1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #ifdef CONFIG_LOGBUFFER 19 #include <logbuff.h> 20 #endif 21 22 #include <rtc.h> 23 24 #include <environment.h> 25 #include <image.h> 26 #include <mapmem.h> 27 28 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 29 #include <libfdt.h> 30 #include <fdt_support.h> 31 #include <fpga.h> 32 #include <xilinx.h> 33 #endif 34 35 #include <u-boot/md5.h> 36 #include <u-boot/sha1.h> 37 #include <linux/errno.h> 38 #include <asm/io.h> 39 40 #ifdef CONFIG_CMD_BDI 41 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 42 #endif 43 44 DECLARE_GLOBAL_DATA_PTR; 45 46 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 47 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 48 int verify); 49 #endif 50 #else 51 #include "mkimage.h" 52 #include <u-boot/md5.h> 53 #include <time.h> 54 #include <image.h> 55 56 #ifndef __maybe_unused 57 # define __maybe_unused /* unimplemented */ 58 #endif 59 #endif /* !USE_HOSTCC*/ 60 61 #include <u-boot/crc.h> 62 63 #ifndef CONFIG_SYS_BARGSIZE 64 #define CONFIG_SYS_BARGSIZE 512 65 #endif 66 67 static const table_entry_t uimage_arch[] = { 68 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 69 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 70 { IH_ARCH_ARM, "arm", "ARM", }, 71 { IH_ARCH_I386, "x86", "Intel x86", }, 72 { IH_ARCH_IA64, "ia64", "IA64", }, 73 { IH_ARCH_M68K, "m68k", "M68K", }, 74 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 75 { IH_ARCH_MIPS, "mips", "MIPS", }, 76 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 77 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 78 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 79 { IH_ARCH_PPC, "ppc", "PowerPC", }, 80 { IH_ARCH_S390, "s390", "IBM S390", }, 81 { IH_ARCH_SH, "sh", "SuperH", }, 82 { IH_ARCH_SPARC, "sparc", "SPARC", }, 83 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 84 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 85 { IH_ARCH_AVR32, "avr32", "AVR32", }, 86 { IH_ARCH_NDS32, "nds32", "NDS32", }, 87 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 88 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 89 { IH_ARCH_ARM64, "arm64", "AArch64", }, 90 { IH_ARCH_ARC, "arc", "ARC", }, 91 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 92 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 93 { -1, "", "", }, 94 }; 95 96 static const table_entry_t uimage_os[] = { 97 { IH_OS_INVALID, "invalid", "Invalid OS", }, 98 { IH_OS_LINUX, "linux", "Linux", }, 99 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 100 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 101 #endif 102 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 103 { IH_OS_OSE, "ose", "Enea OSE", }, 104 { IH_OS_PLAN9, "plan9", "Plan 9", }, 105 { IH_OS_RTEMS, "rtems", "RTEMS", }, 106 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 107 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 108 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 109 { IH_OS_QNX, "qnx", "QNX", }, 110 #endif 111 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 112 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 113 #endif 114 #ifdef USE_HOSTCC 115 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 116 { IH_OS_DELL, "dell", "Dell", }, 117 { IH_OS_ESIX, "esix", "Esix", }, 118 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 119 { IH_OS_IRIX, "irix", "Irix", }, 120 { IH_OS_NCR, "ncr", "NCR", }, 121 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 122 { IH_OS_PSOS, "psos", "pSOS", }, 123 { IH_OS_SCO, "sco", "SCO", }, 124 { IH_OS_SOLARIS, "solaris", "Solaris", }, 125 { IH_OS_SVR4, "svr4", "SVR4", }, 126 #endif 127 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 128 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 129 #endif 130 131 { -1, "", "", }, 132 }; 133 134 static const table_entry_t uimage_type[] = { 135 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 136 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 137 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 138 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 139 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 140 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 141 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 142 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 143 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 144 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 145 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 146 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 147 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 148 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 149 { IH_TYPE_SCRIPT, "script", "Script", }, 150 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 151 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 152 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 153 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 154 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 155 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 156 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 157 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 158 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 159 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 160 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 161 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 162 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 163 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 164 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, 165 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, 166 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, 