1 /* 2 * Device manager 3 * 4 * Copyright (c) 2013 Google, Inc 5 * 6 * (C) Copyright 2012 7 * Pavel Herrmann <morpheus.ibis@gmail.com> 8 * 9 * SPDX-License-Identifier: GPL-2.0+ 10 */ 11 12 #include <common.h> 13 #include <asm/io.h> 14 #include <clk.h> 15 #include <fdtdec.h> 16 #include <fdt_support.h> 17 #include <malloc.h> 18 #include <dm/device.h> 19 #include <dm/device-internal.h> 20 #include <dm/lists.h> 21 #include <dm/of_access.h> 22 #include <dm/pinctrl.h> 23 #include <dm/platdata.h> 24 #include <dm/read.h> 25 #include <dm/uclass.h> 26 #include <dm/uclass-internal.h> 27 #include <dm/util.h> 28 #include <linux/err.h> 29 #include <linux/list.h> 30 31 DECLARE_GLOBAL_DATA_PTR; 32 33 static int device_bind_common(struct udevice *parent, const struct driver *drv, 34 const char *name, void *platdata, 35 ulong driver_data, ofnode node, 36 uint of_platdata_size, struct udevice **devp) 37 { 38 struct udevice *dev; 39 struct uclass *uc; 40 int size, ret = 0; 41 42 if (devp) 43 *devp = NULL; 44 if (!name) 45 return -EINVAL; 46 47 ret = uclass_get(drv->id, &uc); 48 if (ret) { 49 debug("Missing uclass for driver %s\n", drv->name); 50 return ret; 51 } 52 53 #ifdef CONFIG_USING_KERNEL_DTB 54 if (gd->flags & GD_FLG_RELOC) { 55 /* For mmc/nand/spiflash, just update from kernel dtb instead bind again*/ 56 if (drv->id == UCLASS_MMC || drv->id == UCLASS_RKNAND || 57 drv->id == UCLASS_SPI_FLASH || drv->id == UCLASS_MTD) { 58 list_for_each_entry(dev, &uc->dev_head, uclass_node) { 59 if (!strcmp(name, dev->name)) { 60 debug("%s do not bind dev already in list %s\n", 61 __func__, dev->name); 62 dev->node = node; 63 return 0; 64 } 65 } 66 } 67 68 /* Use other nodes from kernel dtb */ 69 struct udevice *n; 70 71 list_for_each_entry_safe(dev, n, &uc->dev_head, uclass_node) { 72 if (!strcmp(name, dev->name) && 73 (dev_read_bool(dev, "u-boot,dm-pre-reloc") || 74 dev_read_bool(dev, "u-boot,dm-spl"))) { 75 if (drv->id == UCLASS_CRYPTO) { 76 /* Always use serial node from U-Boot dtb */ 77 debug("%s do not delete uboot dev: %s\n", 78 __func__, dev->name); 79 return 0; 80 } else { 81 list_del(&dev->uclass_node); 82 } 83 } 84 } 85 } 86 #endif 87 dev = calloc(1, sizeof(struct udevice)); 88 if (!dev) 89 return -ENOMEM; 90 91 INIT_LIST_HEAD(&dev->sibling_node); 92 INIT_LIST_HEAD(&dev->child_head); 93 INIT_LIST_HEAD(&dev->uclass_node); 94 #ifdef CONFIG_DEVRES 95 INIT_LIST_HEAD(&dev->devres_head); 96 #endif 97 dev->platdata = platdata; 98 dev->driver_data = driver_data; 99 dev->name = name; 100 dev->node = node; 101 dev->parent = parent; 102 dev->driver = drv; 103 dev->uclass = uc; 104 105 dev->seq = -1; 106 dev->req_seq = -1; 107 if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) { 108 /* 109 * Some devices, such as a SPI bus, I2C bus and serial ports 110 * are numbered using aliases. 111 * 112 * This is just a 'requested' sequence, and will be 113 * resolved (and ->seq updated) when the device is probed. 114 */ 115 if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) { 116 if (uc->uc_drv->name && ofnode_valid(node)) { 117 dev_read_alias_seq(dev, &dev->req_seq); 118 } 119 } 120 } 121 122 if (drv->platdata_auto_alloc_size) { 123 bool alloc = !platdata; 124 125 if (CONFIG_IS_ENABLED(OF_PLATDATA)) { 126 if (of_platdata_size) { 127 dev->flags |= DM_FLAG_OF_PLATDATA; 128 if (of_platdata_size < 129 drv->platdata_auto_alloc_size) 130 alloc = true; 131 } 132 } 133 if (alloc) { 134 dev->flags |= DM_FLAG_ALLOC_PDATA; 135 dev->platdata = calloc(1, 136 drv->platdata_auto_alloc_size); 137 if (!dev->platdata) { 138 ret = -ENOMEM; 139 goto fail_alloc1; 140 } 141 if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) { 