mtd_devtype; 477 mtd->dev.class = &mtd_class; 478 mtd->dev.devt = MTD_DEVT(i); 479 dev_set_name(&mtd->dev, "mtd%d", i); 480 dev_set_drvdata(&mtd->dev, mtd); 481 if (device_register(&mtd->dev) != 0) 482 goto fail_added; 483 484 if (MTD_DEVT(i)) 485 device_create(&mtd_class, mtd->dev.parent, 486 MTD_DEVT(i) + 1, 487 NULL, "mtd%dro", i); 488 489 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 490 /* No need to get a refcount on the module containing 491 the notifier, since we hold the mtd_table_mutex */ 492 list_for_each_entry(not, &mtd_notifiers, list) 493 not->add(mtd); 494 #else 495 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 496 #endif 497 498 mutex_unlock(&mtd_table_mutex); 499 /* We _know_ we aren't being removed, because 500 our caller is still holding us here. So none 501 of this try_ nonsense, and no bitching about it 502 either. :) */ 503 __module_get(THIS_MODULE); 504 return 0; 505 506 #ifndef __UBOOT__ 507 fail_added: 508 idr_remove(&mtd_idr, i); 509 #endif 510 fail_locked: 511 mutex_unlock(&mtd_table_mutex); 512 return 1; 513 } 514 515 /** 516 * del_mtd_device - unregister an MTD device 517 * @mtd: pointer to MTD device info structure 518 * 519 * Remove a device from the list of MTD devices present in the system, 520 * and notify each currently active MTD 'user' of its departure. 521 * Returns zero on success or 1 on failure, which currently will happen 522 * if the requested device does not appear to be present in the list. 523 */ 524 525 int del_mtd_device(struct mtd_info *mtd) 526 { 527 int ret; 528 #ifndef __UBOOT__ 529 struct mtd_notifier *not; 530 #endif 531 532 ret = del_mtd_partitions(mtd); 533 if (ret) { 534 debug("Failed to delete MTD partitions attached to %s (err %d)\n", 535 mtd->name, ret); 536 return ret; 537 } 538 539 mutex_lock(&mtd_table_mutex); 540 541 if (idr_find(&mtd_idr, mtd->index) != mtd) { 542 ret = -ENODEV; 543 goto out_error; 544 } 545 546 #ifndef __UBOOT__ 547 /* No need to get a refcount on the module containing 548 the notifier, since we hold the mtd_table_mutex */ 549 list_for_each_entry(not, &mtd_notifiers, list) 550 not->remove(mtd); 551 #endif 552 553 if (mtd->usecount) { 554 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 555 mtd->index, mtd->name, mtd->usecount); 556 ret = -EBUSY; 557 } else { 558 #ifndef __UBOOT__ 559 device_unregister(&mtd->dev); 560 #endif 561 562 idr_remove(&mtd_idr, mtd->index); 563 564 module_put(THIS_MODULE); 565 ret = 0; 566 } 567 568 out_error: 569 mutex_unlock(&mtd_table_mutex); 570 return ret; 571 } 572 573 #ifndef __UBOOT__ 574 /** 575 * mtd_device_parse_register - parse partitions and register an MTD device. 576 * 577 * @mtd: the MTD device to register 578 * @types: the list of MTD partition probes to try, see 579 * 'parse_mtd_partitions()' for more information 580 * @parser_data: MTD partition parser-specific data 581 * @parts: fallback partition information to register, if parsing fails; 582 * only valid if %nr_parts > %0 583 * @nr_parts: the number of partitions in parts, if zero then the full 584 * MTD device is registered if no partition info is found 585 * 586 * This function aggregates MTD partitions parsing (done by 587 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 588 * basically follows the most common pattern found in many MTD drivers: 589 * 590 * * It first tries to probe partitions on MTD device @mtd using parsers 591 * specified in @types (if @types is %NULL, then the default list of parsers 592 * is used, see 'parse_mtd_partitions()' for more information). If none are 593 * found this functions tries to fallback to information specified in 594 * @parts/@nr_parts. 595 * * If any partitioning info was found, this function registers the found 596 * partitions. 597 * * If no partitions were found this function just registers the MTD device 598 * @mtd and exits. 599 * 600 * Returns zero in case of success and a negative error code in case of failure. 601 */ 602 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 603 struct mtd_part_parser_data *parser_data, 604 const struct mtd_partition *parts, 605 int nr_parts) 606 { 607 int err; 608 struct mtd_partition *real_parts; 609 610 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 611 if (err <= 0 && nr_parts && parts) { 612 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 613 GFP_KERNEL); 614 if (!real_parts) 615 err = -ENOMEM; 616 else 617 err = nr_parts; 618 } 619 620 if (err > 0) { 621 err = add_mtd_partitions(mtd, real_parts, err); 622 kfree(real_parts); 623 } else if (err == 0) { 624 err = add_mtd_device(mtd); 625 if (err == 1) 626 err = -ENODEV; 627 } 628 629 return err; 630 } 631 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 632 633 /** 634 * mtd_device_unregister - unregister an existing MTD device. 635 * 636 * @master: the MTD device to unregister. This will unregister both the master 637 * and any partitions if registered. 