1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <fdtdec.h> 17 #include <ide.h> 18 #include <inttypes.h> 19 #include <malloc.h> 20 #include <memalign.h> 21 #include <part_efi.h> 22 #include <linux/compiler.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 47 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 49 gpt_header *pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 67 68 static inline int is_bootable(gpt_entry *p) 69 { 70 return p->attributes.fields.legacy_bios_bootable || 71 !memcmp(&(p->partition_type_guid), &system_guid, 72 sizeof(efi_guid_t)); 73 } 74 75 #define FACTORY_UNKNOWN_LBA (0xffffffff - 34) 76 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 77 lbaint_t lastlba) 78 { 79 uint32_t crc32_backup = 0; 80 uint32_t calc_crc32; 81 82 /* Check the GPT header signature */ 83 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 84 if (le64_to_cpu(gpt_h->signature) != 0) 85 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 86 "GUID Partition Table Header", 87 le64_to_cpu(gpt_h->signature), 88 GPT_HEADER_SIGNATURE); 89 return -1; 90 } 91 92 /* Check the GUID Partition Table CRC */ 93 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 94 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 95 96 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 97 le32_to_cpu(gpt_h->header_size)); 98 99 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 100 101 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 102 printf("%s CRC is wrong: 0x%x != 0x%x\n", 103 "GUID Partition Table Header", 104 le32_to_cpu(crc32_backup), calc_crc32); 105 return -1; 106 } 107 108 /* 109 * Check that the my_lba entry points to the LBA that contains the GPT 110 */ 111 if (le64_to_cpu(gpt_h->my_lba) != lba) { 112 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 113 le64_to_cpu(gpt_h->my_lba), 114 lba); 115 return -1; 116 } 117 118 /* 119 * Check that the first_usable_lba and that the last_usable_lba are 120 * within the disk. 121 */ 122 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 123 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 124 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 125 return -1; 126 } 127 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 128 if (le64_to_cpu(gpt_h->last_usable_lba) == FACTORY_UNKNOWN_LBA) { 129 #ifdef CONFIG_SPL_BUILD 130 printf("GPT: SPL workaround factory last_usable_lba\n"); 131 gpt_h->last_usable_lba = lastlba - 34; 132 return 0; 133 #else 134 printf("GPT: last_usable_lba need repair\n"); 135 return 0; 136 #endif 137 } 138 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 139 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 140 return -1; 141 } 142 143 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 144 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 145 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 146 147 return 0; 148 } 149 150 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 151 { 152 uint32_t calc_crc32; 153 154 /* Check the GUID Partition Table Entry Array CRC */ 155 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 156 le32_to_cpu(gpt_h->num_partition_entries) * 157 le32_to_cpu(gpt_h->sizeof_partition_entry)); 158 159 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 160 printf("%s: 0x%x != 0x%x\n", 161 "GUID Partition Table Entry Array CRC is wrong", 162 le32_to_cpu(gpt_h->partition_entry_array_crc32), 163 calc_crc32); 164 return -1; 165 } 166 167 return 0; 168 } 169 170 static void prepare_backup_gpt_header(gpt_header *gpt_h) 171 { 172 uint32_t calc_crc32; 173 uint64_t val; 174 175 /* recalculate the values for the Backup GPT Header */ 176 val = le64_to_cpu(gpt_h->my_lba); 177 gpt_h->my_lba = gpt_h->alternate_lba; 178 gpt_h->alternate_lba = cpu_to_le64(val); 179 gpt_h->partition_entry_lba = 180 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 181 gpt_h->header_crc32 = 0; 182 183 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 184 le32_to_cpu(gpt_h->header_size)); 185 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 186 } 187 188 #if CONFIG_IS_ENABLED(EFI_PARTITION) 189 /* 190 * Public Functions (include/part.h) 191 */ 192 193 /* 194 * UUID is displayed as 32 hexadecimal digits, in 5 groups, 195 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters 196 */ 197 int get_disk_guid(struct blk_desc * dev_desc, char *guid) 198 { 199 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 200 gpt_entry *gpt_pte = NULL; 201 unsigned char *guid_bin; 202 203 /* This function validates AND fills in the GPT header and PTE */ 204 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 