142 memcpy(dev->platdata, platdata, 143 of_platdata_size); 144 } 145 } 146 } 147 148 size = uc->uc_drv->per_device_platdata_auto_alloc_size; 149 if (size) { 150 dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA; 151 dev->uclass_platdata = calloc(1, size); 152 if (!dev->uclass_platdata) { 153 ret = -ENOMEM; 154 goto fail_alloc2; 155 } 156 } 157 158 if (parent) { 159 size = parent->driver->per_child_platdata_auto_alloc_size; 160 if (!size) { 161 size = parent->uclass->uc_drv-> 162 per_child_platdata_auto_alloc_size; 163 } 164 if (size) { 165 dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA; 166 dev->parent_platdata = calloc(1, size); 167 if (!dev->parent_platdata) { 168 ret = -ENOMEM; 169 goto fail_alloc3; 170 } 171 } 172 } 173 174 /* put dev into parent's successor list */ 175 if (parent) 176 list_add_tail(&dev->sibling_node, &parent->child_head); 177 178 ret = uclass_bind_device(dev); 179 if (ret) 180 goto fail_uclass_bind; 181 182 /* if we fail to bind we remove device from successors and free it */ 183 if (drv->bind) { 184 ret = drv->bind(dev); 185 if (ret) 186 goto fail_bind; 187 } 188 if (parent && parent->driver->child_post_bind) { 189 ret = parent->driver->child_post_bind(dev); 190 if (ret) 191 goto fail_child_post_bind; 192 } 193 if (uc->uc_drv->post_bind) { 194 ret = uc->uc_drv->post_bind(dev); 195 if (ret) 196 goto fail_uclass_post_bind; 197 } 198 199 if (parent) 200 pr_debug("Bound device %s to %s\n", dev->name, parent->name); 201 if (devp) 202 *devp = dev; 203 204 dev->flags |= DM_FLAG_BOUND; 205 206 return 0; 207 208 fail_uclass_post_bind: 209 /* There is no child unbind() method, so no clean-up required */ 210 fail_child_post_bind: 211 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 212 if (drv->unbind && drv->unbind(dev)) { 213 dm_warn("unbind() method failed on dev '%s' on error path\n", 214 dev->name); 215 } 216 } 217 218 fail_bind: 219 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 220 if (uclass_unbind_device(dev)) { 221 dm_warn("Failed to unbind dev '%s' on error path\n", 222 dev->name); 223 } 224 } 225 fail_uclass_bind: 226 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 227 list_del(&dev->sibling_node); 228 if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) { 229 free(dev->parent_platdata); 230 dev->parent_platdata = NULL; 231 } 232 } 233 fail_alloc3: 234 if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) { 235 free(dev->uclass_platdata); 236 dev->uclass_platdata = NULL; 237 } 238 fail_alloc2: 239 if (dev->flags & DM_FLAG_ALLOC_PDATA) { 240 free(dev->platdata); 241 dev->platdata = NULL; 242 } 243 fail_alloc1: 244 devres_release_all(dev); 245 246 free(dev); 247 248 return ret; 249 } 250 251 int device_bind_with_driver_data(struct udevice *parent, 252 const struct driver *drv, const char *name, 253 ulong driver_data, ofnode node, 254 struct udevice **devp) 255 { 256 return device_bind_common(parent, drv, name, NULL, driver_data, node, 257 0, devp); 258 } 259 260 int device_bind(struct udevice *parent, const struct driver *drv, 261 const char *name, void *platdata, int of_offset, 262 struct udevice **devp) 263 { 264 return device_bind_common(parent, drv, name, platdata, 0, 265 offset_to_ofnode(of_offset), 0, devp); 266 } 267 268 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, 269 const struct driver_info *info, struct udevice **devp) 270 { 271 struct driver *drv; 272 uint platdata_size = 0; 273 274 drv = lists_driver_lookup_name(info->name); 275 if (!drv) 276 return -ENOENT; 277 if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) 278 return -EPERM; 279 280 #if CONFIG_IS_ENABLED(OF_PLATDATA) 281 platdata_size = info->platdata_size; 282 #endif 283 return device_bind_common(parent, drv, info->name, 284 (void *)info->platdata, 0, ofnode_null(), platdata_size, 285 devp); 286 } 287 288 static void *alloc_priv(int size, uint flags) 289 { 290 void *priv; 291 292 if (flags & DM_FLAG_ALLOC_PRIV_DMA) { 293 size = ROUND(size, ARCH_DMA_MINALIGN); 294 priv = memalign(ARCH_DMA_MINALIGN, size); 295 if (priv) { 296 memset(priv, '\0', size); 297 298 /* 299 * Ensure that the zero bytes are flushed to memory. 