xref: /rk3399_rockchip-uboot/common/edid.c (revision cfcc706c901d603707657919484e4f65467be9ff)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * (C) Copyright 2010
5  * Petr Stetiar <ynezz@true.cz>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Contains stolen code from ddcprobe project which is:
10  * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11  * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12  */
13 
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28 
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr)             ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 	(((edid)->version > (maj)) || \
38 	 ((edid)->version == (maj) && (edid)->revision > (min)))
39 
40 /*
41  * EDID blocks out in the wild have a variety of bugs, try to collect
42  * them here (note that userspace may work around broken monitors first,
43  * but fixes should make their way here so that the kernel "just works"
44  * on as many displays as possible).
45  */
46 
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60		BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75		BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM		BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56  * maximum size and use that.
57  */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP		BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC			BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC			BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC			BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC			BIT(11)
73 
74 struct detailed_mode_closure {
75 	struct edid *edid;
76 	struct hdmi_edid_data *data;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101 
102 	/* Belinea 10 15 55 */
103 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Envision Peripherals, Inc. EN-7100e */
107 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 	/* Envision EN2028 */
109 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110 
111 	/* Funai Electronics PM36B */
112 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 	  EDID_QUIRK_DETAILED_IN_CM },
114 
115 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 
146 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149 
150 /*
151  * Probably taken from CEA-861 spec.
152  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153  *
154  * Index using the VIC.
155  */
156 static const struct drm_display_mode edid_cea_modes[] = {
157 	/* 0 - dummy, VICs start at 1 */
158 	{ },
159 	/* 1 - 640x480@60Hz */
160 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
161 		   752, 800, 480, 490, 492, 525, 0,
162 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
163 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
164 	/* 2 - 720x480@60Hz */
165 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
166 		   798, 858, 480, 489, 495, 525, 0,
167 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
168 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
169 	/* 3 - 720x480@60Hz */
170 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
171 		   798, 858, 480, 489, 495, 525, 0,
172 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
173 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
174 	/* 4 - 1280x720@60Hz */
175 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
176 		   1430, 1650, 720, 725, 730, 750, 0,
177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
178 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
179 	/* 5 - 1920x1080i@60Hz */
180 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
181 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
183 			DRM_MODE_FLAG_INTERLACE),
184 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
185 	/* 6 - 720(1440)x480i@60Hz */
186 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
187 		   801, 858, 480, 488, 494, 525, 0,
188 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
189 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
190 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
191 	/* 7 - 720(1440)x480i@60Hz */
192 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
193 		   801, 858, 480, 488, 494, 525, 0,
194 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
195 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
196 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
197 	/* 8 - 720(1440)x240@60Hz */
198 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
199 		   801, 858, 240, 244, 247, 262, 0,
200 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
201 			DRM_MODE_FLAG_DBLCLK),
202 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
203 	/* 9 - 720(1440)x240@60Hz */
204 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
205 		   801, 858, 240, 244, 247, 262, 0,
206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
207 			DRM_MODE_FLAG_DBLCLK),
208 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
209 	/* 10 - 2880x480i@60Hz */
210 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
211 		   3204, 3432, 480, 488, 494, 525, 0,
212 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
213 			DRM_MODE_FLAG_INTERLACE),
214 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
215 	/* 11 - 2880x480i@60Hz */
216 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
217 		   3204, 3432, 480, 488, 494, 525, 0,
218 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
219 			DRM_MODE_FLAG_INTERLACE),
220 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
221 	/* 12 - 2880x240@60Hz */
222 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
223 		   3204, 3432, 240, 244, 247, 262, 0,
224 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
225 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
226 	/* 13 - 2880x240@60Hz */
227 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
228 		   3204, 3432, 240, 244, 247, 262, 0,
229 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
230 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
231 	/* 14 - 1440x480@60Hz */
232 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
233 		   1596, 1716, 480, 489, 495, 525, 0,
234 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
235 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
236 	/* 15 - 1440x480@60Hz */
237 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
238 		   1596, 1716, 480, 489, 495, 525, 0,
239 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
240 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
241 	/* 16 - 1920x1080@60Hz */
242 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
243 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
245 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
246 	/* 17 - 720x576@50Hz */
247 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
248 		   796, 864, 576, 581, 586, 625, 0,
249 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
250 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
251 	/* 18 - 720x576@50Hz */
252 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
253 		   796, 864, 576, 581, 586, 625, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
255 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
256 	/* 19 - 1280x720@50Hz */
257 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
258 		   1760, 1980, 720, 725, 730, 750, 0,
259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
260 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
261 	/* 20 - 1920x1080i@50Hz */
262 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
263 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
265 			DRM_MODE_FLAG_INTERLACE),
266 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
267 	/* 21 - 720(1440)x576i@50Hz */
268 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
269 		   795, 864, 576, 580, 586, 625, 0,
270 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
271 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
272 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
273 	/* 22 - 720(1440)x576i@50Hz */
274 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
275 		   795, 864, 576, 580, 586, 625, 0,
276 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
277 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
278 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
279 	/* 23 - 720(1440)x288@50Hz */
280 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
281 		   795, 864, 288, 290, 293, 312, 0,
282 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
283 			DRM_MODE_FLAG_DBLCLK),
284 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
285 	/* 24 - 720(1440)x288@50Hz */
286 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
287 		   795, 864, 288, 290, 293, 312, 0,
288 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
289 			DRM_MODE_FLAG_DBLCLK),
290 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
291 	/* 25 - 2880x576i@50Hz */
292 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
293 		   3180, 3456, 576, 580, 586, 625, 0,
294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
295 			DRM_MODE_FLAG_INTERLACE),
296 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
297 	/* 26 - 2880x576i@50Hz */
298 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
299 		   3180, 3456, 576, 580, 586, 625, 0,
300 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
301 			DRM_MODE_FLAG_INTERLACE),
302 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
303 	/* 27 - 2880x288@50Hz */
304 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
305 		   3180, 3456, 288, 290, 293, 312, 0,
306 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
307 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
308 	/* 28 - 2880x288@50Hz */
309 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
310 		   3180, 3456, 288, 290, 293, 312, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
312 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
313 	/* 29 - 1440x576@50Hz */
314 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
315 		   1592, 1728, 576, 581, 586, 625, 0,
316 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
317 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
318 	/* 30 - 1440x576@50Hz */
319 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
320 		   1592, 1728, 576, 581, 586, 625, 0,
321 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
322 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
