1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <fdtdec.h> 17 #include <ide.h> 18 #include <inttypes.h> 19 #include <malloc.h> 20 #include <memalign.h> 21 #include <part_efi.h> 22 #include <linux/compiler.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 47 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 49 gpt_header *pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 67 68 static inline int is_bootable(gpt_entry *p) 69 { 70 return p->attributes.fields.legacy_bios_bootable || 71 !memcmp(&(p->partition_type_guid), &system_guid, 72 sizeof(efi_guid_t)); 73 } 74 75 #define FACTORY_UNKNOWN_LBA (0xffffffff - 34) 76 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 77 lbaint_t lastlba) 78 { 79 uint32_t crc32_backup = 0; 80 uint32_t calc_crc32; 81 82 /* Check the GPT header signature */ 83 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 84 if (le64_to_cpu(gpt_h->signature) != 0) 85 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 86 "GUID Partition Table Header", 87 le64_to_cpu(gpt_h->signature), 88 GPT_HEADER_SIGNATURE); 89 return -1; 90 } 91 92 /* Check the GUID Partition Table CRC */ 93 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 94 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 95 96 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 97 le32_to_cpu(gpt_h->header_size)); 98 99 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 100 101 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 102 printf("%s CRC is wrong: 0x%x != 0x%x\n", 103 "GUID Partition Table Header", 104 le32_to_cpu(crc32_backup), calc_crc32); 105 return -1; 106 } 107 108 /* 109 * Check that the my_lba entry points to the LBA that contains the GPT 110 */ 111 if (le64_to_cpu(gpt_h->my_lba) != lba) { 112 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 113 le64_to_cpu(gpt_h->my_lba), 114 lba); 115 return -1; 116 } 117 118 /* 119 * Check that the first_usable_lba and that the last_usable_lba are 120 * within the disk. 121 */ 122 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 123 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 124 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 125 return -1; 126 } 127 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 128 if (le64_to_cpu(gpt_h->last_usable_lba) == FACTORY_UNKNOWN_LBA) { 129 #if defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_KERNEL_BOOT) 130 printf("GPT: SPL workaround factory last_usable_lba\n"); 131 gpt_h->last_usable_lba = lastlba - 34; 132 return 0; 133 #else 134 printf("GPT: last_usable_lba need repair\n"); 135 return 0; 136 #endif 137 } 138 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 139 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 140 return -1; 141 } 142 143 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 144 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 145 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 146 147 return 0; 148 } 149 150 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 151 { 152 uint32_t calc_crc32; 153 154 /* Check the GUID Partition Table Entry Array CRC */ 155 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 156 le32_to_cpu(gpt_h->num_partition_entries) * 157 le32_to_cpu(gpt_h->sizeof_partition_entry)); 158 159 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 160 printf("%s: 0x%x != 0x%x\n", 161 "GUID Partition Table Entry Array CRC is wrong", 162 le32_to_cpu(gpt_h->partition_entry_array_crc32), 163 calc_crc32); 164 return -1; 165 } 166 167 return 0; 168 } 169 170 static void prepare_backup_gpt_header(gpt_header *gpt_h) 171 { 172 uint32_t calc_crc32; 173 uint64_t val; 174 175 /* recalculate the values for the Backup GPT Header */ 176 val = le64_to_cpu(gpt_h->my_lba); 177 gpt_h->my_lba = gpt_h->alternate_lba; 178 gpt_h->alternate_lba = cpu_to_le64(val); 179 gpt_h->partition_entry_lba = 180 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 181 gpt_h->header_crc32 = 0; 182 183 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 184 le32_to_cpu(gpt_h->header_size)); 185 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 186 } 187 188 #if CONFIG_IS_ENABLED(EFI_PARTITION) 189 /* 190 * Public Functions (include/part.h) 191 */ 192 193 /* 194 * UUID is displayed as 32 hexadecimal digits, in 5 groups, 195 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters 196 */ 197 int get_disk_guid(struct blk_desc * dev_desc, char *guid) 198 { 199 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->rawblksz); 200 gpt_entry *gpt_pte = NULL; 201 unsigned char *guid_bin; 202 203 /* This function validates AND fills in the GPT header and PTE */ 204 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 205 gpt_head, &gpt_pte) != 1) { 206 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 207 if (is_gpt_valid(dev_desc, dev_desc->rawlba - 1, 208 gpt_head, &gpt_pte) != 1) { 209 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 210 __func__); 211 return -EINVAL; 212 } else { 213 