167 { IH_TYPE_RKNAND, "rknand", "Rockchip NAND Boot Image" }, 168 { -1, "", "", }, 169 }; 170 171 static const table_entry_t uimage_comp[] = { 172 { IH_COMP_NONE, "none", "uncompressed", }, 173 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 174 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 175 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 176 { IH_COMP_LZO, "lzo", "lzo compressed", }, 177 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 178 { -1, "", "", }, 179 }; 180 181 struct table_info { 182 const char *desc; 183 int count; 184 const table_entry_t *table; 185 }; 186 187 static const struct table_info table_info[IH_COUNT] = { 188 { "architecture", IH_ARCH_COUNT, uimage_arch }, 189 { "compression", IH_COMP_COUNT, uimage_comp }, 190 { "operating system", IH_OS_COUNT, uimage_os }, 191 { "image type", IH_TYPE_COUNT, uimage_type }, 192 }; 193 194 /*****************************************************************************/ 195 /* Legacy format routines */ 196 /*****************************************************************************/ 197 int image_check_hcrc(const image_header_t *hdr) 198 { 199 ulong hcrc; 200 ulong len = image_get_header_size(); 201 image_header_t header; 202 203 /* Copy header so we can blank CRC field for re-calculation */ 204 memmove(&header, (char *)hdr, image_get_header_size()); 205 image_set_hcrc(&header, 0); 206 207 hcrc = crc32(0, (unsigned char *)&header, len); 208 209 return (hcrc == image_get_hcrc(hdr)); 210 } 211 212 int image_check_dcrc(const image_header_t *hdr) 213 { 214 ulong data = image_get_data(hdr); 215 ulong len = image_get_data_size(hdr); 216 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 217 218 return (dcrc == image_get_dcrc(hdr)); 219 } 220 221 /** 222 * image_multi_count - get component (sub-image) count 223 * @hdr: pointer to the header of the multi component image 224 * 225 * image_multi_count() returns number of components in a multi 226 * component image. 227 * 228 * Note: no checking of the image type is done, caller must pass 229 * a valid multi component image. 230 * 231 * returns: 232 * number of components 233 */ 234 ulong image_multi_count(const image_header_t *hdr) 235 { 236 ulong i, count = 0; 237 uint32_t *size; 238 239 /* get start of the image payload, which in case of multi 240 * component images that points to a table of component sizes */ 241 size = (uint32_t *)image_get_data(hdr); 242 243 /* count non empty slots */ 244 for (i = 0; size[i]; ++i) 245 count++; 246 247 return count; 248 } 249 250 /** 251 * image_multi_getimg - get component data address and size 252 * @hdr: pointer to the header of the multi component image 253 * @idx: index of the requested component 254 * @data: pointer to a ulong variable, will hold component data address 255 * @len: pointer to a ulong variable, will hold component size 256 * 257 * image_multi_getimg() returns size and data address for the requested 258 * component in a multi component image. 259 * 260 * Note: no checking of the image type is done, caller must pass 261 * a valid multi component image. 262 * 263 * returns: 264 * data address and size of the component, if idx is valid 265 * 0 in data and len, if idx is out of range 266 */ 267 void image_multi_getimg(const image_header_t *hdr, ulong idx, 268 ulong *data, ulong *len) 269 { 270 int i; 271 uint32_t *size; 272 ulong offset, count, img_data; 273 274 /* get number of component */ 275 count = image_multi_count(hdr); 276 277 /* get start of the image payload, which in case of multi 278 * component images that points to a table of component sizes */ 279 size = (uint32_t *)image_get_data(hdr); 280 281 /* get address of the proper component data start, which means 282 * skipping sizes table (add 1 for last, null entry) */ 283 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 284 285 if (idx < count) { 286 *len = uimage_to_cpu(size[idx]); 287 offset = 0; 288 289 /* go over all indices preceding requested component idx */ 290 for (i = 0; i < idx; i++) { 291 /* add up i-th component size, rounding up to 4 bytes */ 292 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 293 } 294 295 /* calculate idx-th component data address */ 296 *data = img_data + offset; 297 } else { 298 *len = 0; 299 *data = 0; 300 } 301 } 302 303 static void image_print_type(const image_header_t *hdr) 304 { 305 const char __maybe_unused *os, *arch, *type, *comp; 306 307 os = genimg_get_os_name(image_get_os(hdr)); 308 arch = genimg_get_arch_name(image_get_arch(hdr)); 309 type = genimg_get_type_name(image_get_type(hdr)); 310 comp = genimg_get_comp_name(image_get_comp(hdr)); 311 312 printf("%s %s %s (%s)\n", arch, os, type, comp); 313 } 314 315 /** 316 * image_print_contents - prints out the contents of the legacy format image 317 * @ptr: pointer to the legacy format image header 318 * @p: pointer to prefix string 319 * 320 * image_print_contents() formats a multi line legacy image contents description. 321 * The routine prints out all header fields followed by the size/offset data 322 * for MULTI/SCRIPT images. 