323 	/* 31 - 1920x1080@50Hz */
324 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
325 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
327 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
328 	/* 32 - 1920x1080@24Hz */
329 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
330 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
332 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
333 	/* 33 - 1920x1080@25Hz */
334 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
335 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
336 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
337 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
338 	/* 34 - 1920x1080@30Hz */
339 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
340 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
341 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
342 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
343 	/* 35 - 2880x480@60Hz */
344 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
345 		   3192, 3432, 480, 489, 495, 525, 0,
346 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
347 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
348 	/* 36 - 2880x480@60Hz */
349 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
350 		   3192, 3432, 480, 489, 495, 525, 0,
351 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
352 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
353 	/* 37 - 2880x576@50Hz */
354 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
355 		   3184, 3456, 576, 581, 586, 625, 0,
356 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
357 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
358 	/* 38 - 2880x576@50Hz */
359 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
360 		   3184, 3456, 576, 581, 586, 625, 0,
361 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
362 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
363 	/* 39 - 1920x1080i@50Hz */
364 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
365 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
367 			DRM_MODE_FLAG_INTERLACE),
368 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
369 	/* 40 - 1920x1080i@100Hz */
370 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
371 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
373 			DRM_MODE_FLAG_INTERLACE),
374 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
375 	/* 41 - 1280x720@100Hz */
376 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
377 		   1760, 1980, 720, 725, 730, 750, 0,
378 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
379 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
380 	/* 42 - 720x576@100Hz */
381 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
382 		   796, 864, 576, 581, 586, 625, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
384 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
385 	/* 43 - 720x576@100Hz */
386 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
387 		   796, 864, 576, 581, 586, 625, 0,
388 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
389 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
390 	/* 44 - 720(1440)x576i@100Hz */
391 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
392 		   795, 864, 576, 580, 586, 625, 0,
393 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
394 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
395 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
396 	/* 45 - 720(1440)x576i@100Hz */
397 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
398 		   795, 864, 576, 580, 586, 625, 0,
399 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
400 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
401 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
402 	/* 46 - 1920x1080i@120Hz */
403 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
404 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
406 			DRM_MODE_FLAG_INTERLACE),
407 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
408 	/* 47 - 1280x720@120Hz */
409 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
410 		   1430, 1650, 720, 725, 730, 750, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
412 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
413 	/* 48 - 720x480@120Hz */
414 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
415 		   798, 858, 480, 489, 495, 525, 0,
416 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
417 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
418 	/* 49 - 720x480@120Hz */
419 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
420 		   798, 858, 480, 489, 495, 525, 0,
421 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
422 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
423 	/* 50 - 720(1440)x480i@120Hz */
424 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
425 		   801, 858, 480, 488, 494, 525, 0,
426 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
427 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
428 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
429 	/* 51 - 720(1440)x480i@120Hz */
430 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
431 		   801, 858, 480, 488, 494, 525, 0,
432 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
433 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
434 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
435 	/* 52 - 720x576@200Hz */
436 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
437 		   796, 864, 576, 581, 586, 625, 0,
438 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
439 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
440 	/* 53 - 720x576@200Hz */
441 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
442 		   796, 864, 576, 581, 586, 625, 0,
443 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
444 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
445 	/* 54 - 720(1440)x576i@200Hz */
446 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
447 		   795, 864, 576, 580, 586, 625, 0,
448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
449 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
450 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
451 	/* 55 - 720(1440)x576i@200Hz */
452 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
453 		   795, 864, 576, 580, 586, 625, 0,
454 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
455 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
456 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
457 	/* 56 - 720x480@240Hz */
458 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
459 		   798, 858, 480, 489, 495, 525, 0,
460 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
461 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
462 	/* 57 - 720x480@240Hz */
463 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
464 		   798, 858, 480, 489, 495, 525, 0,
465 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
466 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
467 	/* 58 - 720(1440)x480i@240 */
468 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
469 		   801, 858, 480, 488, 494, 525, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
471 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
472 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
473 	/* 59 - 720(1440)x480i@240 */
474 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
475 		   801, 858, 480, 488, 494, 525, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
477 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
478 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
479 	/* 60 - 1280x720@24Hz */
480 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
481 		   3080, 3300, 720, 725, 730, 750, 0,
482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
483 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
484 	/* 61 - 1280x720@25Hz */
485 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
486 		   3740, 3960, 720, 725, 730, 750, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
488 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
489 	/* 62 - 1280x720@30Hz */
490 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
491 		   3080, 3300, 720, 725, 730, 750, 0,
492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
493 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
494 	/* 63 - 1920x1080@120Hz */
495 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
496 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
498 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
499 	/* 64 - 1920x1080@100Hz */
500 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
501 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
503 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
504 	/* 65 - 1280x720@24Hz */
505 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
506 		   3080, 3300, 720, 725, 730, 750, 0,
507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
508 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
509 	/* 66 - 1280x720@25Hz */
510 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
511 		   3740, 3960, 720, 725, 730, 750, 0,
512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
513 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
514 	/* 67 - 1280x720@30Hz */
515 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
516 		   3080, 3300, 720, 725, 730, 750, 0,
517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
518 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
519 	/* 68 - 1280x720@50Hz */
520 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
521 		   1760, 1980, 720, 725, 730, 750, 0,
522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
523 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
524 	/* 69 - 1280x720@60Hz */
525 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
526 		   1430, 1650, 720, 725, 730, 750, 0,
527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
528 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
529 	/* 70 - 1280x720@100Hz */
530 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
531 		   1760, 1980, 720, 725, 730, 750, 0,
532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
533 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
534 	/* 71 - 1280x720@120Hz */
535 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
536 		   1430, 1650, 720, 725, 730, 750, 0,
