1 /* 2 * Device manager 3 * 4 * Copyright (c) 2013 Google, Inc 5 * 6 * (C) Copyright 2012 7 * Pavel Herrmann <morpheus.ibis@gmail.com> 8 * 9 * SPDX-License-Identifier: GPL-2.0+ 10 */ 11 12 #include <common.h> 13 #include <asm/io.h> 14 #include <clk.h> 15 #include <fdtdec.h> 16 #include <fdt_support.h> 17 #include <malloc.h> 18 #include <dm/device.h> 19 #include <dm/device-internal.h> 20 #include <dm/lists.h> 21 #include <dm/of_access.h> 22 #include <dm/pinctrl.h> 23 #include <dm/platdata.h> 24 #include <dm/read.h> 25 #include <dm/uclass.h> 26 #include <dm/uclass-internal.h> 27 #include <dm/util.h> 28 #include <linux/err.h> 29 #include <linux/list.h> 30 31 DECLARE_GLOBAL_DATA_PTR; 32 33 static int device_bind_common(struct udevice *parent, const struct driver *drv, 34 const char *name, void *platdata, 35 ulong driver_data, ofnode node, 36 uint of_platdata_size, struct udevice **devp) 37 { 38 struct udevice *dev; 39 struct uclass *uc; 40 bool after_u_boot_dev = true; 41 int size, ret = 0; 42 43 if (devp) 44 *devp = NULL; 45 if (!name) 46 return -EINVAL; 47 48 ret = uclass_get(drv->id, &uc); 49 if (ret) { 50 debug("Missing uclass for driver %s\n", drv->name); 51 return ret; 52 } 53 54 #if defined(CONFIG_USING_KERNEL_DTB) && !defined(CONFIG_USING_KERNEL_DTB_V2) 55 if (gd->flags & GD_FLG_RELOC) { 56 /* For mmc/nand/spiflash, just update from kernel dtb instead bind again*/ 57 if (drv->id == UCLASS_MMC || drv->id == UCLASS_RKNAND || 58 drv->id == UCLASS_SPI_FLASH || drv->id == UCLASS_MTD || 59 drv->id == UCLASS_PCI || drv->id == UCLASS_AHCI) { 60 /* 61 * Reject all mmc device from kernel. 62 * 63 * - we always follow the rule: use mmc device from U-Boot 64 * - avoid alias id on defferent device between U-Boot and kernel 65 */ 66 if ((gd->flags & GD_FLG_KDTB_READY) && 67 (drv->id == UCLASS_MMC)) 68 return 0; 69 70 list_for_each_entry(dev, &uc->dev_head, uclass_node) { 71 if (!strcmp(name, dev->name)) { 72 debug("%s do not bind dev already in list %s\n", 73 __func__, dev->name); 74 /* 75 * There is no clearly reason for this 76 * legacy code, but remain it here since 77 * everything seems fine with or without 78 * this. Maybe removed in the future. 79 */ 80 dev->node = node; 81 return 0; 82 } 83 } 84 } 85 86 /* Use other nodes from kernel dtb */ 87 struct udevice *n; 88 89 list_for_each_entry_safe(dev, n, &uc->dev_head, uclass_node) { 90 if (!strcmp(name, dev->name) && 91 (dev_read_bool(dev, "u-boot,dm-pre-reloc") || 92 dev_read_bool(dev, "u-boot,dm-spl"))) { 93 94 /* Always use these node from U-Boot dtb */ 95 if (drv->id == UCLASS_CRYPTO || 96 drv->id == UCLASS_WDT) { 97 debug("%s do not delete uboot dev: %s\n", 98 __func__, dev->name); 99 return 0; 100 } else if (drv->id == UCLASS_REGULATOR) { 101 /* stay in dm tree, in order to handle exclusion */ 102 } else { 103 list_del_init(&dev->uclass_node); 104 } 105 } 106 } 107 } 108 #endif 109 dev = calloc(1, sizeof(struct udevice)); 110 if (!dev) 111 return -ENOMEM; 112 113 INIT_LIST_HEAD(&dev->sibling_node); 114 INIT_LIST_HEAD(&dev->child_head); 115 INIT_LIST_HEAD(&dev->uclass_node); 116 #ifdef CONFIG_DEVRES 117 INIT_LIST_HEAD(&dev->devres_head); 118 #endif 119 dev->platdata = platdata; 120 dev->driver_data = driver_data; 121 dev->name = name; 122 dev->node = node; 123 dev->parent = parent; 124 dev->driver = drv; 125 dev->uclass = uc; 126 127 dev->seq = -1; 128 dev->req_seq = -1; 129 if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) { 130 /* 131 * Some devices, such as a SPI bus, I2C bus and serial ports 132 * are numbered using aliases. 