1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 47 gpt_header *pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #ifdef CONFIG_EFI_PARTITION 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void print_part_efi(struct blk_desc *dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 if (!dev_desc) { 188 printf("%s: Invalid Argument(s)\n", __func__); 189 return; 190 } 191 /* This function validates AND fills in the GPT header and PTE */ 192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 193 gpt_head, &gpt_pte) != 1) { 194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 195 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 196 gpt_head, &gpt_pte) != 1) { 197 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 198 __func__); 199 return; 200 } else { 201 printf("%s: *** Using Backup GPT ***\n", 202 __func__); 203 } 204 } 205 206 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 207 208 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 209 printf("\tAttributes\n"); 210 printf("\tType GUID\n"); 211 printf("\tPartition GUID\n"); 212 213 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 214 /* Stop at the first non valid PTE */ 215 if (!is_pte_valid(&gpt_pte[i])) 216 break; 217 218 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 219 le64_to_cpu(gpt_pte[i].starting_lba), 220 le64_to_cpu(gpt_pte[i].ending_lba), 221 print_efiname(&gpt_pte[i])); 222 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 223 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 224 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 225 printf("\ttype:\t%s\n", uuid); 226 #ifdef CONFIG_PARTITION_TYPE_GUID 227 if (!uuid_guid_get_str(uuid_bin, uuid)) 228 printf("\ttype:\t%s\n", uuid); 229 #endif 230 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 231 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 232 printf("\tguid:\t%s\n", uuid); 233 } 234 235 /* Remember to free pte */ 236 free(gpt_pte); 237 return; 238 } 239 240 int get_partition_info_efi(struct blk_desc *dev_desc, int part, 241 disk_partition_t *info) 242 { 243 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 244 gpt_entry *gpt_pte = NULL; 245 246 /* "part" argument must be at least 1 */ 247 if (!dev_desc || !info || part < 1) { 248 printf("%s: Invalid Argument(s)\n", __func__); 249 return -1; 250 } 251 252 /* This function validates AND fills in the GPT header and PTE */ 253 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 254 gpt_head, &gpt_pte) != 1) { 255 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 256 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 257 gpt_head, &gpt_pte) != 1) { 258 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 259 __func__); 260 return -1; 261 } else { 262 printf("%s: *** Using Backup GPT ***\n", 263 __func__); 264 } 265 } 266 267 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 268 !is_pte_valid(&gpt_pte[part - 1])) { 269 debug("%s: *** ERROR: Invalid partition number %d ***\n", 270 __func__, part); 271 free(gpt_pte); 272 return -1; 273 } 274 275 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 276 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 277 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 278 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 279 - info->start; 280 info->blksz = dev_desc->blksz; 281 282 sprintf((char *)info->name, "%s", 283 print_efiname(&gpt_pte[part - 1])); 284 strcpy((char *)info->type, "U-Boot"); 285 info->bootable = is_bootable(&gpt_pte[part - 1]); 286 #ifdef CONFIG_PARTITION_UUIDS 287 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 288 UUID_STR_FORMAT_GUID); 289 #endif 290 #ifdef CONFIG_PARTITION_TYPE_GUID 291 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 292 info->type_guid, UUID_STR_FORMAT_GUID); 293 #endif 294 295 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 296 info->start, info->size, info->name); 297 298 /* Remember to free pte */ 299 free(gpt_pte); 300 return 0; 301 } 302 303 int get_partition_info_efi_by_name(struct blk_desc *dev_desc, 304 const char *name, disk_partition_t *info) 305 { 306 int ret; 307 int i; 308 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 309 ret = get_partition_info_efi(dev_desc, i, info); 310 if (ret != 0) { 311 /* no more entries in table */ 312 return -1; 313 } 314 if (strcmp(name, (const char *)info->name) == 0) { 315 /* matched */ 316 return 0; 317 } 318 } 319 return -2; 320 } 321 322 int