638 */ 639 int mtd_device_unregister(struct mtd_info *master) 640 { 641 int err; 642 643 err = del_mtd_partitions(master); 644 if (err) 645 return err; 646 647 if (!device_is_registered(&master->dev)) 648 return 0; 649 650 return del_mtd_device(master); 651 } 652 EXPORT_SYMBOL_GPL(mtd_device_unregister); 653 654 /** 655 * register_mtd_user - register a 'user' of MTD devices. 656 * @new: pointer to notifier info structure 657 * 658 * Registers a pair of callbacks function to be called upon addition 659 * or removal of MTD devices. Causes the 'add' callback to be immediately 660 * invoked for each MTD device currently present in the system. 661 */ 662 void register_mtd_user (struct mtd_notifier *new) 663 { 664 struct mtd_info *mtd; 665 666 mutex_lock(&mtd_table_mutex); 667 668 list_add(&new->list, &mtd_notifiers); 669 670 __module_get(THIS_MODULE); 671 672 mtd_for_each_device(mtd) 673 new->add(mtd); 674 675 mutex_unlock(&mtd_table_mutex); 676 } 677 EXPORT_SYMBOL_GPL(register_mtd_user); 678 679 /** 680 * unregister_mtd_user - unregister a 'user' of MTD devices. 681 * @old: pointer to notifier info structure 682 * 683 * Removes a callback function pair from the list of 'users' to be 684 * notified upon addition or removal of MTD devices. Causes the 685 * 'remove' callback to be immediately invoked for each MTD device 686 * currently present in the system. 687 */ 688 int unregister_mtd_user (struct mtd_notifier *old) 689 { 690 struct mtd_info *mtd; 691 692 mutex_lock(&mtd_table_mutex); 693 694 module_put(THIS_MODULE); 695 696 mtd_for_each_device(mtd) 697 old->remove(mtd); 698 699 list_del(&old->list); 700 mutex_unlock(&mtd_table_mutex); 701 return 0; 702 } 703 EXPORT_SYMBOL_GPL(unregister_mtd_user); 704 #endif 705 706 /** 707 * get_mtd_device - obtain a validated handle for an MTD device 708 * @mtd: last known address of the required MTD device 709 * @num: internal device number of the required MTD device 710 * 711 * Given a number and NULL address, return the num'th entry in the device 712 * table, if any. Given an address and num == -1, search the device table 713 * for a device with that address and return if it's still present. Given 714 * both, return the num'th driver only if its address matches. Return 715 * error code if not. 716 */ 717 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 718 { 719 struct mtd_info *ret = NULL, *other; 720 int err = -ENODEV; 721 722 mutex_lock(&mtd_table_mutex); 723 724 if (num == -1) { 725 mtd_for_each_device(other) { 726 if (other == mtd) { 727 ret = mtd; 728 break; 729 } 730 } 731 } else if (num >= 0) { 732 ret = idr_find(&mtd_idr, num); 733 if (mtd && mtd != ret) 734 ret = NULL; 735 } 736 737 if (!ret) { 738 ret = ERR_PTR(err); 739 goto out; 740 } 741 742 err = __get_mtd_device(ret); 743 if (err) 744 ret = ERR_PTR(err); 745 out: 746 mutex_unlock(&mtd_table_mutex); 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(get_mtd_device); 750 751 752 int __get_mtd_device(struct mtd_info *mtd) 753 { 754 int err; 755 756 if (!try_module_get(mtd->owner)) 757 return -ENODEV; 758 759 if (mtd->_get_device) { 760 err = mtd->_get_device(mtd); 761 762 if (err) { 763 module_put(mtd->owner); 764 return err; 765 } 766 } 767 mtd->usecount++; 768 return 0; 769 } 770 EXPORT_SYMBOL_GPL(__get_mtd_device); 771 772 /** 773 * get_mtd_device_nm - obtain a validated handle for an MTD device by 774 * device name 775 * @name: MTD device name to open 776 * 777 * This function returns MTD device description structure in case of 778 * success and an error code in case of failure. 779 */ 780 struct mtd_info *get_mtd_device_nm(const char *name) 781 { 782 int err = -ENODEV; 783 struct mtd_info *mtd = NULL, *other; 784 785 mutex_lock(&mtd_table_mutex); 786 787 mtd_for_each_device(other) { 788 if (!strcmp(name, other->name)) { 789 mtd = other; 790 break; 791 } 792 } 793 794 if (!mtd) 795 goto out_unlock; 796 797 err = __get_mtd_device(mtd); 798 if (err) 799 goto out_unlock; 800 801 mutex_unlock(&mtd_table_mutex); 802 return mtd; 803 804 out_unlock: 805 mutex_unlock(&mtd_table_mutex); 806 return ERR_PTR(err); 807 } 808 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 809 810 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 811 /** 812 * mtd_get_len_incl_bad 813 * 814 * Check if length including bad blocks fits into device. 