1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * See file CREDITS for list of people who contributed to this 8 * project. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 23 * MA 02111-1307 USA 24 */ 25 26 #ifndef USE_HOSTCC 27 #include <common.h> 28 #include <watchdog.h> 29 30 #ifdef CONFIG_SHOW_BOOT_PROGRESS 31 #include <status_led.h> 32 #endif 33 34 #ifdef CONFIG_HAS_DATAFLASH 35 #include <dataflash.h> 36 #endif 37 38 #ifdef CONFIG_LOGBUFFER 39 #include <logbuff.h> 40 #endif 41 42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) 43 #include <rtc.h> 44 #endif 45 46 #include <image.h> 47 48 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 49 #include <fdt.h> 50 #include <libfdt.h> 51 #include <fdt_support.h> 52 #endif 53 54 #if defined(CONFIG_FIT) 55 #include <u-boot/md5.h> 56 #include <sha1.h> 57 58 static int fit_check_ramdisk(const void *fit, int os_noffset, 59 uint8_t arch, int verify); 60 #endif 61 62 #ifdef CONFIG_CMD_BDI 63 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 64 #endif 65 66 DECLARE_GLOBAL_DATA_PTR; 67 68 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 69 int verify); 70 #else 71 #include "mkimage.h" 72 #include <u-boot/md5.h> 73 #include <time.h> 74 #include <image.h> 75 #endif /* !USE_HOSTCC*/ 76 77 static const table_entry_t uimage_arch[] = { 78 { IH_ARCH_INVALID, NULL, "Invalid ARCH", }, 79 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 80 { IH_ARCH_ARM, "arm", "ARM", }, 81 { IH_ARCH_I386, "x86", "Intel x86", }, 82 { IH_ARCH_IA64, "ia64", "IA64", }, 83 { IH_ARCH_M68K, "m68k", "M68K", }, 84 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 85 { IH_ARCH_MIPS, "mips", "MIPS", }, 86 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 87 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 88 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 89 { IH_ARCH_PPC, "ppc", "PowerPC", }, 90 { IH_ARCH_S390, "s390", "IBM S390", }, 91 { IH_ARCH_SH, "sh", "SuperH", }, 92 { IH_ARCH_SPARC, "sparc", "SPARC", }, 93 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 94 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 95 { IH_ARCH_AVR32, "avr32", "AVR32", }, 96 { IH_ARCH_NDS32, "nds32", "NDS32", }, 97 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 98 { -1, "", "", }, 99 }; 100 101 static const table_entry_t uimage_os[] = { 102 { IH_OS_INVALID, NULL, "Invalid OS", }, 103 { IH_OS_LINUX, "linux", "Linux", }, 104 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 105 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 106 #endif 107 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 108 { IH_OS_OSE, "ose", "Enea OSE", }, 109 { IH_OS_RTEMS, "rtems", "RTEMS", }, 110 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 111 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 112 { IH_OS_QNX, "qnx", "QNX", }, 113 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 114 #endif 115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 117 #endif 118 #ifdef USE_HOSTCC 119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 120 { IH_OS_DELL, "dell", "Dell", }, 121 { IH_OS_ESIX, "esix", "Esix", }, 122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 123 { IH_OS_IRIX, "irix", "Irix", }, 124 { IH_OS_NCR, "ncr", "NCR", }, 125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 126 { IH_OS_PSOS, "psos", "pSOS", }, 127 { IH_OS_SCO, "sco", "SCO", }, 128 { IH_OS_SOLARIS, "solaris", "Solaris", }, 129 { IH_OS_SVR4, "svr4", "SVR4", }, 130 #endif 131 { -1, "", "", }, 132 }; 133 134 static const table_entry_t uimage_type[] = { 135 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 136 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 137 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 138 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 139 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 140 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 141 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 142 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 143 { IH_TYPE_INVALID, NULL, "Invalid Image", }, 144 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 145 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 146 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 147 { IH_TYPE_SCRIPT, "script", "Script", }, 148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 150 { -1, "", "", }, 151 }; 152 153 static const table_entry_t uimage_comp[] = { 154 { IH_COMP_NONE, "none", "uncompressed", }, 155 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 156 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 157 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 158 { IH_COMP_LZO, "lzo", "lzo compressed", }, 159 { -1, "", "", }, 160 }; 161 162 uint32_t crc32(uint32_t, const unsigned char *, uint); 163 uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint); 164 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 165 static void genimg_print_time(time_t timestamp); 166 #endif 167 168 /*****************************************************************************/ 169 /* Legacy format routines */ 170 /*****************************************************************************/ 171 int image_check_hcrc(const image_header_t *hdr) 172 { 173 ulong hcrc; 174 ulong len = image_get_header_size(); 175 image_header_t header; 176 177 /* Copy header so we can blank CRC field for re-calculation */ 178 memmove(&header, (char *)hdr, image_get_header_size()); 179 image_set_hcrc(&header, 0); 180 181 hcrc = crc32(0, (unsigned char *)&header, len); 182 183 return (hcrc == image_get_hcrc(hdr)); 184 } 185 186 int image_check_dcrc(const image_header_t *hdr) 187 { 188 ulong data = image_get_data(hdr); 189 ulong len = image_get_data_size(hdr); 190 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 191 192 return (dcrc == image_get_dcrc(hdr)); 193 } 194 195 /** 196 * image_multi_count - get component (sub-image) count 197 * @hdr: pointer to the header of the multi component image 198 * 199 * image_multi_count() returns number of components in a multi 200 * component image. 201 * 202 * Note: no checking of the image type is done, caller must pass 203 * a valid multi component image. 204 * 205 * returns: 206 * number of components 207 */ 208 ulong image_multi_count(const image_header_t *hdr) 209 { 210 ulong i, count = 0; 211 uint32_t *size; 212 213 /* get start of the image payload, which in case of multi 214 * component images that points to a table of component sizes */ 215 size = (uint32_t *)image_get_data(hdr); 216 217 /* count non empty slots */ 218 for (i = 0; size[i]; ++i) 219 count++; 220 221 return count; 222 } 223 224 /** 225 * image_multi_getimg - get component data address and size 226 * @hdr: pointer to the header of the multi component image 227 * @idx: index of the requested component 228 * @data: pointer to a ulong variable, will hold component data address 229 * @len: pointer to a ulong variable, will hold component size 230 * 231 * image_multi_getimg() returns size and data address for the requested 232 * component in a multi component image. 233 * 234 * Note: no checking of the image type is done, caller must pass 235 * a valid multi component image. 236 * 237 * returns: 238 * data address and size of the component, if idx is valid 239 * 0 in data and len, if idx is out of range 240 */ 241 void image_multi_getimg(const image_header_t *hdr, ulong idx, 242 ulong *data, ulong *len) 243 { 244 int i; 245 uint32_t *size; 246 ulong offset, count, img_data; 247 248 /* get number of component */ 249 count = image_multi_count(hdr); 250 251 /* get start of the image payload, which in case of multi 252 * component images that points to a table of component sizes */ 253 size = (uint32_t *)image_get_data(hdr); 254 255 /* get address of the proper component data start, which means 256 * skipping sizes table (add 1 for last, null entry) */ 257 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 258 259 if (idx < count) { 260 *len = uimage_to_cpu(size[idx]); 261 offset = 0; 262 263 /* go over all indices preceding requested component idx */ 264 for (i = 0; i < idx; i++) { 265 /* add up i-th component size, rounding up to 4 bytes */ 266 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 267 } 268 269 /* calculate idx-th component data address */ 270 *data = img_data + offset; 271 } else { 272 *len = 0; 273 *data = 0; 274 } 275 } 276 277 static void image_print_type(const image_header_t *hdr) 278 { 279 const char *os, *arch, *type, *comp; 280 281 os = genimg_get_os_name(image_get_os(hdr)); 282 arch = genimg_get_arch_name(image_get_arch(hdr)); 283 type = genimg_get_type_name(image_get_type(hdr)); 284 comp = genimg_get_comp_name(image_get_comp(hdr)); 285 286 printf("%s %s %s (%s)\n", arch, os, type, comp); 287 } 288 289 /** 290 * image_print_contents - prints out the contents of the legacy format image 291 * @ptr: pointer to the legacy format image header 292 * @p: pointer to prefix string 293 * 294 * image_print_contents() formats a multi line legacy image contents description. 295 * The routine prints out all header fields followed by the size/offset data 296 * for MULTI/SCRIPT images. 297 * 298 * returns: 299 * no returned results 300 */ 301 void image_print_contents(const void *ptr) 302 { 303 const image_header_t *hdr = (const image_header_t *)ptr; 304 const char *p; 305 306 #ifdef USE_HOSTCC 307 p = ""; 308 #else 309 p = " "; 310 #endif 311 312 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 313 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 314 printf("%sCreated: ", p); 315 genimg_print_time((time_t)image_get_time(hdr)); 316 #endif 317 printf("%sImage Type: ", p); 318 image_print_type(hdr); 319 printf("%sData Size: ", p); 320 genimg_print_size(image_get_data_size(hdr)); 321 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 322 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 323 324 if (image_check_type(hdr, IH_TYPE_MULTI) || 325 image_check_type(hdr, IH_TYPE_SCRIPT)) { 326 int i; 327 ulong data, len; 328 ulong count = image_multi_count(hdr); 329 330 printf("%sContents:\n", p); 331 for (i = 0; i < count; i++) { 332 image_multi_getimg(hdr, i, &data, &len); 333 334 printf("%s Image %d: ", p, i); 335 genimg_print_size(len); 336 337 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 338 /* 339 * the user may need to know offsets 340 * if planning to do something with 341 * multiple files 342 */ 343 printf("%s Offset = 0x%08lx\n", p, data); 344 } 345 } 346 } 347 } 348 349 350 #ifndef USE_HOSTCC 351 /** 352 * image_get_ramdisk - get and verify ramdisk image 353 * @rd_addr: ramdisk image start address 354 * @arch: expected ramdisk architecture 355 * @verify: checksum verification flag 356 * 357 * image_get_ramdisk() returns a pointer to the verified ramdisk image 358 * header. Routine receives image start address and expected architecture 359 * flag. Verification done covers data and header integrity and os/type/arch 360 * fields checking. 361 * 362 * If dataflash support is enabled routine checks for dataflash addresses 363 * and handles required dataflash reads. 