test_part_efi(struct blk_desc *dev_desc) 323 { 324 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 325 326 /* Read legacy MBR from block 0 and validate it */ 327 if ((dev_desc->block_read(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 328 || (is_pmbr_valid(legacymbr) != 1)) { 329 return -1; 330 } 331 return 0; 332 } 333 334 /** 335 * set_protective_mbr(): Set the EFI protective MBR 336 * @param dev_desc - block device descriptor 337 * 338 * @return - zero on success, otherwise error 339 */ 340 static int set_protective_mbr(struct blk_desc *dev_desc) 341 { 342 /* Setup the Protective MBR */ 343 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 344 memset(p_mbr, 0, sizeof(*p_mbr)); 345 346 if (p_mbr == NULL) { 347 printf("%s: calloc failed!\n", __func__); 348 return -1; 349 } 350 /* Append signature */ 351 p_mbr->signature = MSDOS_MBR_SIGNATURE; 352 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 353 p_mbr->partition_record[0].start_sect = 1; 354 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 355 356 /* Write MBR sector to the MMC device */ 357 if (dev_desc->block_write(dev_desc, 0, 1, p_mbr) != 1) { 358 printf("** Can't write to device %d **\n", 359 dev_desc->dev); 360 return -1; 361 } 362 363 return 0; 364 } 365 366 int write_gpt_table(struct blk_desc *dev_desc, 367 gpt_header *gpt_h, gpt_entry *gpt_e) 368 { 369 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 370 * sizeof(gpt_entry)), dev_desc); 371 u32 calc_crc32; 372 373 debug("max lba: %x\n", (u32) dev_desc->lba); 374 /* Setup the Protective MBR */ 375 if (set_protective_mbr(dev_desc) < 0) 376 goto err; 377 378 /* Generate CRC for the Primary GPT Header */ 379 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 380 le32_to_cpu(gpt_h->num_partition_entries) * 381 le32_to_cpu(gpt_h->sizeof_partition_entry)); 382 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 383 384 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 385 le32_to_cpu(gpt_h->header_size)); 386 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 387 388 /* Write the First GPT to the block right after the Legacy MBR */ 389 if (dev_desc->block_write(dev_desc, 1, 1, gpt_h) != 1) 390 goto err; 391 392 if (dev_desc->block_write(dev_desc, 2, pte_blk_cnt, gpt_e) 393 != pte_blk_cnt) 394 goto err; 395 396 prepare_backup_gpt_header(gpt_h); 397 398 if (dev_desc->block_write(dev_desc, 399 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 400 + 1, 401 pte_blk_cnt, gpt_e) != pte_blk_cnt) 402 goto err; 403 404 if (dev_desc->block_write(dev_desc, 405 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 406 gpt_h) != 1) 407 goto err; 408 409 debug("GPT successfully written to block device!\n"); 410 return 0; 411 412 err: 413 printf("** Can't write to device %d **\n", dev_desc->dev); 414 return -1; 415 } 416 417 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 418 disk_partition_t *partitions, int parts) 419 { 420 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 421 lbaint_t start; 422 lbaint_t last_usable_lba = (lbaint_t) 423 le64_to_cpu(gpt_h->last_usable_lba); 424 int i, k; 425 size_t efiname_len, dosname_len; 426 #ifdef CONFIG_PARTITION_UUIDS 427 char *str_uuid; 428 unsigned char *bin_uuid; 429 #endif 430 #ifdef CONFIG_PARTITION_TYPE_GUID 431 char *str_type_guid; 432 unsigned char *bin_type_guid; 433 #endif 434 435 for (i = 0; i < parts; i++) { 436 /* partition starting lba */ 437 start = partitions[i].start; 438 if (start && (start < offset)) { 439 printf("Partition overlap\n"); 440 return -1; 441 } 442 if (start) { 443 gpt_e[i].starting_lba = cpu_to_le64(start); 444 offset = start + partitions[i].size; 445 } else { 446 gpt_e[i].starting_lba = cpu_to_le64(offset); 447 offset += partitions[i].size; 448 } 449 if (offset >= last_usable_lba) { 450 printf("Partitions layout exceds disk size\n"); 451 return -1; 452 } 453 /* partition ending lba */ 454 if ((i == parts - 1) && (partitions[i].size == 0)) 455 /* extend the last partition to maximuim */ 456 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 457 else 458 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 459 460 #ifdef CONFIG_PARTITION_TYPE_GUID 461 str_type_guid = partitions[i].type_guid; 462 bin_type_guid = gpt_e[i].partition_type_guid.b; 463 if (strlen(str_type_guid)) { 464 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 465 UUID_STR_FORMAT_GUID)) { 466 printf("Partition no. %d: invalid type guid: %s\n", 467 i, str_type_guid); 