133 * 134 * This is just a 'requested' sequence, and will be 135 * resolved (and ->seq updated) when the device is probed. 136 */ 137 if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) { 138 if (uc->uc_drv->name && ofnode_valid(node)) { 139 dev_read_alias_seq(dev, &dev->req_seq); 140 } 141 } 142 } 143 144 if (drv->platdata_auto_alloc_size) { 145 bool alloc = !platdata; 146 147 if (CONFIG_IS_ENABLED(OF_PLATDATA)) { 148 if (of_platdata_size) { 149 dev->flags |= DM_FLAG_OF_PLATDATA; 150 if (of_platdata_size < 151 drv->platdata_auto_alloc_size) 152 alloc = true; 153 } 154 } 155 if (alloc) { 156 dev->flags |= DM_FLAG_ALLOC_PDATA; 157 dev->platdata = calloc(1, 158 drv->platdata_auto_alloc_size); 159 if (!dev->platdata) { 160 ret = -ENOMEM; 161 goto fail_alloc1; 162 } 163 if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) { 164 memcpy(dev->platdata, platdata, 165 of_platdata_size); 166 } 167 } 168 } 169 170 size = uc->uc_drv->per_device_platdata_auto_alloc_size; 171 if (size) { 172 dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA; 173 dev->uclass_platdata = calloc(1, size); 174 if (!dev->uclass_platdata) { 175 ret = -ENOMEM; 176 goto fail_alloc2; 177 } 178 } 179 180 if (parent) { 181 size = parent->driver->per_child_platdata_auto_alloc_size; 182 if (!size) { 183 size = parent->uclass->uc_drv-> 184 per_child_platdata_auto_alloc_size; 185 } 186 if (size) { 187 dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA; 188 dev->parent_platdata = calloc(1, size); 189 if (!dev->parent_platdata) { 190 ret = -ENOMEM; 191 goto fail_alloc3; 192 } 193 } 194 } 195 196 /* put dev into parent's successor list */ 197 if (parent) 198 list_add_tail(&dev->sibling_node, &parent->child_head); 199 200 #ifdef CONFIG_USING_KERNEL_DTB 201 #ifdef CONFIG_USING_KERNEL_DTB_V2 202 /* 203 * Put these U-Boot devices in the head of uclass device list for 204 * the primary get by uclass_get_device_xxx(). 205 * 206 * device-list: U0, U1, U2, ... K0, K1, K2, ... (prior u-boot dev) 207 * device-list: K0, K1, K2, ... U0, U1, U2, ... (normal) 208 * 209 * U: u-boot dev 210 * K: kernel dev 211 */ 212 u32 i, prior_u_boot_uclass_id[] = { 213 UCLASS_AHCI, /* boot device */ 214 UCLASS_BLK, 215 UCLASS_MMC, 216 UCLASS_MTD, 217 UCLASS_PCI, 218 UCLASS_RKNAND, 219 UCLASS_SPI_FLASH, 220 221 UCLASS_CRYPTO, /* RSA security */ 222 UCLASS_FIRMWARE, /* psci sysreset */ 223 UCLASS_RNG, /* ramdom number */ 224 UCLASS_SYSCON, /* grf, pmugrf */ 225 UCLASS_SYSRESET, /* psci sysreset */ 226 UCLASS_WDT, /* reliable sysreset */ 227 }; 228 229 if (gd->flags & GD_FLG_KDTB_READY) { 230 after_u_boot_dev = false; 231 dev->flags |= DM_FLAG_KNRL_DTB; 232 233 for (i = 0; i < ARRAY_SIZE(prior_u_boot_uclass_id); i++) { 234 if (drv->id == prior_u_boot_uclass_id[i]) { 235 after_u_boot_dev = true; 236 break; 237 } 238 } 239 240 /* no u-boot dev ? */ 241 if (!dev->uclass->u_boot_dev_head) 242 dev->uclass->u_boot_dev_head = &uc->dev_head; 243 } else { 244 if (!dev->uclass->u_boot_dev_head) 245 dev->uclass->u_boot_dev_head = &dev->uclass_node; 246 } 247 #else 248 if (gd->flags & GD_FLG_KDTB_READY) 249 dev->flags |= DM_FLAG_KNRL_DTB; 250 #endif 251 #endif 252 ret = uclass_bind_device(dev, after_u_boot_dev); 253 if (ret) 254 goto fail_uclass_bind; 255 256 /* if we