205 gpt_head, &gpt_pte) != 1) { 206 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 207 if (is_gpt_valid(dev_desc, dev_desc->lba - 1, 208 gpt_head, &gpt_pte) != 1) { 209 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 210 __func__); 211 return -EINVAL; 212 } else { 213 printf("%s: *** Using Backup GPT ***\n", 214 __func__); 215 } 216 } 217 218 guid_bin = gpt_head->disk_guid.b; 219 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID); 220 221 return 0; 222 } 223 224 void part_print_efi(struct blk_desc *dev_desc) 225 { 226 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 227 gpt_entry *gpt_pte = NULL; 228 int i = 0; 229 char uuid[UUID_STR_LEN + 1]; 230 unsigned char *uuid_bin; 231 232 /* This function validates AND fills in the GPT header and PTE */ 233 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 234 gpt_head, &gpt_pte) != 1) { 235 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 236 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 237 gpt_head, &gpt_pte) != 1) { 238 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 239 __func__); 240 return; 241 } else { 242 printf("%s: *** Using Backup GPT ***\n", 243 __func__); 244 } 245 } 246 247 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 248 249 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 250 printf("\tAttributes\n"); 251 printf("\tType GUID\n"); 252 printf("\tPartition GUID\n"); 253 254 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 255 /* Stop at the first non valid PTE */ 256 if (!is_pte_valid(&gpt_pte[i])) 257 break; 258 259 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 260 le64_to_cpu(gpt_pte[i].starting_lba), 261 le64_to_cpu(gpt_pte[i].ending_lba), 262 print_efiname(&gpt_pte[i])); 263 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 264 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 265 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 266 printf("\ttype:\t%s\n", uuid); 267 #ifdef CONFIG_PARTITION_TYPE_GUID 268 if (!uuid_guid_get_str(uuid_bin, uuid)) 269 printf("\ttype:\t%s\n", uuid); 270 #endif 271 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 272 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 273 printf("\tguid:\t%s\n", uuid); 274 } 275 276 /* Remember to free pte */ 277 free(gpt_pte); 278 return; 279 } 280 281 int part_get_info_efi(struct blk_desc *dev_desc, int part, 282 disk_partition_t *info) 283 { 284 static gpt_entry *gpt_pte = NULL; 285 static gpt_header *gpt_head = NULL; 286 287 if (!gpt_head) 288 gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz); 289 290 /* 291 * We suppose different dev have different size, eg. emmc vs sd 292 * free the pte first if exist and then will malloc and init a new one. 293 */ 294 if (gpt_head && (gpt_head->last_usable_lba + 0x22) != dev_desc->lba) { 295 if (gpt_pte) 296 free(gpt_pte); 297 gpt_pte = NULL; 298 } 299 300 /* "part" argument must be at least 1 */ 301 if (part < 1) { 302 printf("%s: Invalid Argument(s)\n", __func__); 303 return -1; 304 } 305 306 /* This function validates AND fills in the GPT header and PTE */ 307 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 308 gpt_head, &gpt_pte) != 1) { 309 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 310 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 311 gpt_head, &gpt_pte) != 1) { 312 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 313 __func__); 314 return -1; 315 } else { 316 printf("%s: *** Using Backup GPT ***\n", 317 __func__); 318 } 319 } 320 321 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 322 !is_pte_valid(&gpt_pte[part - 1])) { 323 debug("%s: *** ERROR: Invalid partition number %d ***\n", 324 __func__, part); 325 return -1; 326 } 327 328 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 329 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 330 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 331 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 332 - info->start; 333 info->blksz = dev_desc->blksz; 334 335 sprintf((char *)info->name, "%s", 336 print_efiname(&gpt_pte[part - 1])); 337 strcpy((char *)info->type, "U-Boot"); 338 info->bootable = is_bootable(&gpt_pte[part - 1]); 339 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 340 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 341 UUID_STR_FORMAT_GUID); 342 #endif 343 #ifdef CONFIG_PARTITION_TYPE_GUID 344 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 345 info->type_guid, UUID_STR_FORMAT_GUID); 346 #endif 347 348 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 349 info->start, info->size, info->name); 350 351 return 0; 352 } 353 