815 * 816 * @param mtd an MTD device 817 * @param offset offset in flash 818 * @param length image length 819 * @return image length including bad blocks in *len_incl_bad and whether or not 820 * the length returned was truncated in *truncated 821 */ 822 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 823 const uint64_t length, uint64_t *len_incl_bad, 824 int *truncated) 825 { 826 *truncated = 0; 827 *len_incl_bad = 0; 828 829 if (!mtd->_block_isbad) { 830 *len_incl_bad = length; 831 return; 832 } 833 834 uint64_t len_excl_bad = 0; 835 uint64_t block_len; 836 837 while (len_excl_bad < length) { 838 if (offset >= mtd->size) { 839 *truncated = 1; 840 return; 841 } 842 843 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 844 845 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 846 len_excl_bad += block_len; 847 848 *len_incl_bad += block_len; 849 offset += block_len; 850 } 851 } 852 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 853 854 void put_mtd_device(struct mtd_info *mtd) 855 { 856 mutex_lock(&mtd_table_mutex); 857 __put_mtd_device(mtd); 858 mutex_unlock(&mtd_table_mutex); 859 860 } 861 EXPORT_SYMBOL_GPL(put_mtd_device); 862 863 void __put_mtd_device(struct mtd_info *mtd) 864 { 865 --mtd->usecount; 866 BUG_ON(mtd->usecount < 0); 867 868 if (mtd->_put_device) 869 mtd->_put_device(mtd); 870 871 module_put(mtd->owner); 872 } 873 EXPORT_SYMBOL_GPL(__put_mtd_device); 874 875 /* 876 * Erase is an asynchronous operation. Device drivers are supposed 877 * to call instr->callback() whenever the operation completes, even 878 * if it completes with a failure. 879 * Callers are supposed to pass a callback function and wait for it 880 * to be called before writing to the block. 881 */ 882 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 883 { 884 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 885 return -EINVAL; 886 if (!(mtd->flags & MTD_WRITEABLE)) 887 return -EROFS; 888 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 889 if (!instr->len) { 890 instr->state = MTD_ERASE_DONE; 891 mtd_erase_callback(instr); 892 return 0; 893 } 894 return mtd->_erase(mtd, instr); 895 } 896 EXPORT_SYMBOL_GPL(mtd_erase); 897 898 #ifndef __UBOOT__ 899 /* 900 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 901 */ 902 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 903 void **virt, resource_size_t *phys) 904 { 905 *retlen = 0; 906 *virt = NULL; 907 if (phys) 908 *phys = 0; 909 if (!mtd->_point) 910 return -EOPNOTSUPP; 911 if (from < 0 || from > mtd->size || len > mtd->size - from) 912 return -EINVAL; 913 if (!len) 914 return 0; 915 return mtd->_point(mtd, from, len, retlen, virt, phys); 916 } 917 EXPORT_SYMBOL_GPL(mtd_point); 918 919 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 920 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 921 { 922 if (!mtd->_point) 923 return -EOPNOTSUPP; 924 if (from < 0 || from > mtd->size || len > mtd->size - from) 925 return -EINVAL; 926 if (!len) 927 return 0; 928 return mtd->_unpoint(mtd, from, len); 929 } 930 EXPORT_SYMBOL_GPL(mtd_unpoint); 931 #endif 932 933 /* 934 * Allow NOMMU mmap() to directly map the device (if not NULL) 935 * - return the address to which the offset maps 936 * - return -ENOSYS to indicate refusal to do the mapping 937 */ 938 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 939 unsigned long offset, unsigned long flags) 940 { 941 if (!mtd->_get_unmapped_area) 942 return -EOPNOTSUPP; 943 if (offset > mtd->size || len > mtd->size - offset) 944 return -EINVAL; 945 return mtd->_get_unmapped_area(mtd, len, offset, flags); 946 } 947 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 948 949 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 950 u_char *buf) 951 { 952 int ret_code; 953 *retlen = 0; 954 if (from < 0 || from > mtd->size || len > mtd->size - from) 955 return -EINVAL; 956 if (!len) 957 return 0; 958 959 /* 960 * In the absence of an error, drivers return a non-negative integer 961 * representing the maximum number of bitflips that were corrected on 962 * any one ecc region (if applicable; zero otherwise). 963 */ 964 if (mtd->_read) { 965 ret_code = mtd->_read(mtd, from, len, retlen, buf); 966 } else if (mtd->_read_oob) { 967 struct mtd_oob_ops ops = { 968 .len = len, 969 .datbuf = buf, 970 }; 971 972 ret_code = mtd->_read_oob(mtd, from, &ops); 973 *retlen = ops.retlen; 974 } else { 975 return -ENOTSUPP; 976 } 977 978 if (unlikely(ret_code < 0)) 979 return ret_code; 980 if (mtd->ecc_strength == 0) 981 return 0; /* device lacks ecc */ 982 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 983 } 984 EXPORT_SYMBOL_GPL(mtd_read); 985 986 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 987 const u_char *buf) 988 { 989 *retlen = 0; 990 if (to < 0 || to > mtd->size || len > mtd->size - to) 991 return -EINVAL; 992 if ((!mtd->_write && !mtd->_write_oob) || 993 !(mtd->flags & MTD_WRITEABLE)) 994 return -EROFS; 995 if (!len) 996 return 0; 997 998 if (!mtd->_write) { 999 struct mtd_oob_ops ops = { 1000 .len = len, 1001 .datbuf = (u8 *)buf, 1002 }; 1003 int ret; 1004 1005 ret = mtd->_write_oob(mtd, to, &ops); 1006 *retlen = ops.retlen; 1007 return ret; 1008 } 1009 1010 return mtd->_write(mtd, to, len, retlen, buf); 1011 } 1012 EXPORT_SYMBOL_GPL(mtd_write); 1013 1014 /* 1015 * In blackbox flight recorder like scenarios we want to make successful writes 1016 * in interrupt context. panic_write() is only intended to be called when its 1017 * known the kernel is about to panic and we need the write to succeed. Since 1018 * the kernel is not going to be running for much longer, this function can 1019 * break locks and delay to ensure the write succeeds (but not sleep). 