468 return -1; 469 } 470 } else { 471 /* default partition type GUID */ 472 memcpy(bin_type_guid, 473 &PARTITION_BASIC_DATA_GUID, 16); 474 } 475 #else 476 /* partition type GUID */ 477 memcpy(gpt_e[i].partition_type_guid.b, 478 &PARTITION_BASIC_DATA_GUID, 16); 479 #endif 480 481 #ifdef CONFIG_PARTITION_UUIDS 482 str_uuid = partitions[i].uuid; 483 bin_uuid = gpt_e[i].unique_partition_guid.b; 484 485 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 486 printf("Partition no. %d: invalid guid: %s\n", 487 i, str_uuid); 488 return -1; 489 } 490 #endif 491 492 /* partition attributes */ 493 memset(&gpt_e[i].attributes, 0, 494 sizeof(gpt_entry_attributes)); 495 496 if (partitions[i].bootable) 497 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 498 499 /* partition name */ 500 efiname_len = sizeof(gpt_e[i].partition_name) 501 / sizeof(efi_char16_t); 502 dosname_len = sizeof(partitions[i].name); 503 504 memset(gpt_e[i].partition_name, 0, 505 sizeof(gpt_e[i].partition_name)); 506 507 for (k = 0; k < min(dosname_len, efiname_len); k++) 508 gpt_e[i].partition_name[k] = 509 (efi_char16_t)(partitions[i].name[k]); 510 511 debug("%s: name: %s offset[%d]: 0x" LBAF 512 " size[%d]: 0x" LBAF "\n", 513 __func__, partitions[i].name, i, 514 offset, i, partitions[i].size); 515 } 516 517 return 0; 518 } 519 520 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 521 char *str_guid, int parts_count) 522 { 523 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 524 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 525 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 526 gpt_h->my_lba = cpu_to_le64(1); 527 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 528 gpt_h->first_usable_lba = cpu_to_le64(34); 529 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 530 gpt_h->partition_entry_lba = cpu_to_le64(2); 531 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 532 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 533 gpt_h->header_crc32 = 0; 534 gpt_h->partition_entry_array_crc32 = 0; 535 536 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 537 return -1; 538 539 return 0; 540 } 541 542 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 543 disk_partition_t *partitions, int parts_count) 544 { 545 int ret; 546 547 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 548 dev_desc)); 549 gpt_entry *gpt_e; 550 551 if (gpt_h == NULL) { 552 printf("%s: calloc failed!\n", __func__); 553 return -1; 554 } 555 556 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 557 * sizeof(gpt_entry), 558 dev_desc)); 559 if (gpt_e == NULL) { 560 printf("%s: calloc failed!\n", __func__); 561 free(gpt_h); 562 return -1; 563 } 564 565 /* Generate Primary GPT header (LBA1) */ 566 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 567 if (ret) 568 goto err; 569 570 /* Generate partition entries */ 571 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 572 if (ret) 573 goto err; 574 575 /* Write GPT partition table */ 576 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 577 578 err: 579 free(gpt_e); 580 free(gpt_h); 581 return ret; 582 } 583 584 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 585 { 586 char *ess = (char *)es; 587 int i, j; 588 589 memset(s, '\0', n); 590 591 for (i = 0, j = 0; j < n; i += 2, j++) { 592 s[j] = ess[i]; 593 if (!ess[i]) 594 return; 595 } 596 } 597 598 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 599 gpt_entry **gpt_pte) 600 { 601 /* 602 * This function validates AND 603 * fills in the GPT header and PTE 604 */ 605 if (is_gpt_valid(dev_desc, 606 GPT_PRIMARY_PARTITION_TABLE_LBA, 607 gpt_head, gpt_pte) != 1) { 608 printf("%s: *** ERROR: Invalid GPT ***\n", 609 __func__); 610 return -1; 611 } 612 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 613 gpt_head, gpt_pte) != 1) { 614 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 615 __func__); 616 return -1; 617 } 618 619 return 0; 620 } 621 622 int gpt_verify_partitions(struct blk_desc *dev_desc, 623 disk_partition_t *partitions, int parts, 624 gpt_header *gpt_head, gpt_entry **gpt_pte) 625 { 626 char efi_str[PARTNAME_SZ + 1]; 627 u64 gpt_part_size; 628 gpt_entry *gpt_e; 629 int ret, i; 630 631 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 632 if (ret) 633 return ret; 634 635 gpt_e = *gpt_pte; 636 637 for (i = 0; i < parts; i++) { 638 if (i == gpt_head->num_partition_entries) { 639 error("More partitions than allowed!