537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
538 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
539 	/* 72 - 1920x1080@24Hz */
540 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
541 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
543 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
544 	/* 73 - 1920x1080@25Hz */
545 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
546 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
547 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
548 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
549 	/* 74 - 1920x1080@30Hz */
550 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
551 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
553 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
554 	/* 75 - 1920x1080@50Hz */
555 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
556 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
557 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
558 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
559 	/* 76 - 1920x1080@60Hz */
560 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
561 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
563 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
564 	/* 77 - 1920x1080@100Hz */
565 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
566 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
568 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
569 	/* 78 - 1920x1080@120Hz */
570 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
571 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
572 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
573 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
574 	/* 79 - 1680x720@24Hz */
575 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
576 		3080, 3300, 720, 725, 730, 750, 0,
577 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
578 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
579 	/* 80 - 1680x720@25Hz */
580 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
581 		2948, 3168, 720, 725, 730, 750, 0,
582 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
583 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
584 	/* 81 - 1680x720@30Hz */
585 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
586 		2420, 2640, 720, 725, 730, 750, 0,
587 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
588 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
589 	/* 82 - 1680x720@50Hz */
590 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
591 		1980, 2200, 720, 725, 730, 750, 0,
592 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
593 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
594 	/* 83 - 1680x720@60Hz */
595 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
596 		1980, 2200, 720, 725, 730, 750, 0,
597 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
598 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
599 	/* 84 - 1680x720@100Hz */
600 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
601 		1780, 2000, 720, 725, 730, 825, 0,
602 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
603 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
604 	/* 85 - 1680x720@120Hz */
605 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
606 		1780, 2000, 720, 725, 730, 825, 0,
607 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
608 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
609 	/* 86 - 2560x1080@24Hz */
610 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
611 		3602, 3750, 1080, 1084, 1089, 1100, 0,
612 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
613 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
614 	/* 87 - 2560x1080@25Hz */
615 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
616 		3052, 3200, 1080, 1084, 1089, 1125, 0,
617 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
618 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
619 	/* 88 - 2560x1080@30Hz */
620 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
621 		3372, 3520, 1080, 1084, 1089, 1125, 0,
622 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
623 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
624 	/* 89 - 2560x1080@50Hz */
625 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
626 		3152, 3300, 1080, 1084, 1089, 1125, 0,
627 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
628 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
629 	/* 90 - 2560x1080@60Hz */
630 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
631 		2852, 3000, 1080, 1084, 1089, 1100, 0,
632 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
633 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
634 	/* 91 - 2560x1080@100Hz */
635 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
636 		2822, 2970, 1080, 1084, 1089, 1250, 0,
637 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
638 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
639 	/* 92 - 2560x1080@120Hz */
640 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
641 		3152, 3300, 1080, 1084, 1089, 1250, 0,
642 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
643 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
644 	/* 93 - 3840x2160p@24Hz 16:9 */
645 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
646 		5204, 5500, 2160, 2168, 2178, 2250, 0,
647 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
648 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
649 	/* 94 - 3840x2160p@25Hz 16:9 */
650 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
651 		4984, 5280, 2160, 2168, 2178, 2250, 0,
652 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
653 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
654 	/* 95 - 3840x2160p@30Hz 16:9 */
655 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
656 		4104, 4400, 2160, 2168, 2178, 2250, 0,
657 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
658 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
659 	/* 96 - 3840x2160p@50Hz 16:9 */
660 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
661 		4984, 5280, 2160, 2168, 2178, 2250, 0,
662 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
663 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
664 	/* 97 - 3840x2160p@60Hz 16:9 */
665 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
666 		4104, 4400, 2160, 2168, 2178, 2250, 0,
667 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
668 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
669 	/* 98 - 4096x2160p@24Hz 256:135 */
670 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
671 		5204, 5500, 2160, 2168, 2178, 2250, 0,
672 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
673 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
674 	/* 99 - 4096x2160p@25Hz 256:135 */
675 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
676 		5152, 5280, 2160, 2168, 2178, 2250, 0,
677 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
678 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
679 	/* 100 - 4096x2160p@30Hz 256:135 */
680 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
681 		4272, 4400, 2160, 2168, 2178, 2250, 0,
682 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
683 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
684 	/* 101 - 4096x2160p@50Hz 256:135 */
685 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
686 		5152, 5280, 2160, 2168, 2178, 2250, 0,
687 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
688 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
689 	/* 102 - 4096x2160p@60Hz 256:135 */
690 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
691 		4272, 4400, 2160, 2168, 2178, 2250, 0,
692 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
693 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
694 	/* 103 - 3840x2160p@24Hz 64:27 */
695 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
696 		5204, 5500, 2160, 2168, 2178, 2250, 0,
697 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
698 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
699 	/* 104 - 3840x2160p@25Hz 64:27 */
700 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
701 		4104, 4400, 2160, 2168, 2178, 2250, 0,
702 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
703 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
704 	/* 105 - 3840x2160p@30Hz 64:27 */
705 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
706 		4104, 4400, 2160, 2168, 2178, 2250, 0,
707 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
708 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
709 	/* 106 - 3840x2160p@50Hz 64:27 */
710 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
711 		4984, 5280, 2160, 2168, 2178, 2250, 0,
712 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
713 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
714 	/* 107 - 3840x2160p@60Hz 64:27 */
715 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
716 		4104, 4400, 2160, 2168, 2178, 2250, 0,
717 		DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
718 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
719 };
720 
721 /*
722  * HDMI 1.4 4k modes. Index using the VIC.
723  */
724 static const struct drm_display_mode edid_4k_modes[] = {
725 	/* 0 - dummy, VICs start at 1 */
726 	{ },
727 	/* 1 - 3840x2160@30Hz */
728 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
729 		   3840, 4016, 4104, 4400,
730 		   2160, 2168, 2178, 2250, 0,
731 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
732 	  .vrefresh = 30, },
733 	/* 2 - 3840x2160@25Hz */
734 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
735 		   3840, 4896, 4984, 5280,
736 		   2160, 2168, 2178, 2250, 0,
737 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
738 	  .vrefresh = 25, },
739 	/* 3 - 3840x2160@24Hz */
740 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
741 		   3840, 5116, 5204, 5500,
742 		   2160, 2168, 2178, 2250, 0,
743 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
744 	  .vrefresh = 24, },
745 	/* 4 - 4096x2160@24Hz (SMPTE) */
746 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
747 		   4096, 5116, 5204, 5500,
748 		   2160, 2168, 2178, 2250, 0,
749 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 	  .vrefresh = 24, },
751 };
752 
753 /*
754  * Autogenerated from the DMT spec.
755  * This table is copied from xfree86/modes/xf86EdidModes.c.