354 #ifdef CONFIG_RKIMG_BOOTLOADER 355 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD) 356 static void gpt_entry_modify(struct blk_desc *dev_desc, 357 gpt_entry *gpt_pte, 358 gpt_header *gpt_head) 359 { 360 int i; 361 uint32_t calc_crc32; 362 363 for (i = 0; i < gpt_head->num_partition_entries; i++) { 364 if (!is_pte_valid(&gpt_pte[i])) 365 break; 366 } 367 368 if (gpt_pte[i - 1].ending_lba <= (dev_desc->lba - 0x22)) 369 return; 370 /* The last partition size need align to 4KB, here align to 32KB. */ 371 gpt_pte[i - 1].ending_lba = dev_desc->lba - 0x40; 372 calc_crc32 = efi_crc32((const unsigned char *)gpt_pte, 373 le32_to_cpu(gpt_head->num_partition_entries) * 374 le32_to_cpu(gpt_head->sizeof_partition_entry)); 375 gpt_head->partition_entry_array_crc32 = calc_crc32; 376 } 377 378 static int part_efi_repair(struct blk_desc *dev_desc, gpt_entry *gpt_pte, 379 gpt_header *gpt_head, int head_gpt_valid, 380 int backup_gpt_valid) 381 { 382 uint32_t calc_crc32; 383 size_t count = 0, blk_cnt; 384 lbaint_t blk; 385 386 if (head_gpt_valid == 1 && backup_gpt_valid == 1) { 387 return 0; 388 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) { 389 return -1; 390 } else if (head_gpt_valid == 1 && backup_gpt_valid == 0) { 391 gpt_head->header_crc32 = 0; 392 gpt_head->my_lba = dev_desc->lba - 1; 393 gpt_head->alternate_lba = 1; 394 gpt_head->partition_entry_lba = dev_desc->lba - 0x21; 395 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 396 gpt_entry_modify(dev_desc, gpt_pte, gpt_head); 397 calc_crc32 = efi_crc32((const unsigned char *)gpt_head, 398 le32_to_cpu(gpt_head->header_size)); 399 gpt_head->header_crc32 = calc_crc32; 400 if (blk_dwrite(dev_desc, dev_desc->lba - 1, 1, gpt_head) != 1) { 401 printf("*** ERROR: Can't write GPT header ***\n"); 402 return -1; 403 } 404 count = le32_to_cpu(gpt_head->num_partition_entries) * 405 le32_to_cpu(gpt_head->sizeof_partition_entry); 406 blk = le64_to_cpu(gpt_head->partition_entry_lba); 407 blk_cnt = BLOCK_CNT(count, dev_desc); 408 if (blk_dwrite(dev_desc, blk, (lbaint_t)blk_cnt, gpt_pte) != 409 blk_cnt) { 410 printf("*** ERROR: Can't write entry partitions ***\n"); 411 return -1; 412 } 413 printf("Repair the backup gpt table OK!\n"); 414 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) { 415 gpt_head->header_crc32 = 0; 416 gpt_head->my_lba = 1; 417 gpt_head->alternate_lba = dev_desc->lba - 1; 418 gpt_head->partition_entry_lba = 0x2; 419 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 420 gpt_entry_modify(dev_desc, gpt_pte, gpt_head); 421 calc_crc32 = efi_crc32((const unsigned char *)gpt_head, 422 le32_to_cpu(gpt_head->header_size)); 423 gpt_head->header_crc32 = calc_crc32; 424 if (blk_dwrite(dev_desc, 1, 1, gpt_head) != 1) { 425 printf("*** ERROR: Can't write GPT header ***\n"); 426 return -1; 427 } 428 count = le32_to_cpu(gpt_head->num_partition_entries) * 429 le32_to_cpu(gpt_head->sizeof_partition_entry); 430 blk = le64_to_cpu(gpt_head->partition_entry_lba); 431 blk_cnt = BLOCK_CNT(count, dev_desc); 432 if (blk_dwrite(dev_desc, blk, (lbaint_t)blk_cnt, gpt_pte) != 433 blk_cnt) { 434 printf("*** ERROR: Can't write entry partitions ***\n"); 435 return -1; 436 } 437 printf("Repair the Primary gpt table OK!\n"); 438 } 439 440 return 0; 441 } 442 #endif 443 #endif 444 445 static int part_test_efi(struct blk_desc *dev_desc) 446 { 447 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 448 int ret = 0; 449 450 /* Read legacy MBR from block 0 and validate it */ 451 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 452 || (is_pmbr_valid(legacymbr) != 1)) { 453 return -1; 454 } 455 #ifdef CONFIG_RKIMG_BOOTLOADER 456 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD) 457 gpt_entry *h_gpt_pte = NULL; 458 gpt_header *h_gpt_head = NULL; 459 gpt_entry *b_gpt_pte = NULL; 460 gpt_header *b_gpt_head = NULL; 461 int head_gpt_valid = 0; 462 int backup_gpt_valid = 0; 463 464 if (!h_gpt_head) 465 h_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz); 466 if (!b_gpt_head) 467 b_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz); 468 469 head_gpt_valid = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 470 h_gpt_head, &h_gpt_pte); 471 backup_gpt_valid = is_gpt_valid(dev_desc, (dev_desc->lba - 1), 472 b_gpt_head, &b_gpt_pte); 473 474 if ((head_gpt_valid == 1) && 475 (le64_to_cpu(h_gpt_head->last_usable_lba) 476 == FACTORY_UNKNOWN_LBA)) { 477 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head, 478 0, 1)) 479 printf("Primary GPT repair fail!