\n"); 640 return -1; 641 } 642 643 /* Check if GPT and ENV partition names match */ 644 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 645 PARTNAME_SZ + 1); 646 647 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 648 __func__, i, efi_str, partitions[i].name); 649 650 if (strncmp(efi_str, (char *)partitions[i].name, 651 sizeof(partitions->name))) { 652 error("Partition name: %s does not match %s!\n", 653 efi_str, (char *)partitions[i].name); 654 return -1; 655 } 656 657 /* Check if GPT and ENV sizes match */ 658 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 659 le64_to_cpu(gpt_e[i].starting_lba) + 1; 660 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 661 (unsigned long long)gpt_part_size, 662 (unsigned long long)partitions[i].size); 663 664 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 665 error("Partition %s size: %llu does not match %llu!\n", 666 efi_str, (unsigned long long)gpt_part_size, 667 (unsigned long long)partitions[i].size); 668 return -1; 669 } 670 671 /* 672 * Start address is optional - check only if provided 673 * in '$partition' variable 674 */ 675 if (!partitions[i].start) { 676 debug("\n"); 677 continue; 678 } 679 680 /* Check if GPT and ENV start LBAs match */ 681 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 682 le64_to_cpu(gpt_e[i].starting_lba), 683 (unsigned long long)partitions[i].start); 684 685 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 686 error("Partition %s start: %llu does not match %llu!\n", 687 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 688 (unsigned long long)partitions[i].start); 689 return -1; 690 } 691 } 692 693 return 0; 694 } 695 696 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 697 { 698 gpt_header *gpt_h; 699 gpt_entry *gpt_e; 700 701 /* determine start of GPT Header in the buffer */ 702 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 703 dev_desc->blksz); 704 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 705 dev_desc->lba)) 706 return -1; 707 708 /* determine start of GPT Entries in the buffer */ 709 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 710 dev_desc->blksz); 711 if (validate_gpt_entries(gpt_h, gpt_e)) 712 return -1; 713 714 return 0; 715 } 716 717 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 718 { 719 gpt_header *gpt_h; 720 gpt_entry *gpt_e; 721 int gpt_e_blk_cnt; 722 lbaint_t lba; 723 int cnt; 724 725 if (is_valid_gpt_buf(dev_desc, buf)) 726 return -1; 727 728 /* determine start of GPT Header in the buffer */ 729 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 730 dev_desc->blksz); 731 732 /* determine start of GPT Entries in the buffer */ 733 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 734 dev_desc->blksz); 735 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 736 le32_to_cpu(gpt_h->sizeof_partition_entry)), 737 dev_desc); 738 739 /* write MBR */ 740 lba = 0; /* MBR is always at 0 */ 741 cnt = 1; /* MBR (1 block) */ 742 if (dev_desc->block_write(dev_desc, lba, cnt, buf) != cnt) { 743 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 744 __func__, "MBR", cnt, lba); 745 return 1; 746 } 747 748 /* write Primary GPT */ 749 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 750 cnt = 1; /* GPT Header (1 block) */ 751 if (dev_desc->block_write(dev_desc, lba, cnt, gpt_h) != cnt) { 752 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 753 __func__, "Primary GPT Header", cnt, lba); 754 return 1; 755 } 756 757 lba = le64_to_cpu(gpt_h->partition_entry_lba); 758 cnt = gpt_e_blk_cnt; 759 if (dev_desc->block_write(dev_desc, lba, cnt, gpt_e) != cnt) { 760 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 761 __func__, "Primary GPT Entries", cnt, lba); 762 return 1; 763 } 764 765 prepare_backup_gpt_header(gpt_h); 766 767 /* write Backup GPT */ 768 lba = le64_to_cpu(gpt_h->partition_entry_lba); 769 cnt = gpt_e_blk_cnt; 770 if (dev_desc->block_write(dev_desc, lba, cnt, gpt_e) != cnt) { 771 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 772 __func__, "Backup GPT Entries", cnt, lba); 773 return 1; 774 } 775 776 lba = le64_to_cpu(gpt_h->my_lba); 777 cnt = 1; /* GPT Header (1 block) */ 778 if (dev_desc->block_write(dev_desc, lba, cnt, gpt_h) != cnt) { 779 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 780 __func__, "Backup GPT Header", cnt, lba); 781 return 1; 782 } 783 784 return 0; 785 } 786 #endif 787 788 /* 789 * Private functions 790 */ 791 /* 792 * pmbr_part_valid(): Check for EFI partition signature 793 * 794 * Returns: 1 if EFI GPT partition type is found. 