1020 */ 1021 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1022 const u_char *buf) 1023 { 1024 *retlen = 0; 1025 if (!mtd->_panic_write) 1026 return -EOPNOTSUPP; 1027 if (to < 0 || to > mtd->size || len > mtd->size - to) 1028 return -EINVAL; 1029 if (!(mtd->flags & MTD_WRITEABLE)) 1030 return -EROFS; 1031 if (!len) 1032 return 0; 1033 return mtd->_panic_write(mtd, to, len, retlen, buf); 1034 } 1035 EXPORT_SYMBOL_GPL(mtd_panic_write); 1036 1037 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1038 struct mtd_oob_ops *ops) 1039 { 1040 /* 1041 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1042 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1043 * this case. 1044 */ 1045 if (!ops->datbuf) 1046 ops->len = 0; 1047 1048 if (!ops->oobbuf) 1049 ops->ooblen = 0; 1050 1051 if (offs < 0 || offs + ops->len > mtd->size) 1052 return -EINVAL; 1053 1054 if (ops->ooblen) { 1055 size_t maxooblen; 1056 1057 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1058 return -EINVAL; 1059 1060 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1061 mtd_div_by_ws(offs, mtd)) * 1062 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1063 if (ops->ooblen > maxooblen) 1064 return -EINVAL; 1065 } 1066 1067 return 0; 1068 } 1069 1070 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1071 { 1072 int ret_code; 1073 ops->retlen = ops->oobretlen = 0; 1074 1075 ret_code = mtd_check_oob_ops(mtd, from, ops); 1076 if (ret_code) 1077 return ret_code; 1078 1079 /* Check the validity of a potential fallback on mtd->_read */ 1080 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1081 return -EOPNOTSUPP; 1082 1083 if (mtd->_read_oob) 1084 ret_code = mtd->_read_oob(mtd, from, ops); 1085 else 1086 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1087 ops->datbuf); 1088 1089 /* 1090 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1091 * similar to mtd->_read(), returning a non-negative integer 1092 * representing max bitflips. In other cases, mtd->_read_oob() may 1093 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1094 */ 1095 if (unlikely(ret_code < 0)) 1096 return ret_code; 1097 if (mtd->ecc_strength == 0) 1098 return 0; /* device lacks ecc */ 1099 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1100 } 1101 EXPORT_SYMBOL_GPL(mtd_read_oob); 1102 1103 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1104 struct mtd_oob_ops *ops) 1105 { 1106 int ret; 1107 1108 ops->retlen = ops->oobretlen = 0; 1109 1110 if (!(mtd->flags & MTD_WRITEABLE)) 1111 return -EROFS; 1112 1113 ret = mtd_check_oob_ops(mtd, to, ops); 1114 if (ret) 1115 return ret; 1116 1117 /* Check the validity of a potential fallback on mtd->_write */ 1118 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1119 return -EOPNOTSUPP; 1120 1121 if (mtd->_write_oob) 1122 return mtd->_write_oob(mtd, to, ops); 1123 else 1124 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1125 ops->datbuf); 1126 } 1127 EXPORT_SYMBOL_GPL(mtd_write_oob); 1128 1129 /** 1130 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1131 * @mtd: MTD device structure 1132 * @section: ECC section. Depending on the layout you may have all the ECC 1133 * bytes stored in a single contiguous section, or one section 1134 * per ECC chunk (and sometime several sections for a single ECC 1135 * ECC chunk) 1136 * @oobecc: OOB region struct filled with the appropriate ECC position 1137 * information 1138 * 1139 * This function returns ECC section information in the OOB area. If you want 1140 * to get all the ECC bytes information, then you should call 1141 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1142 * 1143 * Returns zero on success, a negative error code otherwise. 1144 */ 1145 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1146 struct mtd_oob_region *oobecc) 1147 { 1148 memset(oobecc, 0, sizeof(*oobecc)); 1149 1150 if (!mtd || section < 0) 1151 return -EINVAL; 1152 1153 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1154 return -ENOTSUPP; 1155 1156 return mtd->ooblayout->ecc(mtd, section, oobecc); 1157 } 1158 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1159 1160 /** 1161 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1162 * section 1163 * @mtd: MTD device structure 1164 * @section: Free section you are interested in. Depending on the layout 1165 * you may have all the free bytes stored in a single contiguous 1166 * section, or one section per ECC chunk plus an extra section 1167 * for the remaining bytes (or other funky layout). 1168 * @oobfree: OOB region struct filled with the appropriate free position 1169 * information 1170 * 1171 * This function returns free bytes position in the OOB area. If you want 1172 * to get all the free bytes information, then you should call 1173 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1174 * 1175 * Returns zero on success, a negative error code otherwise. 