300 * This prevents problems if the driver uses this as 301 * both an input and an output buffer: 302 * 303 * 1. Zeroes written to buffer (here) and sit in the 304 * cache 305 * 2. Driver issues a read command to DMA 306 * 3. CPU runs out of cache space and evicts some cache 307 * data in the buffer, writing zeroes to RAM from 308 * the memset() above 309 * 4. DMA completes 310 * 5. Buffer now has some DMA data and some zeroes 311 * 6. Data being read is now incorrect 312 * 313 * To prevent this, ensure that the cache is clean 314 * within this range at the start. The driver can then 315 * use normal flush-after-write, invalidate-before-read 316 * procedures. 317 * 318 * TODO(sjg@chromium.org): Drop this microblaze 319 * exception. 320 */ 321 #ifndef CONFIG_MICROBLAZE 322 flush_dcache_range((ulong)priv, (ulong)priv + size); 323 #endif 324 } 325 } else { 326 priv = calloc(1, size); 327 } 328 329 return priv; 330 } 331 332 int device_probe(struct udevice *dev) 333 { 334 const struct driver *drv; 335 int size = 0; 336 int ret; 337 int seq; 338 339 if (!dev) 340 return -EINVAL; 341 342 if (dev->flags & DM_FLAG_ACTIVATED) 343 return 0; 344 345 drv = dev->driver; 346 assert(drv); 347 348 /* Allocate private data if requested and not reentered */ 349 if (drv->priv_auto_alloc_size && !dev->priv) { 350 dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags); 351 if (!dev->priv) { 352 ret = -ENOMEM; 353 goto fail; 354 } 355 } 356 /* Allocate private data if requested and not reentered */ 357 size = dev->uclass->uc_drv->per_device_auto_alloc_size; 358 if (size && !dev->uclass_priv) { 359 dev->uclass_priv = calloc(1, size); 360 if (!dev->uclass_priv) { 361 ret = -ENOMEM; 362 goto fail; 363 } 364 } 365 366 /* Ensure all parents are probed */ 367 if (dev->parent) { 368 size = dev->parent->driver->per_child_auto_alloc_size; 369 if (!size) { 370 size = dev->parent->uclass->uc_drv-> 371 per_child_auto_alloc_size; 372 } 373 if (size && !dev->parent_priv) { 374 dev->parent_priv = alloc_priv(size, drv->flags); 375 if (!dev->parent_priv) { 376 ret = -ENOMEM; 377 goto fail; 378 } 379 } 380 381 ret = device_probe(dev->parent); 382 if (ret) 383 goto fail; 384 385 /* 386 * The device might have already been probed during 387 * the call to device_probe() on its parent device 388 * (e.g. PCI bridge devices). Test the flags again 389 * so that we don't mess up the device. 390 */ 391 if (dev->flags & DM_FLAG_ACTIVATED) 392 return 0; 393 } 394 395 seq = uclass_resolve_seq(dev); 396 if (seq < 0) { 397 ret = seq; 398 goto fail; 399 } 400 dev->seq = seq; 401 402 dev->flags |= DM_FLAG_ACTIVATED; 403 404 /* 405 * Process pinctrl for everything except the root device, and 406 * continue regardless of the result of pinctrl. Don't process pinctrl 407 * settings for pinctrl devices since the device may not yet be 408 * probed. 