756  */
757 static const struct drm_display_mode drm_dmt_modes[] = {
758 	/* 0x01 - 640x350@85Hz */
759 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
760 		   736, 832, 350, 382, 385, 445, 0,
761 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
762 	/* 0x02 - 640x400@85Hz */
763 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
764 		   736, 832, 400, 401, 404, 445, 0,
765 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
766 	/* 0x03 - 720x400@85Hz */
767 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
768 		   828, 936, 400, 401, 404, 446, 0,
769 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
770 	/* 0x04 - 640x480@60Hz */
771 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
772 		   752, 800, 480, 490, 492, 525, 0,
773 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
774 	/* 0x05 - 640x480@72Hz */
775 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
776 		   704, 832, 480, 489, 492, 520, 0,
777 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
778 	/* 0x06 - 640x480@75Hz */
779 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
780 		   720, 840, 480, 481, 484, 500, 0,
781 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
782 	/* 0x07 - 640x480@85Hz */
783 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
784 		   752, 832, 480, 481, 484, 509, 0,
785 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
786 	/* 0x08 - 800x600@56Hz */
787 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
788 		   896, 1024, 600, 601, 603, 625, 0,
789 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
790 	/* 0x09 - 800x600@60Hz */
791 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
792 		   968, 1056, 600, 601, 605, 628, 0,
793 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
794 	/* 0x0a - 800x600@72Hz */
795 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
796 		   976, 1040, 600, 637, 643, 666, 0,
797 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
798 	/* 0x0b - 800x600@75Hz */
799 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
800 		   896, 1056, 600, 601, 604, 625, 0,
801 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
802 	/* 0x0c - 800x600@85Hz */
803 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
804 		   896, 1048, 600, 601, 604, 631, 0,
805 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
806 	/* 0x0d - 800x600@120Hz RB */
807 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
808 		   880, 960, 600, 603, 607, 636, 0,
809 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
810 	/* 0x0e - 848x480@60Hz */
811 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
812 		   976, 1088, 480, 486, 494, 517, 0,
813 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
814 	/* 0x0f - 1024x768@43Hz, interlace */
815 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
816 		   1208, 1264, 768, 768, 772, 817, 0,
817 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
818 		   DRM_MODE_FLAG_INTERLACE) },
819 	/* 0x10 - 1024x768@60Hz */
820 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
821 		   1184, 1344, 768, 771, 777, 806, 0,
822 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
823 	/* 0x11 - 1024x768@70Hz */
824 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
825 		   1184, 1328, 768, 771, 777, 806, 0,
826 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
827 	/* 0x12 - 1024x768@75Hz */
828 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
829 		   1136, 1312, 768, 769, 772, 800, 0,
830 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
831 	/* 0x13 - 1024x768@85Hz */
832 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
833 		   1168, 1376, 768, 769, 772, 808, 0,
834 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
835 	/* 0x14 - 1024x768@120Hz RB */
836 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
837 		   1104, 1184, 768, 771, 775, 813, 0,
838 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
839 	/* 0x15 - 1152x864@75Hz */
840 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
841 		   1344, 1600, 864, 865, 868, 900, 0,
842 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
843 	/* 0x55 - 1280x720@60Hz */
844 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
845 		   1430, 1650, 720, 725, 730, 750, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
847 	/* 0x16 - 1280x768@60Hz RB */
848 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
849 		   1360, 1440, 768, 771, 778, 790, 0,
850 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
851 	/* 0x17 - 1280x768@60Hz */
852 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
853 		   1472, 1664, 768, 771, 778, 798, 0,
854 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
855 	/* 0x18 - 1280x768@75Hz */
856 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
857 		   1488, 1696, 768, 771, 778, 805, 0,
858 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
859 	/* 0x19 - 1280x768@85Hz */
860 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
861 		   1496, 1712, 768, 771, 778, 809, 0,
862 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
863 	/* 0x1a - 1280x768@120Hz RB */
864 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
865 		   1360, 1440, 768, 771, 778, 813, 0,
866 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
867 	/* 0x1b - 1280x800@60Hz RB */
868 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
869 		   1360, 1440, 800, 803, 809, 823, 0,
870 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
871 	/* 0x1c - 1280x800@60Hz */
872 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
873 		   1480, 1680, 800, 803, 809, 831, 0,
874 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
875 	/* 0x1d - 1280x800@75Hz */
876 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
877 		   1488, 1696, 800, 803, 809, 838, 0,
878 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
879 	/* 0x1e - 1280x800@85Hz */
880 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
881 		   1496, 1712, 800, 803, 809, 843, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
883 	/* 0x1f - 1280x800@120Hz RB */
884 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
885 		   1360, 1440, 800, 803, 809, 847, 0,
886 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
887 	/* 0x20 - 1280x960@60Hz */
888 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
889 		   1488, 1800, 960, 961, 964, 1000, 0,
890 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
891 	/* 0x21 - 1280x960@85Hz */
892 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
893 		   1504, 1728, 960, 961, 964, 1011, 0,
894 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
895 	/* 0x22 - 1280x960@120Hz RB */
896 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
897 		   1360, 1440, 960, 963, 967, 1017, 0,
898 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
899 	/* 0x23 - 1280x1024@60Hz */
900 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
901 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
902 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
903 	/* 0x24 - 1280x1024@75Hz */
904 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
905 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
906 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
907 	/* 0x25 - 1280x1024@85Hz */
908 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
909 		   1504, 1728, 1024, 1025, 1028, 1072, 0,
910 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
911 	/* 0x26 - 1280x1024@120Hz RB */
912 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
913 		   1360, 1440, 1024, 1027, 1034, 1084, 0,
914 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
915 	/* 0x27 - 1360x768@60Hz */
916 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
917 		   1536, 1792, 768, 771, 777, 795, 0,
918 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
919 	/* 0x28 - 1360x768@120Hz RB */
920 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
921 		   1440, 1520, 768, 771, 776, 813, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
923 	/* 0x51 - 1366x768@60Hz */
924 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
925 		   1579, 1792, 768, 771, 774, 798, 0,
926 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
927 	/* 0x56 - 1366x768@60Hz */
928 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
929 		   1436, 1500, 768, 769, 772, 800, 0,
930 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
931 	/* 0x29 - 1400x1050@60Hz RB */
932 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
933 		   1480, 1560, 1050, 1053, 1057, 1080, 0,
934 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
935 	/* 0x2a - 1400x1050@60Hz */
936 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
937 		   1632, 1864, 1050, 1053, 1057, 1089, 0,
938 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
939 	/* 0x2b - 1400x1050@75Hz */
940 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