fail to bind we remove device from successors and free it */ 257 if (drv->bind) { 258 ret = drv->bind(dev); 259 if (ret) 260 goto fail_bind; 261 } 262 if (parent && parent->driver->child_post_bind) { 263 ret = parent->driver->child_post_bind(dev); 264 if (ret) 265 goto fail_child_post_bind; 266 } 267 if (uc->uc_drv->post_bind) { 268 ret = uc->uc_drv->post_bind(dev); 269 if (ret) 270 goto fail_uclass_post_bind; 271 } 272 273 if (parent) 274 pr_debug("Bound device %s to %s\n", dev->name, parent->name); 275 if (devp) 276 *devp = dev; 277 278 dev->flags |= DM_FLAG_BOUND; 279 280 return 0; 281 282 fail_uclass_post_bind: 283 /* There is no child unbind() method, so no clean-up required */ 284 fail_child_post_bind: 285 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 286 if (drv->unbind && drv->unbind(dev)) { 287 dm_warn("unbind() method failed on dev '%s' on error path\n", 288 dev->name); 289 } 290 } 291 292 fail_bind: 293 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 294 if (uclass_unbind_device(dev)) { 295 dm_warn("Failed to unbind dev '%s' on error path\n", 296 dev->name); 297 } 298 } 299 fail_uclass_bind: 300 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 301 list_del(&dev->sibling_node); 302 if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) { 303 free(dev->parent_platdata); 304 dev->parent_platdata = NULL; 305 } 306 } 307 fail_alloc3: 308 if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) { 309 free(dev->uclass_platdata); 310 dev->uclass_platdata = NULL; 311 } 312 fail_alloc2: 313 if (dev->flags & DM_FLAG_ALLOC_PDATA) { 314 free(dev->platdata); 315 dev->platdata = NULL; 316 } 317 fail_alloc1: 318 devres_release_all(dev); 319 320 free(dev); 321 322 return ret; 323 } 324 325 int device_bind_with_driver_data(struct udevice *parent, 326 const struct driver *drv, const char *name, 327 ulong driver_data, ofnode node, 328 struct udevice **devp) 329 { 330 return device_bind_common(parent, drv, name, NULL, driver_data, node, 331 0, devp); 332 } 333 334 int device_bind(struct udevice *parent, const struct driver *drv, 335 const char *name, void *platdata, int of_offset, 336 struct udevice **devp) 337 { 338 return device_bind_common(parent, drv, name, platdata, 0, 339 offset_to_ofnode(of_offset), 0, devp); 340 } 341 342 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, 343 const struct driver_info *info, struct udevice **devp) 344 { 345 struct driver *drv; 346 uint platdata_size = 0; 347 348 drv = lists_driver_lookup_name(info->name); 349 if (!drv) 350 return -ENOENT; 351 if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) 352 return -EPERM; 353 354 #if CONFIG_IS_ENABLED(OF_PLATDATA) 355 platdata_size = info->platdata_size; 356 #endif 357 return device_bind_common(parent, drv, info->name, 358 (void *)info->platdata, 0, ofnode_null(), platdata_size, 359 devp); 360 } 361 362 static void *alloc_priv(int size, uint flags) 363 { 364 void *priv; 365 366 if (flags & DM_FLAG_ALLOC_PRIV_DMA) { 367 size = ROUND(size, ARCH_DMA_MINALIGN); 368 priv = memalign(ARCH_DMA_MINALIGN, size); 369 if (priv) { 370 memset(priv, '\0', size); 371 372 /* 373 * Ensure that the zero bytes are flushed to memory. 