323 * 324 * returns: 325 * no returned results 326 */ 327 void image_print_contents(const void *ptr) 328 { 329 const image_header_t *hdr = (const image_header_t *)ptr; 330 const char __maybe_unused *p; 331 332 p = IMAGE_INDENT_STRING; 333 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 334 if (IMAGE_ENABLE_TIMESTAMP) { 335 printf("%sCreated: ", p); 336 genimg_print_time((time_t)image_get_time(hdr)); 337 } 338 printf("%sImage Type: ", p); 339 image_print_type(hdr); 340 printf("%sData Size: ", p); 341 genimg_print_size(image_get_data_size(hdr)); 342 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 343 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 344 345 if (image_check_type(hdr, IH_TYPE_MULTI) || 346 image_check_type(hdr, IH_TYPE_SCRIPT)) { 347 int i; 348 ulong data, len; 349 ulong count = image_multi_count(hdr); 350 351 printf("%sContents:\n", p); 352 for (i = 0; i < count; i++) { 353 image_multi_getimg(hdr, i, &data, &len); 354 355 printf("%s Image %d: ", p, i); 356 genimg_print_size(len); 357 358 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 359 /* 360 * the user may need to know offsets 361 * if planning to do something with 362 * multiple files 363 */ 364 printf("%s Offset = 0x%08lx\n", p, data); 365 } 366 } 367 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { 368 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", 369 image_get_load(hdr) - image_get_header_size(), 370 image_get_size(hdr) + image_get_header_size() 371 - 0x1FE0); 372 } 373 } 374 375 376 #ifndef USE_HOSTCC 377 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 378 /** 379 * image_get_ramdisk - get and verify ramdisk image 380 * @rd_addr: ramdisk image start address 381 * @arch: expected ramdisk architecture 382 * @verify: checksum verification flag 383 * 384 * image_get_ramdisk() returns a pointer to the verified ramdisk image 385 * header. Routine receives image start address and expected architecture 386 * flag. Verification done covers data and header integrity and os/type/arch 387 * fields checking. 388 * 389 * If dataflash support is enabled routine checks for dataflash addresses 390 * and handles required dataflash reads. 391 * 392 * returns: 393 * pointer to a ramdisk image header, if image was found and valid 394 * otherwise, return NULL 395 */ 396 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 397 int verify) 398 { 399 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 400 401 if (!image_check_magic(rd_hdr)) { 402 puts("Bad Magic Number\n"); 403 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 404 return NULL; 405 } 406 407 if (!image_check_hcrc(rd_hdr)) { 408 puts("Bad Header Checksum\n"); 409 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 410 return NULL; 411 } 412 413 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 414 image_print_contents(rd_hdr); 415 416 if (verify) { 417 puts(" Verifying Checksum ... "); 418 if (!image_check_dcrc(rd_hdr)) { 419 puts("Bad Data CRC\n"); 420 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 421 return NULL; 422 } 423 puts("OK\n"); 424 } 425 426 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 427 428 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 429 !image_check_arch(rd_hdr, arch) || 430 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 431 printf("No Linux %s Ramdisk Image\n", 432 genimg_get_arch_name(arch)); 433 bootstage_error(BOOTSTAGE_ID_RAMDISK); 434 return NULL; 435 } 436 437 return rd_hdr; 438 } 439 #endif 440 #endif /* !USE_HOSTCC */ 441 442 /*****************************************************************************/ 443 /* Shared dual-format routines */ 444 /*****************************************************************************/ 445 #ifndef USE_HOSTCC 446 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 447 ulong save_addr; /* Default Save Address */ 448 ulong save_size; /* Default Save Size (in bytes) */ 449 450 static int on_loadaddr(const char *name, const char *value, enum env_op op, 451 int flags) 452 { 453 switch (op) { 454 case env_op_create: 455 case env_op_overwrite: 456 load_addr = simple_strtoul(value, NULL, 16); 457 break; 458 default: 459 break; 460 } 461 462 return 0; 463 } 464 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 465 466 ulong env_get_bootm_low(void) 467 { 468 char *s = env_get("bootm_low"); 469 if (s) { 470 ulong tmp = simple_strtoul(s, NULL, 16); 471 return tmp; 472 } 473 474 #if defined(CONFIG_SYS_SDRAM_BASE) 475 return CONFIG_SYS_SDRAM_BASE; 476 #elif defined(CONFIG_ARM) 477 return gd->bd->bi_dram[0].start; 478 #else 479 return 0; 480 #endif 481 } 482 483 phys_size_t env_get_bootm_size(void) 484 { 485 phys_size_t tmp, size; 486 phys_addr_t start; 487 char *s = env_get("bootm_size"); 488 if (s) { 489 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 490 return tmp; 491 } 492 493 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 494 start = gd->bd->bi_dram[0].start; 495 size = gd->bd->bi_dram[0].size; 496 #else 497 start = gd->bd->bi_memstart; 498 size = gd->bd->bi_memsize; 499 #endif 500 501 s = env_get("bootm_low"); 502 if (s) 503 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 504 else 505 tmp = start; 506 507 return size - (tmp - start); 508 } 509 510 phys_size_t env_get_bootm_mapsize(void) 511 { 512 phys_size_t tmp; 513 char *s = env_get("bootm_mapsize"); 514 if (s) { 515 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 516 return tmp; 517 } 518 519 #if defined(CONFIG_SYS_BOOTMAPSZ) 520 return CONFIG_SYS_BOOTMAPSZ; 521 #else 522 return env_get_bootm_size(); 523 #endif 524 } 525 526 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 527 { 528 if (to == from) 529 return; 530 531 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 532 if (to > from) { 533 from += len; 534 to += len; 535 } 536 while (len > 0) { 537 size_t tail = (len > chunksz) ? chunksz : len; 538 WATCHDOG_RESET(); 539 if (to > from) { 540 to -= tail; 541 from -= tail; 542 } 543 memmove(to, from, tail); 544 if (to < from) { 545 to += tail; 546 from += tail; 547 } 548 len -= tail; 549 } 550 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 551 memmove(to, from, len); 552 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 553 } 554 #endif /* !USE_HOSTCC */ 555 556 void genimg_print_size(uint32_t size) 557 { 558 #ifndef USE_HOSTCC 559 printf("%d Bytes = ", size); 560 print_size(size, "\n"); 561 #else 562 printf("%d Bytes = %.2f KiB = %.2f MiB\n", 563 size, (double)size / 1.024e3, 564 (double)size / 1.048576e6); 565 #endif 566 } 567 568 #if IMAGE_ENABLE_TIMESTAMP 569 void genimg_print_time(time_t timestamp) 570 { 571 #ifndef USE_HOSTCC 572 struct rtc_time tm; 573 574 rtc_to_tm(timestamp, &tm); 575 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 576 tm.tm_year, tm.tm_mon, tm.tm_mday, 577 tm.tm_hour, tm.tm_min, tm.tm_sec); 578 #else 579 printf("%s", ctime(×tamp)); 580 #endif 581 } 582 #endif 583 584 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 585 { 586 for (; table->id >= 0; ++table) { 587 if (table->id == id) 588 return table; 589 } 590 return NULL; 591 } 592 593 static const char *unknown_msg(enum ih_category category) 594 { 595 static const char unknown_str[] = "Unknown "; 596 static char msg[30]; 597 598 strcpy(msg, unknown_str); 599 strncat(msg, table_info[category].desc, 600 sizeof(msg) - sizeof(unknown_str)); 601 602 return msg; 603 } 604 605 /** 606 * get_cat_table_entry_name - translate entry id to long name 607 * @category: category to look up (enum ih_category) 608 * @id: entry id to be translated 609 * 610 * This will scan the translation table trying to find the entry that matches 611 * the given id. 612 * 613 * @retur long entry name if translation succeeds; error string on failure 614 */ 615 const char *genimg_get_cat_name(enum ih_category category, uint id) 616 { 617 const table_entry_t *entry; 618 619 entry = get_table_entry(table_info[category].table, id); 620 if (!entry) 621 return unknown_msg(category); 622 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 623 return entry->lname; 624 #else 625 return entry->lname + gd->reloc_off; 626 #endif 627 } 628 629 /** 630 * get_cat_table_entry_short_name - translate entry id to short name 631 * @category: category to look up (enum ih_category) 632 * @id: entry id to be translated 633 * 634 * This will scan the translation table trying to find the entry that matches 635 * the given id. 636 * 637 * @retur short entry name if translation succeeds; error string on failure 638 */ 639 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 640 { 641 const table_entry_t *entry; 642 643 entry = get_table_entry(table_info[category].table, id); 644 if (!entry) 645 return unknown_msg(category); 646 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 647 return entry->sname; 648 #else 649 return entry->sname + gd->reloc_off; 650 #endif 651 } 652 653 int genimg_get_cat_count(enum ih_category category) 654 { 655 return table_info[category].count; 656 } 657 658 const char *genimg_get_cat_desc(enum ih_category category) 659 { 660 return table_info[category].desc; 661 } 662 663 /** 664 * get_table_entry_name - translate entry id to long name 665 * @table: pointer to a translation table for entries of a specific type 666 * @msg: message to be returned when translation fails 667 * @id: entry id to be translated 668 * 669 * get_table_entry_name() will go over translation table trying to find 670 * entry that matches given id. If matching entry is found, its long 671 * name is returned to the caller. 672 * 673 * returns: 674 * long entry name if translation succeeds 675 * msg otherwise 676 */ 677 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 678 { 679 table = get_table_entry(table, id); 680 if (!table) 681 return msg; 682 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 683 return table->lname; 684 #else 685 return table->lname + gd->reloc_off; 686 #endif 687 } 688 689 const char *genimg_get_os_name(uint8_t os) 690 { 691 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 692 } 693 694 const char *genimg_get_arch_name(uint8_t arch) 695 { 696 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 697 arch)); 698 } 699 700 const char *genimg_get_type_name(uint8_t type) 701 { 702 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 703 } 704 705 static const char *genimg_get_short_name(const table_entry_t *table, int val) 706 { 707 table = get_table_entry(table, val); 708 if (!table) 709 return "unknown"; 710 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 711 return table->sname; 712 #else 713 return table->sname + gd->reloc_off; 714 #endif 715 } 716 717 const char *genimg_get_type_short_name(uint8_t type) 718 { 719 return genimg_get_short_name(uimage_type, type); 720 } 721 722 const char *genimg_get_comp_name(uint8_t comp) 723 { 724 return (get_table_entry_name(uimage_comp, "Unknown Compression", 725 comp)); 726 } 727 728 const char *genimg_get_comp_short_name(uint8_t comp) 729 { 730 return genimg_get_short_name(uimage_comp, comp); 731 } 732 733 const char *genimg_get_os_short_name(uint8_t os) 734 { 735 return genimg_get_short_name(uimage_os, os); 736 } 737 738 const char *genimg_get_arch_short_name(uint8_t arch) 739 { 740 return genimg_get_short_name(uimage_arch, arch); 741 } 742 743 /** 744 * get_table_entry_id - translate short entry name to id 745 * @table: pointer to a translation table for entries of a specific type 746 * @table_name: to be used in case of error 747 * @name: entry short name to be translated 748 * 749 * get_table_entry_id() will go over translation table trying to find 750 * entry that matches given short name. If matching entry is found, 751 * its id returned to the caller. 