printf("%s: *** Using Backup GPT ***\n", 214 __func__); 215 } 216 } 217 218 guid_bin = gpt_head->disk_guid.b; 219 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID); 220 221 return 0; 222 } 223 224 void part_print_efi(struct blk_desc *dev_desc) 225 { 226 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->rawblksz); 227 gpt_entry *gpt_pte = NULL; 228 int i = 0; 229 char uuid[UUID_STR_LEN + 1]; 230 unsigned char *uuid_bin; 231 int sector; 232 233 /* This function validates AND fills in the GPT header and PTE */ 234 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 235 gpt_head, &gpt_pte) != 1) { 236 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 237 if (is_gpt_valid(dev_desc, (dev_desc->rawlba - 1), 238 gpt_head, &gpt_pte) != 1) { 239 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 240 __func__); 241 return; 242 } else { 243 printf("%s: *** Using Backup GPT ***\n", 244 __func__); 245 } 246 } 247 248 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 249 250 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 251 printf("\tAttributes\n"); 252 printf("\tType GUID\n"); 253 printf("\tPartition GUID\n"); 254 255 sector = dev_desc->rawblksz / dev_desc->blksz; 256 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 257 /* Stop at the first non valid PTE */ 258 if (!is_pte_valid(&gpt_pte[i])) 259 break; 260 261 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 262 le64_to_cpu(gpt_pte[i].starting_lba * sector), 263 le64_to_cpu(gpt_pte[i].ending_lba * sector + sector - 1), 264 print_efiname(&gpt_pte[i])); 265 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 266 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 267 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 268 printf("\ttype:\t%s\n", uuid); 269 #ifdef CONFIG_PARTITION_TYPE_GUID 270 if (!uuid_guid_get_str(uuid_bin, uuid)) 271 printf("\ttype:\t%s\n", uuid); 272 #endif 273 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 274 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 275 printf("\tguid:\t%s\n", uuid); 276 } 277 278 /* Remember to free pte */ 279 free(gpt_pte); 280 return; 281 } 282 283 int part_get_info_efi(struct blk_desc *dev_desc, int part, 284 disk_partition_t *info) 285 { 286 static gpt_entry *gpt_pte = NULL; 287 static gpt_header *gpt_head = NULL; 288 int sector, b_gpt_nsec = 0x22; 289 290 if (!dev_desc->rawblksz || !dev_desc->rawlba) { 291 dev_desc->rawblksz = dev_desc->blksz; 292 dev_desc->rawlba = dev_desc->lba; 293 } 294 295 if (dev_desc->rawblksz == 4096) 296 b_gpt_nsec = 6; 297 298 if (!gpt_head) 299 gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->rawblksz); 300 301 /* 302 * We suppose different dev have different size, eg. emmc vs sd 303 * free the pte first if exist and then will malloc and init a new one. 304 */ 305 if (gpt_head && (gpt_head->last_usable_lba + b_gpt_nsec) != dev_desc->rawlba) { 306 if (dev_desc->rawblksz == 4096) { 307 /* realloc gpt header buffer */ 308 free(gpt_head); 309 gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->rawblksz); 310 } 311 if (gpt_pte) 312 free(gpt_pte); 313 gpt_pte = NULL; 314 } 315 316 /* "part" argument must be at least 1 */ 317 if (part < 1) { 318 printf("%s: Invalid Argument(s)\n", __func__); 319 return -1; 320 } 321 322 /* This function validates AND fills in the GPT header and PTE */ 323 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 324 gpt_head, &gpt_pte) != 1) { 325 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 326 if (is_gpt_valid(dev_desc, (dev_desc->rawlba - 1), 327 gpt_head, &gpt_pte) != 1) { 328 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 329 __func__); 330 return -1; 331 } else { 332 printf("%s: *** Using Backup GPT ***\n", 333 __func__); 334 } 335 } 336 337 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 338 !is_pte_valid(&gpt_pte[part - 1])) { 339 debug("%s: *** ERROR: Invalid partition number %d ***\n", 340 __func__, part); 341 return -1; 342 } 343 344 sector = dev_desc->rawblksz / dev_desc->blksz; 345 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 346 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 347 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 348 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 349 - info->start; 350 info->start *= sector; 351 info->size *= sector; 352 353 info->blksz = dev_desc->blksz; 354 355 sprintf((char *)info->name, "%s", 356 print_efiname(&gpt_pte[part - 1])); 357 strcpy((char *)info->type, "U-Boot"); 358 info->bootable = is_bootable(&gpt_pte[part - 1]); 359 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 360 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 361 UUID_STR_FORMAT_GUID); 362 #endif 363 #ifdef CONFIG_PARTITION_TYPE_GUID 364 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 365 info->type_guid, UUID_STR_FORMAT_GUID); 366 #endif 367 368 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 369 info->start, info->size, info->name); 370 371 return 0; 