941 		   1648, 1896, 1050, 1053, 1057, 1099, 0,
942 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
943 	/* 0x2c - 1400x1050@85Hz */
944 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
945 		   1656, 1912, 1050, 1053, 1057, 1105, 0,
946 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
947 	/* 0x2d - 1400x1050@120Hz RB */
948 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
949 		   1480, 1560, 1050, 1053, 1057, 1112, 0,
950 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
951 	/* 0x2e - 1440x900@60Hz RB */
952 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
953 		   1520, 1600, 900, 903, 909, 926, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
955 	/* 0x2f - 1440x900@60Hz */
956 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
957 		   1672, 1904, 900, 903, 909, 934, 0,
958 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
959 	/* 0x30 - 1440x900@75Hz */
960 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
961 		   1688, 1936, 900, 903, 909, 942, 0,
962 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
963 	/* 0x31 - 1440x900@85Hz */
964 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
965 		   1696, 1952, 900, 903, 909, 948, 0,
966 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
967 	/* 0x32 - 1440x900@120Hz RB */
968 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
969 		   1520, 1600, 900, 903, 909, 953, 0,
970 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
971 	/* 0x53 - 1600x900@60Hz */
972 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
973 		   1704, 1800, 900, 901, 904, 1000, 0,
974 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
975 	/* 0x33 - 1600x1200@60Hz */
976 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
977 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
978 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
979 	/* 0x34 - 1600x1200@65Hz */
980 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
981 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
982 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
983 	/* 0x35 - 1600x1200@70Hz */
984 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
985 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
986 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
987 	/* 0x36 - 1600x1200@75Hz */
988 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
989 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
990 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
991 	/* 0x37 - 1600x1200@85Hz */
992 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
993 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
994 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
995 	/* 0x38 - 1600x1200@120Hz RB */
996 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
997 		   1680, 1760, 1200, 1203, 1207, 1271, 0,
998 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
999 	/* 0x39 - 1680x1050@60Hz RB */
1000 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1001 		   1760, 1840, 1050, 1053, 1059, 1080, 0,
1002 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1003 	/* 0x3a - 1680x1050@60Hz */
1004 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1005 		   1960, 2240, 1050, 1053, 1059, 1089, 0,
1006 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1007 	/* 0x3b - 1680x1050@75Hz */
1008 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1009 		   1976, 2272, 1050, 1053, 1059, 1099, 0,
1010 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1011 	/* 0x3c - 1680x1050@85Hz */
1012 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1013 		   1984, 2288, 1050, 1053, 1059, 1105, 0,
1014 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1015 	/* 0x3d - 1680x1050@120Hz RB */
1016 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1017 		   1760, 1840, 1050, 1053, 1059, 1112, 0,
1018 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1019 	/* 0x3e - 1792x1344@60Hz */
1020 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1021 		   2120, 2448, 1344, 1345, 1348, 1394, 0,
1022 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1023 	/* 0x3f - 1792x1344@75Hz */
1024 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1025 		   2104, 2456, 1344, 1345, 1348, 1417, 0,
1026 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1027 	/* 0x40 - 1792x1344@120Hz RB */
1028 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1029 		   1872, 1952, 1344, 1347, 1351, 1423, 0,
1030 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1031 	/* 0x41 - 1856x1392@60Hz */
1032 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1033 		   2176, 2528, 1392, 1393, 1396, 1439, 0,
1034 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1035 	/* 0x42 - 1856x1392@75Hz */
1036 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1037 		   2208, 2560, 1392, 1393, 1396, 1500, 0,
1038 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1039 	/* 0x43 - 1856x1392@120Hz RB */
1040 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1041 		   1936, 2016, 1392, 1395, 1399, 1474, 0,
1042 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1043 	/* 0x52 - 1920x1080@60Hz */
1044 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1045 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1046 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1047 	/* 0x44 - 1920x1200@60Hz RB */
1048 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1049 		   2000, 2080, 1200, 1203, 1209, 1235, 0,
1050 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1051 	/* 0x45 - 1920x1200@60Hz */
1052 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1053 		   2256, 2592, 1200, 1203, 1209, 1245, 0,
1054 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1055 	/* 0x46 - 1920x1200@75Hz */
1056 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1057 		   2264, 2608, 1200, 1203, 1209, 1255, 0,
1058 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1059 	/* 0x47 - 1920x1200@85Hz */
1060 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1061 		   2272, 2624, 1200, 1203, 1209, 1262, 0,
1062 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1063 	/* 0x48 - 1920x1200@120Hz RB */
1064 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1065 		   2000, 2080, 1200, 1203, 1209, 1271, 0,
1066 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1067 	/* 0x49 - 1920x1440@60Hz */
1068 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1069 		   2256, 2600, 1440, 1441, 1444, 1500, 0,
1070 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1071 	/* 0x4a - 1920x1440@75Hz */
1072 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1073 		   2288, 2640, 1440, 1441, 1444, 1500, 0,
1074 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1075 	/* 0x4b - 1920x1440@120Hz RB */
1076 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1077 		   2000, 2080, 1440, 1443, 1447, 1525, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1079 	/* 0x54 - 2048x1152@60Hz */
1080 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1081 		   2154, 2250, 1152, 1153, 1156, 1200, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1083 	/* 0x4c - 2560x1600@60Hz RB */
1084 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1085 		   2640, 2720, 1600, 1603, 1609, 1646, 0,
1086 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1087 	/* 0x4d - 2560x1600@60Hz */
1088 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1089 		   3032, 3504, 1600, 1603, 1609, 1658, 0,
1090 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1091 	/* 0x4e - 2560x1600@75Hz */
1092 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1093 		   3048, 3536, 1600, 1603, 1609, 1672, 0,
1094 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1095 	/* 0x4f - 2560x1600@85Hz */
1096 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1097 		   3048, 3536, 1600, 1603, 1609, 1682, 0,
1098 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1099 	/* 0x50 - 2560x1600@120Hz RB */
1100 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1101 		   2640, 2720, 1600, 1603, 1609, 1694, 0,
1102 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1103 	/* 0x57 - 4096x2160@60Hz RB */
1104 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1105 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1106 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1107 	/* 0x58 - 4096x2160@59.94Hz RB */
1108 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1109 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1110 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1111 };
1112 
1113 /*
1114  * These more or less come from the DMT spec.  The 720x400 modes are
1115  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
1116  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
1117  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1118  * mode.
1119  *
1120  * The DMT modes have been fact-checked; the rest are mild guesses.