752 * 753 * returns: 754 * entry id if translation succeeds 755 * -1 otherwise 756 */ 757 int get_table_entry_id(const table_entry_t *table, 758 const char *table_name, const char *name) 759 { 760 const table_entry_t *t; 761 762 for (t = table; t->id >= 0; ++t) { 763 #ifdef CONFIG_NEEDS_MANUAL_RELOC 764 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 765 #else 766 if (t->sname && strcasecmp(t->sname, name) == 0) 767 #endif 768 return (t->id); 769 } 770 debug("Invalid %s Type: %s\n", table_name, name); 771 772 return -1; 773 } 774 775 int genimg_get_os_id(const char *name) 776 { 777 return (get_table_entry_id(uimage_os, "OS", name)); 778 } 779 780 int genimg_get_arch_id(const char *name) 781 { 782 return (get_table_entry_id(uimage_arch, "CPU", name)); 783 } 784 785 int genimg_get_type_id(const char *name) 786 { 787 return (get_table_entry_id(uimage_type, "Image", name)); 788 } 789 790 int genimg_get_comp_id(const char *name) 791 { 792 return (get_table_entry_id(uimage_comp, "Compression", name)); 793 } 794 795 #ifndef USE_HOSTCC 796 /** 797 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 798 * FIT strings 799 * @img_addr: a string might contain real image address 800 * @fit_uname_config: double pointer to a char, will hold pointer to a 801 * configuration unit name 802 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 803 * name 804 * 805 * genimg_get_kernel_addr_fit get the real kernel start address from a string 806 * which is normally the first argv of bootm/bootz 807 * 808 * returns: 809 * kernel start address 810 */ 811 ulong genimg_get_kernel_addr_fit(char * const img_addr, 812 const char **fit_uname_config, 813 const char **fit_uname_kernel) 814 { 815 ulong kernel_addr; 816 817 /* find out kernel image address */ 818 if (!img_addr) { 819 kernel_addr = load_addr; 820 debug("* kernel: default image load address = 0x%08lx\n", 821 load_addr); 822 #if CONFIG_IS_ENABLED(FIT) 823 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 824 fit_uname_config)) { 825 debug("* kernel: config '%s' from image at 0x%08lx\n", 826 *fit_uname_config, kernel_addr); 827 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 828 fit_uname_kernel)) { 829 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 830 *fit_uname_kernel, kernel_addr); 831 #endif 832 } else { 833 kernel_addr = simple_strtoul(img_addr, NULL, 16); 834 debug("* kernel: cmdline image address = 0x%08lx\n", 835 kernel_addr); 836 } 837 838 return kernel_addr; 839 } 840 841 /** 842 * genimg_get_kernel_addr() is the simple version of 843 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 844 */ 845 ulong genimg_get_kernel_addr(char * const img_addr) 846 { 847 const char *fit_uname_config = NULL; 848 const char *fit_uname_kernel = NULL; 849 850 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 851 &fit_uname_kernel); 852 } 853 854 /** 855 * genimg_get_format - get image format type 856 * @img_addr: image start address 857 * 858 * genimg_get_format() checks whether provided address points to a valid 859 * legacy or FIT image. 860 * 861 * New uImage format and FDT blob are based on a libfdt. FDT blob 862 * may be passed directly or embedded in a FIT image. In both situations 863 * genimg_get_format() must be able to dectect libfdt header. 864 * 865 * returns: 866 * image format type or IMAGE_FORMAT_INVALID if no image is present 867 */ 868 int genimg_get_format(const void *img_addr) 869 { 870 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 871 const image_header_t *hdr; 872 873 hdr = (const image_header_t *)img_addr; 874 if (image_check_magic(hdr)) 875 return IMAGE_FORMAT_LEGACY; 876 #endif 877 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 878 if (fdt_check_header(img_addr) == 0) 879 return IMAGE_FORMAT_FIT; 880 #endif 881 #ifdef CONFIG_ANDROID_BOOT_IMAGE 882 if (android_image_check_header(img_addr) == 0) 883 return IMAGE_FORMAT_ANDROID; 884 #endif 885 886 return IMAGE_FORMAT_INVALID; 887 } 888 889 /** 890 * genimg_get_image - get image from special storage (if necessary) 891 * @img_addr: image start address 892 * 893 * genimg_get_image() checks if provided image start address is located 894 * in a dataflash storage. If so, image is moved to a system RAM memory. 895 * 896 * returns: 897 * image start address after possible relocation from special storage 898 */ 899 ulong genimg_get_image(ulong img_addr) 900 { 901 ulong ram_addr = img_addr; 902 903 return ram_addr; 904 } 905 906 /** 907 * fit_has_config - check if there is a valid FIT configuration 908 * @images: pointer to the bootm command headers structure 909 * 910 * fit_has_config() checks if there is a FIT configuration in use 911 * (if FTI support is present). 912 * 913 * returns: 914 * 0, no FIT support or no configuration found 915 * 1, configuration found 916 */ 917 int genimg_has_config(bootm_headers_t *images) 918 { 919 #if IMAGE_ENABLE_FIT 920 if (images->fit_uname_cfg) 921 return 1; 922 #endif 923 return 0; 924 } 925 926 /** 927 * boot_get_ramdisk - main ramdisk handling routine 928 * @argc: command argument count 929 * @argv: command argument list 930 * @images: pointer to the bootm images structure 931 * @arch: expected ramdisk architecture 932 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 933 * @rd_end: pointer to a ulong variable, will hold ramdisk end 934 * 935 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 936 * Curently supported are the following ramdisk sources: 937 * - multicomponent kernel/ramdisk image, 938 * - commandline provided address of decicated ramdisk image. 