795 */ 796 static int pmbr_part_valid(struct partition *part) 797 { 798 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 799 get_unaligned_le32(&part->start_sect) == 1UL) { 800 return 1; 801 } 802 803 return 0; 804 } 805 806 /* 807 * is_pmbr_valid(): test Protective MBR for validity 808 * 809 * Returns: 1 if PMBR is valid, 0 otherwise. 810 * Validity depends on two things: 811 * 1) MSDOS signature is in the last two bytes of the MBR 812 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 813 */ 814 static int is_pmbr_valid(legacy_mbr * mbr) 815 { 816 int i = 0; 817 818 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 819 return 0; 820 821 for (i = 0; i < 4; i++) { 822 if (pmbr_part_valid(&mbr->partition_record[i])) { 823 return 1; 824 } 825 } 826 return 0; 827 } 828 829 /** 830 * is_gpt_valid() - tests one GPT header and PTEs for validity 831 * 832 * lba is the logical block address of the GPT header to test 833 * gpt is a GPT header ptr, filled on return. 834 * ptes is a PTEs ptr, filled on return. 835 * 836 * Description: returns 1 if valid, 0 on error. 837 * If valid, returns pointers to PTEs. 838 */ 839 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 840 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 841 { 842 if (!dev_desc || !pgpt_head) { 843 printf("%s: Invalid Argument(s)\n", __func__); 844 return 0; 845 } 846 847 /* Read GPT Header from device */ 848 if (dev_desc->block_read(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 849 printf("*** ERROR: Can't read GPT header ***\n"); 850 return 0; 851 } 852 853 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 854 return 0; 855 856 /* Read and allocate Partition Table Entries */ 857 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 858 if (*pgpt_pte == NULL) { 859 printf("GPT: Failed to allocate memory for PTE\n"); 860 return 0; 861 } 862 863 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 864 free(*pgpt_pte); 865 return 0; 866 } 867 868 /* We're done, all's well */ 869 return 1; 870 } 871 872 /** 873 * alloc_read_gpt_entries(): reads partition entries from disk 874 * @dev_desc 875 * @gpt - GPT header 876 * 877 * Description: Returns ptes on success, NULL on error. 878 * Allocates space for PTEs based on information found in @gpt. 879 * Notes: remember to free pte when you're done! 880 */ 881 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 882 gpt_header *pgpt_head) 883 { 884 size_t count = 0, blk_cnt; 885 lbaint_t blk; 886 gpt_entry *pte = NULL; 887 888 if (!dev_desc || !pgpt_head) { 889 printf("%s: Invalid Argument(s)\n", __func__); 890 return NULL; 891 } 892 893 count = le32_to_cpu(pgpt_head->num_partition_entries) * 894 le32_to_cpu(pgpt_head->sizeof_partition_entry); 895 896 debug("%s: count = %u * %u = %zu\n", __func__, 897 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 898 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 899 900 /* Allocate memory for PTE, remember to FREE */ 901 if (count != 0) { 902 pte = memalign(ARCH_DMA_MINALIGN, 903 PAD_TO_BLOCKSIZE(count, dev_desc)); 904 } 905 906 if (count == 0 || pte == NULL) { 907 printf("%s: ERROR: Can't allocate 0x%zX " 908 "bytes for GPT Entries\n", 909 __func__, count); 910 return NULL; 911 } 912 913 /* Read GPT Entries from device */ 914 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 915 blk_cnt = BLOCK_CNT(count, dev_desc); 916 if (dev_desc->block_read(dev_desc, blk, (lbaint_t)blk_cnt, pte) 917 != blk_cnt) { 918 printf("*** ERROR: Can't read GPT Entries ***\n"); 919 free(pte); 920 return NULL; 921 } 922 return pte; 923 } 924 925 /** 926 * is_pte_valid(): validates a single Partition Table Entry 927 * @gpt_entry - Pointer to a single Partition Table Entry 928 * 929 * Description: returns 1 if valid, 0 on error. 930 */ 931 static int is_pte_valid(gpt_entry * pte) 932 { 933 efi_guid_t unused_guid; 934 935 if (!pte) { 936 printf("%s: Invalid Argument(s)\n", __func__); 937 return 0; 938 } 939 940 /* Only one validation for now: 941 * The GUID Partition Type != Unused Entry (ALL-ZERO) 942 */ 943 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 944 945 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 946 sizeof(unused_guid.b)) == 0) { 947 948 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 949 (unsigned int)(uintptr_t)pte); 950 951 return 0; 952 } else { 953 return 1; 954 } 955 } 956 #endif 957