409 */ 410 if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) 411 pinctrl_select_state(dev, "default"); 412 413 ret = uclass_pre_probe_device(dev); 414 if (ret) 415 goto fail; 416 417 if (dev->parent && dev->parent->driver->child_pre_probe) { 418 ret = dev->parent->driver->child_pre_probe(dev); 419 if (ret) 420 goto fail; 421 } 422 423 if (drv->ofdata_to_platdata && dev_has_of_node(dev)) { 424 ret = drv->ofdata_to_platdata(dev); 425 if (ret) 426 goto fail; 427 } 428 429 if (drv->probe) { 430 ret = drv->probe(dev); 431 if (ret) { 432 dev->flags &= ~DM_FLAG_ACTIVATED; 433 goto fail; 434 } 435 } 436 437 ret = uclass_post_probe_device(dev); 438 if (ret) 439 goto fail_uclass; 440 441 if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) 442 pinctrl_select_state(dev, "default"); 443 444 return 0; 445 fail_uclass: 446 if (device_remove(dev, DM_REMOVE_NORMAL)) { 447 dm_warn("%s: Device '%s' failed to remove on error path\n", 448 __func__, dev->name); 449 } 450 fail: 451 dev->flags &= ~DM_FLAG_ACTIVATED; 452 453 dev->seq = -1; 454 device_free(dev); 455 456 return ret; 457 } 458 459 void *dev_get_platdata(struct udevice *dev) 460 { 461 if (!dev) { 462 dm_warn("%s: null device\n", __func__); 463 return NULL; 464 } 465 466 return dev->platdata; 467 } 468 469 void *dev_get_parent_platdata(struct udevice *dev) 470 { 471 if (!dev) { 472 dm_warn("%s: null device\n", __func__); 473 return NULL; 474 } 475 476 return dev->parent_platdata; 477 } 478 479 void *dev_get_uclass_platdata(struct udevice *dev) 480 { 481 if (!dev) { 482 dm_warn("%s: null device\n", __func__); 483 return NULL; 484 } 485 486 return dev->uclass_platdata; 487 } 488 489 void *dev_get_priv(struct udevice *dev) 490 { 491 if (!dev) { 492 dm_warn("%s: null device\n", __func__); 493 return NULL; 494 } 495 496 return dev->priv; 497 } 498 499 void *dev_get_uclass_priv(struct udevice *dev) 500 { 501 if (!dev) { 502 dm_warn("%s: null device\n", __func__); 503 return NULL; 504 } 505 506 return dev->uclass_priv; 507 } 508 509 void *dev_get_parent_priv(struct udevice *dev) 510 { 511 if (!dev) { 512 dm_warn("%s: null device\n", __func__); 513 return NULL; 514 } 515 516 return dev->parent_priv; 517 } 518 519 static int device_get_device_tail(struct udevice *dev, int ret, 520 struct udevice **devp) 521 { 522 if (ret) 523 return ret; 524 525 ret = device_probe(dev); 526 if (ret) 527 return ret; 528 529 *devp = dev; 530 531 return 0; 532 } 533 534 int device_get_child(struct udevice *parent, int index, struct udevice **devp) 535 { 536 struct udevice *dev; 537 538 list_for_each_entry(dev, &parent->child_head, sibling_node) { 539 if (!index--) 540 return device_get_device_tail(dev, 0, devp); 541 } 542 543 return -ENODEV; 544 } 545 546 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 547 bool find_req_seq, struct udevice **devp) 548 { 549 struct udevice *dev; 550 551 *devp = NULL; 552 if (seq_or_req_seq == -1) 553 return -ENODEV; 554 555 list_for_each_entry(dev, &parent->child_head, sibling_node) { 556 if ((find_req_seq ? dev->req_seq : dev->seq) == 557 seq_or_req_seq) { 558 *devp = dev; 559 return 0; 560 } 561 } 562 563 return -ENODEV; 564 } 565 566 int device_get_child_by_seq(struct udevice *parent, int seq, 567 struct udevice **devp) 568 { 569 struct udevice *dev; 570 int ret; 571 572 *devp = NULL; 573 ret = device_find_child_by_seq(parent, seq, false, &dev); 574 if (ret == -ENODEV) { 575 /* 576 * We didn't find it in probed devices. See if there is one 577 * that will request this seq if probed. 