364 * 365 * returns: 366 * pointer to a ramdisk image header, if image was found and valid 367 * otherwise, return NULL 368 */ 369 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 370 int verify) 371 { 372 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 373 374 if (!image_check_magic(rd_hdr)) { 375 puts("Bad Magic Number\n"); 376 show_boot_error(BOOTSTAGE_ID_RD_MAGIC); 377 return NULL; 378 } 379 380 if (!image_check_hcrc(rd_hdr)) { 381 puts("Bad Header Checksum\n"); 382 show_boot_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 383 return NULL; 384 } 385 386 show_boot_progress(BOOTSTAGE_ID_RD_MAGIC); 387 image_print_contents(rd_hdr); 388 389 if (verify) { 390 puts(" Verifying Checksum ... "); 391 if (!image_check_dcrc(rd_hdr)) { 392 puts("Bad Data CRC\n"); 393 show_boot_error(BOOTSTAGE_ID_RD_CHECKSUM); 394 return NULL; 395 } 396 puts("OK\n"); 397 } 398 399 show_boot_progress(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 400 401 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 402 !image_check_arch(rd_hdr, arch) || 403 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 404 printf("No Linux %s Ramdisk Image\n", 405 genimg_get_arch_name(arch)); 406 show_boot_error(BOOTSTAGE_ID_RAMDISK); 407 return NULL; 408 } 409 410 return rd_hdr; 411 } 412 #endif /* !USE_HOSTCC */ 413 414 /*****************************************************************************/ 415 /* Shared dual-format routines */ 416 /*****************************************************************************/ 417 #ifndef USE_HOSTCC 418 int getenv_yesno(char *var) 419 { 420 char *s = getenv(var); 421 return (s && (*s == 'n')) ? 0 : 1; 422 } 423 424 ulong getenv_bootm_low(void) 425 { 426 char *s = getenv("bootm_low"); 427 if (s) { 428 ulong tmp = simple_strtoul(s, NULL, 16); 429 return tmp; 430 } 431 432 #if defined(CONFIG_SYS_SDRAM_BASE) 433 return CONFIG_SYS_SDRAM_BASE; 434 #elif defined(CONFIG_ARM) 435 return gd->bd->bi_dram[0].start; 436 #else 437 return 0; 438 #endif 439 } 440 441 phys_size_t getenv_bootm_size(void) 442 { 443 phys_size_t tmp; 444 char *s = getenv("bootm_size"); 445 if (s) { 446 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 447 return tmp; 448 } 449 s = getenv("bootm_low"); 450 if (s) 451 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 452 else 453 tmp = 0; 454 455 456 #if defined(CONFIG_ARM) 457 return gd->bd->bi_dram[0].size - tmp; 458 #else 459 return gd->bd->bi_memsize - tmp; 460 #endif 461 } 462 463 phys_size_t getenv_bootm_mapsize(void) 464 { 465 phys_size_t tmp; 466 char *s = getenv("bootm_mapsize"); 467 if (s) { 468 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 469 return tmp; 470 } 471 472 #if defined(CONFIG_SYS_BOOTMAPSZ) 473 return CONFIG_SYS_BOOTMAPSZ; 474 #else 475 return getenv_bootm_size(); 476 #endif 477 } 478 479 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 480 { 481 if (to == from) 482 return; 483 484 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 485 while (len > 0) { 486 size_t tail = (len > chunksz) ? chunksz : len; 487 WATCHDOG_RESET(); 488 memmove(to, from, tail); 489 to += tail; 490 from += tail; 491 len -= tail; 492 } 493 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 494 memmove(to, from, len); 495 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 496 } 497 #endif /* !USE_HOSTCC */ 498 499 void genimg_print_size(uint32_t size) 500 { 501 #ifndef USE_HOSTCC 502 printf("%d Bytes = ", size); 503 print_size(size, "\n"); 504 #else 505 printf("%d Bytes = %.2f kB = %.2f MB\n", 506 size, (double)size / 1.024e3, 507 (double)size / 1.048576e6); 508 #endif 509 } 510 511 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 512 static void genimg_print_time(time_t timestamp) 513 { 514 #ifndef USE_HOSTCC 515 struct rtc_time tm; 516 517 to_tm(timestamp, &tm); 518 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 519 tm.tm_year, tm.tm_mon, tm.tm_mday, 520 tm.tm_hour, tm.tm_min, tm.tm_sec); 521 #else 522 printf("%s", ctime(×tamp)); 523 #endif 524 } 525 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */ 526 527 /** 528 * get_table_entry_name - translate entry id to long name 529 * @table: pointer to a translation table for entries of a specific type 530 * @msg: message to be returned when translation fails 531 * @id: entry id to be translated 532 * 533 * get_table_entry_name() will go over translation table trying to find 534 * entry that matches given id. If matching entry is found, its long 535 * name is returned to the caller. 536 * 537 * returns: 538 * long entry name if translation succeeds 539 * msg otherwise 540 */ 541 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 542 { 543 for (; table->id >= 0; ++table) { 544 if (table->id == id) 545 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 546 return table->lname; 547 #else 548 return table->lname + gd->reloc_off; 549 #endif 550 } 551 return (msg); 552 } 553 554 const char *genimg_get_os_name(uint8_t os) 555 { 556 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 557 } 558 559 const char *genimg_get_arch_name(uint8_t arch) 560 { 561 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 562 arch)); 563 } 564 565 const char *genimg_get_type_name(uint8_t type) 566 { 567 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 568 } 569 570 const char *genimg_get_comp_name(uint8_t comp) 571 { 572 return (get_table_entry_name(uimage_comp, "Unknown Compression", 573 comp)); 574 } 575 576 /** 577 * get_table_entry_id - translate short entry name to id 578 * @table: pointer to a translation table for entries of a specific type 579 * @table_name: to be used in case of error 580 * @name: entry short name to be translated 581 * 582 * get_table_entry_id() will go over translation table trying to find 583 * entry that matches given short name. If matching entry is found, 584 * its id returned to the caller. 585 * 586 * returns: 587 * entry id if translation succeeds 588 * -1 otherwise 589 */ 590 int get_table_entry_id(const table_entry_t *table, 591 const char *table_name, const char *name) 592 { 593 const table_entry_t *t; 594 #ifdef USE_HOSTCC 595 int first = 1; 596 597 for (t = table; t->id >= 0; ++t) { 598 if (t->sname && strcasecmp(t->sname, name) == 0) 599 return(t->id); 600 } 601 602 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name); 603 for (t = table; t->id >= 0; ++t) { 604 if (t->sname == NULL) 605 continue; 606 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname); 607 first = 0; 608 } 609 fprintf(stderr, "\n"); 610 #else 611 for (t = table; t->id >= 0; ++t) { 612 #ifdef CONFIG_NEEDS_MANUAL_RELOC 613 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0) 614 #else 615 if (t->sname && strcmp(t->sname, name) == 0) 616 #endif 617 return (t->id); 618 } 619 debug("Invalid %s Type: %s\n", table_name, name); 620 #endif /* USE_HOSTCC */ 621 return (-1); 622 } 623 624 int genimg_get_os_id(const char *name) 625 { 626 return (get_table_entry_id(uimage_os, "OS", name)); 627 } 628 629 int genimg_get_arch_id(const char *name) 630 { 631 return (get_table_entry_id(uimage_arch, "CPU", name)); 632 } 633 634 int genimg_get_type_id(const char *name) 635 { 636 return (get_table_entry_id(uimage_type, "Image", name)); 637 } 638 639 int genimg_get_comp_id(const char *name) 640 { 641 return (get_table_entry_id(uimage_comp, "Compression", name)); 642 } 643 644 #ifndef USE_HOSTCC 645 /** 646 * genimg_get_format - get image format type 647 * @img_addr: image start address 648 * 649 * genimg_get_format() checks whether provided address points to a valid 650 * legacy or FIT image. 651 * 652 * New uImage format and FDT blob are based on a libfdt. FDT blob 653 * may be passed directly or embedded in a FIT image. In both situations 654 * genimg_get_format() must be able to dectect libfdt header. 655 * 656 * returns: 657 * image format type or IMAGE_FORMAT_INVALID if no image is present 658 */ 659 int genimg_get_format(void *img_addr) 660 { 661 ulong format = IMAGE_FORMAT_INVALID; 662 const image_header_t *hdr; 663 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 664 char *fit_hdr; 665 #endif 666 667 hdr = (const image_header_t *)img_addr; 668 if (image_check_magic(hdr)) 669 format = IMAGE_FORMAT_LEGACY; 670 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 671 else { 672 fit_hdr = (char *)img_addr; 673 if (fdt_check_header(fit_hdr) == 0) 674 format = IMAGE_FORMAT_FIT; 675 } 676 #endif 677 678 return format; 679 } 680 681 /** 682 * genimg_get_image - get image from special storage (if necessary) 683 * @img_addr: image start address 684 * 685 * genimg_get_image() checks if provided image start adddress is located 686 * in a dataflash storage. If so, image is moved to a system RAM memory. 687 * 688 * returns: 689 * image start address after possible relocation from special storage 690 */ 691 ulong genimg_get_image(ulong img_addr) 692 { 693 ulong ram_addr = img_addr; 694 695 #ifdef CONFIG_HAS_DATAFLASH 696 ulong h_size, d_size; 697 698 if (addr_dataflash(img_addr)) { 699 /* ger RAM address */ 700 ram_addr = CONFIG_SYS_LOAD_ADDR; 701 702 /* get header size */ 703 h_size = image_get_header_size(); 704 #if defined(CONFIG_FIT) 705 if (sizeof(struct fdt_header) > h_size) 706 h_size = sizeof(struct fdt_header); 707 #endif 708 709 /* read in header */ 710 debug(" Reading image header from dataflash address " 711 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 712 713 read_dataflash(img_addr, h_size, (char *)ram_addr); 714 715 /* get data size */ 716 switch (genimg_get_format((void *)ram_addr)) { 717 case IMAGE_FORMAT_LEGACY: 718 d_size = image_get_data_size( 719 (const image_header_t *)ram_addr); 720 debug(" Legacy format image found at 0x%08lx, " 721 "size 0x%08lx\n", 722 ram_addr, d_size); 723 break; 724 #if defined(CONFIG_FIT) 725 case IMAGE_FORMAT_FIT: 726 d_size = fit_get_size((const void *)ram_addr) - h_size; 727 debug(" FIT/FDT format image found at 0x%08lx, " 728 "size 0x%08lx\n", 729 ram_addr, d_size); 730 break; 731 #endif 732 default: 733 printf(" No valid image found at 0x%08lx\n", 734 img_addr); 735 return ram_addr; 736 } 737 738 /* read in image data */ 739 debug(" Reading image remaining data from dataflash address " 740 "%08lx to RAM address %08lx\n", img_addr + h_size, 741 ram_addr + h_size); 742 743 read_dataflash(img_addr + h_size, d_size, 744 (char *)(ram_addr + h_size)); 745 746 } 747 #endif /* CONFIG_HAS_DATAFLASH */ 748 749 return ram_addr; 750 } 751 752 /** 753 * fit_has_config - check if there is a valid FIT configuration 754 * @images: pointer to the bootm command headers structure 755 * 756 * fit_has_config() checks if there is a FIT configuration in use 757 * (if FTI support is present). 758 * 759 * returns: 760 * 0, no FIT support or no configuration found 761 * 1, configuration found 762 */ 763 int genimg_has_config(bootm_headers_t *images) 764 { 765 #if defined(CONFIG_FIT) 766 if (images->fit_uname_cfg) 767 return 1; 768 #endif 769 return 0; 770 } 771 772 /** 773 * boot_get_ramdisk - main ramdisk handling routine 774 * @argc: command argument count 775 * @argv: command argument list 776 * @images: pointer to the bootm images structure 777 * @arch: expected ramdisk architecture 778 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 779 * @rd_end: pointer to a ulong variable, will hold ramdisk end 780 * 781 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 782 * Curently supported are the following ramdisk sources: 783 * - multicomponent kernel/ramdisk image, 784 * - commandline provided address of decicated ramdisk image. 785 * 786 * returns: 787 * 0, if ramdisk image was found and valid, or skiped 788 * rd_start and rd_end are set to ramdisk start/end addresses if 789 * ramdisk image is found and valid 790 * 791 * 1, if ramdisk image is found but corrupted, or invalid 792 * rd_start and rd_end are set to 0 if no ramdisk exists 793 */ 794 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 795 uint8_t arch, ulong *rd_start, ulong *rd_end) 796 { 797 ulong rd_addr, rd_load; 798 ulong rd_data, rd_len; 799 const image_header_t *rd_hdr; 800 #if defined(CONFIG_FIT) 801 void *fit_hdr; 802 const char *fit_uname_config = NULL; 803 const char *fit_uname_ramdisk = NULL; 804 ulong default_addr; 805 int rd_noffset; 806 int cfg_noffset; 807 const void *data; 808 size_t size; 809 #endif 810 811 *rd_start = 0; 812 *rd_end = 0; 813 814 /* 815 * Look for a '-' which indicates to ignore the 816 * ramdisk argument 817 */ 818 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) { 819 debug("## Skipping init Ramdisk\n"); 820 rd_len = rd_data = 0; 821 } else if (argc >= 3 || genimg_has_config(images)) { 822 #if defined(CONFIG_FIT) 823 if (argc >= 3) { 824 /* 825 * If the init ramdisk comes from the FIT image and 826 * the FIT image address is omitted in the command 827 * line argument, try to use os FIT image address or 828 * default load address. 