939 * 940 * returns: 941 * 0, if ramdisk image was found and valid, or skiped 942 * rd_start and rd_end are set to ramdisk start/end addresses if 943 * ramdisk image is found and valid 944 * 945 * 1, if ramdisk image is found but corrupted, or invalid 946 * rd_start and rd_end are set to 0 if no ramdisk exists 947 */ 948 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 949 uint8_t arch, ulong *rd_start, ulong *rd_end) 950 { 951 ulong rd_addr, rd_load; 952 ulong rd_data, rd_len; 953 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 954 const image_header_t *rd_hdr; 955 #endif 956 void *buf; 957 #ifdef CONFIG_SUPPORT_RAW_INITRD 958 char *end; 959 #endif 960 #if IMAGE_ENABLE_FIT 961 const char *fit_uname_config = images->fit_uname_cfg; 962 const char *fit_uname_ramdisk = NULL; 963 ulong default_addr; 964 int rd_noffset; 965 #endif 966 const char *select = NULL; 967 968 *rd_start = 0; 969 *rd_end = 0; 970 971 #ifdef CONFIG_ANDROID_BOOT_IMAGE 972 /* 973 * Look for an Android boot image. 974 */ 975 buf = map_sysmem(images->os.start, 0); 976 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 977 select = argv[0]; 978 #endif 979 980 if (argc >= 2) 981 select = argv[1]; 982 983 /* 984 * Look for a '-' which indicates to ignore the 985 * ramdisk argument 986 */ 987 if (select && strcmp(select, "-") == 0) { 988 debug("## Skipping init Ramdisk\n"); 989 rd_len = rd_data = 0; 990 } else if (select || genimg_has_config(images)) { 991 #if IMAGE_ENABLE_FIT 992 if (select) { 993 /* 994 * If the init ramdisk comes from the FIT image and 995 * the FIT image address is omitted in the command 996 * line argument, try to use os FIT image address or 997 * default load address. 998 */ 999 if (images->fit_uname_os) 1000 default_addr = (ulong)images->fit_hdr_os; 1001 else 1002 default_addr = load_addr; 1003 1004 if (fit_parse_conf(select, default_addr, 1005 &rd_addr, &fit_uname_config)) { 1006 debug("* ramdisk: config '%s' from image at " 1007 "0x%08lx\n", 1008 fit_uname_config, rd_addr); 1009 } else if (fit_parse_subimage(select, default_addr, 1010 &rd_addr, &fit_uname_ramdisk)) { 1011 debug("* ramdisk: subimage '%s' from image at " 1012 "0x%08lx\n", 1013 fit_uname_ramdisk, rd_addr); 1014 } else 1015 #endif 1016 { 1017 rd_addr = simple_strtoul(select, NULL, 16); 1018 debug("* ramdisk: cmdline image address = " 1019 "0x%08lx\n", 1020 rd_addr); 1021 } 1022 #if IMAGE_ENABLE_FIT 1023 } else { 1024 /* use FIT configuration provided in first bootm 1025 * command argument. If the property is not defined, 1026 * quit silently. 1027 */ 1028 rd_addr = map_to_sysmem(images->fit_hdr_os); 1029 rd_noffset = fit_get_node_from_config(images, 1030 FIT_RAMDISK_PROP, rd_addr); 1031 if (rd_noffset == -ENOENT) 1032 return 0; 1033 else if (rd_noffset < 0) 1034 return 1; 1035 } 1036 #endif 1037 1038 /* copy from dataflash if needed */ 1039 rd_addr = genimg_get_image(rd_addr); 1040 1041 /* 1042 * Check if there is an initrd image at the 1043 * address provided in the second bootm argument 1044 * check image type, for FIT images get FIT node. 1045 */ 1046 buf = map_sysmem(rd_addr, 0); 1047 switch (genimg_get_format(buf)) { 1048 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1049 case IMAGE_FORMAT_LEGACY: 1050 printf("## Loading init Ramdisk from Legacy " 1051 "Image at %08lx ...\n", rd_addr); 1052 1053 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1054 rd_hdr = image_get_ramdisk(rd_addr, arch, 1055 images->verify); 1056 1057 if (rd_hdr == NULL) 1058 return 1; 1059 1060 rd_data = image_get_data(rd_hdr); 1061 rd_len = image_get_data_size(rd_hdr); 1062 rd_load = image_get_load(rd_hdr); 1063 break; 1064 #endif 1065 #if IMAGE_ENABLE_FIT 1066 case IMAGE_FORMAT_FIT: 1067 rd_noffset = fit_image_load(images, 1068 rd_addr, &fit_uname_ramdisk, 1069 &fit_uname_config, arch, 1070 IH_TYPE_RAMDISK, 1071 BOOTSTAGE_ID_FIT_RD_START, 1072 FIT_LOAD_OPTIONAL_NON_ZERO, 1073 &rd_data, &rd_len); 1074 if (rd_noffset < 0) 1075 return 1; 1076 1077 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1078 images->fit_uname_rd = fit_uname_ramdisk; 1079 images->fit_noffset_rd = rd_noffset; 1080 break; 1081 #endif 1082 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1083 case IMAGE_FORMAT_ANDROID: 1084 android_image_get_ramdisk((void *)images->os.start, 1085 &rd_data, &rd_len); 1086 break; 1087 #endif 1088 default: 1089 #ifdef CONFIG_SUPPORT_RAW_INITRD 1090 end = NULL; 1091 if (select) 1092 end = strchr(select, ':'); 1093 if (end) { 1094 rd_len = simple_strtoul(++end, NULL, 16); 1095 rd_data = rd_addr; 1096 } else 1097 #endif 1098 { 1099 puts("Wrong Ramdisk Image Format\n"); 1100 rd_data = rd_len = rd_load = 0; 1101 return 1; 1102 } 1103 } 1104 } else if (images->legacy_hdr_valid && 1105 image_check_type(&images->legacy_hdr_os_copy, 1106 IH_TYPE_MULTI)) { 1107 1108 /* 1109 * Now check if we have a legacy mult-component image, 1110 * get second entry data start address and len. 1111 */ 1112 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1113 printf("## Loading init Ramdisk from multi component " 1114 "Legacy Image at %08lx ...\n", 1115 (ulong)images->legacy_hdr_os); 1116 1117 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1118 } else { 1119 /* 1120 * no initrd image 1121 */ 1122 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1123 rd_len = rd_data = 0; 1124 } 1125 1126 if (!rd_data) { 1127 debug("## No init Ramdisk\n"); 1128 } else { 1129 *rd_start = rd_data; 1130 *rd_end = rd_data + rd_len; 1131 } 1132 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1133 *rd_start, *rd_end); 1134 1135 return 0; 1136 } 1137 1138 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1139 /** 1140 * boot_ramdisk_high - relocate init ramdisk 1141 * @lmb: pointer to lmb handle, will be used for memory mgmt 1142 * @rd_data: ramdisk data start address 1143 * @rd_len: ramdisk data length 1144 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1145 * start address (after possible relocation) 1146 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1147 * end address (after possible relocation) 1148 * 1149 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1150 * variable and if requested ramdisk data is moved to a specified location. 