374 * This prevents problems if the driver uses this as 375 * both an input and an output buffer: 376 * 377 * 1. Zeroes written to buffer (here) and sit in the 378 * cache 379 * 2. Driver issues a read command to DMA 380 * 3. CPU runs out of cache space and evicts some cache 381 * data in the buffer, writing zeroes to RAM from 382 * the memset() above 383 * 4. DMA completes 384 * 5. Buffer now has some DMA data and some zeroes 385 * 6. Data being read is now incorrect 386 * 387 * To prevent this, ensure that the cache is clean 388 * within this range at the start. The driver can then 389 * use normal flush-after-write, invalidate-before-read 390 * procedures. 391 * 392 * TODO(sjg@chromium.org): Drop this microblaze 393 * exception. 394 */ 395 #ifndef CONFIG_MICROBLAZE 396 flush_dcache_range((ulong)priv, (ulong)priv + size); 397 #endif 398 } 399 } else { 400 priv = calloc(1, size); 401 } 402 403 return priv; 404 } 405 406 int device_probe(struct udevice *dev) 407 { 408 const struct driver *drv; 409 int size = 0; 410 int ret; 411 int seq; 412 413 if (!dev) 414 return -EINVAL; 415 416 if (dev->flags & DM_FLAG_ACTIVATED) 417 return 0; 418 419 drv = dev->driver; 420 assert(drv); 421 422 /* Allocate private data if requested and not reentered */ 423 if (drv->priv_auto_alloc_size && !dev->priv) { 424 dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags); 425 if (!dev->priv) { 426 ret = -ENOMEM; 427 goto fail; 428 } 429 } 430 /* Allocate private data if requested and not reentered */ 431 size = dev->uclass->uc_drv->per_device_auto_alloc_size; 432 if (size && !dev->uclass_priv) { 433 dev->uclass_priv = calloc(1, size); 434 if (!dev->uclass_priv) { 435 ret = -ENOMEM; 436 goto fail; 437 } 438 } 439 440 /* Ensure all parents are probed */ 441 if (dev->parent) { 442 size = dev->parent->driver->per_child_auto_alloc_size; 443 if (!size) { 444 size = dev->parent->uclass->uc_drv-> 445 per_child_auto_alloc_size; 446 } 447 if (size && !dev->parent_priv) { 448 dev->parent_priv = alloc_priv(size, drv->flags); 449 if (!dev->parent_priv) { 450 ret = -ENOMEM; 451 goto fail; 452 } 453 } 454 455 ret = device_probe(dev->parent); 456 if (ret) 457 goto fail; 458 459 /* 460 * The device might have already been probed during 461 * the call to device_probe() on its parent device 462 * (e.g. PCI bridge devices). Test the flags again 463 * so that we don't mess up the device. 464 */ 465 if (dev->flags & DM_FLAG_ACTIVATED) 466 return 0; 467 } 468 469 seq = uclass_resolve_seq(dev); 470 if (seq < 0) { 471 ret = seq; 472 goto fail; 473 } 474 dev->seq = seq; 475 476 dev->flags |= DM_FLAG_ACTIVATED; 477 478 /* 479 * Process pinctrl for everything except the root device, and 480 * continue regardless of the result of pinctrl. Don't process pinctrl 481 * settings for pinctrl devices since the device may not yet be 482 * probed. 483 */ 484 if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) 485 pinctrl_select_state(dev, "default"); 486 487 ret = uclass_pre_probe_device(dev); 488 if (ret) 489 goto fail; 490 491 if (dev->parent && dev->parent->driver->child_pre_probe) { 492 ret = dev->parent->driver->child_pre_probe(dev); 493 if (ret) 494 goto fail; 495 } 496 497 if (drv->ofdata_to_platdata && dev_has_of_node(dev)) { 498 ret = drv->ofdata_to_platdata(dev); 499 if (ret) 500 goto fail; 501 } 502 503 if (drv->probe) { 504 ret = drv->probe(dev); 505 if (ret) { 506 dev->flags &= ~DM_FLAG_ACTIVATED; 507 goto fail; 508 } 509 } 510 511 ret = uclass_post_probe_device(dev); 512 if (ret) 513 goto fail_uclass; 514 515 if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) 516 pinctrl_select_state(dev, "default"); 