829 */ 830 if (images->fit_uname_os) 831 default_addr = (ulong)images->fit_hdr_os; 832 else 833 default_addr = load_addr; 834 835 if (fit_parse_conf(argv[2], default_addr, 836 &rd_addr, &fit_uname_config)) { 837 debug("* ramdisk: config '%s' from image at " 838 "0x%08lx\n", 839 fit_uname_config, rd_addr); 840 } else if (fit_parse_subimage(argv[2], default_addr, 841 &rd_addr, &fit_uname_ramdisk)) { 842 debug("* ramdisk: subimage '%s' from image at " 843 "0x%08lx\n", 844 fit_uname_ramdisk, rd_addr); 845 } else 846 #endif 847 { 848 rd_addr = simple_strtoul(argv[2], NULL, 16); 849 debug("* ramdisk: cmdline image address = " 850 "0x%08lx\n", 851 rd_addr); 852 } 853 #if defined(CONFIG_FIT) 854 } else { 855 /* use FIT configuration provided in first bootm 856 * command argument 857 */ 858 rd_addr = (ulong)images->fit_hdr_os; 859 fit_uname_config = images->fit_uname_cfg; 860 debug("* ramdisk: using config '%s' from image " 861 "at 0x%08lx\n", 862 fit_uname_config, rd_addr); 863 864 /* 865 * Check whether configuration has ramdisk defined, 866 * if not, don't try to use it, quit silently. 867 */ 868 fit_hdr = (void *)rd_addr; 869 cfg_noffset = fit_conf_get_node(fit_hdr, 870 fit_uname_config); 871 if (cfg_noffset < 0) { 872 debug("* ramdisk: no such config\n"); 873 return 1; 874 } 875 876 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 877 cfg_noffset); 878 if (rd_noffset < 0) { 879 debug("* ramdisk: no ramdisk in config\n"); 880 return 0; 881 } 882 } 883 #endif 884 885 /* copy from dataflash if needed */ 886 rd_addr = genimg_get_image(rd_addr); 887 888 /* 889 * Check if there is an initrd image at the 890 * address provided in the second bootm argument 891 * check image type, for FIT images get FIT node. 892 */ 893 switch (genimg_get_format((void *)rd_addr)) { 894 case IMAGE_FORMAT_LEGACY: 895 printf("## Loading init Ramdisk from Legacy " 896 "Image at %08lx ...\n", rd_addr); 897 898 show_boot_progress(BOOTSTAGE_ID_CHECK_RAMDISK); 899 rd_hdr = image_get_ramdisk(rd_addr, arch, 900 images->verify); 901 902 if (rd_hdr == NULL) 903 return 1; 904 905 rd_data = image_get_data(rd_hdr); 906 rd_len = image_get_data_size(rd_hdr); 907 rd_load = image_get_load(rd_hdr); 908 break; 909 #if defined(CONFIG_FIT) 910 case IMAGE_FORMAT_FIT: 911 fit_hdr = (void *)rd_addr; 912 printf("## Loading init Ramdisk from FIT " 913 "Image at %08lx ...\n", rd_addr); 914 915 show_boot_progress(120); 916 if (!fit_check_format(fit_hdr)) { 917 puts("Bad FIT ramdisk image format!\n"); 918 show_boot_error(120); 919 return 1; 920 } 921 show_boot_progress(121); 922 923 if (!fit_uname_ramdisk) { 924 /* 925 * no ramdisk image node unit name, try to get config 926 * node first. If config unit node name is NULL 927 * fit_conf_get_node() will try to find default config node 928 */ 929 show_boot_progress(122); 930 cfg_noffset = fit_conf_get_node(fit_hdr, 931 fit_uname_config); 932 if (cfg_noffset < 0) { 933 puts("Could not find configuration " 934 "node\n"); 935 show_boot_error(122); 936 return 1; 937 } 938 fit_uname_config = fdt_get_name(fit_hdr, 939 cfg_noffset, NULL); 940 printf(" Using '%s' configuration\n", 941 fit_uname_config); 942 943 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 944 cfg_noffset); 945 fit_uname_ramdisk = fit_get_name(fit_hdr, 946 rd_noffset, NULL); 947 } else { 948 /* get ramdisk component image node offset */ 949 show_boot_progress(123); 950 rd_noffset = fit_image_get_node(fit_hdr, 951 fit_uname_ramdisk); 952 } 953 if (rd_noffset < 0) { 954 puts("Could not find subimage node\n"); 955 show_boot_error(124); 956 return 1; 957 } 958 959 printf(" Trying '%s' ramdisk subimage\n", 960 fit_uname_ramdisk); 961 962 show_boot_progress(125); 963 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch, 964 images->verify)) 965 return 1; 966 967 /* get ramdisk image data address and length */ 968 if (fit_image_get_data(fit_hdr, rd_noffset, &data, 969 &size)) { 970 puts("Could not find ramdisk subimage data!\n"); 971 show_boot_error(127); 972 return 1; 973 } 974 show_boot_progress(128); 975 976 rd_data = (ulong)data; 977 rd_len = size; 978 979 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) { 980 puts("Can't get ramdisk subimage load " 981 "address!\n"); 982 show_boot_error(129); 983 return 1; 984 } 985 show_boot_progress(129); 986 987 images->fit_hdr_rd = fit_hdr; 988 images->fit_uname_rd = fit_uname_ramdisk; 989 images->fit_noffset_rd = rd_noffset; 990 break; 991 #endif 992 default: 993 puts("Wrong Ramdisk Image Format\n"); 994 rd_data = rd_len = rd_load = 0; 995 return 1; 996 } 997 } else if (images->legacy_hdr_valid && 998 image_check_type(&images->legacy_hdr_os_copy, 999 IH_TYPE_MULTI)) { 1000 1001 /* 1002 * Now check if we have a legacy mult-component image, 1003 * get second entry data start address and len. 1004 */ 1005 show_boot_progress(BOOTSTAGE_ID_RAMDISK); 1006 printf("## Loading init Ramdisk from multi component " 1007 "Legacy Image at %08lx ...\n", 1008 (ulong)images->legacy_hdr_os); 1009 1010 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1011 } else { 1012 /* 1013 * no initrd image 1014 */ 1015 show_boot_progress(BOOTSTAGE_ID_NO_RAMDISK); 1016 rd_len = rd_data = 0; 1017 } 1018 1019 if (!rd_data) { 1020 debug("## No init Ramdisk\n"); 1021 } else { 1022 *rd_start = rd_data; 1023 *rd_end = rd_data + rd_len; 1024 } 1025 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1026 *rd_start, *rd_end); 1027 1028 return 0; 1029 } 1030 1031 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1032 /** 1033 * boot_ramdisk_high - relocate init ramdisk 1034 * @lmb: pointer to lmb handle, will be used for memory mgmt 1035 * @rd_data: ramdisk data start address 1036 * @rd_len: ramdisk data length 1037 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1038 * start address (after possible relocation) 1039 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1040 * end address (after possible relocation) 1041 * 1042 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement 1043 * variable and if requested ramdisk data is moved to a specified location. 1044 * 1045 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1046 * start/end addresses if ramdisk image start and len were provided, 1047 * otherwise set initrd_start and initrd_end set to zeros. 1048 * 1049 * returns: 1050 * 0 - success 1051 * -1 - failure 1052 */ 1053 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1054 ulong *initrd_start, ulong *initrd_end) 1055 { 1056 char *s; 1057 ulong initrd_high; 1058 int initrd_copy_to_ram = 1; 1059 1060 if ((s = getenv("initrd_high")) != NULL) { 1061 /* a value of "no" or a similar string will act like 0, 1062 * turning the "load high" feature off. This is intentional. 1063 */ 1064 initrd_high = simple_strtoul(s, NULL, 16); 1065 if (initrd_high == ~0) 1066 initrd_copy_to_ram = 0; 1067 } else { 1068 /* not set, no restrictions to load high */ 1069 initrd_high = ~0; 1070 } 1071 1072 1073 #ifdef CONFIG_LOGBUFFER 1074 /* Prevent initrd from overwriting logbuffer */ 1075 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1076 #endif 1077 1078 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1079 initrd_high, initrd_copy_to_ram); 1080 1081 if (rd_data) { 1082 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1083 debug(" in-place initrd\n"); 1084 *initrd_start = rd_data; 1085 *initrd_end = rd_data + rd_len; 1086 lmb_reserve(lmb, rd_data, rd_len); 1087 } else { 1088 if (initrd_high) 1089 *initrd_start = (ulong)lmb_alloc_base(lmb, 1090 rd_len, 0x1000, initrd_high); 1091 else 1092 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1093 0x1000); 1094 1095 if (*initrd_start == 0) { 1096 puts("ramdisk - allocation error\n"); 1097 goto error; 1098 } 1099 show_boot_progress(BOOTSTAGE_ID_COPY_RAMDISK); 1100 1101 *initrd_end = *initrd_start + rd_len; 1102 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1103 *initrd_start, *initrd_end); 1104 1105 memmove_wd((void *)*initrd_start, 1106 (void *)rd_data, rd_len, CHUNKSZ); 1107 1108 #ifdef CONFIG_MP 1109 /* 1110 * Ensure the image is flushed to memory to handle 1111 * AMP boot scenarios in which we might not be 1112 * HW cache coherent 1113 */ 1114 flush_cache((unsigned long)*initrd_start, rd_len); 1115 #endif 1116 puts("OK\n"); 1117 } 1118 } else { 1119 *initrd_start = 0; 1120 *initrd_end = 0; 1121 } 1122 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1123 *initrd_start, *initrd_end); 1124 1125 return 0; 1126 1127 error: 1128 return -1; 1129 } 1130 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1131 1132 #ifdef CONFIG_OF_LIBFDT 1133 static void fdt_error(const char *msg) 1134 { 1135 puts("ERROR: "); 1136 puts(msg); 1137 puts(" - must RESET the board to recover.\n"); 1138 } 1139 1140 static const image_header_t *image_get_fdt(ulong fdt_addr) 1141 { 1142 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr; 1143 1144 image_print_contents(fdt_hdr); 1145 1146 puts(" Verifying Checksum ... "); 1147 if (!image_check_hcrc(fdt_hdr)) { 1148 fdt_error("fdt header checksum invalid"); 1149 return NULL; 1150 } 1151 1152 if (!image_check_dcrc(fdt_hdr)) { 1153 fdt_error("fdt checksum invalid"); 1154 return NULL; 1155 } 1156 puts("OK\n"); 1157 1158 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) { 1159 fdt_error("uImage is not a fdt"); 1160 return NULL; 1161 } 1162 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) { 1163 fdt_error("uImage is compressed"); 1164 return NULL; 1165 } 1166 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) { 1167 fdt_error("uImage data is not a fdt"); 1168 return NULL; 1169 } 1170 return fdt_hdr; 1171 } 1172 1173 /** 1174 * fit_check_fdt - verify FIT format FDT subimage 1175 * @fit_hdr: pointer to the FIT header 1176 * fdt_noffset: FDT subimage node offset within FIT image 1177 * @verify: data CRC verification flag 1178 * 1179 * fit_check_fdt() verifies integrity of the FDT subimage and from 1180 * specified FIT image. 1181 * 1182 * returns: 1183 * 1, on success 1184 * 0, on failure 1185 */ 1186 #if defined(CONFIG_FIT) 1187 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify) 1188 { 1189 fit_image_print(fit, fdt_noffset, " "); 1190 1191 if (verify) { 1192 puts(" Verifying Hash Integrity ... "); 1193 if (!fit_image_check_hashes(fit, fdt_noffset)) { 1194 fdt_error("Bad Data Hash"); 1195 return 0; 1196 } 1197 puts("OK\n"); 1198 } 1199 1200 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) { 1201 fdt_error("Not a FDT image"); 1202 return 0; 1203 } 1204 1205 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) { 1206 fdt_error("FDT image is compressed"); 1207 return 0; 1208 } 1209 1210 return 1; 1211 } 1212 #endif /* CONFIG_FIT */ 1213 1214 #ifndef CONFIG_SYS_FDT_PAD 1215 #define CONFIG_SYS_FDT_PAD 0x3000 1216 #endif 1217 1218 #if defined(CONFIG_OF_LIBFDT) 1219 /** 1220 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable 1221 * @lmb: pointer to lmb handle, will be used for memory mgmt 1222 * @fdt_blob: pointer to fdt blob base address 1223 * 1224 * Adds the memreserve regions in the dtb to the lmb block. Adding the 1225 * memreserve regions prevents u-boot from using them to store the initrd 1226 * or the fdt blob. 1227 */ 1228 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob) 1229 { 1230 uint64_t addr, size; 1231 int i, total; 1232 1233 if (fdt_check_header(fdt_blob) != 0) 1234 return; 1235 1236 total = fdt_num_mem_rsv(fdt_blob); 1237 for (i = 0; i < total; i++) { 1238 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0) 1239 continue; 1240 printf(" reserving fdt memory region: addr=%llx size=%llx\n", 1241 (unsigned long long)addr, (unsigned long long)size); 1242 lmb_reserve(lmb, addr, size); 1243 } 1244 } 1245 1246 /** 1247 * boot_relocate_fdt - relocate flat device tree 1248 * @lmb: pointer to lmb handle, will be used for memory mgmt 1249 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1250 * @of_size: pointer to a ulong variable, will hold fdt length 1251 * 1252 * boot_relocate_fdt() allocates a region of memory within the bootmap and 1253 * relocates the of_flat_tree into that region, even if the fdt is already in 1254 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD 1255 * bytes. 