372 } 373 374 #ifdef CONFIG_RKIMG_BOOTLOADER 375 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD) 376 static void gpt_entry_modify(struct blk_desc *dev_desc, 377 gpt_entry *gpt_pte, 378 gpt_header *gpt_head) 379 { 380 int i; 381 uint32_t calc_crc32; 382 383 for (i = 0; i < gpt_head->num_partition_entries; i++) { 384 if (!is_pte_valid(&gpt_pte[i])) 385 break; 386 } 387 if (dev_desc->rawblksz == 4096) { 388 if (gpt_pte[i - 1].ending_lba <= (dev_desc->rawlba - 6)) 389 return; 390 gpt_pte[i - 1].ending_lba = dev_desc->rawlba - 6; 391 } else { 392 if (gpt_pte[i - 1].ending_lba <= (dev_desc->rawlba - 0x22)) 393 return; 394 /* The last partition size need align to 4KB, here align to 32KB. */ 395 gpt_pte[i - 1].ending_lba = dev_desc->rawlba - 0x41; 396 } 397 calc_crc32 = efi_crc32((const unsigned char *)gpt_pte, 398 le32_to_cpu(gpt_head->num_partition_entries) * 399 le32_to_cpu(gpt_head->sizeof_partition_entry)); 400 gpt_head->partition_entry_array_crc32 = calc_crc32; 401 } 402 403 static int part_efi_repair(struct blk_desc *dev_desc, gpt_entry *gpt_pte, 404 gpt_header *gpt_head, int head_gpt_valid, 405 int backup_gpt_valid) 406 { 407 uint32_t calc_crc32; 408 size_t count = 0, blk_cnt; 409 lbaint_t blk; 410 int sector = dev_desc->rawblksz / dev_desc->blksz; 411 412 if (head_gpt_valid == 1 && backup_gpt_valid == 1) { 413 return 0; 414 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) { 415 return -1; 416 } else if (head_gpt_valid == 1 && backup_gpt_valid == 0) { 417 gpt_head->header_crc32 = 0; 418 gpt_head->my_lba = dev_desc->rawlba - 1; 419 gpt_head->alternate_lba = 1; 420 if (sector == 8) { 421 gpt_head->partition_entry_lba = dev_desc->rawlba - 5; 422 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 6); 423 } else { 424 gpt_head->partition_entry_lba = dev_desc->rawlba - 0x21; 425 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 34); 426 } 427 gpt_entry_modify(dev_desc, gpt_pte, gpt_head); 428 calc_crc32 = efi_crc32((const unsigned char *)gpt_head, 429 le32_to_cpu(gpt_head->header_size)); 430 gpt_head->header_crc32 = calc_crc32; 431 blk = le64_to_cpu(dev_desc->rawlba - 1); 432 if (blk_dwrite(dev_desc, blk * sector, sector, gpt_head) != sector) { 433 printf("*** ERROR: Can't write GPT header ***\n"); 434 return -1; 435 } 436 count = le32_to_cpu(gpt_head->num_partition_entries) * 437 le32_to_cpu(gpt_head->sizeof_partition_entry); 438 blk = le64_to_cpu(gpt_head->partition_entry_lba); 439 blk_cnt = BLOCK_CNT(count, dev_desc); 440 if (blk_dwrite(dev_desc, blk * sector, (lbaint_t)blk_cnt, gpt_pte) != 441 blk_cnt) { 442 printf("*** ERROR: Can't write entry partitions ***\n"); 443 return -1; 444 } 445 printf("Repair the backup gpt table OK!\n"); 446 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) { 447 gpt_head->header_crc32 = 0; 448 gpt_head->my_lba = 1; 449 gpt_head->alternate_lba = dev_desc->rawlba - 1; 450 gpt_head->partition_entry_lba = 0x2; 451 if (sector == 8) { 452 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 6); 453 } else { 454 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 34); 455 } 456 gpt_entry_modify(dev_desc, gpt_pte, gpt_head); 457 calc_crc32 = efi_crc32((const unsigned char *)gpt_head, 458 le32_to_cpu(gpt_head->header_size)); 459 gpt_head->header_crc32 = calc_crc32; 460 if (blk_dwrite(dev_desc, 1 * sector, sector, gpt_head) != sector) { 461 printf("*** ERROR: Can't write GPT header ***\n"); 462 /* 463 * Due to the possibility of ECC fail caused by abnormal power 464 * failure in Nand, which affects the blk_dwrite function, 465 * block 0 erasure is introduced to repair the data. 466 */ 467 if (dev_desc->if_type == IF_TYPE_MTD && 468 (dev_desc->devnum == BLK_MTD_NAND || dev_desc->devnum == BLK_MTD_SPI_NAND)) { 469 blk_derase(dev_desc, 0, sector); 470 printf("spinand gpt repair workaround!\n"); 471 } 472 return -1; 473 } 474 count = le32_to_cpu(gpt_head->num_partition_entries) * 475 le32_to_cpu(gpt_head->sizeof_partition_entry); 476 blk = le64_to_cpu(gpt_head->partition_entry_lba); 477 blk_cnt = BLOCK_CNT(count, dev_desc); 478 if (blk_dwrite(dev_desc, blk * sector, (lbaint_t)blk_cnt, gpt_pte) != 479 blk_cnt) { 480 printf("*** ERROR: Can't write entry partitions ***\n"); 481 return -1; 482 } 483 printf("Repair the Primary gpt table OK!