1121  */
1122 static const struct drm_display_mode edid_est_modes[] = {
1123 	/* 800x600@60Hz */
1124 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1125 		   968, 1056, 600, 601, 605, 628, 0,
1126 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1127 	/* 800x600@56Hz */
1128 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1129 		   896, 1024, 600, 601, 603,  625, 0,
1130 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1131 	/* 640x480@75Hz */
1132 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1133 		   720, 840, 480, 481, 484, 500, 0,
1134 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1135 	/* 640x480@72Hz */
1136 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1137 		   704,  832, 480, 489, 492, 520, 0,
1138 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1139 	/* 640x480@67Hz */
1140 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1141 		   768,  864, 480, 483, 486, 525, 0,
1142 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1143 	/* 640x480@60Hz */
1144 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1145 		   752, 800, 480, 490, 492, 525, 0,
1146 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1147 	/* 720x400@88Hz */
1148 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1149 		   846, 900, 400, 421, 423,  449, 0,
1150 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1151 	/* 720x400@70Hz */
1152 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1153 		   846,  900, 400, 412, 414, 449, 0,
1154 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1155 	/* 1280x1024@75Hz */
1156 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1157 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1159 	/* 1024x768@75Hz */
1160 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1161 		   1136, 1312,  768, 769, 772, 800, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1163 	/* 1024x768@70Hz */
1164 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1165 		   1184, 1328, 768, 771, 777, 806, 0,
1166 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1167 	/* 1024x768@60Hz */
1168 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1169 		   1184, 1344, 768, 771, 777, 806, 0,
1170 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1171 	/* 1024x768@43Hz */
1172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1173 		   1208, 1264, 768, 768, 776, 817, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1175 		   DRM_MODE_FLAG_INTERLACE) },
1176 	/* 832x624@75Hz */
1177 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1178 		   928, 1152, 624, 625, 628, 667, 0,
1179 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1180 	/* 800x600@75Hz */
1181 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1182 		   896, 1056, 600, 601, 604,  625, 0,
1183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1184 	/* 800x600@72Hz */
1185 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1186 		   976, 1040, 600, 637, 643, 666, 0,
1187 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1188 	/* 1152x864@75Hz */
1189 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1190 		   1344, 1600, 864, 865, 868, 900, 0,
1191 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1192 };
1193 
1194 struct minimode {
1195 	short w;
1196 	short h;
1197 	short r;
1198 	short rb;
1199 };
1200 
1201 static const struct minimode est3_modes[] = {
1202 	/* byte 6 */
1203 	{ 640, 350, 85, 0 },
1204 	{ 640, 400, 85, 0 },
1205 	{ 720, 400, 85, 0 },
1206 	{ 640, 480, 85, 0 },
1207 	{ 848, 480, 60, 0 },
1208 	{ 800, 600, 85, 0 },
1209 	{ 1024, 768, 85, 0 },
1210 	{ 1152, 864, 75, 0 },
1211 	/* byte 7 */
1212 	{ 1280, 768, 60, 1 },
1213 	{ 1280, 768, 60, 0 },
1214 	{ 1280, 768, 75, 0 },
1215 	{ 1280, 768, 85, 0 },
1216 	{ 1280, 960, 60, 0 },
1217 	{ 1280, 960, 85, 0 },
1218 	{ 1280, 1024, 60, 0 },
1219 	{ 1280, 1024, 85, 0 },
1220 	/* byte 8 */
1221 	{ 1360, 768, 60, 0 },
1222 	{ 1440, 900, 60, 1 },
1223 	{ 1440, 900, 60, 0 },
1224 	{ 1440, 900, 75, 0 },
1225 	{ 1440, 900, 85, 0 },
1226 	{ 1400, 1050, 60, 1 },
1227 	{ 1400, 1050, 60, 0 },
1228 	{ 1400, 1050, 75, 0 },
1229 	/* byte 9 */
1230 	{ 1400, 1050, 85, 0 },
1231 	{ 1680, 1050, 60, 1 },
1232 	{ 1680, 1050, 60, 0 },
1233 	{ 1680, 1050, 75, 0 },
1234 	{ 1680, 1050, 85, 0 },
1235 	{ 1600, 1200, 60, 0 },
1236 	{ 1600, 1200, 65, 0 },
1237 	{ 1600, 1200, 70, 0 },
1238 	/* byte 10 */
1239 	{ 1600, 1200, 75, 0 },
1240 	{ 1600, 1200, 85, 0 },
1241 	{ 1792, 1344, 60, 0 },
1242 	{ 1792, 1344, 75, 0 },
1243 	{ 1856, 1392, 60, 0 },
1244 	{ 1856, 1392, 75, 0 },
1245 	{ 1920, 1200, 60, 1 },
1246 	{ 1920, 1200, 60, 0 },
1247 	/* byte 11 */
1248 	{ 1920, 1200, 75, 0 },
1249 	{ 1920, 1200, 85, 0 },
1250 	{ 1920, 1440, 60, 0 },
1251 	{ 1920, 1440, 75, 0 },
1252 };
1253 
1254 static const struct minimode extra_modes[] = {
1255 	{ 1024, 576,  60, 0 },
1256 	{ 1366, 768,  60, 0 },
1257 	{ 1600, 900,  60, 0 },
1258 	{ 1680, 945,  60, 0 },
1259 	{ 1920, 1080, 60, 0 },
1260 	{ 2048, 1152, 60, 0 },
1261 	{ 2048, 1536, 60, 0 },
1262 };
1263 
1264 int edid_check_info(struct edid1_info *edid_info)
1265 {
1266 	if ((edid_info == NULL) || (edid_info->version == 0))
1267 		return -1;
1268 
1269 	if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1270 		return -1;
1271 
1272 	if (edid_info->version == 0xff && edid_info->revision == 0xff)
1273 		return -1;
1274 
1275 	return 0;
1276 }
1277 
1278 int edid_check_checksum(u8 *edid_block)
1279 {
1280 	u8 checksum = 0;
1281 	int i;
1282 
1283 	for (i = 0; i < 128; i++)
1284 		checksum += edid_block[i];
1285 
1286 	return (checksum == 0) ? 0 : -EINVAL;
1287 }
1288 
1289 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1290 		    unsigned int *hmax, unsigned int *vmin,
1291 		    unsigned int *vmax)
1292 {
1293 	int i;
1294 	struct edid_monitor_descriptor *monitor;
1295 
1296 	*hmin = *hmax = *vmin = *vmax = 0;
1297 	if (edid_check_info(edid))
1298 		return -1;
1299 
1300 	for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1301 		monitor = &edid->monitor_details.descriptor[i];
1302 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1303 			*hmin = monitor->data.range_data.horizontal_min;
1304 			*hmax = monitor->data.range_data.horizontal_max;
1305 			*vmin = monitor->data.range_data.vertical_min;
1306 			*vmax = monitor->data.range_data.vertical_max;
1307 			return 0;
1308 		}
1309 	}
1310 	return -1;
1311 }
1312 
1313 /* Set all parts of a timing entry to the same value */
1314 static void set_entry(struct timing_entry *entry, u32 value)
1315 {
1316 	entry->min = value;
1317 	entry->typ = value;
1318 	entry->max = value;
1319 }
1320 
1321 /**
1322  * decode_timing() - Decoding an 18-byte detailed timing record
1323  *
1324  * @buf:	Pointer to EDID detailed timing record
1325  * @timing:	Place to put timing
1326  */
1327 static void decode_timing(u8 *buf, struct display_timing *timing)
1328 {
1329 	uint x_mm, y_mm;
1330 	unsigned int ha, hbl, hso, hspw, hborder;
1331 	unsigned int va, vbl, vso, vspw, vborder;
1332 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1333 
1334 	/* Edid contains pixel clock in terms of 10KHz */
1335 	set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1336 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1337 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1338 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1339 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1340 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1341 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1342 	hborder = buf[15];
1343 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1344 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1345 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1346 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1347 	vborder = buf[16];
1348 
1349 	set_entry(&timing->hactive, ha);
1350 	set_entry(&timing->hfront_porch, hso);
1351 	set_entry(&timing->hback_porch, hbl - hso - hspw);
1352 	set_entry(&timing->hsync_len, hspw);
1353 
1354 	set_entry(&timing->vactive, va);
1355 	set_entry(&timing->vfront_porch, vso);
1356 	set_entry(&timing->vback_porch, vbl - vso - vspw);
1357 	set_entry(&timing->vsync_len, vspw);
1358 
1359 	timing->flags = 0;
1360 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1361 		timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1362 	else