1176 */ 1177 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1178 struct mtd_oob_region *oobfree) 1179 { 1180 memset(oobfree, 0, sizeof(*oobfree)); 1181 1182 if (!mtd || section < 0) 1183 return -EINVAL; 1184 1185 if (!mtd->ooblayout || !mtd->ooblayout->rfree) 1186 return -ENOTSUPP; 1187 1188 return mtd->ooblayout->rfree(mtd, section, oobfree); 1189 } 1190 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1191 1192 /** 1193 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1194 * @mtd: mtd info structure 1195 * @byte: the byte we are searching for 1196 * @sectionp: pointer where the section id will be stored 1197 * @oobregion: used to retrieve the ECC position 1198 * @iter: iterator function. Should be either mtd_ooblayout_free or 1199 * mtd_ooblayout_ecc depending on the region type you're searching for 1200 * 1201 * This function returns the section id and oobregion information of a 1202 * specific byte. For example, say you want to know where the 4th ECC byte is 1203 * stored, you'll use: 1204 * 1205 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1206 * 1207 * Returns zero on success, a negative error code otherwise. 1208 */ 1209 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1210 int *sectionp, struct mtd_oob_region *oobregion, 1211 int (*iter)(struct mtd_info *, 1212 int section, 1213 struct mtd_oob_region *oobregion)) 1214 { 1215 int pos = 0, ret, section = 0; 1216 1217 memset(oobregion, 0, sizeof(*oobregion)); 1218 1219 while (1) { 1220 ret = iter(mtd, section, oobregion); 1221 if (ret) 1222 return ret; 1223 1224 if (pos + oobregion->length > byte) 1225 break; 1226 1227 pos += oobregion->length; 1228 section++; 1229 } 1230 1231 /* 1232 * Adjust region info to make it start at the beginning at the 1233 * 'start' ECC byte. 1234 */ 1235 oobregion->offset += byte - pos; 1236 oobregion->length -= byte - pos; 1237 *sectionp = section; 1238 1239 return 0; 1240 } 1241 1242 /** 1243 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1244 * ECC byte 1245 * @mtd: mtd info structure 1246 * @eccbyte: the byte we are searching for 1247 * @sectionp: pointer where the section id will be stored 1248 * @oobregion: OOB region information 1249 * 1250 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1251 * byte. 1252 * 1253 * Returns zero on success, a negative error code otherwise. 1254 */ 1255 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1256 int *section, 1257 struct mtd_oob_region *oobregion) 1258 { 1259 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1260 mtd_ooblayout_ecc); 1261 } 1262 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1263 1264 /** 1265 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1266 * @mtd: mtd info structure 1267 * @buf: destination buffer to store OOB bytes 1268 * @oobbuf: OOB buffer 1269 * @start: first byte to retrieve 1270 * @nbytes: number of bytes to retrieve 1271 * @iter: section iterator 1272 * 1273 * Extract bytes attached to a specific category (ECC or free) 1274 * from the OOB buffer and copy them into buf. 1275 * 1276 * Returns zero on success, a negative error code otherwise. 1277 */ 1278 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1279 const u8 *oobbuf, int start, int nbytes, 1280 int (*iter)(struct mtd_info *, 1281 int section, 1282 struct mtd_oob_region *oobregion)) 1283 { 1284 struct mtd_oob_region oobregion; 1285 int section, ret; 1286 1287 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1288 &oobregion, iter); 1289 1290 while (!ret) { 1291 int cnt; 1292 1293 cnt = min_t(int, nbytes, oobregion.length); 1294 memcpy(buf, oobbuf + oobregion.offset, cnt); 1295 buf += cnt; 1296 nbytes -= cnt; 1297 1298 if (!nbytes) 1299 break; 1300 1301 ret = iter(mtd, ++section, &oobregion); 1302 } 1303 1304 return ret; 1305 } 1306 1307 /** 1308 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1309 * @mtd: mtd info structure 1310 * @buf: source buffer to get OOB bytes from 1311 * @oobbuf: OOB buffer 1312 * @start: first OOB byte to set 1313 * @nbytes: number of OOB bytes to set 1314 * @iter: section iterator 1315 * 1316 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1317 * is selected by passing the appropriate iterator. 1318 * 1319 * Returns zero on success, a negative error code otherwise. 1320 */ 1321 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1322 u8 *oobbuf, int start, int nbytes, 1323 int (*iter)(struct mtd_info *, 1324 int section, 1325 struct mtd_oob_region *oobregion)) 1326 { 1327 struct mtd_oob_region oobregion; 1328 int section, ret; 1329 1330 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1331 &oobregion, iter); 1332 1333 while (!ret) { 1334 int cnt; 1335 1336 cnt = min_t(int, nbytes, oobregion.length); 1337 memcpy(oobbuf + oobregion.offset, buf, cnt); 1338 buf += cnt; 1339 nbytes -= cnt; 1340 1341 if (!nbytes) 1342 break; 1343 1344 ret = iter(mtd, ++section, &oobregion); 1345 } 1346 1347 return ret; 1348 } 1349 1350 /** 1351 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1352 * @mtd: mtd info structure 1353 * @iter: category iterator 1354 * 1355 * Count the number of bytes in a given category. 