1256 * 1257 * of_flat_tree and of_size are set to final (after relocation) values 1258 * 1259 * returns: 1260 * 0 - success 1261 * 1 - failure 1262 */ 1263 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) 1264 { 1265 void *fdt_blob = *of_flat_tree; 1266 void *of_start = 0; 1267 char *fdt_high; 1268 ulong of_len = 0; 1269 int err; 1270 int disable_relocation = 0; 1271 1272 /* nothing to do */ 1273 if (*of_size == 0) 1274 return 0; 1275 1276 if (fdt_check_header(fdt_blob) != 0) { 1277 fdt_error("image is not a fdt"); 1278 goto error; 1279 } 1280 1281 /* position on a 4K boundary before the alloc_current */ 1282 /* Pad the FDT by a specified amount */ 1283 of_len = *of_size + CONFIG_SYS_FDT_PAD; 1284 1285 /* If fdt_high is set use it to select the relocation address */ 1286 fdt_high = getenv("fdt_high"); 1287 if (fdt_high) { 1288 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); 1289 1290 if (((ulong) desired_addr) == ~0UL) { 1291 /* All ones means use fdt in place */ 1292 of_start = fdt_blob; 1293 lmb_reserve(lmb, (ulong)of_start, of_len); 1294 disable_relocation = 1; 1295 } else if (desired_addr) { 1296 of_start = 1297 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1298 (ulong)desired_addr); 1299 if (of_start == 0) { 1300 puts("Failed using fdt_high value for Device Tree"); 1301 goto error; 1302 } 1303 } else { 1304 of_start = 1305 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); 1306 } 1307 } else { 1308 of_start = 1309 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1310 getenv_bootm_mapsize() 1311 + getenv_bootm_low()); 1312 } 1313 1314 if (of_start == 0) { 1315 puts("device tree - allocation error\n"); 1316 goto error; 1317 } 1318 1319 if (disable_relocation) { 1320 /* We assume there is space after the existing fdt to use for padding */ 1321 fdt_set_totalsize(of_start, of_len); 1322 printf(" Using Device Tree in place at %p, end %p\n", 1323 of_start, of_start + of_len - 1); 1324 } else { 1325 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", 1326 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); 1327 1328 printf(" Loading Device Tree to %p, end %p ... ", 1329 of_start, of_start + of_len - 1); 1330 1331 err = fdt_open_into(fdt_blob, of_start, of_len); 1332 if (err != 0) { 1333 fdt_error("fdt move failed"); 1334 goto error; 1335 } 1336 puts("OK\n"); 1337 } 1338 1339 *of_flat_tree = of_start; 1340 *of_size = of_len; 1341 1342 set_working_fdt_addr(*of_flat_tree); 1343 return 0; 1344 1345 error: 1346 return 1; 1347 } 1348 #endif /* CONFIG_OF_LIBFDT */ 1349 1350 /** 1351 * boot_get_fdt - main fdt handling routine 1352 * @argc: command argument count 1353 * @argv: command argument list 1354 * @images: pointer to the bootm images structure 1355 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1356 * @of_size: pointer to a ulong variable, will hold fdt length 1357 * 1358 * boot_get_fdt() is responsible for finding a valid flat device tree image. 1359 * Curently supported are the following ramdisk sources: 1360 * - multicomponent kernel/ramdisk image, 1361 * - commandline provided address of decicated ramdisk image. 1362 * 1363 * returns: 1364 * 0, if fdt image was found and valid, or skipped 1365 * of_flat_tree and of_size are set to fdt start address and length if 1366 * fdt image is found and valid 1367 * 1368 * 1, if fdt image is found but corrupted 1369 * of_flat_tree and of_size are set to 0 if no fdt exists 1370 */ 1371 int boot_get_fdt(int flag, int argc, char * const argv[], 1372 bootm_headers_t *images, char **of_flat_tree, ulong *of_size) 1373 { 1374 const image_header_t *fdt_hdr; 1375 ulong fdt_addr; 1376 char *fdt_blob = NULL; 1377 ulong image_start, image_data, image_end; 1378 ulong load_start, load_end; 1379 #if defined(CONFIG_FIT) 1380 void *fit_hdr; 1381 const char *fit_uname_config = NULL; 1382 const char *fit_uname_fdt = NULL; 1383 ulong default_addr; 1384 int cfg_noffset; 1385 int fdt_noffset; 1386 const void *data; 1387 size_t size; 1388 #endif 1389 1390 *of_flat_tree = NULL; 1391 *of_size = 0; 1392 1393 if (argc > 3 || genimg_has_config(images)) { 1394 #if defined(CONFIG_FIT) 1395 if (argc > 3) { 1396 /* 1397 * If the FDT blob comes from the FIT image and the 1398 * FIT image address is omitted in the command line 1399 * argument, try to use ramdisk or os FIT image 1400 * address or default load address. 1401 */ 1402 if (images->fit_uname_rd) 1403 default_addr = (ulong)images->fit_hdr_rd; 1404 else if (images->fit_uname_os) 1405 default_addr = (ulong)images->fit_hdr_os; 1406 else 1407 default_addr = load_addr; 1408 1409 if (fit_parse_conf(argv[3], default_addr, 1410 &fdt_addr, &fit_uname_config)) { 1411 debug("* fdt: config '%s' from image at " 1412 "0x%08lx\n", 1413 fit_uname_config, fdt_addr); 1414 } else if (fit_parse_subimage(argv[3], default_addr, 1415 &fdt_addr, &fit_uname_fdt)) { 1416 debug("* fdt: subimage '%s' from image at " 1417 "0x%08lx\n", 1418 fit_uname_fdt, fdt_addr); 1419 } else 1420 #endif 1421 { 1422 fdt_addr = simple_strtoul(argv[3], NULL, 16); 1423 debug("* fdt: cmdline image address = " 1424 "0x%08lx\n", 1425 fdt_addr); 1426 } 1427 #if defined(CONFIG_FIT) 1428 } else { 1429 /* use FIT configuration provided in first bootm 1430 * command argument 1431 */ 1432 fdt_addr = (ulong)images->fit_hdr_os; 1433 fit_uname_config = images->fit_uname_cfg; 1434 debug("* fdt: using config '%s' from image " 1435 "at 0x%08lx\n", 1436 fit_uname_config, fdt_addr); 1437 1438 /* 1439 * Check whether configuration has FDT blob defined, 1440 * if not quit silently. 1441 */ 1442 fit_hdr = (void *)fdt_addr; 1443 cfg_noffset = fit_conf_get_node(fit_hdr, 1444 fit_uname_config); 1445 if (cfg_noffset < 0) { 1446 debug("* fdt: no such config\n"); 1447 return 0; 1448 } 1449 1450 fdt_noffset = fit_conf_get_fdt_node(fit_hdr, 1451 cfg_noffset); 1452 if (fdt_noffset < 0) { 1453 debug("* fdt: no fdt in config\n"); 1454 return 0; 1455 } 1456 } 1457 #endif 1458 1459 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n", 1460 fdt_addr); 1461 1462 /* copy from dataflash if needed */ 1463 fdt_addr = genimg_get_image(fdt_addr); 1464 1465 /* 1466 * Check if there is an FDT image at the 1467 * address provided in the second bootm argument 1468 * check image type, for FIT images get a FIT node. 1469 */ 1470 switch (genimg_get_format((void *)fdt_addr)) { 1471 case IMAGE_FORMAT_LEGACY: 1472 /* verify fdt_addr points to a valid image header */ 1473 printf("## Flattened Device Tree from Legacy Image " 1474 "at %08lx\n", 1475 fdt_addr); 1476 fdt_hdr = image_get_fdt(fdt_addr); 1477 if (!fdt_hdr) 1478 goto error; 1479 1480 /* 1481 * move image data to the load address, 1482 * make sure we don't overwrite initial image 1483 */ 1484 image_start = (ulong)fdt_hdr; 1485 image_data = (ulong)image_get_data(fdt_hdr); 1486 image_end = image_get_image_end(fdt_hdr); 1487 1488 load_start = image_get_load(fdt_hdr); 1489 load_end = load_start + image_get_data_size(fdt_hdr); 1490 1491 if (load_start == image_start || 1492 load_start == image_data) { 1493 fdt_blob = (char *)image_data; 1494 break; 1495 } 1496 1497 if ((load_start < image_end) && (load_end > image_start)) { 1498 fdt_error("fdt overwritten"); 1499 goto error; 1500 } 1501 1502 debug(" Loading FDT from 0x%08lx to 0x%08lx\n", 1503 image_data, load_start); 1504 1505 memmove((void *)load_start, 1506 (void *)image_data, 1507 image_get_data_size(fdt_hdr)); 1508 1509 fdt_blob = (char *)load_start; 1510 break; 1511 case IMAGE_FORMAT_FIT: 1512 /* 1513 * This case will catch both: new uImage format 1514 * (libfdt based) and raw FDT blob (also libfdt 1515 * based). 1516 */ 1517 #if defined(CONFIG_FIT) 1518 /* check FDT blob vs FIT blob */ 1519 if (fit_check_format((const void *)fdt_addr)) { 1520 /* 1521 * FIT image 1522 */ 1523 fit_hdr = (void *)fdt_addr; 1524 printf("## Flattened Device Tree from FIT " 1525 "Image at %08lx\n", 1526 fdt_addr); 1527 1528 if (!fit_uname_fdt) { 1529 /* 1530 * no FDT blob image node unit name, 1531 * try to get config node first. If 1532 * config unit node name is NULL 1533 * fit_conf_get_node() will try to 1534 * find default config node 1535 */ 1536 cfg_noffset = fit_conf_get_node(fit_hdr, 1537 fit_uname_config); 1538 1539 if (cfg_noffset < 0) { 1540 fdt_error("Could not find " 1541 "configuration " 1542 "node\n"); 1543 goto error; 1544 } 1545 1546 fit_uname_config = fdt_get_name(fit_hdr, 1547 cfg_noffset, NULL); 1548 printf(" Using '%s' configuration\n", 1549 fit_uname_config); 1550 1551 fdt_noffset = fit_conf_get_fdt_node( 1552 fit_hdr, 1553 cfg_noffset); 1554 fit_uname_fdt = fit_get_name(fit_hdr, 1555 fdt_noffset, NULL); 1556 } else { 1557 /* get FDT component image node offset */ 1558 fdt_noffset = fit_image_get_node( 1559 fit_hdr, 1560 fit_uname_fdt); 1561 } 1562 if (fdt_noffset < 0) { 1563 fdt_error("Could not find subimage " 1564 "node\n"); 1565 goto error; 1566 } 1567 1568 printf(" Trying '%s' FDT blob subimage\n", 1569 fit_uname_fdt); 1570 1571 if (!fit_check_fdt(fit_hdr, fdt_noffset, 1572 images->verify)) 1573 goto error; 1574 1575 /* get ramdisk image data address and length */ 1576 if (fit_image_get_data(fit_hdr, fdt_noffset, 1577 &data, &size)) { 1578 fdt_error("Could not find FDT " 1579 "subimage data"); 1580 goto error; 1581 } 1582 1583 /* verift that image data is a proper FDT blob */ 1584 if (fdt_check_header((char *)data) != 0) { 1585 fdt_error("Subimage data is not a FTD"); 1586 goto error; 1587 } 1588 1589 /* 1590 * move image data to the load address, 1591 * make sure we don't overwrite initial image 1592 */ 1593 image_start = (ulong)fit_hdr; 1594 image_end = fit_get_end(fit_hdr); 1595 1596 if (fit_image_get_load(fit_hdr, fdt_noffset, 1597 &load_start) == 0) { 1598 load_end = load_start + size; 1599 1600 if ((load_start < image_end) && 1601 (load_end > image_start)) { 1602 fdt_error("FDT overwritten"); 1603 goto error; 1604 } 1605 1606 printf(" Loading FDT from 0x%08lx " 1607 "to 0x%08lx\n", 1608 (ulong)data, 1609 load_start); 1610 1611 memmove((void *)load_start, 1612 (void *)data, size); 1613 1614 fdt_blob = (char *)load_start; 1615 } else { 1616 fdt_blob = (char *)data; 1617 } 1618 1619 images->fit_hdr_fdt = fit_hdr; 1620 images->fit_uname_fdt = fit_uname_fdt; 1621 images->fit_noffset_fdt = fdt_noffset; 1622 break; 1623 } else 1624 #endif 1625 { 1626 /* 1627 * FDT blob 1628 */ 1629 fdt_blob = (char *)fdt_addr; 1630 debug("* fdt: raw FDT blob\n"); 1631 printf("## Flattened Device Tree blob at " 1632 "%08lx\n", (long)fdt_blob); 1633 } 1634 break; 1635 default: 1636 puts("ERROR: Did not find a cmdline Flattened Device " 1637 "Tree\n"); 1638 goto error; 1639 } 1640 1641 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob); 1642 1643 } else if (images->legacy_hdr_valid && 1644 image_check_type(&images->legacy_hdr_os_copy, 1645 IH_TYPE_MULTI)) { 1646 1647 ulong fdt_data, fdt_len; 1648 1649 /* 1650 * Now check if we have a legacy multi-component