\n"); 480 /* Force repair backup GPT for factory or ota upgrade. */ 481 backup_gpt_valid = 0; 482 } 483 484 if (head_gpt_valid == 1 && backup_gpt_valid == 0) { 485 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head, 486 head_gpt_valid, backup_gpt_valid)) 487 printf("Backup GPT repair fail!\n"); 488 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) { 489 if (part_efi_repair(dev_desc, b_gpt_pte, b_gpt_head, 490 head_gpt_valid, backup_gpt_valid)) 491 printf("Primary GPT repair fail!\n"); 492 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) { 493 ret = -1; 494 } 495 496 free(h_gpt_pte); 497 h_gpt_pte = NULL; 498 free(h_gpt_head); 499 h_gpt_head = NULL; 500 free(b_gpt_pte); 501 b_gpt_pte = NULL; 502 free(b_gpt_head); 503 b_gpt_head = NULL; 504 #endif 505 #endif 506 return ret; 507 } 508 509 /** 510 * set_protective_mbr(): Set the EFI protective MBR 511 * @param dev_desc - block device descriptor 512 * 513 * @return - zero on success, otherwise error 514 */ 515 static int set_protective_mbr(struct blk_desc *dev_desc) 516 { 517 /* Setup the Protective MBR */ 518 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 519 memset(p_mbr, 0, sizeof(*p_mbr)); 520 521 if (p_mbr == NULL) { 522 printf("%s: calloc failed!\n", __func__); 523 return -1; 524 } 525 526 /* Read MBR to backup boot code if it exists */ 527 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { 528 pr_err("** Can't read from device %d **\n", dev_desc->devnum); 529 return -1; 530 } 531 532 /* Append signature */ 533 p_mbr->signature = MSDOS_MBR_SIGNATURE; 534 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 535 p_mbr->partition_record[0].start_sect = 1; 536 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 537 538 /* Write MBR sector to the MMC device */ 539 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 540 printf("** Can't write to device %d **\n", 541 dev_desc->devnum); 542 return -1; 543 } 544 545 return 0; 546 } 547 548 int write_gpt_table(struct blk_desc *dev_desc, 549 gpt_header *gpt_h, gpt_entry *gpt_e) 550 { 551 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 552 * sizeof(gpt_entry)), dev_desc); 553 u32 calc_crc32; 554 555 debug("max lba: %x\n", (u32) dev_desc->lba); 556 /* Setup the Protective MBR */ 557 if (set_protective_mbr(dev_desc) < 0) 558 goto err; 559 560 /* Generate CRC for the Primary GPT Header */ 561 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 562 le32_to_cpu(gpt_h->num_partition_entries) * 563 le32_to_cpu(gpt_h->sizeof_partition_entry)); 564 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 565 566 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 567 le32_to_cpu(gpt_h->header_size)); 568 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 569 570 /* Write the First GPT to the block right after the Legacy MBR */ 571 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 572 goto err; 573 574 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba), 575 pte_blk_cnt, gpt_e) != pte_blk_cnt) 576 goto err; 577 578 prepare_backup_gpt_header(gpt_h); 579 580 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 581 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 582 goto err; 583 584 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 585 gpt_h) != 1) 586 goto err; 587 588 debug("GPT successfully written to block device!\n"); 589 return 0; 590 591 err: 592 printf("** Can't write to device %d **\n", dev_desc->devnum); 593 return -1; 594 } 595 596 int gpt_fill_pte(struct blk_desc *dev_desc, 597 gpt_header *gpt_h, gpt_entry *gpt_e, 598 disk_partition_t *partitions, int parts) 599 { 600 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 601 lbaint_t last_usable_lba = (lbaint_t) 602 le64_to_cpu(gpt_h->last_usable_lba); 603 int i, k; 604 size_t efiname_len, dosname_len; 605 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 606 char *str_uuid; 607 unsigned char *bin_uuid; 608 #endif 609 #ifdef CONFIG_PARTITION_TYPE_GUID 610 char *str_type_guid; 611 unsigned char *bin_type_guid; 612 #endif 613 size_t hdr_start = gpt_h->my_lba; 614 size_t hdr_end = hdr_start + 1; 615 616 size_t pte_start = gpt_h->partition_entry_lba; 617 size_t pte_end = pte_start + 618 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry / 619 dev_desc->blksz; 620 621 for (i = 0; i < parts; i++) { 622 /* partition starting lba */ 623 lbaint_t start = partitions[i].start; 624 lbaint_t size = partitions[i].size; 625 626 if (start) { 627 offset = start + size; 628 } else { 629 start = offset; 630 offset += size; 631 } 632 633 /* 634 * If our partition overlaps with either the GPT 635 * header, or the partition entry, reject it. 636 */ 637 if (((start < hdr_end && hdr_start < (start + size)) || 638 (start < pte_end && pte_start < (start + size)))) { 639 printf("Partition overlap\n"); 640 return -1; 641 } 642 643 gpt_e[i].starting_lba = cpu_to_le64(start); 644 645 if (offset > (last_usable_lba + 1)) { 646 printf("Partitions layout exceds disk size\n"); 647 return -1; 648 } 649 /* partition ending lba */ 650 if ((i == parts - 1) && (size == 0)) 651 /* extend the last partition to maximuim */ 652 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 653 else 654 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 655 656 #ifdef CONFIG_PARTITION_TYPE_GUID 657 str_type_guid = partitions[i].type_guid; 658 bin_type_guid = gpt_e[i].partition_type_guid.b; 659 if (strlen(str_type_guid)) { 660 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 661 UUID_STR_FORMAT_GUID)) { 662 printf("Partition no. %d: invalid type guid: %s\n", 663 i, str_type_guid); 664 return -1; 665 } 666 } else { 667 /* default partition type GUID */ 668 memcpy(bin_type_guid, 669 &PARTITION_BASIC_DATA_GUID, 16); 670 } 671 #else 672 /* partition type GUID */ 673 memcpy(gpt_e[i].partition_type_guid.b, 674 &PARTITION_BASIC_DATA_GUID, 16); 675 #endif 676 677 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 678 str_uuid = partitions[i].uuid; 679 bin_uuid = gpt_e[i].unique_partition_guid.b; 680 681 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { 682 printf("Partition no. %d: invalid guid: %s\n", 683 i, str_uuid); 684 return -1; 685 } 686 #endif 687 688 /* partition attributes */ 689 memset(&gpt_e[i].attributes, 0, 690 sizeof(gpt_entry_attributes)); 691 692 if (partitions[i].bootable) 693 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 694 695 /* partition name */ 696 efiname_len = sizeof(gpt_e[i].partition_name) 697 / sizeof(efi_char16_t); 698 dosname_len = sizeof(partitions[i].name); 699 700 memset(gpt_e[i].partition_name, 0, 701 sizeof(gpt_e[i].partition_name)); 702 703 for (k = 0; k < min(dosname_len, efiname_len); k++) 704 gpt_e[i].partition_name[k] = 705 (efi_char16_t)(partitions[i].name[k]); 706 707 debug("%s: name: %s offset[%d]: 0x" LBAF 708 " size[%d]: 0x" LBAF "\n", 709 __func__, partitions[i].name, i, 710 offset, i, size); 711 } 712 713 return 0; 714 } 715 716 static uint32_t partition_entries_offset(struct blk_desc *dev_desc) 717 { 718 uint32_t offset_blks = 2; 719 uint32_t __maybe_unused offset_bytes; 720 int __maybe_unused config_offset; 721 722 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF) 723 /* 724 * Some architectures require their SPL loader at a fixed 725 * address within the first 16KB of the disk. To avoid an 726 * overlap with the partition entries of the EFI partition 727 * table, the first safe offset (in bytes, from the start of 728 * the disk) for the entries can be set in 729 * CONFIG_EFI_PARTITION_ENTRIES_OFF. 730 */ 731 offset_bytes = 732 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc); 733 offset_blks = offset_bytes / dev_desc->blksz; 734 #endif 735 736 #if defined(CONFIG_OF_CONTROL) 737 /* 738 * Allow the offset of the first partition entires (in bytes 739 * from the start of the device) to be specified as a property 740 * of the device tree '/config' node. 741 */ 742 config_offset = fdtdec_get_config_int(gd->fdt_blob, 743 "u-boot,efi-partition-entries-offset", 744 -EINVAL); 745 if (config_offset != -EINVAL) { 746 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc); 747 offset_blks = offset_bytes / dev_desc->blksz; 748 } 749 #endif 750 751 debug("efi: partition entries offset (in blocks): %d\n", offset_blks); 752 753 /* 754 * The earliest LBA this can be at is LBA#2 (i.e. right behind 755 * the (protective) MBR and the GPT header. 756 */ 757 if (offset_blks < 2) 758 offset_blks = 2; 759 760 return offset_blks; 761 } 762 763 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 764 char *str_guid, int parts_count) 765 { 766 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 767 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 768 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 769 gpt_h->my_lba = cpu_to_le64(1); 770 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 771 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 772 gpt_h->partition_entry_lba = 773 cpu_to_le64(partition_entries_offset(dev_desc)); 774 gpt_h->first_usable_lba = 775 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32); 776 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 777 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 778 gpt_h->header_crc32 = 0; 779 gpt_h->partition_entry_array_crc32 = 0; 780 781 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 782 return -1; 783 784 return 0; 785 } 786 787 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 788 disk_partition_t *partitions, int parts_count) 789 { 790 gpt_header *gpt_h; 791 gpt_entry *gpt_e; 792 int ret, size; 793 794 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc); 795 gpt_h = malloc_cache_aligned(size); 796 if (gpt_h == NULL) { 797 printf("%s: calloc failed!