1151 * 1152 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1153 * start/end addresses if ramdisk image start and len were provided, 1154 * otherwise set initrd_start and initrd_end set to zeros. 1155 * 1156 * returns: 1157 * 0 - success 1158 * -1 - failure 1159 */ 1160 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1161 ulong *initrd_start, ulong *initrd_end) 1162 { 1163 char *s; 1164 ulong initrd_high; 1165 int initrd_copy_to_ram = 1; 1166 1167 s = env_get("initrd_high"); 1168 if (s) { 1169 /* a value of "no" or a similar string will act like 0, 1170 * turning the "load high" feature off. This is intentional. 1171 */ 1172 initrd_high = simple_strtoul(s, NULL, 16); 1173 if (initrd_high == ~0) 1174 initrd_copy_to_ram = 0; 1175 } else { 1176 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); 1177 } 1178 1179 1180 #ifdef CONFIG_LOGBUFFER 1181 /* Prevent initrd from overwriting logbuffer */ 1182 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1183 #endif 1184 1185 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1186 initrd_high, initrd_copy_to_ram); 1187 1188 if (rd_data) { 1189 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1190 debug(" in-place initrd\n"); 1191 *initrd_start = rd_data; 1192 *initrd_end = rd_data + rd_len; 1193 lmb_reserve(lmb, rd_data, rd_len); 1194 } else { 1195 if (initrd_high) 1196 *initrd_start = (ulong)lmb_alloc_base(lmb, 1197 rd_len, 0x1000, initrd_high); 1198 else 1199 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1200 0x1000); 1201 1202 if (*initrd_start == 0) { 1203 puts("ramdisk - allocation error\n"); 1204 goto error; 1205 } 1206 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1207 1208 *initrd_end = *initrd_start + rd_len; 1209 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1210 *initrd_start, *initrd_end); 1211 1212 memmove_wd((void *)*initrd_start, 1213 (void *)rd_data, rd_len, CHUNKSZ); 1214 1215 #ifdef CONFIG_MP 1216 /* 1217 * Ensure the image is flushed to memory to handle 1218 * AMP boot scenarios in which we might not be 1219 * HW cache coherent 1220 */ 1221 flush_cache((unsigned long)*initrd_start, rd_len); 1222 #endif 1223 puts("OK\n"); 1224 } 1225 } else { 1226 *initrd_start = 0; 1227 *initrd_end = 0; 1228 } 1229 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1230 *initrd_start, *initrd_end); 1231 1232 return 0; 1233 1234 error: 1235 return -1; 1236 } 1237 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1238 1239 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1240 ulong *setup_start, ulong *setup_len) 1241 { 1242 #if IMAGE_ENABLE_FIT 1243 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1244 #else 1245 return -ENOENT; 1246 #endif 1247 } 1248 1249 #if IMAGE_ENABLE_FIT 1250 #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX) 1251 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1252 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1253 { 1254 ulong tmp_img_addr, img_data, img_len; 1255 void *buf; 1256 int conf_noffset; 1257 int fit_img_result; 1258 const char *uname, *name; 1259 int err; 1260 int devnum = 0; /* TODO support multi fpga platforms */ 1261 const fpga_desc * const desc = fpga_get_desc(devnum); 1262 xilinx_desc *desc_xilinx = desc->devdesc; 1263 1264 /* Check to see if the images struct has a FIT configuration */ 1265 if (!genimg_has_config(images)) { 1266 debug("## FIT configuration was not specified\n"); 1267 return 0; 1268 } 1269 1270 /* 1271 * Obtain the os FIT header from the images struct 1272 * copy from dataflash if needed 1273 */ 1274 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1275 tmp_img_addr = genimg_get_image(tmp_img_addr); 1276 buf = map_sysmem(tmp_img_addr, 0); 1277 /* 1278 * Check image type. For FIT images get FIT node 1279 * and attempt to locate a generic binary. 1280 */ 1281 switch (genimg_get_format(buf)) { 1282 case IMAGE_FORMAT_FIT: 1283 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1284 1285 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, 1286 NULL); 1287 if (!uname) { 1288 debug("## FPGA image is not specified\n"); 1289 return 0; 1290 } 1291 fit_img_result = fit_image_load(images, 1292 tmp_img_addr, 1293 (const char **)&uname, 1294 &(images->fit_uname_cfg), 1295 arch, 1296 IH_TYPE_FPGA, 1297 BOOTSTAGE_ID_FPGA_INIT, 1298 FIT_LOAD_OPTIONAL_NON_ZERO, 1299 &img_data, &img_len); 1300 1301 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1302 uname, img_data, img_len); 1303 1304 if (fit_img_result < 0) { 1305 /* Something went wrong! */ 1306 return fit_img_result; 1307 } 1308 1309 if (img_len >= desc_xilinx->size) { 1310 name = "full"; 1311 err = fpga_loadbitstream(devnum, (char *)img_data, 1312 img_len, BIT_FULL); 1313 if (err) 1314 err = fpga_load(devnum, (const void *)img_data, 1315 img_len, BIT_FULL); 1316 } else { 1317 name = "partial"; 1318 err = fpga_loadbitstream(devnum, (char *)img_data, 1319 img_len, BIT_PARTIAL); 1320 if (err) 1321 err = fpga_load(devnum, (const void *)img_data, 1322 img_len, BIT_PARTIAL); 1323 } 1324 1325 if (err) 1326 return err; 1327 1328 printf(" Programming %s bitstream... OK\n", name); 1329 break; 1330 default: 1331 printf("The given image format is not supported (corrupt?)