\n"); 484 } 485 486 return 0; 487 } 488 #endif 489 #endif 490 491 static int part_test_efi(struct blk_desc *dev_desc) 492 { 493 int ret = 0; 494 495 if (!dev_desc->rawblksz || !dev_desc->rawlba) { 496 dev_desc->rawblksz = dev_desc->blksz; 497 dev_desc->rawlba = dev_desc->lba; 498 } 499 500 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->rawblksz); 501 502 /* Read legacy MBR from block 0 and validate it */ 503 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 504 || (is_pmbr_valid(legacymbr) != 1)) { 505 return -1; 506 } 507 #ifdef CONFIG_RKIMG_BOOTLOADER 508 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD) 509 gpt_entry *h_gpt_pte = NULL; 510 gpt_header *h_gpt_head = NULL; 511 gpt_entry *b_gpt_pte = NULL; 512 gpt_header *b_gpt_head = NULL; 513 int head_gpt_valid = 0; 514 int backup_gpt_valid = 0; 515 516 if (!h_gpt_head) 517 h_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->rawblksz); 518 if (!b_gpt_head) 519 b_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->rawblksz); 520 521 head_gpt_valid = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 522 h_gpt_head, &h_gpt_pte); 523 backup_gpt_valid = is_gpt_valid(dev_desc, (dev_desc->rawlba - 1), 524 b_gpt_head, &b_gpt_pte); 525 526 if ((head_gpt_valid == 1) && 527 (le64_to_cpu(h_gpt_head->last_usable_lba) 528 == FACTORY_UNKNOWN_LBA)) { 529 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head, 530 0, 1)) 531 printf("Primary GPT repair fail!\n"); 532 /* Force repair backup GPT for factory or ota upgrade. */ 533 backup_gpt_valid = 0; 534 } 535 536 if (head_gpt_valid == 1 && backup_gpt_valid == 0) { 537 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head, 538 head_gpt_valid, backup_gpt_valid)) 539 printf("Backup GPT repair fail!\n"); 540 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) { 541 if (part_efi_repair(dev_desc, b_gpt_pte, b_gpt_head, 542 head_gpt_valid, backup_gpt_valid)) 543 printf("Primary GPT repair fail!\n"); 544 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) { 545 ret = -1; 546 } 547 548 free(h_gpt_pte); 549 h_gpt_pte = NULL; 550 free(h_gpt_head); 551 h_gpt_head = NULL; 552 free(b_gpt_pte); 553 b_gpt_pte = NULL; 554 free(b_gpt_head); 555 b_gpt_head = NULL; 556 #endif 557 #endif 558 return ret; 559 } 560 561 /** 562 * set_protective_mbr(): Set the EFI protective MBR 563 * @param dev_desc - block device descriptor 564 * 565 * @return - zero on success, otherwise error 566 */ 567 static int set_protective_mbr(struct blk_desc *dev_desc) 568 { 569 /* Setup the Protective MBR */ 570 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->rawblksz); 571 memset(p_mbr, 0, dev_desc->rawblksz); 572 573 if (p_mbr == NULL) { 574 printf("%s: calloc failed!\n", __func__); 575 return -1; 576 } 577 578 /* Read MBR to backup boot code if it exists */ 579 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { 580 pr_err("** Can't read from device %d **\n", dev_desc->devnum); 581 return -1; 582 } 583 584 /* Append signature */ 585 p_mbr->signature = MSDOS_MBR_SIGNATURE; 586 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 587 p_mbr->partition_record[0].start_sect = 1; 588 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->rawlba - 1; 589 590 /* Write MBR sector to the MMC device */ 591 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 592 printf("** Can't write to device %d **\n", 593 dev_desc->devnum); 594 return -1; 595 } 596 597 return 0; 598 } 599 600 int write_gpt_table(struct blk_desc *dev_desc, 601 gpt_header *gpt_h, gpt_entry *gpt_e) 602 { 603 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 604 * sizeof(gpt_entry)), dev_desc); 605 u32 calc_crc32, sector; 606 607 sector = dev_desc->rawblksz / dev_desc->blksz; 608 609 debug("max lba: %x\n", (u32) dev_desc->rawlba); 610 /* Setup the Protective MBR */ 611 if (set_protective_mbr(dev_desc) < 0) 612 goto err; 613 614 /* Generate CRC for the Primary GPT Header */ 615 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 616 le32_to_cpu(gpt_h->num_partition_entries) * 617 le32_to_cpu(gpt_h->sizeof_partition_entry)); 618 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 619 620 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 621 le32_to_cpu(gpt_h->header_size)); 622 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 623 624 /* Write the First GPT to the block right after the Legacy MBR */ 625 if (blk_dwrite(dev_desc, 1 * sector, sector, gpt_h) != sector) 626 goto err; 627 628 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba * sector), 629 pte_blk_cnt, gpt_e) != pte_blk_cnt) 630 goto err; 631 632 prepare_backup_gpt_header(gpt_h); 633 634 if (blk_dwrite(dev_desc, (lbaint_t)(le64_to_cpu(gpt_h->last_usable_lba) 635 + 1) * sector, pte_blk_cnt, gpt_e) != pte_blk_cnt) 636 goto err; 637 638 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba) * sector, 1, 639 gpt_h) != 1) 640 goto err; 641 642 debug("GPT successfully written to block device!