\n", __func__); 798 return -1; 799 } 800 memset(gpt_h, 0, size); 801 802 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), 803 dev_desc); 804 gpt_e = malloc_cache_aligned(size); 805 if (gpt_e == NULL) { 806 printf("%s: calloc failed!\n", __func__); 807 free(gpt_h); 808 return -1; 809 } 810 memset(gpt_e, 0, size); 811 812 /* Generate Primary GPT header (LBA1) */ 813 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 814 if (ret) 815 goto err; 816 817 /* Generate partition entries */ 818 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count); 819 if (ret) 820 goto err; 821 822 /* Write GPT partition table */ 823 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 824 825 err: 826 free(gpt_e); 827 free(gpt_h); 828 return ret; 829 } 830 831 /** 832 * gpt_convert_efi_name_to_char() - convert u16 string to char string 833 * 834 * TODO: this conversion only supports ANSI characters 835 * 836 * @s: target buffer 837 * @es: u16 string to be converted 838 * @n: size of target buffer 839 */ 840 static void gpt_convert_efi_name_to_char(char *s, void *es, int n) 841 { 842 char *ess = es; 843 int i, j; 844 845 memset(s, '\0', n); 846 847 for (i = 0, j = 0; j < n; i += 2, j++) { 848 s[j] = ess[i]; 849 if (!ess[i]) 850 return; 851 } 852 } 853 854 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 855 gpt_entry **gpt_pte) 856 { 857 /* 858 * This function validates AND 859 * fills in the GPT header and PTE 860 */ 861 if (is_gpt_valid(dev_desc, 862 GPT_PRIMARY_PARTITION_TABLE_LBA, 863 gpt_head, gpt_pte) != 1) { 864 printf("%s: *** ERROR: Invalid GPT ***\n", 865 __func__); 866 return -1; 867 } 868 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 869 gpt_head, gpt_pte) != 1) { 870 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 871 __func__); 872 return -1; 873 } 874 875 return 0; 876 } 877 878 int gpt_verify_partitions(struct blk_desc *dev_desc, 879 disk_partition_t *partitions, int parts, 880 gpt_header *gpt_head, gpt_entry **gpt_pte) 881 { 882 char efi_str[PARTNAME_SZ + 1]; 883 u64 gpt_part_size; 884 gpt_entry *gpt_e; 885 int ret, i; 886 887 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 888 if (ret) 889 return ret; 890 891 gpt_e = *gpt_pte; 892 893 for (i = 0; i < parts; i++) { 894 if (i == gpt_head->num_partition_entries) { 895 pr_err("More partitions than allowed!\n"); 896 return -1; 897 } 898 899 /* Check if GPT and ENV partition names match */ 900 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 901 PARTNAME_SZ + 1); 902 903 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 904 __func__, i, efi_str, partitions[i].name); 905 906 if (strncmp(efi_str, (char *)partitions[i].name, 907 sizeof(partitions->name))) { 908 pr_err("Partition name: %s does not match %s!\n", 909 efi_str, (char *)partitions[i].name); 910 return -1; 911 } 912 913 /* Check if GPT and ENV sizes match */ 914 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 915 le64_to_cpu(gpt_e[i].starting_lba) + 1; 916 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 917 (unsigned long long)gpt_part_size, 918 (unsigned long long)partitions[i].size); 919 920 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 921 /* We do not check the extend partition size */ 922 if ((i == parts - 1) && (partitions[i].size == 0)) 923 continue; 924 925 pr_err("Partition %s size: %llu does not match %llu!\n", 926 efi_str, (unsigned long long)gpt_part_size, 927 (unsigned long long)partitions[i].size); 928 return -1; 929 } 930 931 /* 932 * Start address is optional - check only if provided 933 * in '$partition' variable 934 */ 935 if (!partitions[i].start) { 936 debug("\n"); 937 continue; 938 } 939 940 /* Check if GPT and ENV start LBAs match */ 941 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 942 le64_to_cpu(gpt_e[i].starting_lba), 943 (unsigned long long)partitions[i].start); 944 945 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 946 pr_err("Partition %s start: %llu does not match %llu!