image, 1651 * get second entry data start address and len. 1652 */ 1653 printf("## Flattened Device Tree from multi " 1654 "component Image at %08lX\n", 1655 (ulong)images->legacy_hdr_os); 1656 1657 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data, 1658 &fdt_len); 1659 if (fdt_len) { 1660 1661 fdt_blob = (char *)fdt_data; 1662 printf(" Booting using the fdt at 0x%p\n", fdt_blob); 1663 1664 if (fdt_check_header(fdt_blob) != 0) { 1665 fdt_error("image is not a fdt"); 1666 goto error; 1667 } 1668 1669 if (fdt_totalsize(fdt_blob) != fdt_len) { 1670 fdt_error("fdt size != image size"); 1671 goto error; 1672 } 1673 } else { 1674 debug("## No Flattened Device Tree\n"); 1675 return 0; 1676 } 1677 } else { 1678 debug("## No Flattened Device Tree\n"); 1679 return 0; 1680 } 1681 1682 *of_flat_tree = fdt_blob; 1683 *of_size = fdt_totalsize(fdt_blob); 1684 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n", 1685 (ulong)*of_flat_tree, *of_size); 1686 1687 return 0; 1688 1689 error: 1690 *of_flat_tree = 0; 1691 *of_size = 0; 1692 return 1; 1693 } 1694 #endif /* CONFIG_OF_LIBFDT */ 1695 1696 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1697 /** 1698 * boot_get_cmdline - allocate and initialize kernel cmdline 1699 * @lmb: pointer to lmb handle, will be used for memory mgmt 1700 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1701 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1702 * 1703 * boot_get_cmdline() allocates space for kernel command line below 1704 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt 1705 * variable is present its contents is copied to allocated kernel 1706 * command line. 1707 * 1708 * returns: 1709 * 0 - success 1710 * -1 - failure 1711 */ 1712 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1713 { 1714 char *cmdline; 1715 char *s; 1716 1717 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1718 getenv_bootm_mapsize() + getenv_bootm_low()); 1719 1720 if (cmdline == NULL) 1721 return -1; 1722 1723 if ((s = getenv("bootargs")) == NULL) 1724 s = ""; 1725 1726 strcpy(cmdline, s); 1727 1728 *cmd_start = (ulong) & cmdline[0]; 1729 *cmd_end = *cmd_start + strlen(cmdline); 1730 1731 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1732 1733 return 0; 1734 } 1735 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1736 1737 #ifdef CONFIG_SYS_BOOT_GET_KBD 1738 /** 1739 * boot_get_kbd - allocate and initialize kernel copy of board info 1740 * @lmb: pointer to lmb handle, will be used for memory mgmt 1741 * @kbd: double pointer to board info data 1742 * 1743 * boot_get_kbd() allocates space for kernel copy of board info data below 1744 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1745 * with the current u-boot board info data. 1746 * 1747 * returns: 1748 * 0 - success 1749 * -1 - failure 1750 */ 1751 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1752 { 1753 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1754 getenv_bootm_mapsize() + getenv_bootm_low()); 1755 if (*kbd == NULL) 1756 return -1; 1757 1758 **kbd = *(gd->bd); 1759 1760 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1761 1762 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1763 do_bdinfo(NULL, 0, 0, NULL); 1764 #endif 1765 1766 return 0; 1767 } 1768 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1769 #endif /* !USE_HOSTCC */ 1770 1771 #if defined(CONFIG_FIT) 1772 /*****************************************************************************/ 1773 /* New uImage format routines */ 1774 /*****************************************************************************/ 1775 #ifndef USE_HOSTCC 1776 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr, 1777 ulong *addr, const char **name) 1778 { 1779 const char *sep; 1780 1781 *addr = addr_curr; 1782 *name = NULL; 1783 1784 sep = strchr(spec, sepc); 1785 if (sep) { 1786 if (sep - spec > 0) 1787 *addr = simple_strtoul(spec, NULL, 16); 1788 1789 *name = sep + 1; 1790 return 1; 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * fit_parse_conf - parse FIT configuration spec 1798 * @spec: input string, containing configuration spec 1799 * @add_curr: current image address (to be used as a possible default) 1800 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1801 * configuration 1802 * @conf_name double pointer to a char, will hold pointer to a configuration 1803 * unit name 1804 * 1805 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>, 1806 * where <addr> is a FIT image address that contains configuration 1807 * with a <conf> unit name. 1808 * 1809 * Address part is optional, and if omitted default add_curr will 1810 * be used instead. 1811 * 1812 * returns: 1813 * 1 if spec is a valid configuration string, 1814 * addr and conf_name are set accordingly 1815 * 0 otherwise 1816 */ 1817 inline int fit_parse_conf(const char *spec, ulong addr_curr, 1818 ulong *addr, const char **conf_name) 1819 { 1820 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name); 1821 } 1822 1823 /** 1824 * fit_parse_subimage - parse FIT subimage spec 1825 * @spec: input string, containing subimage spec 1826 * @add_curr: current image address (to be used as a possible default) 1827 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1828 * subimage 1829 * @image_name: double pointer to a char, will hold pointer to a subimage name 1830 * 1831 * fit_parse_subimage() expects subimage spec in the for of 1832 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains 1833 * subimage with a <subimg> unit name. 1834 * 1835 * Address part is optional, and if omitted default add_curr will 1836 * be used instead. 1837 * 1838 * returns: 1839 * 1 if spec is a valid subimage string, 1840 * addr and image_name are set accordingly 1841 * 0 otherwise 1842 */ 1843 inline int fit_parse_subimage(const char *spec, ulong addr_curr, 1844 ulong *addr, const char **image_name) 1845 { 1846 return fit_parse_spec(spec, ':', addr_curr, addr, image_name); 1847 } 1848 #endif /* !USE_HOSTCC */ 1849 1850 static void fit_get_debug(const void *fit, int noffset, 1851 char *prop_name, int err) 1852 { 1853 debug("Can't get '%s' property from FIT 0x%08lx, " 1854 "node: offset %d, name %s (%s)\n", 1855 prop_name, (ulong)fit, noffset, 1856 fit_get_name(fit, noffset, NULL), 1857 fdt_strerror(err)); 1858 } 1859 1860 /** 1861 * fit_print_contents - prints out the contents of the FIT format image 1862 * @fit: pointer to the FIT format image header 1863 * @p: pointer to prefix string 1864 * 1865 * fit_print_contents() formats a multi line FIT image contents description. 1866 * The routine prints out FIT image properties (root node level) follwed by 1867 * the details of each component image. 1868 * 1869 * returns: 1870 * no returned results 1871 */ 1872 void fit_print_contents(const void *fit) 1873 { 1874 char *desc; 1875 char *uname; 1876 int images_noffset; 1877 int confs_noffset; 1878 int noffset; 1879 int ndepth; 1880 int count = 0; 1881 int ret; 1882 const char *p; 1883 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1884 time_t timestamp; 1885 #endif 1886 1887 #ifdef USE_HOSTCC 1888 p = ""; 1889 #else 1890 p = " "; 1891 #endif 1892 1893 /* Root node properties */ 1894 ret = fit_get_desc(fit, 0, &desc); 1895 printf("%sFIT description: ", p); 1896 if (ret) 1897 printf("unavailable\n"); 1898 else 1899 printf("%s\n", desc); 1900 1901 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1902 ret = fit_get_timestamp(fit, 0, ×tamp); 1903 printf("%sCreated: ", p); 1904 if (ret) 1905 printf("unavailable\n"); 1906 else 1907 genimg_print_time(timestamp); 1908 #endif 1909 1910 /* Find images parent node offset */ 1911 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 1912 if (images_noffset < 0) { 1913 printf("Can't find images parent node '%s' (%s)\n", 1914 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 1915 return; 1916 } 1917 1918 /* Process its subnodes, print out component images details */ 1919 for (ndepth = 0, count = 0, 1920 noffset = fdt_next_node(fit, images_noffset, &ndepth); 1921 (noffset >= 0) && (ndepth > 0); 1922 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1923 if (ndepth == 1) { 1924 /* 1925 * Direct child node of the images parent node, 1926 * i.e. component image node. 1927 */ 1928 printf("%s Image %u (%s)\n", p, count++, 1929 fit_get_name(fit, noffset, NULL)); 1930 1931 fit_image_print(fit, noffset, p); 1932 } 1933 } 1934 1935 /* Find configurations parent node offset */ 1936 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 1937 if (confs_noffset < 0) { 1938 debug("Can't get configurations parent node '%s' (%s)\n", 1939 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 1940 return; 1941 } 1942 1943 /* get default configuration unit name from default property */ 1944 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL); 1945 if (uname) 1946 printf("%s Default Configuration: '%s'\n", p, uname); 1947 1948 /* Process its subnodes, print out configurations details */ 1949 for (ndepth = 0, count = 0, 1950 noffset = fdt_next_node(fit, confs_noffset, &ndepth); 1951 (noffset >= 0) && (ndepth > 0); 1952 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1953 if (ndepth == 1) { 1954 /* 1955 * Direct child node of the configurations parent node, 1956 * i.e. configuration node. 1957 */ 1958 printf("%s Configuration %u (%s)\n", p, count++, 1959 fit_get_name(fit, noffset, NULL)); 1960 1961 fit_conf_print(fit, noffset, p); 1962 } 1963 } 1964 } 1965 1966 /** 1967 * fit_image_print - prints out the FIT component image details 1968 * @fit: pointer to the FIT format image header 1969 * @image_noffset: offset of the component image node 1970 * @p: pointer to prefix string 1971 * 1972 * fit_image_print() lists all mandatory properies for the processed component 1973 * image. If present, hash nodes are printed out as well. Load 1974 * address for images of type firmware is also printed out. Since the load 1975 * address is not mandatory for firmware images, it will be output as 1976 * "unavailable" when not present. 1977 * 1978 * returns: 1979 * no returned results 1980 */ 1981 void fit_image_print(const void *fit, int image_noffset, const char *p) 1982 { 1983 char *desc; 1984 uint8_t type, arch, os, comp; 1985 size_t size; 1986 ulong load, entry; 1987 const void *data; 1988 int noffset; 1989 int ndepth; 1990 int ret; 1991 1992 /* Mandatory properties */ 1993 ret = fit_get_desc(fit, image_noffset, &desc); 1994 printf("%s Description: ", p); 1995 if (ret) 1996 printf("unavailable\n"); 1997 else 1998 printf("%s\n", desc); 1999 2000 fit_image_get_type(fit, image_noffset, &type); 2001 printf("%s Type: %s\n", p, genimg_get_type_name(type)); 2002 2003 fit_image_get_comp(fit, image_noffset, &comp); 2004 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp)); 2005 2006 ret = fit_image_get_data(fit, image_noffset, &data, &size); 2007 2008 #ifndef USE_HOSTCC 2009 printf("%s Data Start: ", p); 2010 if (ret) 2011 printf("unavailable\n"); 2012 else 2013 printf("0x%08lx\n", (ulong)data); 2014 #endif 2015 2016 printf("%s Data Size: ", p); 2017 if (ret) 2018 printf("unavailable\n"); 2019 else 2020 genimg_print_size(size); 2021 2022 /* Remaining, type dependent properties */ 2023 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2024 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) || 2025 (type == IH_TYPE_FLATDT)) { 2026 fit_image_get_arch(fit, image_noffset, &arch); 2027 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch)); 2028 } 2029 2030 if (type == IH_TYPE_KERNEL) { 2031 fit_image_get_os(fit, image_noffset, &os); 2032 printf("%s OS: %s\n", p, genimg_get_os_name(os)); 2033 } 2034 2035 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2036 (type == IH_TYPE_FIRMWARE)) { 2037 ret = fit_image_get_load(fit, image_noffset, &load); 2038 printf("%s Load Address: ", p); 2039 if (ret) 2040 printf("unavailable\n"); 2041 else 2042 printf("0x%08lx\n", load); 2043 } 2044 2045 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE)) { 2046 fit_image_get_entry(fit, image_noffset, &entry); 2047 printf("%s Entry Point: ", p); 2048 if (ret) 2049 printf("unavailable\n"); 2050 else 2051 printf("0x%08lx\n", entry); 2052 } 2053 2054 /* Process all hash subnodes of the component image node */ 2055 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2056 (noffset >= 0) && (ndepth > 0); 2057 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2058 if (ndepth == 1) { 2059 /* Direct child node of the component image node */ 2060 fit_image_print_hash(fit, noffset, p); 2061 } 2062 } 2063 } 2064 2065 /** 2066 * fit_image_print_hash - prints out the hash node details 2067 * @fit: pointer to the FIT format image header 2068 * @noffset: offset of the hash node 2069 * @p: pointer to prefix string 2070 * 2071 * fit_image_print_hash() lists properies for the processed hash node 2072 * 2073 * returns: 2074 * no returned results 2075 */ 2076 void fit_image_print_hash(const void *fit, int noffset, const char *p) 2077 { 2078 char *algo; 2079 uint8_t *value; 2080 int value_len; 2081 int i, ret; 2082 2083 /* 2084 * Check subnode name, must be equal to "hash". 