\n"); 643 return 0; 644 645 err: 646 printf("** Can't write to device %d **\n", dev_desc->devnum); 647 return -1; 648 } 649 650 int gpt_fill_pte(struct blk_desc *dev_desc, 651 gpt_header *gpt_h, gpt_entry *gpt_e, 652 disk_partition_t *partitions, int parts) 653 { 654 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 655 lbaint_t last_usable_lba = (lbaint_t) 656 le64_to_cpu(gpt_h->last_usable_lba); 657 int i, k; 658 size_t efiname_len, dosname_len; 659 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 660 char *str_uuid; 661 unsigned char *bin_uuid; 662 #endif 663 #ifdef CONFIG_PARTITION_TYPE_GUID 664 char *str_type_guid; 665 unsigned char *bin_type_guid; 666 #endif 667 size_t hdr_start = gpt_h->my_lba; 668 size_t hdr_end = hdr_start + 1; 669 670 size_t pte_start = gpt_h->partition_entry_lba; 671 size_t pte_end = pte_start + 672 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry / 673 dev_desc->rawblksz; 674 675 for (i = 0; i < parts; i++) { 676 /* partition starting lba */ 677 lbaint_t start = partitions[i].start; 678 lbaint_t size = partitions[i].size; 679 680 if (start) { 681 offset = start + size; 682 } else { 683 start = offset; 684 offset += size; 685 } 686 687 /* 688 * If our partition overlaps with either the GPT 689 * header, or the partition entry, reject it. 690 */ 691 if (((start < hdr_end && hdr_start < (start + size)) || 692 (start < pte_end && pte_start < (start + size)))) { 693 printf("Partition overlap\n"); 694 return -1; 695 } 696 697 gpt_e[i].starting_lba = cpu_to_le64(start); 698 699 if (offset > (last_usable_lba + 1)) { 700 printf("Partitions layout exceds disk size\n"); 701 return -1; 702 } 703 /* partition ending lba */ 704 if ((i == parts - 1) && (size == 0)) 705 /* extend the last partition to maximuim */ 706 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 707 else 708 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 709 710 #ifdef CONFIG_PARTITION_TYPE_GUID 711 str_type_guid = partitions[i].type_guid; 712 bin_type_guid = gpt_e[i].partition_type_guid.b; 713 if (strlen(str_type_guid)) { 714 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 715 UUID_STR_FORMAT_GUID)) { 716 printf("Partition no. %d: invalid type guid: %s\n", 717 i, str_type_guid); 718 return -1; 719 } 720 } else { 721 /* default partition type GUID */ 722 memcpy(bin_type_guid, 723 &PARTITION_BASIC_DATA_GUID, 16); 724 } 725 #else 726 /* partition type GUID */ 727 memcpy(gpt_e[i].partition_type_guid.b, 728 &PARTITION_BASIC_DATA_GUID, 16); 729 #endif 730 731 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 732 str_uuid = partitions[i].uuid; 733 bin_uuid = gpt_e[i].unique_partition_guid.b; 734 735 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { 736 printf("Partition no. %d: invalid guid: %s\n", 737 i, str_uuid); 738 return -1; 739 } 740 #endif 741 742 /* partition attributes */ 743 memset(&gpt_e[i].attributes, 0, 744 sizeof(gpt_entry_attributes)); 745 746 if (partitions[i].bootable) 747 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 748 749 /* partition name */ 750 efiname_len = sizeof(gpt_e[i].partition_name) 751 / sizeof(efi_char16_t); 752 dosname_len = sizeof(partitions[i].name); 753 754 memset(gpt_e[i].partition_name, 0, 755 sizeof(gpt_e[i].partition_name)); 756 757 for (k = 0; k < min(dosname_len, efiname_len); k++) 758 gpt_e[i].partition_name[k] = 759 (efi_char16_t)(partitions[i].name[k]); 760 761 debug("%s: name: %s offset[%d]: 0x" LBAF 762 " size[%d]: 0x" LBAF "\n", 763 __func__, partitions[i].name, i, 764 offset, i, size); 765 } 766 767 return 0; 768 } 769 770 static uint32_t partition_entries_offset(struct blk_desc *dev_desc) 771 { 772 uint32_t offset_blks = 2; 773 uint32_t __maybe_unused offset_bytes; 774 int __maybe_unused config_offset; 775 776 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF) 777 /* 778 * Some architectures require their SPL loader at a fixed 779 * address within the first 16KB of the disk. To avoid an 780 * overlap with the partition entries of the EFI partition 781 * table, the first safe offset (in bytes, from the start of 782 * the disk) for the entries can be set in 783 * CONFIG_EFI_PARTITION_ENTRIES_OFF. 784 */ 785 offset_bytes = PAD_SIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc->rawblksz); 786 offset_blks = offset_bytes / dev_desc->rawblksz; 787 #endif 788 789 #if defined(CONFIG_OF_CONTROL) 790 /* 791 * Allow the offset of the first partition entires (in bytes 792 * from the start of the device) to be specified as a property 793 * of the device tree '/config' node. 794 */ 795 config_offset = fdtdec_get_config_int(gd->fdt_blob, 796 "u-boot,efi-partition-entries-offset", 797 -EINVAL); 798 if (config_offset != -EINVAL) { 799 offset_bytes = PAD_SIZE(config_offset, dev_desc->rawblksz); 800 offset_blks = offset_bytes / dev_desc->rawblksz; 801 } 802 #endif 803 804 debug("efi: partition entries offset (in blocks): %d\n", offset_blks); 805 806 /* 807 * The earliest LBA this can be at is LBA#2 (i.e. right behind 808 * the (protective) MBR and the GPT header. 