1363 		timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1364 	if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1365 		timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1366 	else
1367 		timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1368 
1369 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1370 		timing->flags = DISPLAY_FLAGS_INTERLACED;
1371 
1372 	debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1373 	      "               %04x %04x %04x %04x hborder %x\n"
1374 	      "               %04x %04x %04x %04x vborder %x\n",
1375 	      timing->pixelclock.typ,
1376 	      x_mm, y_mm,
1377 	      ha, ha + hso, ha + hso + hspw,
1378 	      ha + hbl, hborder,
1379 	      va, va + vso, va + vso + vspw,
1380 	      va + vbl, vborder);
1381 }
1382 
1383 /**
1384  * decode_mode() - Decoding an 18-byte detailed timing record
1385  *
1386  * @buf:	Pointer to EDID detailed timing record
1387  * @timing:	Place to put timing
1388  */
1389 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1390 {
1391 	uint x_mm, y_mm;
1392 	unsigned int ha, hbl, hso, hspw, hborder;
1393 	unsigned int va, vbl, vso, vspw, vborder;
1394 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1395 
1396 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1397 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1398 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1399 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1400 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1401 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1402 	hborder = buf[15];
1403 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1404 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1405 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1406 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1407 	vborder = buf[16];
1408 
1409 	/* Edid contains pixel clock in terms of 10KHz */
1410 	mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1411 	mode->hdisplay = ha;
1412 	mode->hsync_start = ha + hso;
1413 	mode->hsync_end = ha + hso + hspw;
1414 	mode->htotal = ha + hbl;
1415 	mode->vdisplay = va;
1416 	mode->vsync_start = va + vso;
1417 	mode->vsync_end = va + vso + vspw;
1418 	mode->vtotal = va + vbl;
1419 
1420 	mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1421 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1422 	mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1423 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1424 
1425 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1426 		mode->flags |= DRM_MODE_FLAG_INTERLACE;
1427 
1428 	debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1429 	      "     %04d %04d %04d %04d hborder %d\n"
1430 	      "     %04d %04d %04d %04d vborder %d\n",
1431 	      mode->clock,
1432 	      x_mm, y_mm, mode->flags,
1433 	      mode->hdisplay, mode->hsync_start, mode->hsync_end,
1434 	      mode->htotal, hborder,
1435 	      mode->vdisplay, mode->vsync_start, mode->vsync_end,
1436 	      mode->vtotal, vborder);
1437 }
1438 
1439 /**
1440  * edid_vendor - match a string against EDID's obfuscated vendor field
1441  * @edid: EDID to match
1442  * @vendor: vendor string
1443  *
1444  * Returns true if @vendor is in @edid, false otherwise
1445  */
1446 static bool edid_vendor(struct edid *edid, char *vendor)
1447 {
1448 	char edid_vendor[3];
1449 
1450 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1451 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1452 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1453 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1454 
1455 	return !strncmp(edid_vendor, vendor, 3);
1456 }
1457 
1458 /**
1459  * Check if HDMI vendor specific data block is present in CEA block
1460  * @param info	CEA extension block
1461  * @return true if block is found
1462  */
1463 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1464 {
1465 	u8 end, i = 0;
1466 
1467 	/* check for end of data block */
1468 	end = info->dtd_offset;
1469 	if (end == 0)
1470 		end = sizeof(info->data);
1471 	if (end < 4 || end > sizeof(info->data))
1472 		return false;
1473 	end -= 4;
1474 
1475 	while (i < end) {
1476 		/* Look for vendor specific data block of appropriate size */
1477 		if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1478 		    (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1479 			u8 *db = &info->data[i + 1];
1480 			u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1481 
1482 			if (oui == HDMI_IEEE_OUI)
1483 				return true;
1484 		}
1485 		i += EDID_CEA861_DB_LEN(*info, i) + 1;
1486 	}
1487 
1488 	return false;
1489 }
1490 
1491 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1492 {
1493 	int refresh = 0;
1494 	unsigned int calc_val;
1495 
1496 	if (mode->vrefresh > 0) {
1497 		refresh = mode->vrefresh;
1498 	} else if (mode->htotal > 0 && mode->vtotal > 0) {
1499 		int vtotal;
1500 
1501 		vtotal = mode->vtotal;
1502 		/* work out vrefresh the value will be x1000 */
1503 		calc_val = (mode->clock * 1000);
1504 		calc_val /= mode->htotal;
1505 		refresh = (calc_val + vtotal / 2) / vtotal;
1506 
1507 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1508 			refresh *= 2;
1509 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1510 			refresh /= 2;
1511 		if (mode->vscan > 1)
1512 			refresh /= mode->vscan;
1513 	}
1514 	return refresh;
1515 }
1516 
1517 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1518 		      int *panel_bits_per_colourp)
1519 {
1520 	struct edid1_info *edid = (struct edid1_info *)buf;
1521 	bool timing_done;
1522 	int i;
1523 
1524 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1525 		debug("%s: Invalid buffer\n", __func__);
1526 		return -EINVAL;
1527 	}
1528 
1529 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1530 		debug("%s: No preferred timing\n", __func__);
1531 		return -ENOENT;
1532 	}
1533 
1534 	/* Look for detailed timing */
1535 	timing_done = false;
1536 	for (i = 0; i < 4; i++) {
1537 		struct edid_monitor_descriptor *desc;
1538 
1539 		desc = &edid->monitor_details.descriptor[i];
1540 		if (desc->zero_flag_1 != 0) {
1541 			decode_mode((u8 *)desc, mode);
1542 			timing_done = true;
1543 			break;
1544 		}
1545 	}
1546 	if (!timing_done)
1547 		return -EINVAL;
1548 
1549 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1550 		debug("%s: Not a digital display\n", __func__);
1551 		return -ENOSYS;
1552 	}
1553 	if (edid->version != 1 || edid->revision < 4) {
1554 		debug("%s: EDID version %d.%d does not have required info\n",
1555 		      __func__, edid->version, edid->revision);
1556 		*panel_bits_per_colourp = -1;
1557 	} else  {
1558 		*panel_bits_per_colourp =
1559 			((edid->video_input_definition & 0x70) >> 3) + 4;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
1566 		    int *panel_bits_per_colourp)
1567 {
1568 	struct edid1_info *edid = (struct edid1_info *)buf;
1569 	bool timing_done;
1570 	int i;
1571 
1572 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1573 		debug("%s: Invalid buffer\n", __func__);
1574 		return -EINVAL;
1575 	}
1576 
1577 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1578 		debug("%s: No preferred timing\n", __func__);
1579 		return -ENOENT;
1580 	}
1581 
1582 	/* Look for detailed timing */
1583 	timing_done = false;
1584 	for (i = 0; i < 4; i++) {
1585 		struct edid_monitor_descriptor *desc;
1586 
1587 		desc = &edid->monitor_details.descriptor[i];
1588 		if (desc->zero_flag_1 != 0) {
1589 			decode_timing((u8 *)desc, timing);
1590 			timing_done = true;
1591 			break;
1592 		}
1593 	}
1594 	if (!timing_done)
1595 		return -EINVAL;
1596 
1597 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1598 		debug("%s: Not a digital display\n", __func__);
1599 		return -ENOSYS;
1600 	}
1601 	if (edid->version != 1 || edid->revision < 4) {
1602 		debug("%s: EDID version %d.%d does not have required info\n",
1603 		      __func__, edid->version, edid->revision);
1604 		*panel_bits_per_colourp = -1;
1605 	} else  {
1606 		*panel_bits_per_colourp =
1607 			((edid->video_input_definition & 0x70) >> 3) + 4;
1608 	}
1609 
1610 	timing->hdmi_monitor = false;
1611 	if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
1612 		struct edid_cea861_info *info =
1613 			(struct edid_cea861_info *)(buf + sizeof(*edid));
1614 
1615 		if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
1616 			timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 /**
1623  * Snip the tailing whitespace/return of a string.