1356 * 1357 * Returns a positive value on success, a negative error code otherwise. 1358 */ 1359 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1360 int (*iter)(struct mtd_info *, 1361 int section, 1362 struct mtd_oob_region *oobregion)) 1363 { 1364 struct mtd_oob_region oobregion; 1365 int section = 0, ret, nbytes = 0; 1366 1367 while (1) { 1368 ret = iter(mtd, section++, &oobregion); 1369 if (ret) { 1370 if (ret == -ERANGE) 1371 ret = nbytes; 1372 break; 1373 } 1374 1375 nbytes += oobregion.length; 1376 } 1377 1378 return ret; 1379 } 1380 1381 /** 1382 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1383 * @mtd: mtd info structure 1384 * @eccbuf: destination buffer to store ECC bytes 1385 * @oobbuf: OOB buffer 1386 * @start: first ECC byte to retrieve 1387 * @nbytes: number of ECC bytes to retrieve 1388 * 1389 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1390 * 1391 * Returns zero on success, a negative error code otherwise. 1392 */ 1393 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1394 const u8 *oobbuf, int start, int nbytes) 1395 { 1396 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1397 mtd_ooblayout_ecc); 1398 } 1399 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1400 1401 /** 1402 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1403 * @mtd: mtd info structure 1404 * @eccbuf: source buffer to get ECC bytes from 1405 * @oobbuf: OOB buffer 1406 * @start: first ECC byte to set 1407 * @nbytes: number of ECC bytes to set 1408 * 1409 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1410 * 1411 * Returns zero on success, a negative error code otherwise. 1412 */ 1413 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1414 u8 *oobbuf, int start, int nbytes) 1415 { 1416 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1417 mtd_ooblayout_ecc); 1418 } 1419 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1420 1421 /** 1422 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1423 * @mtd: mtd info structure 1424 * @databuf: destination buffer to store ECC bytes 1425 * @oobbuf: OOB buffer 1426 * @start: first ECC byte to retrieve 1427 * @nbytes: number of ECC bytes to retrieve 1428 * 1429 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1430 * 1431 * Returns zero on success, a negative error code otherwise. 1432 */ 1433 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1434 const u8 *oobbuf, int start, int nbytes) 1435 { 1436 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1437 mtd_ooblayout_free); 1438 } 1439 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1440 1441 /** 1442 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1443 * @mtd: mtd info structure 1444 * @eccbuf: source buffer to get data bytes from 1445 * @oobbuf: OOB buffer 1446 * @start: first ECC byte to set 1447 * @nbytes: number of ECC bytes to set 1448 * 1449 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1450 * 1451 * Returns zero on success, a negative error code otherwise. 1452 */ 1453 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1454 u8 *oobbuf, int start, int nbytes) 1455 { 1456 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1457 mtd_ooblayout_free); 1458 } 1459 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1460 1461 /** 1462 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1463 * @mtd: mtd info structure 1464 * 1465 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1466 * 1467 * Returns zero on success, a negative error code otherwise. 1468 */ 1469 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1470 { 1471 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1472 } 1473 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1474 1475 /** 1476 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1477 * @mtd: mtd info structure 1478 * 1479 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1480 * 1481 * Returns zero on success, a negative error code otherwise. 1482 */ 1483 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1484 { 1485 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1486 } 1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1488 1489 /* 1490 * Method to access the protection register area, present in some flash 1491 * devices. The user data is one time programmable but the factory data is read 1492 * only. 1493 */ 1494 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1495 struct otp_info *buf) 1496 { 1497 if (!mtd->_get_fact_prot_info) 1498 return -EOPNOTSUPP; 1499 if (!len) 1500 return 0; 1501 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1502 } 1503 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1504 1505 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1506 size_t *retlen, u_char *buf) 1507 { 1508 *retlen = 0; 1509 if (!mtd->_read_fact_prot_reg) 1510 return -EOPNOTSUPP; 1511 if (!len) 1512 return 0; 1513 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1514 } 1515 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1516 