809 */ 810 if (offset_blks < 2) 811 offset_blks = 2; 812 813 return offset_blks; 814 } 815 816 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 817 char *str_guid, int parts_count) 818 { 819 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 820 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 821 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 822 gpt_h->my_lba = cpu_to_le64(1); 823 gpt_h->alternate_lba = cpu_to_le64(dev_desc->rawlba - 1); 824 gpt_h->partition_entry_lba = 825 cpu_to_le64(partition_entries_offset(dev_desc)); 826 if (dev_desc->rawblksz == 4096) { 827 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 6); 828 gpt_h->first_usable_lba = 829 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 4); 830 } else { 831 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->rawlba - 34); 832 gpt_h->first_usable_lba = 833 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32); 834 } 835 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 836 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 837 gpt_h->header_crc32 = 0; 838 gpt_h->partition_entry_array_crc32 = 0; 839 840 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 841 return -1; 842 843 return 0; 844 } 845 846 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 847 disk_partition_t *partitions, int parts_count) 848 { 849 gpt_header *gpt_h; 850 gpt_entry *gpt_e; 851 int ret, size; 852 853 size = PAD_SIZE(sizeof(gpt_header), dev_desc->rawblksz); 854 gpt_h = malloc_cache_aligned(size); 855 if (gpt_h == NULL) { 856 printf("%s: calloc failed!\n", __func__); 857 return -1; 858 } 859 memset(gpt_h, 0, size); 860 861 size = PAD_SIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), dev_desc->rawblksz); 862 gpt_e = malloc_cache_aligned(size); 863 if (gpt_e == NULL) { 864 printf("%s: calloc failed!\n", __func__); 865 free(gpt_h); 866 return -1; 867 } 868 memset(gpt_e, 0, size); 869 870 /* Generate Primary GPT header (LBA1) */ 871 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 872 if (ret) 873 goto err; 874 875 /* Generate partition entries */ 876 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count); 877 if (ret) 878 goto err; 879 880 /* Write GPT partition table */ 881 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 882 883 err: 884 free(gpt_e); 885 free(gpt_h); 886 return ret; 887 } 888 889 /** 890 * gpt_convert_efi_name_to_char() - convert u16 string to char string 891 * 892 * TODO: this conversion only supports ANSI characters 893 * 894 * @s: target buffer 895 * @es: u16 string to be converted 896 * @n: size of target buffer 897 */ 898 static void gpt_convert_efi_name_to_char(char *s, void *es, int n) 899 { 900 char *ess = es; 901 int i, j; 902 903 memset(s, '\0', n); 904 905 for (i = 0, j = 0; j < n; i += 2, j++) { 906 s[j] = ess[i]; 907 if (!ess[i]) 908 return; 909 } 910 } 911 912 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 913 gpt_entry **gpt_pte) 914 { 915 /* 916 * This function validates AND 917 * fills in the GPT header and PTE 918 */ 919 if (is_gpt_valid(dev_desc, 920 GPT_PRIMARY_PARTITION_TABLE_LBA, 921 gpt_head, gpt_pte) != 1) { 922 printf("%s: *** ERROR: Invalid GPT ***\n", 923 __func__); 924 return -1; 925 } 926 if (is_gpt_valid(dev_desc, (dev_desc->rawlba - 1), 927 gpt_head, gpt_pte) != 1) { 928 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 929 __func__); 930 return -1; 931 } 932 933 return 0; 934 } 935 936 int gpt_verify_partitions(struct blk_desc *dev_desc, 937 disk_partition_t *partitions, int parts, 938 gpt_header *gpt_head, gpt_entry **gpt_pte) 939 { 940 char efi_str[PARTNAME_SZ + 1]; 941 u64 gpt_part_size; 942 gpt_entry *gpt_e; 943 int ret, i; 944 945 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 946 if (ret) 947 return ret; 948 949 gpt_e = *gpt_pte; 950 951 for (i = 0; i < parts; i++) { 952 if (i == gpt_head->num_partition_entries) { 953 pr_err("More partitions than allowed!\n"); 954 return -1; 955 } 956 957 /* Check if GPT and ENV partition names match */ 958 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 959 PARTNAME_SZ + 1); 960 961 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 962 __func__, i, efi_str, partitions[i].name); 963 964 if (strncmp(efi_str, (char *)partitions[i].name, 965 sizeof(partitions->name))) { 966 pr_err("Partition name: %s does not match %s!\n", 967 efi_str, (char *)partitions[i].name); 968 return -1; 969 } 970 971 /* Check if GPT and ENV sizes match */ 972 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 973 le64_to_cpu(gpt_e[i].starting_lba) + 1; 974 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 975 (unsigned long long)gpt_part_size, 976 (unsigned long long)partitions[i].size); 977 978 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 979 /* We do not check the extend partition size */ 980 if ((i == parts - 1) && (partitions[i].size == 0)) 981 continue; 982 983 pr_err("Partition %s size: %llu does not match %llu!\n", 984 efi_str, (unsigned long long)gpt_part_size, 985 (unsigned long long)partitions[i].size); 986 return -1; 987 } 988 989 /* 990 * Start address is optional - check only if provided 991 * in '$partition' variable 992 */ 993 if (!partitions[i].start) { 994 debug("\n"); 995 continue; 996 } 997 998 /* Check if GPT and ENV start LBAs match */ 999 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 1000 le64_to_cpu(gpt_e[i].starting_lba), 1001 (unsigned long long)partitions[i].start); 1002 1003 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 1004 pr_err("Partition %s start: %llu does not match %llu!