\n", 947 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 948 (unsigned long long)partitions[i].start); 949 return -1; 950 } 951 } 952 953 return 0; 954 } 955 956 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 957 { 958 gpt_header *gpt_h; 959 gpt_entry *gpt_e; 960 961 /* determine start of GPT Header in the buffer */ 962 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 963 dev_desc->blksz); 964 965 if ((le64_to_cpu(gpt_h->alternate_lba) + 1) 966 != cpu_to_le64(dev_desc->lba)) { 967 printf("%s: failed checking '%s'\n", __func__, 968 "invalid GPT Disk Size"); 969 return -1; 970 } 971 972 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 973 dev_desc->lba)) 974 return -1; 975 976 /* determine start of GPT Entries in the buffer */ 977 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 978 dev_desc->blksz); 979 if (validate_gpt_entries(gpt_h, gpt_e)) 980 return -1; 981 982 return 0; 983 } 984 985 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 986 { 987 gpt_header *gpt_h; 988 gpt_entry *gpt_e; 989 int gpt_e_blk_cnt; 990 lbaint_t lba; 991 int cnt; 992 993 if (is_valid_gpt_buf(dev_desc, buf)) 994 return -1; 995 996 /* determine start of GPT Header in the buffer */ 997 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 998 dev_desc->blksz); 999 1000 /* determine start of GPT Entries in the buffer */ 1001 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 1002 dev_desc->blksz); 1003 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 1004 le32_to_cpu(gpt_h->sizeof_partition_entry)), 1005 dev_desc); 1006 1007 /* write MBR */ 1008 lba = 0; /* MBR is always at 0 */ 1009 cnt = 1; /* MBR (1 block) */ 1010 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 1011 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1012 __func__, "MBR", cnt, lba); 1013 return 1; 1014 } 1015 1016 /* write Primary GPT */ 1017 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 1018 cnt = 1; /* GPT Header (1 block) */ 1019 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 1020 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1021 __func__, "Primary GPT Header", cnt, lba); 1022 return 1; 1023 } 1024 1025 lba = le64_to_cpu(gpt_h->partition_entry_lba); 1026 cnt = gpt_e_blk_cnt; 1027 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 1028 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1029 __func__, "Primary GPT Entries", cnt, lba); 1030 return 1; 1031 } 1032 1033 prepare_backup_gpt_header(gpt_h); 1034 1035 /* write Backup GPT */ 1036 lba = le64_to_cpu(gpt_h->partition_entry_lba); 1037 cnt = gpt_e_blk_cnt; 1038 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 1039 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1040 __func__, "Backup GPT Entries", cnt, lba); 1041 return 1; 1042 } 1043 1044 lba = le64_to_cpu(gpt_h->my_lba); 1045 cnt = 1; /* GPT Header (1 block) */ 1046 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 1047 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 1048 __func__, "Backup GPT Header", cnt, lba); 1049 return 1; 1050 } 1051 1052 return 0; 1053 } 1054 #endif 1055 1056 /* 1057 * Private functions 1058 */ 1059 /* 1060 * pmbr_part_valid(): Check for EFI partition signature 1061 * 1062 * Returns: 1 if EFI GPT partition type is found. 1063 */ 1064 static int pmbr_part_valid(struct partition *part) 1065 { 1066 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 1067 get_unaligned_le32(&part->start_sect) == 1UL) { 1068 return 1; 1069 } 1070 1071 return 0; 1072 } 1073 1074 /* 1075 * is_pmbr_valid(): test Protective MBR for validity 1076 * 1077 * Returns: 1 if PMBR is valid, 0 otherwise. 1078 * Validity depends on two things: 1079 * 1) MSDOS signature is in the last two bytes of the MBR 1080 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 1081 */ 1082 static int is_pmbr_valid(legacy_mbr * mbr) 1083 { 1084 int i = 0; 1085 1086 #ifdef CONFIG_ARCH_ROCKCHIP 1087 /* 1088 * In sd-update card, we use RKPARM partition in bootloader to load 1089 * firmware, and use MS-DOS partition in recovery to update system. 1090 * Now, we want to use gpt in bootloader and abandon the RKPARM 1091 * partition. So in new sd-update card, we write the MS-DOS partition 1092 * table and gpt to sd card. Then we must return 1 directly when test 1093 * the mbr sector otherwise the gpt is unavailable. 1094 */ 1095 return 1; 1096 #endif 1097 1098 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 1099 return 0; 1100 1101 for (i = 0; i < 4; i++) { 1102 if (pmbr_part_valid(&mbr->partition_record[i])) { 1103 return 1; 1104 } 1105 } 1106 return 0; 1107 } 1108 1109 /** 1110 * is_gpt_valid() - tests one GPT header and PTEs for validity 1111 * 1112 * lba is the logical block address of the GPT header to test 1113 * gpt is a GPT header ptr, filled on return. 1114 * ptes is a PTEs ptr, filled on return. 1115 * 1116 * Description: returns 1 if valid, 0 on error. 