2085 * Multiple hash nodes require unique unit node 2086 * names, e.g. hash@1, hash@2, etc. 2087 */ 2088 if (strncmp(fit_get_name(fit, noffset, NULL), 2089 FIT_HASH_NODENAME, 2090 strlen(FIT_HASH_NODENAME)) != 0) 2091 return; 2092 2093 debug("%s Hash node: '%s'\n", p, 2094 fit_get_name(fit, noffset, NULL)); 2095 2096 printf("%s Hash algo: ", p); 2097 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2098 printf("invalid/unsupported\n"); 2099 return; 2100 } 2101 printf("%s\n", algo); 2102 2103 ret = fit_image_hash_get_value(fit, noffset, &value, 2104 &value_len); 2105 printf("%s Hash value: ", p); 2106 if (ret) { 2107 printf("unavailable\n"); 2108 } else { 2109 for (i = 0; i < value_len; i++) 2110 printf("%02x", value[i]); 2111 printf("\n"); 2112 } 2113 2114 debug("%s Hash len: %d\n", p, value_len); 2115 } 2116 2117 /** 2118 * fit_get_desc - get node description property 2119 * @fit: pointer to the FIT format image header 2120 * @noffset: node offset 2121 * @desc: double pointer to the char, will hold pointer to the descrption 2122 * 2123 * fit_get_desc() reads description property from a given node, if 2124 * description is found pointer to it is returened in third call argument. 2125 * 2126 * returns: 2127 * 0, on success 2128 * -1, on failure 2129 */ 2130 int fit_get_desc(const void *fit, int noffset, char **desc) 2131 { 2132 int len; 2133 2134 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len); 2135 if (*desc == NULL) { 2136 fit_get_debug(fit, noffset, FIT_DESC_PROP, len); 2137 return -1; 2138 } 2139 2140 return 0; 2141 } 2142 2143 /** 2144 * fit_get_timestamp - get node timestamp property 2145 * @fit: pointer to the FIT format image header 2146 * @noffset: node offset 2147 * @timestamp: pointer to the time_t, will hold read timestamp 2148 * 2149 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp 2150 * is found and has a correct size its value is retured in third call 2151 * argument. 2152 * 2153 * returns: 2154 * 0, on success 2155 * -1, on property read failure 2156 * -2, on wrong timestamp size 2157 */ 2158 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp) 2159 { 2160 int len; 2161 const void *data; 2162 2163 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len); 2164 if (data == NULL) { 2165 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len); 2166 return -1; 2167 } 2168 if (len != sizeof(uint32_t)) { 2169 debug("FIT timestamp with incorrect size of (%u)\n", len); 2170 return -2; 2171 } 2172 2173 *timestamp = uimage_to_cpu(*((uint32_t *)data)); 2174 return 0; 2175 } 2176 2177 /** 2178 * fit_image_get_node - get node offset for component image of a given unit name 2179 * @fit: pointer to the FIT format image header 2180 * @image_uname: component image node unit name 2181 * 2182 * fit_image_get_node() finds a component image (withing the '/images' 2183 * node) of a provided unit name. If image is found its node offset is 2184 * returned to the caller. 2185 * 2186 * returns: 2187 * image node offset when found (>=0) 2188 * negative number on failure (FDT_ERR_* code) 2189 */ 2190 int fit_image_get_node(const void *fit, const char *image_uname) 2191 { 2192 int noffset, images_noffset; 2193 2194 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2195 if (images_noffset < 0) { 2196 debug("Can't find images parent node '%s' (%s)\n", 2197 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2198 return images_noffset; 2199 } 2200 2201 noffset = fdt_subnode_offset(fit, images_noffset, image_uname); 2202 if (noffset < 0) { 2203 debug("Can't get node offset for image unit name: '%s' (%s)\n", 2204 image_uname, fdt_strerror(noffset)); 2205 } 2206 2207 return noffset; 2208 } 2209 2210 /** 2211 * fit_image_get_os - get os id for a given component image node 2212 * @fit: pointer to the FIT format image header 2213 * @noffset: component image node offset 2214 * @os: pointer to the uint8_t, will hold os numeric id 2215 * 2216 * fit_image_get_os() finds os property in a given component image node. 2217 * If the property is found, its (string) value is translated to the numeric 2218 * id which is returned to the caller. 2219 * 2220 * returns: 2221 * 0, on success 2222 * -1, on failure 2223 */ 2224 int fit_image_get_os(const void *fit, int noffset, uint8_t *os) 2225 { 2226 int len; 2227 const void *data; 2228 2229 /* Get OS name from property data */ 2230 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len); 2231 if (data == NULL) { 2232 fit_get_debug(fit, noffset, FIT_OS_PROP, len); 2233 *os = -1; 2234 return -1; 2235 } 2236 2237 /* Translate OS name to id */ 2238 *os = genimg_get_os_id(data); 2239 return 0; 2240 } 2241 2242 /** 2243 * fit_image_get_arch - get arch id for a given component image node 2244 * @fit: pointer to the FIT format image header 2245 * @noffset: component image node offset 2246 * @arch: pointer to the uint8_t, will hold arch numeric id 2247 * 2248 * fit_image_get_arch() finds arch property in a given component image node. 2249 * If the property is found, its (string) value is translated to the numeric 2250 * id which is returned to the caller. 2251 * 2252 * returns: 2253 * 0, on success 2254 * -1, on failure 2255 */ 2256 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch) 2257 { 2258 int len; 2259 const void *data; 2260 2261 /* Get architecture name from property data */ 2262 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len); 2263 if (data == NULL) { 2264 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len); 2265 *arch = -1; 2266 return -1; 2267 } 2268 2269 /* Translate architecture name to id */ 2270 *arch = genimg_get_arch_id(data); 2271 return 0; 2272 } 2273 2274 /** 2275 * fit_image_get_type - get type id for a given component image node 2276 * @fit: pointer to the FIT format image header 2277 * @noffset: component image node offset 2278 * @type: pointer to the uint8_t, will hold type numeric id 2279 * 2280 * fit_image_get_type() finds type property in a given component image node. 2281 * If the property is found, its (string) value is translated to the numeric 2282 * id which is returned to the caller. 2283 * 2284 * returns: 2285 * 0, on success 2286 * -1, on failure 2287 */ 2288 int fit_image_get_type(const void *fit, int noffset, uint8_t *type) 2289 { 2290 int len; 2291 const void *data; 2292 2293 /* Get image type name from property data */ 2294 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len); 2295 if (data == NULL) { 2296 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len); 2297 *type = -1; 2298 return -1; 2299 } 2300 2301 /* Translate image type name to id */ 2302 *type = genimg_get_type_id(data); 2303 return 0; 2304 } 2305 2306 /** 2307 * fit_image_get_comp - get comp id for a given component image node 2308 * @fit: pointer to the FIT format image header 2309 * @noffset: component image node offset 2310 * @comp: pointer to the uint8_t, will hold comp numeric id 2311 * 2312 * fit_image_get_comp() finds comp property in a given component image node. 2313 * If the property is found, its (string) value is translated to the numeric 2314 * id which is returned to the caller. 2315 * 2316 * returns: 2317 * 0, on success 2318 * -1, on failure 2319 */ 2320 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp) 2321 { 2322 int len; 2323 const void *data; 2324 2325 /* Get compression name from property data */ 2326 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len); 2327 if (data == NULL) { 2328 fit_get_debug(fit, noffset, FIT_COMP_PROP, len); 2329 *comp = -1; 2330 return -1; 2331 } 2332 2333 /* Translate compression name to id */ 2334 *comp = genimg_get_comp_id(data); 2335 return 0; 2336 } 2337 2338 /** 2339 * fit_image_get_load - get load address property for a given component image node 2340 * @fit: pointer to the FIT format image header 2341 * @noffset: component image node offset 2342 * @load: pointer to the uint32_t, will hold load address 2343 * 2344 * fit_image_get_load() finds load address property in a given component image node. 2345 * If the property is found, its value is returned to the caller. 2346 * 2347 * returns: 2348 * 0, on success 2349 * -1, on failure 2350 */ 2351 int fit_image_get_load(const void *fit, int noffset, ulong *load) 2352 { 2353 int len; 2354 const uint32_t *data; 2355 2356 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len); 2357 if (data == NULL) { 2358 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len); 2359 return -1; 2360 } 2361 2362 *load = uimage_to_cpu(*data); 2363 return 0; 2364 } 2365 2366 /** 2367 * fit_image_get_entry - get entry point address property for a given component image node 2368 * @fit: pointer to the FIT format image header 2369 * @noffset: component image node offset 2370 * @entry: pointer to the uint32_t, will hold entry point address 2371 * 2372 * fit_image_get_entry() finds entry point address property in a given component image node. 2373 * If the property is found, its value is returned to the caller. 2374 * 2375 * returns: 2376 * 0, on success 2377 * -1, on failure 2378 */ 2379 int fit_image_get_entry(const void *fit, int noffset, ulong *entry) 2380 { 2381 int len; 2382 const uint32_t *data; 2383 2384 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len); 2385 if (data == NULL) { 2386 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len); 2387 return -1; 2388 } 2389 2390 *entry = uimage_to_cpu(*data); 2391 return 0; 2392 } 2393 2394 /** 2395 * fit_image_get_data - get data property and its size for a given component image node 2396 * @fit: pointer to the FIT format image header 2397 * @noffset: component image node offset 2398 * @data: double pointer to void, will hold data property's data address 2399 * @size: pointer to size_t, will hold data property's data size 2400 * 2401 * fit_image_get_data() finds data property in a given component image node. 2402 * If the property is found its data start address and size are returned to 2403 * the caller. 2404 * 2405 * returns: 2406 * 0, on success 2407 * -1, on failure 2408 */ 2409 int fit_image_get_data(const void *fit, int noffset, 2410 const void **data, size_t *size) 2411 { 2412 int len; 2413 2414 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len); 2415 if (*data == NULL) { 2416 fit_get_debug(fit, noffset, FIT_DATA_PROP, len); 2417 *size = 0; 2418 return -1; 2419 } 2420 2421 *size = len; 2422 return 0; 2423 } 2424 2425 /** 2426 * fit_image_hash_get_algo - get hash algorithm name 2427 * @fit: pointer to the FIT format image header 2428 * @noffset: hash node offset 2429 * @algo: double pointer to char, will hold pointer to the algorithm name 2430 * 2431 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node. 2432 * If the property is found its data start address is returned to the caller. 