578 */ 579 ret = device_find_child_by_seq(parent, seq, true, &dev); 580 } 581 return device_get_device_tail(dev, ret, devp); 582 } 583 584 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 585 struct udevice **devp) 586 { 587 struct udevice *dev; 588 589 *devp = NULL; 590 591 list_for_each_entry(dev, &parent->child_head, sibling_node) { 592 if (dev_of_offset(dev) == of_offset) { 593 *devp = dev; 594 return 0; 595 } 596 } 597 598 return -ENODEV; 599 } 600 601 int device_get_child_by_of_offset(struct udevice *parent, int node, 602 struct udevice **devp) 603 { 604 struct udevice *dev; 605 int ret; 606 607 *devp = NULL; 608 ret = device_find_child_by_of_offset(parent, node, &dev); 609 return device_get_device_tail(dev, ret, devp); 610 } 611 612 static struct udevice *_device_find_global_by_of_offset(struct udevice *parent, 613 int of_offset) 614 { 615 struct udevice *dev, *found; 616 617 if (dev_of_offset(parent) == of_offset) 618 return parent; 619 620 list_for_each_entry(dev, &parent->child_head, sibling_node) { 621 found = _device_find_global_by_of_offset(dev, of_offset); 622 if (found) 623 return found; 624 } 625 626 return NULL; 627 } 628 629 int device_get_global_by_of_offset(int of_offset, struct udevice **devp) 630 { 631 struct udevice *dev; 632 633 dev = _device_find_global_by_of_offset(gd->dm_root, of_offset); 634 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); 635 } 636 637 int device_find_first_child(struct udevice *parent, struct udevice **devp) 638 { 639 if (list_empty(&parent->child_head)) { 640 *devp = NULL; 641 } else { 642 *devp = list_first_entry(&parent->child_head, struct udevice, 643 sibling_node); 644 } 645 646 return 0; 647 } 648 649 int device_find_next_child(struct udevice **devp) 650 { 651 struct udevice *dev = *devp; 652 struct udevice *parent = dev->parent; 653 654 if (list_is_last(&dev->sibling_node, &parent->child_head)) { 655 *devp = NULL; 656 } else { 657 *devp = list_entry(dev->sibling_node.next, struct udevice, 658 sibling_node); 659 } 660 661 return 0; 662 } 663 664 struct udevice *dev_get_parent(struct udevice *child) 665 { 666 return child->parent; 667 } 668 669 ulong dev_get_driver_data(struct udevice *dev) 670 { 671 return dev->driver_data; 672 } 673 674 const void *dev_get_driver_ops(struct udevice *dev) 675 { 676 if (!dev || !dev->driver->ops) 677 return NULL; 678 679 return dev->driver->ops; 680 } 681 682 enum uclass_id device_get_uclass_id(struct udevice *dev) 683 { 684 return dev->uclass->uc_drv->id; 685 } 686 687 const char *dev_get_uclass_name(struct udevice *dev) 688 { 689 if (!dev) 690 return NULL; 691 692 return dev->uclass->uc_drv->name; 693 } 694 695 bool device_has_children(struct udevice *dev) 696 { 697 return !list_empty(&dev->child_head); 698 } 699 700 bool device_has_active_children(struct udevice *dev) 701 { 702 struct udevice *child; 703 704 for (device_find_first_child(dev, &child); 705 child; 706 device_find_next_child(&child)) { 707 if (device_active(child)) 708 return true; 709 } 710 711 return false; 712 } 713 714 bool device_is_last_sibling(struct udevice *dev) 715 { 716 struct udevice *parent = dev->parent; 717 718 if (!parent) 719 return false; 720 return list_is_last(&dev->sibling_node, &parent->child_head); 721 } 722 723 void device_set_name_alloced(struct udevice *dev) 724 { 725 dev->flags |= DM_FLAG_NAME_ALLOCED; 726 } 727 728 int device_set_name(struct udevice *dev, const char *name) 729 { 730 name = strdup(name); 731 if (!name) 732 return -ENOMEM; 733 dev->name = name; 734 device_set_name_alloced(dev); 735 736 return 0; 737 } 738 739 bool device_is_compatible(struct udevice *dev, const char *compat) 740 { 741 const void *fdt = gd->fdt_blob; 742 ofnode node = dev_ofnode(dev); 743 744 if (ofnode_is_np(node)) 745 return of_device_is_compatible(ofnode_to_np(node), compat, NULL, NULL); 746 else 747 return !fdt_node_check_compatible(fdt, ofnode_to_offset(node), compat); 748 } 749 750 bool of_machine_is_compatible(const char *compat) 751 { 752 const void *fdt = gd->fdt_blob; 753 754 return !fdt_node_check_compatible(fdt, 0, compat); 755 } 756