1517 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1518 struct otp_info *buf) 1519 { 1520 if (!mtd->_get_user_prot_info) 1521 return -EOPNOTSUPP; 1522 if (!len) 1523 return 0; 1524 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1525 } 1526 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1527 1528 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1529 size_t *retlen, u_char *buf) 1530 { 1531 *retlen = 0; 1532 if (!mtd->_read_user_prot_reg) 1533 return -EOPNOTSUPP; 1534 if (!len) 1535 return 0; 1536 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1537 } 1538 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1539 1540 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1541 size_t *retlen, u_char *buf) 1542 { 1543 int ret; 1544 1545 *retlen = 0; 1546 if (!mtd->_write_user_prot_reg) 1547 return -EOPNOTSUPP; 1548 if (!len) 1549 return 0; 1550 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1551 if (ret) 1552 return ret; 1553 1554 /* 1555 * If no data could be written at all, we are out of memory and 1556 * must return -ENOSPC. 1557 */ 1558 return (*retlen) ? 0 : -ENOSPC; 1559 } 1560 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1561 1562 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1563 { 1564 if (!mtd->_lock_user_prot_reg) 1565 return -EOPNOTSUPP; 1566 if (!len) 1567 return 0; 1568 return mtd->_lock_user_prot_reg(mtd, from, len); 1569 } 1570 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1571 1572 /* Chip-supported device locking */ 1573 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1574 { 1575 if (!mtd->_lock) 1576 return -EOPNOTSUPP; 1577 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1578 return -EINVAL; 1579 if (!len) 1580 return 0; 1581 return mtd->_lock(mtd, ofs, len); 1582 } 1583 EXPORT_SYMBOL_GPL(mtd_lock); 1584 1585 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1586 { 1587 if (!mtd->_unlock) 1588 return -EOPNOTSUPP; 1589 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1590 return -EINVAL; 1591 if (!len) 1592 return 0; 1593 return mtd->_unlock(mtd, ofs, len); 1594 } 1595 EXPORT_SYMBOL_GPL(mtd_unlock); 1596 1597 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1598 { 1599 if (!mtd->_is_locked) 1600 return -EOPNOTSUPP; 1601 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1602 return -EINVAL; 1603 if (!len) 1604 return 0; 1605 return mtd->_is_locked(mtd, ofs, len); 1606 } 1607 EXPORT_SYMBOL_GPL(mtd_is_locked); 1608 1609 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1610 { 1611 if (ofs < 0 || ofs > mtd->size) 1612 return -EINVAL; 1613 if (!mtd->_block_isreserved) 1614 return 0; 1615 return mtd->_block_isreserved(mtd, ofs); 1616 } 1617 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1618 1619 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1620 { 1621 if (ofs < 0 || ofs > mtd->size) 1622 return -EINVAL; 1623 if (!mtd->_block_isbad) 1624 return 0; 1625 return mtd->_block_isbad(mtd, ofs); 1626 } 1627 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1628 1629 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1630 { 1631 if (!mtd->_block_markbad) 1632 return -EOPNOTSUPP; 1633 if (ofs < 0 || ofs > mtd->size) 1634 return -EINVAL; 1635 if (!(mtd->flags & MTD_WRITEABLE)) 1636 return -EROFS; 1637 return mtd->_block_markbad(mtd, ofs); 1638 } 1639 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1640 1641 #ifndef __UBOOT__ 1642 /* 1643 * default_mtd_writev - the default writev method 1644 * @mtd: mtd device description object pointer 1645 * @vecs: the vectors to write 1646 * @count: count of vectors in @vecs 1647 * @to: the MTD device offset to write to 1648 * @retlen: on exit contains the count of bytes written to the MTD device. 1649 * 1650 * This function returns zero in case of success and a negative error code in 1651 * case of failure. 1652 */ 1653 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1654 unsigned long count, loff_t to, size_t *retlen) 1655 { 1656 unsigned long i; 1657 size_t totlen = 0, thislen; 1658 int ret = 0; 1659 1660 for (i = 0; i < count; i++) { 1661 if (!vecs[i].iov_len) 1662 continue; 1663 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1664 vecs[i].iov_base); 1665 totlen += thislen; 1666 if (ret || thislen != vecs[i].iov_len) 1667 break; 1668 to += vecs[i].iov_len; 1669 } 1670 *retlen = totlen; 1671 return ret; 1672 } 1673 1674 /* 1675 * mtd_writev - the vector-based MTD write method 1676 * @mtd: mtd device description object pointer 1677 * @vecs: the vectors to write 1678 * @count: count of vectors in @vecs 1679 * @to: the MTD device offset to write to 1680 * @retlen: on exit contains the count of bytes written to the MTD device. 1681 * 1682 * This function returns zero in case of success and a negative error code in 1683 * case of failure. 1684 */ 1685 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1686 unsigned long count, loff_t to, size_t *retlen) 1687 { 1688 *retlen = 0; 1689 if (!