1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd 4 */ 5 6 #include <crypto.h> 7 8 static const u8 null_hash_sha1_value[] = { 9 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 10 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 11 0xaf, 0xd8, 0x07, 0x09 12 }; 13 14 static const u8 null_hash_md5_value[] = { 15 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 16 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e 17 }; 18 19 static const u8 null_hash_sha256_value[] = { 20 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 21 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 22 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 23 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 24 }; 25 26 static const u8 null_hash_sha512_value[] = { 27 0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 28 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 29 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 30 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 31 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 32 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 33 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 34 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e 35 }; 36 37 const static u8 null_hash_sm3_value[] = { 38 0x1a, 0xb2, 0x1d, 0x83, 0x55, 0xcf, 0xa1, 0x7f, 39 0x8e, 0x61, 0x19, 0x48, 0x31, 0xe8, 0x1a, 0x8f, 40 0x22, 0xbe, 0xc8, 0xc7, 0x28, 0xfe, 0xfb, 0x74, 41 0x7e, 0xd0, 0x35, 0xeb, 0x50, 0x82, 0xaa, 0x2b 42 }; 43 44 u32 crypto_algo_nbits(u32 algo) 45 { 46 switch (algo) { 47 case CRYPTO_MD5: 48 case CRYPTO_HMAC_MD5: 49 return 128; 50 case CRYPTO_SHA1: 51 case CRYPTO_HMAC_SHA1: 52 return 160; 53 case CRYPTO_SHA256: 54 case CRYPTO_HMAC_SHA256: 55 return 256; 56 case CRYPTO_SHA512: 57 case CRYPTO_HMAC_SHA512: 58 return 512; 59 case CRYPTO_SM3: 60 case CRYPTO_HMAC_SM3: 61 return 256; 62 case CRYPTO_RSA512: 63 return 512; 64 case CRYPTO_RSA1024: 65 return 1024; 66 case CRYPTO_RSA2048: 67 return 2048; 68 case CRYPTO_RSA3072: 69 return 3072; 70 case CRYPTO_RSA4096: 71 return 4096; 72 } 73 74 printf("Unknown crypto algorithm: 0x%x\n", algo); 75 76 return 0; 77 } 78 79 struct udevice *crypto_get_device(u32 capability) 80 { 81 const struct dm_crypto_ops *ops; 82 struct udevice *dev; 83 struct uclass *uc; 84 int ret; 85 u32 cap; 86 87 ret = uclass_get(UCLASS_CRYPTO, &uc); 88 if (ret) 89 return NULL; 90 91 for (uclass_first_device(UCLASS_CRYPTO, &dev); 92 dev; 93 uclass_next_device(&dev)) { 94 ops = device_get_ops(dev); 95 if (!ops || !ops->capability) 96 continue; 97 98 cap = ops->capability(dev); 99 if ((cap & capability) == capability) 100 return dev; 101 } 102 103 return NULL; 104 } 105 106 int crypto_sha_init(struct udevice *dev, sha_context *ctx) 107 { 108 const struct dm_crypto_ops *ops = device_get_ops(dev); 109 110 if (ctx && !ctx->length) 111 return 0; 112 113 if (!ops || !ops->sha_init) 114 return -ENOSYS; 115 116 return ops->sha_init(dev, ctx); 117 } 118 119 int crypto_sha_update(struct udevice *dev, u32 *input, u32 len) 120 { 121 const struct dm_crypto_ops *ops = device_get_ops(dev); 122 123 if (!len) 124 return 0; 125 126 if (!ops || !ops->sha_update) 127 return -ENOSYS; 128 129 return ops->sha_update(dev, input, len); 130 } 131 132 int crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output) 133 { 134 const struct dm_crypto_ops *ops = device_get_ops(dev); 135 const u8 *null_hash = NULL; 136 u32 hash_size = 0; 137 138 if (ctx && !ctx->length && output) { 139 switch (ctx->algo) { 140 case CRYPTO_MD5: 141 null_hash = null_hash_md5_value; 142 hash_size = sizeof(null_hash_md5_value); 143 break; 144 case CRYPTO_SHA1: 145 null_hash = null_hash_sha1_value; 146 hash_size = sizeof(null_hash_sha1_value); 147 break; 148 case CRYPTO_SHA256: 149 null_hash = null_hash_sha256_value; 150 hash_size = sizeof(null_hash_sha256_value); 151 break; 152 case CRYPTO_SHA512: 153 null_hash = null_hash_sha512_value; 154 hash_size = sizeof(null_hash_sha512_value); 155 break; 156 case CRYPTO_SM3: 157 null_hash = null_hash_sm3_value; 158 hash_size = sizeof(null_hash_sm3_value); 159 break; 160 default: 161 return -EINVAL; 162 } 163 164 memcpy(output, null_hash, hash_size); 165 166 return 0; 167 } 168 169 if (!ops || !ops->sha_final) 170 return -ENOSYS; 171 172 return ops->sha_final(dev, ctx, output); 173 } 174 175 int crypto_hmac_init(struct udevice *dev, sha_context *ctx, 176 u8 *key, u32 key_len) 177 { 178 const struct dm_crypto_ops *ops = device_get_ops(dev); 179 180 if (ctx && !ctx->length) 181 return -EINVAL; 182 183 if (!ops || !ops->hmac_init) 184 return -ENOSYS; 185 186 return ops->hmac_init(dev, ctx, key, key_len); 187 } 188 189 int crypto_hmac_update(struct udevice *dev, u32 *input, u32 len) 190 { 191 const struct dm_crypto_ops *ops = device_get_ops(dev); 192 193 if (!len) 194 return 0; 195 196 if (!ops || !ops->hmac_update) 197 return -ENOSYS; 198 199 return ops->hmac_update(dev, input, len); 200 } 201 202 int crypto_hmac_final(struct udevice *dev, sha_context *ctx, u8 *output) 203 { 204 const struct dm_crypto_ops *ops = device_get_ops(dev); 205 206 if (!ops || !ops->hmac_final) 207 return -ENOSYS; 208 209 return ops->hmac_final(dev, ctx, output); 210 } 211 212 int crypto_sha_csum(struct udevice *dev, sha_context *ctx, 213 char *input, u32 input_len, u8 *output) 214 { 215 int ret; 216 217 ret = crypto_sha_init(dev, ctx); 218 if (ret) 219 return ret; 220 221 ret = crypto_sha_update(dev, (u32 *)input, input_len); 222 if (ret) 223 return ret; 224 225 ret = crypto_sha_final(dev, ctx, output); 226 227 return ret; 228 } 229 230 int crypto_sha_regions_csum(struct udevice *dev, sha_context *ctx, 231 const struct image_region region[], 232 int region_count, u8 *output) 233 { 234 int i, ret; 235 236 ctx->length = 0; 237 for (i = 0; i < region_count; i++) 238 ctx->length += region[i].size; 239 240 ret = crypto_sha_init(dev, ctx); 241 if (ret) 242 return ret; 243 244 for (i = 0; i < region_count; i++) { 245 ret = crypto_sha_update(dev, (void *)region[i].data, 246 region[i].size); 247 if (ret) 248 return ret; 249 } 250 251 return crypto_sha_final(dev, ctx, output); 252 } 253 254 int crypto_rsa_verify(struct udevice *dev, rsa_key *ctx, u8 *sign, u8 *output) 255 { 256 const struct dm_crypto_ops *ops = device_get_ops(dev); 257 258 if (!ops || !ops->rsa_verify) 259 return -ENOSYS; 260 261 return ops->rsa_verify(dev, ctx, sign, output); 262 } 263 264 int crypto_cipher(struct udevice *dev, cipher_context *ctx, 265 const u8 *in, u8 *out, u32 len, bool enc) 266 { 267 const struct dm_crypto_ops *ops = device_get_ops(dev); 268 269 if (!ops || !ops->cipher_crypt) 270 return -ENOSYS; 271 272 return ops->cipher_crypt(dev, ctx, in, out, len, enc); 273 } 274 275 int crypto_mac(struct udevice *dev, cipher_context *ctx, 276 const u8 *in, u32 len, u8 *tag) 277 { 278 const struct dm_crypto_ops *ops = device_get_ops(dev); 279 280 if (!ops || !ops->cipher_mac) 281 return -ENOSYS; 282 283 return ops->cipher_mac(dev, ctx, in, len, tag); 284 } 285 286 int crypto_ae(struct udevice *dev, cipher_context *ctx, 287 const u8 *in, u32 len, const u8 *aad, u32 aad_len, 288 u8 *out, u8 *tag) 289 { 290 const struct dm_crypto_ops *ops = device_get_ops(dev); 291 292 if (!ops || !ops->cipher_ae) 293 return -ENOSYS; 294 295 return ops->cipher_ae(dev, ctx, in, len, aad, aad_len, out, tag); 296 } 297 298 UCLASS_DRIVER(crypto) = { 299 .id = UCLASS_CRYPTO, 300 .name = "crypto", 301 }; 302