2433 * 2434 * returns: 2435 * 0, on success 2436 * -1, on failure 2437 */ 2438 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo) 2439 { 2440 int len; 2441 2442 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len); 2443 if (*algo == NULL) { 2444 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len); 2445 return -1; 2446 } 2447 2448 return 0; 2449 } 2450 2451 /** 2452 * fit_image_hash_get_value - get hash value and length 2453 * @fit: pointer to the FIT format image header 2454 * @noffset: hash node offset 2455 * @value: double pointer to uint8_t, will hold address of a hash value data 2456 * @value_len: pointer to an int, will hold hash data length 2457 * 2458 * fit_image_hash_get_value() finds hash value property in a given hash node. 2459 * If the property is found its data start address and size are returned to 2460 * the caller. 2461 * 2462 * returns: 2463 * 0, on success 2464 * -1, on failure 2465 */ 2466 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, 2467 int *value_len) 2468 { 2469 int len; 2470 2471 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len); 2472 if (*value == NULL) { 2473 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len); 2474 *value_len = 0; 2475 return -1; 2476 } 2477 2478 *value_len = len; 2479 return 0; 2480 } 2481 2482 /** 2483 * fit_set_timestamp - set node timestamp property 2484 * @fit: pointer to the FIT format image header 2485 * @noffset: node offset 2486 * @timestamp: timestamp value to be set 2487 * 2488 * fit_set_timestamp() attempts to set timestamp property in the requested 2489 * node and returns operation status to the caller. 2490 * 2491 * returns: 2492 * 0, on success 2493 * -1, on property read failure 2494 */ 2495 int fit_set_timestamp(void *fit, int noffset, time_t timestamp) 2496 { 2497 uint32_t t; 2498 int ret; 2499 2500 t = cpu_to_uimage(timestamp); 2501 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t, 2502 sizeof(uint32_t)); 2503 if (ret) { 2504 printf("Can't set '%s' property for '%s' node (%s)\n", 2505 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL), 2506 fdt_strerror(ret)); 2507 return -1; 2508 } 2509 2510 return 0; 2511 } 2512 2513 /** 2514 * calculate_hash - calculate and return hash for provided input data 2515 * @data: pointer to the input data 2516 * @data_len: data length 2517 * @algo: requested hash algorithm 2518 * @value: pointer to the char, will hold hash value data (caller must 2519 * allocate enough free space) 2520 * value_len: length of the calculated hash 2521 * 2522 * calculate_hash() computes input data hash according to the requested algorithm. 2523 * Resulting hash value is placed in caller provided 'value' buffer, length 2524 * of the calculated hash is returned via value_len pointer argument. 2525 * 2526 * returns: 2527 * 0, on success 2528 * -1, when algo is unsupported 2529 */ 2530 static int calculate_hash(const void *data, int data_len, const char *algo, 2531 uint8_t *value, int *value_len) 2532 { 2533 if (strcmp(algo, "crc32") == 0) { 2534 *((uint32_t *)value) = crc32_wd(0, data, data_len, 2535 CHUNKSZ_CRC32); 2536 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value)); 2537 *value_len = 4; 2538 } else if (strcmp(algo, "sha1") == 0) { 2539 sha1_csum_wd((unsigned char *) data, data_len, 2540 (unsigned char *) value, CHUNKSZ_SHA1); 2541 *value_len = 20; 2542 } else if (strcmp(algo, "md5") == 0) { 2543 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5); 2544 *value_len = 16; 2545 } else { 2546 debug("Unsupported hash alogrithm\n"); 2547 return -1; 2548 } 2549 return 0; 2550 } 2551 2552 #ifdef USE_HOSTCC 2553 /** 2554 * fit_set_hashes - process FIT component image nodes and calculate hashes 2555 * @fit: pointer to the FIT format image header 2556 * 2557 * fit_set_hashes() adds hash values for all component images in the FIT blob. 2558 * Hashes are calculated for all component images which have hash subnodes 2559 * with algorithm property set to one of the supported hash algorithms. 2560 * 2561 * returns 2562 * 0, on success 2563 * libfdt error code, on failure 2564 */ 2565 int fit_set_hashes(void *fit) 2566 { 2567 int images_noffset; 2568 int noffset; 2569 int ndepth; 2570 int ret; 2571 2572 /* Find images parent node offset */ 2573 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2574 if (images_noffset < 0) { 2575 printf("Can't find images parent node '%s' (%s)\n", 2576 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2577 return images_noffset; 2578 } 2579 2580 /* Process its subnodes, print out component images details */ 2581 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); 2582 (noffset >= 0) && (ndepth > 0); 2583 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2584 if (ndepth == 1) { 2585 /* 2586 * Direct child node of the images parent node, 2587 * i.e. component image node. 2588 */ 2589 ret = fit_image_set_hashes(fit, noffset); 2590 if (ret) 2591 return ret; 2592 } 2593 } 2594 2595 return 0; 2596 } 2597 2598 /** 2599 * fit_image_set_hashes - calculate/set hashes for given component image node 2600 * @fit: pointer to the FIT format image header 2601 * @image_noffset: requested component image node 2602 * 2603 * fit_image_set_hashes() adds hash values for an component image node. All 2604 * existing hash subnodes are checked, if algorithm property is set to one of 2605 * the supported hash algorithms, hash value is computed and corresponding 2606 * hash node property is set, for example: 2607 * 2608 * Input component image node structure: 2609 * 2610 * o image@1 (at image_noffset) 2611 * | - data = [binary data] 2612 * o hash@1 2613 * |- algo = "sha1" 2614 * 2615 * Output component image node structure: 2616 * 2617 * o image@1 (at image_noffset) 2618 * | - data = [binary data] 2619 * o hash@1 2620 * |- algo = "sha1" 2621 * |- value = sha1(data) 2622 * 2623 * returns: 2624 * 0 on sucess 2625 * <0 on failure 2626 */ 2627 int fit_image_set_hashes(void *fit, int image_noffset) 2628 { 2629 const void *data; 2630 size_t size; 2631 char *algo; 2632 uint8_t value[FIT_MAX_HASH_LEN]; 2633 int value_len; 2634 int noffset; 2635 int ndepth; 2636 2637 /* Get image data and data length */ 2638 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2639 printf("Can't get image data/size\n"); 2640 return -1; 2641 } 2642 2643 /* Process all hash subnodes of the component image node */ 2644 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2645 (noffset >= 0) && (ndepth > 0); 2646 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2647 if (ndepth == 1) { 2648 /* Direct child node of the component image node */ 2649 2650 /* 2651 * Check subnode name, must be equal to "hash". 2652 * Multiple hash nodes require unique unit node 2653 * names, e.g. hash@1, hash@2, etc. 2654 */ 2655 if (strncmp(fit_get_name(fit, noffset, NULL), 2656 FIT_HASH_NODENAME, 2657 strlen(FIT_HASH_NODENAME)) != 0) { 2658 /* Not a hash subnode, skip it */ 2659 continue; 2660 } 2661 2662 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2663 printf("Can't get hash algo property for " 2664 "'%s' hash node in '%s' image node\n", 2665 fit_get_name(fit, noffset, NULL), 2666 fit_get_name(fit, image_noffset, NULL)); 2667 return -1; 2668 } 2669 2670 if (calculate_hash(data, size, algo, value, 2671 &value_len)) { 2672 printf("Unsupported hash algorithm (%s) for " 2673 "'%s' hash node in '%s' image node\n", 2674 algo, fit_get_name(fit, noffset, NULL), 2675 fit_get_name(fit, image_noffset, 2676 NULL)); 2677 return -1; 2678 } 2679 2680 if (fit_image_hash_set_value(fit, noffset, value, 2681 value_len)) { 2682 printf("Can't set hash value for " 2683 "'%s' hash node in '%s' image node\n", 2684 fit_get_name(fit, noffset, NULL), 2685 fit_get_name(fit, image_noffset, NULL)); 2686 return -1; 2687 } 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * fit_image_hash_set_value - set hash value in requested has node 2696 * @fit: pointer to the FIT format image header 2697 * @noffset: hash node offset 2698 * @value: hash value to be set 2699 * @value_len: hash value length 2700 * 2701 * fit_image_hash_set_value() attempts to set hash value in a node at offset 2702 * given and returns operation status to the caller. 2703 * 2704 * returns 2705 * 0, on success 2706 * -1, on failure 2707 */ 2708 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value, 2709 int value_len) 2710 { 2711 int ret; 2712 2713 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len); 2714 if (ret) { 2715 printf("Can't set hash '%s' property for '%s' node(%s)\n", 2716 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL), 2717 fdt_strerror(ret)); 2718 return -1; 2719 } 2720 2721 return 0; 2722 } 2723 #endif /* USE_HOSTCC */ 2724 2725 /** 2726 * fit_image_check_hashes - verify data intergity 2727 * @fit: pointer to the FIT format image header 2728 * @image_noffset: component image node offset 2729 * 2730 * fit_image_check_hashes() goes over component image hash nodes, 2731 * re-calculates each data hash and compares with the value stored in hash 2732 * node. 2733 * 2734 * returns: 2735 * 1, if all hashes are valid 2736 * 0, otherwise (or on error) 2737 */ 2738 int fit_image_check_hashes(const void *fit, int image_noffset) 2739 { 2740 const void *data; 2741 size_t size; 2742 char *algo; 2743 uint8_t *fit_value; 2744 int fit_value_len; 2745 uint8_t value[FIT_MAX_HASH_LEN]; 2746 int value_len; 2747 int noffset; 2748 int ndepth; 2749 char *err_msg = ""; 2750 2751 /* Get image data and data length */ 2752 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2753 printf("Can't get image data/size\n"); 2754 return 0; 2755 } 2756 2757 /* Process all hash subnodes of the component image node */ 2758 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2759 (noffset >= 0) && (ndepth > 0); 2760 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2761 if (ndepth == 1) { 2762 /* Direct child node of the component image node */ 2763 2764 /* 2765 * Check subnode name, must be equal to "hash". 2766 * Multiple hash nodes require unique unit node 2767 * names, e.g. hash@1, hash@2, etc. 2768 */ 2769 if (strncmp(fit_get_name(fit, noffset, NULL), 2770 FIT_HASH_NODENAME, 2771 strlen(FIT_HASH_NODENAME)) != 0) 2772 continue; 2773 2774 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2775 err_msg = " error!\nCan't get hash algo " 2776 "property"; 2777 goto error; 2778 } 2779 printf("%s", algo); 2780 2781 if (fit_image_hash_get_value(fit, noffset, &fit_value, 2782 &fit_value_len)) { 2783 err_msg = " error!\nCan't get hash value " 2784 "property"; 2785 goto error; 2786 } 2787 2788 if (calculate_hash(data, size, algo, value, 2789 &value_len)) { 2790 err_msg = " error!\n" 2791 "Unsupported hash algorithm"; 2792 goto error; 2793 } 2794 2795 if (value_len != fit_value_len) { 2796 err_msg = " error !\nBad hash value len"; 2797 goto error; 2798 } else if (memcmp(value, fit_value, value_len) != 0) { 2799 err_msg = " error!\nBad hash value"; 2800 goto error; 2801 } 2802 printf("+ "); 2803 } 2804 } 2805 2806 return 1; 2807 2808 error: 2809 printf("%s for '%s' hash node in '%s' image node\n", 2810 err_msg, fit_get_name(fit, noffset, NULL), 2811 fit_get_name(fit, image_noffset, NULL)); 2812 return 0; 2813 } 2814 2815 /** 2816 * fit_all_image_check_hashes - verify data intergity for all images 2817 * @fit: pointer to the FIT format image header 2818 * 2819 * fit_all_image_check_hashes() goes over all images in the FIT and 2820 * for every images checks if all it's hashes are valid. 