\n", 1005 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 1006 (unsigned long long)partitions[i].start); 1007 return -1; 1008 } 1009 } 1010 1011 return 0; 1012 } 1013 1014 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 1015 { 1016 gpt_header *gpt_h; 1017 gpt_entry *gpt_e; 1018 1019 /* determine start of GPT Header in the buffer */ 1020 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 1021 dev_desc->rawblksz); 1022 1023 if ((le64_to_cpu(gpt_h->alternate_lba) + 1) 1024 != cpu_to_le64(dev_desc->rawlba) && 1025 le64_to_cpu(gpt_h->last_usable_lba) != FACTORY_UNKNOWN_LBA) { 1026 printf("%s: failed checking '%s'\n", __func__, 1027 "invalid GPT Disk Size"); 1028 return -1; 1029 } 1030 1031 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 1032 dev_desc->rawlba)) 1033 return -1; 1034 1035 /* determine start of GPT Entries in the buffer */ 1036 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 1037 dev_desc->rawblksz); 1038 if (validate_gpt_entries(gpt_h, gpt_e)) 1039 return -1; 1040 1041 return 0; 1042 } 1043 1044 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 1045 { 1046 gpt_header *gpt_h; 1047 gpt_entry *gpt_e; 1048 int gpt_e_blk_cnt; 1049 lbaint_t lba; 1050 int cnt; 1051 1052 if (!dev_desc->rawblksz || !dev_desc->rawlba) { 1053 dev_desc->rawblksz = dev_desc->blksz; 1054 dev_desc->rawlba = dev_desc->lba; 1055 } 1056 1057 if (is_valid_gpt_buf(dev_desc, buf)) 1058 return -1; 1059 1060 /* determine start of GPT Header in the buffer */ 1061 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 1062 dev_desc->rawblksz); 1063 1064 /* determine start of GPT Entries in the buffer */ 1065 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 1066 dev_desc->rawblksz); 1067 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 1068 le32_to_cpu(gpt_h->sizeof_partition_entry)), 1069 dev_desc); 1070 1071 /* write MBR */ 1072 lba = 0; /* MBR is always at 0 */ 1073 cnt = 1; /* MBR (1 block) */ 1074 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 1075 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1076 __func__, "MBR", cnt, lba); 1077 return 1; 1078 } 1079 1080 /* write Primary GPT */ 1081 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 1082 cnt = 1; /* GPT Header (1 block) */ 1083 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 1084 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1085 __func__, "Primary GPT Header", cnt, lba); 1086 return 1; 1087 } 1088 1089 lba = le64_to_cpu(gpt_h->partition_entry_lba); 1090 cnt = gpt_e_blk_cnt; 1091 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 1092 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1093 __func__, "Primary GPT Entries", cnt, lba); 1094 return 1; 1095 } 1096 1097 prepare_backup_gpt_header(gpt_h); 1098 1099 /* write Backup GPT */ 1100 lba = le64_to_cpu(gpt_h->partition_entry_lba); 1101 cnt = gpt_e_blk_cnt; 1102 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 1103 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1104 __func__, "Backup GPT Entries", cnt, lba); 1105 return 1; 1106 } 1107 1108 lba = le64_to_cpu(gpt_h->my_lba); 1109 cnt = 1; /* GPT Header (1 block) */ 1110 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 1111 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1112 __func__, "Backup GPT Header", cnt, lba); 1113 return 1; 1114 } 1115 1116 return 0; 1117 } 1118 #endif 1119 1120 /* 1121 * Private functions 1122 */ 1123 /* 1124 * pmbr_part_valid(): Check for EFI partition signature 1125 * 1126 * Returns: 1 if EFI GPT partition type is found. 1127 */ 1128 static int pmbr_part_valid(struct partition *part) 1129 { 1130 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 1131 get_unaligned_le32(&part->start_sect) == 1UL) { 1132 return 1; 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * is_pmbr_valid(): test Protective MBR for validity 1140 * 1141 * Returns: 1 if PMBR is valid, 0 otherwise. 1142 * Validity depends on two things: 1143 * 1) MSDOS signature is in the last two bytes of the MBR 1144 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 1145 */ 1146 static int is_pmbr_valid(legacy_mbr * mbr) 1147 { 1148 int i = 0; 1149 1150 #ifdef CONFIG_ARCH_ROCKCHIP 1151 /* 1152 * In sd-update card, we use RKPARM partition in bootloader to load 1153 * firmware, and use MS-DOS partition in recovery to update system. 1154 * Now, we want to use gpt in bootloader and abandon the RKPARM 1155 * partition. So in new sd-update card, we write the MS-DOS partition 1156 * table and gpt to sd card. Then we must return 1 directly when test 1157 * the mbr sector otherwise the gpt is unavailable. 1158 */ 1159 return 1; 1160 #endif 1161 1162 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 1163 return 0; 1164 1165 for (i = 0; i < 4; i++) { 1166 if (pmbr_part_valid(&mbr->partition_record[i])) { 1167 return 1; 1168 } 1169 } 1170 return 0; 1171 } 1172 1173 /** 1174 * is_gpt_valid() - tests one GPT header and PTEs for validity 1175 * 1176 * lba is the logical block address of the GPT header to test 1177 * gpt is a GPT header ptr, filled on return. 