(mtd->flags & MTD_WRITEABLE)) 1690 return -EROFS; 1691 if (!mtd->_writev) 1692 return default_mtd_writev(mtd, vecs, count, to, retlen); 1693 return mtd->_writev(mtd, vecs, count, to, retlen); 1694 } 1695 EXPORT_SYMBOL_GPL(mtd_writev); 1696 1697 /** 1698 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1699 * @mtd: mtd device description object pointer 1700 * @size: a pointer to the ideal or maximum size of the allocation, points 1701 * to the actual allocation size on success. 1702 * 1703 * This routine attempts to allocate a contiguous kernel buffer up to 1704 * the specified size, backing off the size of the request exponentially 1705 * until the request succeeds or until the allocation size falls below 1706 * the system page size. This attempts to make sure it does not adversely 1707 * impact system performance, so when allocating more than one page, we 1708 * ask the memory allocator to avoid re-trying, swapping, writing back 1709 * or performing I/O. 1710 * 1711 * Note, this function also makes sure that the allocated buffer is aligned to 1712 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1713 * 1714 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1715 * to handle smaller (i.e. degraded) buffer allocations under low- or 1716 * fragmented-memory situations where such reduced allocations, from a 1717 * requested ideal, are allowed. 1718 * 1719 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1720 */ 1721 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1722 { 1723 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1724 __GFP_NORETRY | __GFP_NO_KSWAPD; 1725 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1726 void *kbuf; 1727 1728 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1729 1730 while (*size > min_alloc) { 1731 kbuf = kmalloc(*size, flags); 1732 if (kbuf) 1733 return kbuf; 1734 1735 *size >>= 1; 1736 *size = ALIGN(*size, mtd->writesize); 1737 } 1738 1739 /* 1740 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1741 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1742 */ 1743 return kmalloc(*size, GFP_KERNEL); 1744 } 1745 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1746 #endif 1747 1748 #ifdef CONFIG_PROC_FS 1749 1750 /*====================================================================*/ 1751 /* Support for /proc/mtd */ 1752 1753 static int mtd_proc_show(struct seq_file *m, void *v) 1754 { 1755 struct mtd_info *mtd; 1756 1757 seq_puts(m, "dev: size erasesize name\n"); 1758 mutex_lock(&mtd_table_mutex); 1759 mtd_for_each_device(mtd) { 1760 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1761 mtd->index, (unsigned long long)mtd->size, 1762 mtd->erasesize, mtd->name); 1763 } 1764 mutex_unlock(&mtd_table_mutex); 1765 return 0; 1766 } 1767 1768 static int mtd_proc_open(struct inode *inode, struct file *file) 1769 { 1770 return single_open(file, mtd_proc_show, NULL); 1771 } 1772 1773 static const struct file_operations mtd_proc_ops = { 1774 .open = mtd_proc_open, 1775 .read = seq_read, 1776 .llseek = seq_lseek, 1777 .release = single_release, 1778 }; 1779 #endif /* CONFIG_PROC_FS */ 1780 1781 /*====================================================================*/ 1782 /* Init code */ 1783 1784 #ifndef __UBOOT__ 1785 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1786 { 1787 int ret; 1788 1789 ret = bdi_init(bdi); 1790 if (!ret) 1791 ret = bdi_register(bdi, NULL, "%s", name); 1792 1793 if (ret) 1794 bdi_destroy(bdi); 1795 1796 return ret; 1797 } 1798 1799 static struct proc_dir_entry *proc_mtd; 1800 1801 static int __init init_mtd(void) 1802 { 1803 int ret; 1804 1805 ret = class_register(&mtd_class); 1806 if (ret) 1807 goto err_reg; 1808 1809 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1810 if (ret) 1811 goto err_bdi1; 1812 1813 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1814 if (ret) 1815 goto err_bdi2; 1816 1817 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1818 if (ret) 1819 goto err_bdi3; 1820 1821 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1822 1823 ret = init_mtdchar(); 1824 if (ret) 1825 goto out_procfs; 1826 1827 return 0; 1828 1829 out_procfs: 1830 if (proc_mtd) 1831 remove_proc_entry("mtd", NULL); 1832 err_bdi3: 1833 bdi_destroy(&mtd_bdi_ro_mappable); 1834 err_bdi2: 1835 bdi_destroy(&mtd_bdi_unmappable); 1836 err_bdi1: 1837 class_unregister(&mtd_class); 1838 err_reg: 1839 pr_err("Error registering mtd class or bdi: %d\n", ret); 1840 return ret; 1841 } 1842 1843 static void __exit cleanup_mtd(void) 1844 { 1845 cleanup_mtdchar(); 1846 if (proc_mtd) 1847 remove_proc_entry("mtd", NULL); 1848 class_unregister(&mtd_class); 1849 bdi_destroy(&mtd_bdi_unmappable); 1850 bdi_destroy(&mtd_bdi_ro_mappable); 1851 bdi_destroy(&mtd_bdi_rw_mappable); 1852 } 1853 1854 module_init(init_mtd); 1855 module_exit(cleanup_mtd); 1856 #endif 1857 1858 MODULE_LICENSE("GPL"); 1859 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1860 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1861