1117 * If valid, returns pointers to PTEs. 1118 */ 1119 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 1120 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 1121 { 1122 /* Confirm valid arguments prior to allocation. */ 1123 if (!dev_desc || !pgpt_head) { 1124 printf("%s: Invalid Argument(s)\n", __func__); 1125 return 0; 1126 } 1127 1128 /* Re-use pte if it's not NULL */ 1129 if (*pgpt_pte) 1130 return 1; 1131 1132 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, mbr, dev_desc->blksz); 1133 1134 /* Read MBR Header from device */ 1135 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) { 1136 printf("*** ERROR: Can't read MBR header ***\n"); 1137 return 0; 1138 } 1139 1140 /* Read GPT Header from device */ 1141 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 1142 printf("*** ERROR: Can't read GPT header ***\n"); 1143 return 0; 1144 } 1145 1146 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 1147 return 0; 1148 1149 if (dev_desc->sig_type == SIG_TYPE_NONE) { 1150 efi_guid_t empty = {}; 1151 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) { 1152 dev_desc->sig_type = SIG_TYPE_GUID; 1153 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid, 1154 sizeof(empty)); 1155 } else if (mbr->unique_mbr_signature != 0) { 1156 dev_desc->sig_type = SIG_TYPE_MBR; 1157 dev_desc->mbr_sig = mbr->unique_mbr_signature; 1158 } 1159 } 1160 1161 /* Read and allocate Partition Table Entries */ 1162 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 1163 if (*pgpt_pte == NULL) { 1164 printf("GPT: Failed to allocate memory for PTE\n"); 1165 return 0; 1166 } 1167 1168 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 1169 free(*pgpt_pte); 1170 *pgpt_pte = NULL; 1171 return 0; 1172 } 1173 1174 /* We're done, all's well */ 1175 return 1; 1176 } 1177 1178 /** 1179 * alloc_read_gpt_entries(): reads partition entries from disk 1180 * @dev_desc 1181 * @gpt - GPT header 1182 * 1183 * Description: Returns ptes on success, NULL on error. 1184 * Allocates space for PTEs based on information found in @gpt. 1185 * Notes: remember to free pte when you're done! 1186 */ 1187 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 1188 gpt_header *pgpt_head) 1189 { 1190 size_t count = 0, blk_cnt; 1191 lbaint_t blk; 1192 gpt_entry *pte = NULL; 1193 1194 if (!dev_desc || !pgpt_head) { 1195 printf("%s: Invalid Argument(s)\n", __func__); 1196 return NULL; 1197 } 1198 1199 count = le32_to_cpu(pgpt_head->num_partition_entries) * 1200 le32_to_cpu(pgpt_head->sizeof_partition_entry); 1201 1202 debug("%s: count = %u * %u = %lu\n", __func__, 1203 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 1204 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 1205 (ulong)count); 1206 1207 /* Allocate memory for PTE, remember to FREE */ 1208 if (count != 0) { 1209 pte = memalign(ARCH_DMA_MINALIGN, 1210 PAD_TO_BLOCKSIZE(count, dev_desc)); 1211 } 1212 1213 if (count == 0 || pte == NULL) { 1214 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 1215 __func__, (ulong)count); 1216 return NULL; 1217 } 1218 1219 /* Read GPT Entries from device */ 1220 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 1221 blk_cnt = BLOCK_CNT(count, dev_desc); 1222 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 1223 printf("*** ERROR: Can't read GPT Entries ***\n"); 1224 free(pte); 1225 return NULL; 1226 } 1227 return pte; 1228 } 1229 1230 /** 1231 * is_pte_valid(): validates a single Partition Table Entry 1232 * @gpt_entry - Pointer to a single Partition Table Entry 1233 * 1234 * Description: returns 1 if valid, 0 on error. 1235 */ 1236 static int is_pte_valid(gpt_entry * pte) 1237 { 1238 efi_guid_t unused_guid; 1239 1240 if (!pte) { 1241 printf("%s: Invalid Argument(s)\n", __func__); 1242 return 0; 1243 } 1244 1245 /* Only one validation for now: 1246 * The GUID Partition Type != Unused Entry (ALL-ZERO) 1247 */ 1248 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 1249 1250 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 1251 sizeof(unused_guid.b)) == 0) { 1252 1253 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 1254 (unsigned int)(uintptr_t)pte); 1255 1256 return 0; 1257 } else { 1258 return 1; 1259 } 1260 } 1261 1262 /* 1263 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 1264 * check EFI first, since a DOS partition is often used as a 'protective MBR' 1265 * with EFI. 1266 */ 1267 U_BOOT_PART_TYPE(a_efi) = { 1268 .name = "EFI", 1269 .part_type = PART_TYPE_EFI, 1270 .max_entries = GPT_ENTRY_NUMBERS, 1271 .get_info = part_get_info_ptr(part_get_info_efi), 1272 .print = part_print_ptr(part_print_efi), 1273 .test = part_test_efi, 1274 }; 1275 #endif 1276