517 518 return 0; 519 fail_uclass: 520 if (device_remove(dev, DM_REMOVE_NORMAL)) { 521 dm_warn("%s: Device '%s' failed to remove on error path\n", 522 __func__, dev->name); 523 } 524 fail: 525 dev->flags &= ~DM_FLAG_ACTIVATED; 526 527 dev->seq = -1; 528 device_free(dev); 529 530 return ret; 531 } 532 533 void *dev_get_platdata(struct udevice *dev) 534 { 535 if (!dev) { 536 dm_warn("%s: null device\n", __func__); 537 return NULL; 538 } 539 540 return dev->platdata; 541 } 542 543 void *dev_get_parent_platdata(struct udevice *dev) 544 { 545 if (!dev) { 546 dm_warn("%s: null device\n", __func__); 547 return NULL; 548 } 549 550 return dev->parent_platdata; 551 } 552 553 void *dev_get_uclass_platdata(struct udevice *dev) 554 { 555 if (!dev) { 556 dm_warn("%s: null device\n", __func__); 557 return NULL; 558 } 559 560 return dev->uclass_platdata; 561 } 562 563 void *dev_get_priv(struct udevice *dev) 564 { 565 if (!dev) { 566 dm_warn("%s: null device\n", __func__); 567 return NULL; 568 } 569 570 return dev->priv; 571 } 572 573 void *dev_get_uclass_priv(struct udevice *dev) 574 { 575 if (!dev) { 576 dm_warn("%s: null device\n", __func__); 577 return NULL; 578 } 579 580 return dev->uclass_priv; 581 } 582 583 void *dev_get_parent_priv(struct udevice *dev) 584 { 585 if (!dev) { 586 dm_warn("%s: null device\n", __func__); 587 return NULL; 588 } 589 590 return dev->parent_priv; 591 } 592 593 static int device_get_device_tail(struct udevice *dev, int ret, 594 struct udevice **devp) 595 { 596 if (ret) 597 return ret; 598 599 ret = device_probe(dev); 600 if (ret) 601 return ret; 602 603 *devp = dev; 604 605 return 0; 606 } 607 608 int device_get_child(struct udevice *parent, int index, struct udevice **devp) 609 { 610 struct udevice *dev; 611 612 list_for_each_entry(dev, &parent->child_head, sibling_node) { 613 if (!index--) 614 return device_get_device_tail(dev, 0, devp); 615 } 616 617 return -ENODEV; 618 } 619 620 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 621 bool find_req_seq, struct udevice **devp) 622 { 623 struct udevice *dev; 624 625 *devp = NULL; 626 if (seq_or_req_seq == -1) 627 return -ENODEV; 628 629 list_for_each_entry(dev, &parent->child_head, sibling_node) { 630 if ((find_req_seq ? dev->req_seq : dev->seq) == 631 seq_or_req_seq) { 632 *devp = dev; 633 return 0; 634 } 635 } 636 637 return -ENODEV; 638 } 639 640 int device_get_child_by_seq(struct udevice *parent, int seq, 641 struct udevice **devp) 642 { 643 struct udevice *dev; 644 int ret; 645 646 *devp = NULL; 647 ret = device_find_child_by_seq(parent, seq, false, &dev); 648 if (ret == -ENODEV) { 649 /* 650 * We didn't find it in probed devices. See if there is one 651 * that will request this seq if probed. 652 */ 653 ret = device_find_child_by_seq(parent, seq, true, &dev); 654 } 655 return device_get_device_tail(dev, ret, devp); 656 } 657 658 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 659 struct udevice **devp) 660 { 661 struct udevice *dev; 662 663 *devp = NULL; 664 665 list_for_each_entry(dev, &parent->child_head, sibling_node) { 666 if (dev_of_offset(dev) == of_offset) { 667 *devp = dev; 668 return 0; 669 } 670 } 671 672 return -ENODEV; 673 } 674 675 int device_get_child_by_of_offset(struct udevice *parent, int node, 676 struct udevice **devp) 677 { 678 struct udevice *dev; 679 int ret; 680 681 *devp = NULL; 682 ret = device_find_child_by_of_offset(parent, node, &dev); 