2821 * 2822 * returns: 2823 * 1, if all hashes of all images are valid 2824 * 0, otherwise (or on error) 2825 */ 2826 int fit_all_image_check_hashes(const void *fit) 2827 { 2828 int images_noffset; 2829 int noffset; 2830 int ndepth; 2831 int count; 2832 2833 /* Find images parent node offset */ 2834 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2835 if (images_noffset < 0) { 2836 printf("Can't find images parent node '%s' (%s)\n", 2837 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2838 return 0; 2839 } 2840 2841 /* Process all image subnodes, check hashes for each */ 2842 printf("## Checking hash(es) for FIT Image at %08lx ...\n", 2843 (ulong)fit); 2844 for (ndepth = 0, count = 0, 2845 noffset = fdt_next_node(fit, images_noffset, &ndepth); 2846 (noffset >= 0) && (ndepth > 0); 2847 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2848 if (ndepth == 1) { 2849 /* 2850 * Direct child node of the images parent node, 2851 * i.e. component image node. 2852 */ 2853 printf(" Hash(es) for Image %u (%s): ", count++, 2854 fit_get_name(fit, noffset, NULL)); 2855 2856 if (!fit_image_check_hashes(fit, noffset)) 2857 return 0; 2858 printf("\n"); 2859 } 2860 } 2861 return 1; 2862 } 2863 2864 /** 2865 * fit_image_check_os - check whether image node is of a given os type 2866 * @fit: pointer to the FIT format image header 2867 * @noffset: component image node offset 2868 * @os: requested image os 2869 * 2870 * fit_image_check_os() reads image os property and compares its numeric 2871 * id with the requested os. Comparison result is returned to the caller. 2872 * 2873 * returns: 2874 * 1 if image is of given os type 2875 * 0 otherwise (or on error) 2876 */ 2877 int fit_image_check_os(const void *fit, int noffset, uint8_t os) 2878 { 2879 uint8_t image_os; 2880 2881 if (fit_image_get_os(fit, noffset, &image_os)) 2882 return 0; 2883 return (os == image_os); 2884 } 2885 2886 /** 2887 * fit_image_check_arch - check whether image node is of a given arch 2888 * @fit: pointer to the FIT format image header 2889 * @noffset: component image node offset 2890 * @arch: requested imagearch 2891 * 2892 * fit_image_check_arch() reads image arch property and compares its numeric 2893 * id with the requested arch. Comparison result is returned to the caller. 2894 * 2895 * returns: 2896 * 1 if image is of given arch 2897 * 0 otherwise (or on error) 2898 */ 2899 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch) 2900 { 2901 uint8_t image_arch; 2902 2903 if (fit_image_get_arch(fit, noffset, &image_arch)) 2904 return 0; 2905 return (arch == image_arch); 2906 } 2907 2908 /** 2909 * fit_image_check_type - check whether image node is of a given type 2910 * @fit: pointer to the FIT format image header 2911 * @noffset: component image node offset 2912 * @type: requested image type 2913 * 2914 * fit_image_check_type() reads image type property and compares its numeric 2915 * id with the requested type. Comparison result is returned to the caller. 2916 * 2917 * returns: 2918 * 1 if image is of given type 2919 * 0 otherwise (or on error) 2920 */ 2921 int fit_image_check_type(const void *fit, int noffset, uint8_t type) 2922 { 2923 uint8_t image_type; 2924 2925 if (fit_image_get_type(fit, noffset, &image_type)) 2926 return 0; 2927 return (type == image_type); 2928 } 2929 2930 /** 2931 * fit_image_check_comp - check whether image node uses given compression 2932 * @fit: pointer to the FIT format image header 2933 * @noffset: component image node offset 2934 * @comp: requested image compression type 2935 * 2936 * fit_image_check_comp() reads image compression property and compares its 2937 * numeric id with the requested compression type. Comparison result is 2938 * returned to the caller. 2939 * 2940 * returns: 2941 * 1 if image uses requested compression 2942 * 0 otherwise (or on error) 2943 */ 2944 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp) 2945 { 2946 uint8_t image_comp; 2947 2948 if (fit_image_get_comp(fit, noffset, &image_comp)) 2949 return 0; 2950 return (comp == image_comp); 2951 } 2952 2953 /** 2954 * fit_check_format - sanity check FIT image format 2955 * @fit: pointer to the FIT format image header 2956 * 2957 * fit_check_format() runs a basic sanity FIT image verification. 2958 * Routine checks for mandatory properties, nodes, etc. 2959 * 2960 * returns: 2961 * 1, on success 2962 * 0, on failure 2963 */ 2964 int fit_check_format(const void *fit) 2965 { 2966 /* mandatory / node 'description' property */ 2967 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) { 2968 debug("Wrong FIT format: no description\n"); 2969 return 0; 2970 } 2971 2972 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 2973 /* mandatory / node 'timestamp' property */ 2974 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) { 2975 debug("Wrong FIT format: no timestamp\n"); 2976 return 0; 2977 } 2978 #endif 2979 2980 /* mandatory subimages parent '/images' node */ 2981 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) { 2982 debug("Wrong FIT format: no images parent node\n"); 2983 return 0; 2984 } 2985 2986 return 1; 2987 } 2988 2989 /** 2990 * fit_conf_get_node - get node offset for configuration of a given unit name 2991 * @fit: pointer to the FIT format image header 2992 * @conf_uname: configuration node unit name 2993 * 2994 * fit_conf_get_node() finds a configuration (withing the '/configurations' 2995 * parant node) of a provided unit name. If configuration is found its node offset 2996 * is returned to the caller. 2997 * 2998 * When NULL is provided in second argument fit_conf_get_node() will search 2999 * for a default configuration node instead. Default configuration node unit name 3000 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node. 3001 * 3002 * returns: 3003 * configuration node offset when found (>=0) 3004 * negative number on failure (FDT_ERR_* code) 3005 */ 3006 int fit_conf_get_node(const void *fit, const char *conf_uname) 3007 { 3008 int noffset, confs_noffset; 3009 int len; 3010 3011 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 3012 if (confs_noffset < 0) { 3013 debug("Can't find configurations parent node '%s' (%s)\n", 3014 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 3015 return confs_noffset; 3016 } 3017 3018 if (conf_uname == NULL) { 3019 /* get configuration unit name from the default property */ 3020 debug("No configuration specified, trying default...\n"); 3021 conf_uname = (char *)fdt_getprop(fit, confs_noffset, 3022 FIT_DEFAULT_PROP, &len); 3023 if (conf_uname == NULL) { 3024 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP, 3025 len); 3026 return len; 3027 } 3028 debug("Found default configuration: '%s'\n", conf_uname); 3029 } 3030 3031 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname); 3032 if (noffset < 0) { 3033 debug("Can't get node offset for configuration unit name: " 3034 "'%s' (%s)\n", 3035 conf_uname, fdt_strerror(noffset)); 3036 } 3037 3038 return noffset; 3039 } 3040 3041 static int __fit_conf_get_prop_node(const void *fit, int noffset, 3042 const char *prop_name) 3043 { 3044 char *uname; 3045 int len; 3046 3047 /* get kernel image unit name from configuration kernel property */ 3048 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len); 3049 if (uname == NULL) 3050 return len; 3051 3052 return fit_image_get_node(fit, uname); 3053 } 3054 3055 /** 3056 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to 3057 * a given configuration 3058 * @fit: pointer to the FIT format image header 3059 * @noffset: configuration node offset 3060 * 3061 * fit_conf_get_kernel_node() retrives kernel image node unit name from 3062 * configuration FIT_KERNEL_PROP property and translates it to the node 3063 * offset. 3064 * 3065 * returns: 3066 * image node offset when found (>=0) 3067 * negative number on failure (FDT_ERR_* code) 3068 */ 3069 int fit_conf_get_kernel_node(const void *fit, int noffset) 3070 { 3071 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP); 3072 } 3073 3074 /** 3075 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to 3076 * a given configuration 3077 * @fit: pointer to the FIT format image header 3078 * @noffset: configuration node offset 3079 * 3080 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from 3081 * configuration FIT_KERNEL_PROP property and translates it to the node 3082 * offset. 3083 * 3084 * returns: 3085 * image node offset when found (>=0) 3086 * negative number on failure (FDT_ERR_* code) 3087 */ 3088 int fit_conf_get_ramdisk_node(const void *fit, int noffset) 3089 { 3090 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP); 3091 } 3092 3093 /** 3094 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to 3095 * a given configuration 3096 * @fit: pointer to the FIT format image header 3097 * @noffset: configuration node offset 3098 * 3099 * fit_conf_get_fdt_node() retrives fdt image node unit name from 3100 * configuration FIT_KERNEL_PROP property and translates it to the node 3101 * offset. 3102 * 3103 * returns: 3104 * image node offset when found (>=0) 3105 * negative number on failure (FDT_ERR_* code) 3106 */ 3107 int fit_conf_get_fdt_node(const void *fit, int noffset) 3108 { 3109 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP); 3110 } 3111 3112 /** 3113 * fit_conf_print - prints out the FIT configuration details 3114 * @fit: pointer to the FIT format image header 3115 * @noffset: offset of the configuration node 3116 * @p: pointer to prefix string 3117 * 3118 * fit_conf_print() lists all mandatory properies for the processed 3119 * configuration node. 3120 * 3121 * returns: 3122 * no returned results 3123 */ 3124 void fit_conf_print(const void *fit, int noffset, const char *p) 3125 { 3126 char *desc; 3127 char *uname; 3128 int ret; 3129 3130 /* Mandatory properties */ 3131 ret = fit_get_desc(fit, noffset, &desc); 3132 printf("%s Description: ", p); 3133 if (ret) 3134 printf("unavailable\n"); 3135 else 3136 printf("%s\n", desc); 3137 3138 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL); 3139 printf("%s Kernel: ", p); 3140 if (uname == NULL) 3141 printf("unavailable\n"); 3142 else 3143 printf("%s\n", uname); 3144 3145 /* Optional properties */ 3146 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL); 3147 if (uname) 3148 printf("%s Init Ramdisk: %s\n", p, uname); 3149 3150 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL); 3151 if (uname) 3152 printf("%s FDT: %s\n", p, uname); 3153 } 3154 3155 /** 3156 * fit_check_ramdisk - verify FIT format ramdisk subimage 3157 * @fit_hdr: pointer to the FIT ramdisk header 3158 * @rd_noffset: ramdisk subimage node offset within FIT image 3159 * @arch: requested ramdisk image architecture type 3160 * @verify: data CRC verification flag 3161 * 3162 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from 3163 * specified FIT image. 3164 * 3165 * returns: 3166 * 1, on success 3167 * 0, on failure 3168 */ 3169 #ifndef USE_HOSTCC 3170 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch, 3171 int verify) 3172 { 3173 fit_image_print(fit, rd_noffset, " "); 3174 3175 if (verify) { 3176 puts(" Verifying Hash Integrity ... "); 3177 if (!fit_image_check_hashes(fit, rd_noffset)) { 3178 puts("Bad Data Hash\n"); 3179 show_boot_error(125); 3180 return 0; 3181 } 3182 puts("OK\n"); 3183 } 3184 3185 show_boot_progress(126); 3186 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) || 3187 !fit_image_check_arch(fit, rd_noffset, arch) || 3188 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) { 3189 printf("No Linux %s Ramdisk Image\n", 3190 genimg_get_arch_name(arch)); 3191 show_boot_error(126); 3192 return 0; 3193 } 3194 3195 show_boot_progress(127); 3196 return 1; 3197 } 3198 #endif /* USE_HOSTCC */ 3199 #endif /* CONFIG_FIT */ 3200