\n"); 1332 return 1; 1333 } 1334 1335 return 0; 1336 } 1337 #endif 1338 1339 static void fit_loadable_process(uint8_t img_type, 1340 ulong img_data, 1341 ulong img_len) 1342 { 1343 int i; 1344 const unsigned int count = 1345 ll_entry_count(struct fit_loadable_tbl, fit_loadable); 1346 struct fit_loadable_tbl *fit_loadable_handler = 1347 ll_entry_start(struct fit_loadable_tbl, fit_loadable); 1348 /* For each loadable handler */ 1349 for (i = 0; i < count; i++, fit_loadable_handler++) 1350 /* matching this type */ 1351 if (fit_loadable_handler->type == img_type) 1352 /* call that handler with this image data */ 1353 fit_loadable_handler->handler(img_data, img_len); 1354 } 1355 1356 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1357 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1358 { 1359 /* 1360 * These variables are used to hold the current image location 1361 * in system memory. 1362 */ 1363 ulong tmp_img_addr; 1364 /* 1365 * These two variables are requirements for fit_image_load, but 1366 * their values are not used 1367 */ 1368 ulong img_data, img_len; 1369 void *buf; 1370 int loadables_index; 1371 int conf_noffset; 1372 int fit_img_result; 1373 const char *uname; 1374 uint8_t img_type; 1375 1376 /* Check to see if the images struct has a FIT configuration */ 1377 if (!genimg_has_config(images)) { 1378 debug("## FIT configuration was not specified\n"); 1379 return 0; 1380 } 1381 1382 /* 1383 * Obtain the os FIT header from the images struct 1384 * copy from dataflash if needed 1385 */ 1386 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1387 tmp_img_addr = genimg_get_image(tmp_img_addr); 1388 buf = map_sysmem(tmp_img_addr, 0); 1389 /* 1390 * Check image type. For FIT images get FIT node 1391 * and attempt to locate a generic binary. 1392 */ 1393 switch (genimg_get_format(buf)) { 1394 case IMAGE_FORMAT_FIT: 1395 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1396 1397 for (loadables_index = 0; 1398 uname = fdt_stringlist_get(buf, conf_noffset, 1399 FIT_LOADABLE_PROP, loadables_index, 1400 NULL), uname; 1401 loadables_index++) 1402 { 1403 fit_img_result = fit_image_load(images, 1404 tmp_img_addr, 1405 &uname, 1406 &(images->fit_uname_cfg), arch, 1407 IH_TYPE_LOADABLE, 1408 BOOTSTAGE_ID_FIT_LOADABLE_START, 1409 FIT_LOAD_OPTIONAL_NON_ZERO, 1410 &img_data, &img_len); 1411 if (fit_img_result < 0) { 1412 /* Something went wrong! */ 1413 return fit_img_result; 1414 } 1415 1416 fit_img_result = fit_image_get_node(buf, uname); 1417 if (fit_img_result < 0) { 1418 /* Something went wrong! */ 1419 return fit_img_result; 1420 } 1421 fit_img_result = fit_image_get_type(buf, 1422 fit_img_result, 1423 &img_type); 1424 if (fit_img_result < 0) { 1425 /* Something went wrong! */ 1426 return fit_img_result; 1427 } 1428 1429 fit_loadable_process(img_type, img_data, img_len); 1430 } 1431 break; 1432 default: 1433 printf("The given image format is not supported (corrupt?)\n"); 1434 return 1; 1435 } 1436 1437 return 0; 1438 } 1439 #endif 1440 1441 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1442 /** 1443 * boot_get_cmdline - allocate and initialize kernel cmdline 1444 * @lmb: pointer to lmb handle, will be used for memory mgmt 1445 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1446 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1447 * 1448 * boot_get_cmdline() allocates space for kernel command line below 1449 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt 1450 * variable is present its contents is copied to allocated kernel 1451 * command line. 1452 * 1453 * returns: 1454 * 0 - success 1455 * -1 - failure 1456 */ 1457 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1458 { 1459 char *cmdline; 1460 char *s; 1461 1462 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1463 env_get_bootm_mapsize() + env_get_bootm_low()); 1464 1465 if (cmdline == NULL) 1466 return -1; 1467 1468 s = env_get("bootargs"); 1469 if (!s) 1470 s = ""; 1471 1472 strcpy(cmdline, s); 1473 1474 *cmd_start = (ulong) & cmdline[0]; 1475 *cmd_end = *cmd_start + strlen(cmdline); 1476 1477 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1478 1479 return 0; 1480 } 1481 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1482 1483 #ifdef CONFIG_SYS_BOOT_GET_KBD 1484 /** 1485 * boot_get_kbd - allocate and initialize kernel copy of board info 1486 * @lmb: pointer to lmb handle, will be used for memory mgmt 1487 * @kbd: double pointer to board info data 1488 * 1489 * boot_get_kbd() allocates space for kernel copy of board info data below 1490 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized 1491 * with the current u-boot board info data. 1492 * 1493 * returns: 1494 * 0 - success 1495 * -1 - failure 1496 */ 1497 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1498 { 1499 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1500 env_get_bootm_mapsize() + env_get_bootm_low()); 1501 if (*kbd == NULL) 1502 return -1; 1503 1504 **kbd = *(gd->bd); 1505 1506 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1507 1508 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1509 do_bdinfo(NULL, 0, 0, NULL); 1510 #endif 1511 1512 return 0; 1513 } 1514 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1515 1516 #ifdef CONFIG_LMB 1517 int image_setup_linux(bootm_headers_t *images) 1518 { 1519 ulong of_size = images->ft_len; 1520 char **of_flat_tree = &images->ft_addr; 1521 struct lmb *lmb = &images->lmb; 1522 int ret; 1523 1524 if (IMAGE_ENABLE_OF_LIBFDT) 1525 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1526 1527 if (IMAGE_BOOT_GET_CMDLINE) { 1528 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1529 &images->cmdline_end); 1530 if (ret) { 1531 puts("ERROR with allocation of cmdline\n"); 1532 return ret; 1533 } 1534 } 1535 1536 if (IMAGE_ENABLE_OF_LIBFDT) { 1537 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1538 if (ret) 1539 return ret; 1540 } 1541 1542 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1543 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1544 if (ret) 1545 return ret; 1546 } 1547 1548 return 0; 1549 } 1550 #endif /* CONFIG_LMB */ 1551 #endif /* !USE_HOSTCC */ 1552