683 return device_get_device_tail(dev, ret, devp); 684 } 685 686 static struct udevice *_device_find_global_by_of_offset(struct udevice *parent, 687 int of_offset) 688 { 689 struct udevice *dev, *found; 690 691 if (dev_of_offset(parent) == of_offset) 692 return parent; 693 694 list_for_each_entry(dev, &parent->child_head, sibling_node) { 695 found = _device_find_global_by_of_offset(dev, of_offset); 696 if (found) 697 return found; 698 } 699 700 return NULL; 701 } 702 703 int device_get_global_by_of_offset(int of_offset, struct udevice **devp) 704 { 705 struct udevice *dev; 706 707 dev = _device_find_global_by_of_offset(gd->dm_root, of_offset); 708 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); 709 } 710 711 int device_find_first_child(struct udevice *parent, struct udevice **devp) 712 { 713 if (list_empty(&parent->child_head)) { 714 *devp = NULL; 715 } else { 716 *devp = list_first_entry(&parent->child_head, struct udevice, 717 sibling_node); 718 } 719 720 return 0; 721 } 722 723 int device_find_next_child(struct udevice **devp) 724 { 725 struct udevice *dev = *devp; 726 struct udevice *parent = dev->parent; 727 728 if (list_is_last(&dev->sibling_node, &parent->child_head)) { 729 *devp = NULL; 730 } else { 731 *devp = list_entry(dev->sibling_node.next, struct udevice, 732 sibling_node); 733 } 734 735 return 0; 736 } 737 738 struct udevice *dev_get_parent(struct udevice *child) 739 { 740 return child->parent; 741 } 742 743 ulong dev_get_driver_data(struct udevice *dev) 744 { 745 return dev->driver_data; 746 } 747 748 const void *dev_get_driver_ops(struct udevice *dev) 749 { 750 if (!dev || !dev->driver->ops) 751 return NULL; 752 753 return dev->driver->ops; 754 } 755 756 enum uclass_id device_get_uclass_id(struct udevice *dev) 757 { 758 return dev->uclass->uc_drv->id; 759 } 760 761 const char *dev_get_uclass_name(struct udevice *dev) 762 { 763 if (!dev) 764 return NULL; 765 766 return dev->uclass->uc_drv->name; 767 } 768 769 bool device_has_children(struct udevice *dev) 770 { 771 return !list_empty(&dev->child_head); 772 } 773 774 bool device_has_active_children(struct udevice *dev) 775 { 776 struct udevice *child; 777 778 for (device_find_first_child(dev, &child); 779 child; 780 device_find_next_child(&child)) { 781 if (device_active(child)) 782 return true; 783 } 784 785 return false; 786 } 787 788 bool device_is_last_sibling(struct udevice *dev) 789 { 790 struct udevice *parent = dev->parent; 791 792 if (!parent) 793 return false; 794 return list_is_last(&dev->sibling_node, &parent->child_head); 795 } 796 797 void device_set_name_alloced(struct udevice *dev) 798 { 799 dev->flags |= DM_FLAG_NAME_ALLOCED; 800 } 801 802 int device_set_name(struct udevice *dev, const char *name) 803 { 804 name = strdup(name); 805 if (!name) 806 return -ENOMEM; 807 dev->name = name; 808 device_set_name_alloced(dev); 809 810 return 0; 811 } 812 813 bool device_is_compatible(struct udevice *dev, const char *compat) 814 { 815 const void *fdt = gd->fdt_blob; 816 ofnode node = dev_ofnode(dev); 817 818 if (ofnode_is_np(node)) 819 return of_device_is_compatible(ofnode_to_np(node), compat, NULL, NULL); 820 else 821 return !fdt_node_check_compatible(fdt, ofnode_to_offset(node), compat); 822 } 823 824 bool of_machine_is_compatible(const char *compat) 825 { 826 const void *fdt = gd->fdt_blob; 827 828 return !fdt_node_check_compatible(fdt, 0, compat); 829 } 830