1178 * ptes is a PTEs ptr, filled on return. 1179 * 1180 * Description: returns 1 if valid, 0 on error. 1181 * If valid, returns pointers to PTEs. 1182 */ 1183 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 1184 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 1185 { 1186 int sector; 1187 /* Confirm valid arguments prior to allocation. */ 1188 if (!dev_desc || !pgpt_head) { 1189 printf("%s: Invalid Argument(s)\n", __func__); 1190 return 0; 1191 } 1192 1193 /* Re-use pte if it's not NULL */ 1194 if (*pgpt_pte) 1195 return 1; 1196 1197 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->rawblksz); 1198 1199 sector = dev_desc->rawblksz / dev_desc->blksz; 1200 /* Read MBR Header from device */ 1201 if (blk_dread(dev_desc, 0, sector, (ulong *)mbr) != sector) { 1202 printf("*** ERROR: Can't read MBR header ***\n"); 1203 return 0; 1204 } 1205 1206 /* Read GPT Header from device */ 1207 if (blk_dread(dev_desc, (lbaint_t)lba * sector, sector, pgpt_head) != sector) { 1208 printf("*** ERROR: Can't read GPT header ***\n"); 1209 return 0; 1210 } 1211 1212 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->rawlba)) 1213 return 0; 1214 1215 if (dev_desc->sig_type == SIG_TYPE_NONE) { 1216 efi_guid_t empty = {}; 1217 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) { 1218 dev_desc->sig_type = SIG_TYPE_GUID; 1219 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid, 1220 sizeof(empty)); 1221 } else if (mbr->unique_mbr_signature != 0) { 1222 dev_desc->sig_type = SIG_TYPE_MBR; 1223 dev_desc->mbr_sig = mbr->unique_mbr_signature; 1224 } 1225 } 1226 1227 /* Read and allocate Partition Table Entries */ 1228 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 1229 if (*pgpt_pte == NULL) { 1230 printf("GPT: Failed to allocate memory for PTE\n"); 1231 return 0; 1232 } 1233 1234 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 1235 free(*pgpt_pte); 1236 *pgpt_pte = NULL; 1237 return 0; 1238 } 1239 1240 /* We're done, all's well */ 1241 return 1; 1242 } 1243 1244 /** 1245 * alloc_read_gpt_entries(): reads partition entries from disk 1246 * @dev_desc 1247 * @gpt - GPT header 1248 * 1249 * Description: Returns ptes on success, NULL on error. 1250 * Allocates space for PTEs based on information found in @gpt. 1251 * Notes: remember to free pte when you're done! 1252 */ 1253 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 1254 gpt_header *pgpt_head) 1255 { 1256 size_t count = 0, blk_cnt; 1257 lbaint_t blk; 1258 gpt_entry *pte = NULL; 1259 1260 if (!dev_desc || !pgpt_head) { 1261 printf("%s: Invalid Argument(s)\n", __func__); 1262 return NULL; 1263 } 1264 1265 count = le32_to_cpu(pgpt_head->num_partition_entries) * 1266 le32_to_cpu(pgpt_head->sizeof_partition_entry); 1267 1268 debug("%s: count = %u * %u = %lu\n", __func__, 1269 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 1270 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 1271 (ulong)count); 1272 1273 /* Allocate memory for PTE, remember to FREE */ 1274 if (count != 0) { 1275 pte = memalign(ARCH_DMA_MINALIGN, 1276 PAD_SIZE(count, dev_desc->rawblksz)); 1277 } 1278 1279 if (count == 0 || pte == NULL) { 1280 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 1281 __func__, (ulong)count); 1282 return NULL; 1283 } 1284 1285 /* Read GPT Entries from device */ 1286 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 1287 blk_cnt = BLOCK_CNT(count, dev_desc); 1288 if (blk_dread(dev_desc, blk * dev_desc->rawblksz / dev_desc->blksz, (lbaint_t)blk_cnt, pte) != blk_cnt) { 1289 printf("*** ERROR: Can't read GPT Entries ***\n"); 1290 free(pte); 1291 return NULL; 1292 } 1293 return pte; 1294 } 1295 1296 /** 1297 * is_pte_valid(): validates a single Partition Table Entry 1298 * @gpt_entry - Pointer to a single Partition Table Entry 1299 * 1300 * Description: returns 1 if valid, 0 on error. 1301 */ 1302 static int is_pte_valid(gpt_entry * pte) 1303 { 1304 efi_guid_t unused_guid; 1305 1306 if (!pte) { 1307 printf("%s: Invalid Argument(s)\n", __func__); 1308 return 0; 1309 } 1310 1311 /* Only one validation for now: 1312 * The GUID Partition Type != Unused Entry (ALL-ZERO) 1313 */ 1314 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 1315 1316 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 1317 sizeof(unused_guid.b)) == 0) { 1318 1319 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 1320 (unsigned int)(uintptr_t)pte); 1321 1322 return 0; 1323 } else { 1324 return 1; 1325 } 1326 } 1327 1328 /* 1329 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 1330 * check EFI first, since a DOS partition is often used as a 'protective MBR' 1331 * with EFI. 1332 */ 1333 U_BOOT_PART_TYPE(a_efi) = { 1334 .name = "EFI", 1335 .part_type = PART_TYPE_EFI, 1336 .max_entries = GPT_ENTRY_NUMBERS, 1337 .get_info = part_get_info_ptr(part_get_info_efi), 1338 .print = part_print_ptr(part_print_efi), 1339 .test = part_test_efi, 1340 }; 1341 #endif 1342