1624  *
1625  * @param string	The string to be snipped
1626  * @return the snipped string
1627  */
1628 static char *snip(char *string)
1629 {
1630 	char *s;
1631 
1632 	/*
1633 	 * This is always a 13 character buffer
1634 	 * and it's not always terminated.
1635 	 */
1636 	string[12] = '\0';
1637 	s = &string[strlen(string) - 1];
1638 
1639 	while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
1640 	       *s == '\0'))
1641 		*(s--) = '\0';
1642 
1643 	return string;
1644 }
1645 
1646 /**
1647  * Print an EDID monitor descriptor block
1648  *
1649  * @param monitor	The EDID monitor descriptor block
1650  * @have_timing		Modifies to 1 if the desciptor contains timing info
1651  */
1652 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
1653 			   unsigned int *have_timing)
1654 {
1655 	unsigned char *bytes = (unsigned char *)monitor;
1656 	struct edid_detailed_timing *timing =
1657 			(struct edid_detailed_timing *)monitor;
1658 
1659 	if (bytes[0] == 0 && bytes[1] == 0) {
1660 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
1661 			printf("Monitor serial number: %s\n",
1662 			       snip(monitor->data.string));
1663 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
1664 			printf("Monitor ID: %s\n",
1665 			       snip(monitor->data.string));
1666 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
1667 			printf("Monitor name: %s\n",
1668 			       snip(monitor->data.string));
1669 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
1670 			printf("Monitor range limits, horizontal sync: "
1671 			       "%d-%d kHz, vertical refresh: "
1672 			       "%d-%d Hz, max pixel clock: "
1673 			       "%d MHz\n",
1674 			       monitor->data.range_data.horizontal_min,
1675 			       monitor->data.range_data.horizontal_max,
1676 			       monitor->data.range_data.vertical_min,
1677 			       monitor->data.range_data.vertical_max,
1678 			       monitor->data.range_data.pixel_clock_max * 10);
1679 	} else {
1680 		u32 pixclock, h_active, h_blanking, v_active, v_blanking;
1681 		u32 h_total, v_total, vfreq;
1682 
1683 		pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
1684 		h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
1685 		h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
1686 		v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
1687 		v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
1688 
1689 		h_total = h_active + h_blanking;
1690 		v_total = v_active + v_blanking;
1691 		if (v_total > 0 && h_total > 0)
1692 			vfreq = pixclock / (v_total * h_total);
1693 		else
1694 			vfreq = 1; /* Error case */
1695 		printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
1696 		       v_active, h_active > 1000 ? ' ' : '\t', vfreq);
1697 		*have_timing = 1;
1698 	}
1699 }
1700 
1701 /**
1702  * Get the manufacturer name from an EDID info.
1703  *
1704  * @param edid_info     The EDID info to be printed
1705  * @param name		Returns the string of the manufacturer name
1706  */
1707 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
1708 {
1709 	name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
1710 	name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
1711 	name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
1712 	name[3] = '\0';
1713 }
1714 
1715 void edid_print_info(struct edid1_info *edid_info)
1716 {
1717 	int i;
1718 	char manufacturer[4];
1719 	unsigned int have_timing = 0;
1720 	u32 serial_number;
1721 
1722 	if (edid_check_info(edid_info)) {
1723 		printf("Not a valid EDID\n");
1724 		return;
1725 	}
1726 
1727 	printf("EDID version: %d.%d\n",
1728 	       edid_info->version, edid_info->revision);
1729 
1730 	printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
1731 
1732 	edid_get_manufacturer_name(edid_info, manufacturer);
1733 	printf("Manufacturer: %s\n", manufacturer);
1734 
1735 	serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
1736 	if (serial_number != 0xffffffff) {
1737 		if (strcmp(manufacturer, "MAG") == 0)
1738 			serial_number -= 0x7000000;
1739 		if (strcmp(manufacturer, "OQI") == 0)
1740 			serial_number -= 456150000;
1741 		if (strcmp(manufacturer, "VSC") == 0)
1742 			serial_number -= 640000000;
1743 	}
1744 	printf("Serial number: %08x\n", serial_number);
1745 	printf("Manufactured in week: %d year: %d\n",
1746 	       edid_info->week, edid_info->year + 1990);
1747 
1748 	printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
1749 	       EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
1750 	       "digital signal, " : "analog signal, ",
1751 	       EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
1752 	       EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
1753 	       ", blank to black" : "",
1754 	       EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
1755 	       ", separate sync" : "",
1756 	       EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
1757 	       ", composite sync" : "",
1758 	       EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
1759 	       ", sync on green" : "",
1760 	       EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
1761 	       ", serration v" : "");
1762 
1763 	printf("Monitor is %s\n",
1764 	       EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
1765 
1766 	printf("Maximum visible display size: %d cm x %d cm\n",
1767 	       edid_info->max_size_horizontal,
1768 	       edid_info->max_size_vertical);
1769 
1770 	printf("Power management features: %s%s, %s%s, %s%s\n",
1771 	       EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
1772 	       "" : "no ", "active off",
1773 	       EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
1774 	       EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
1775 
1776 	printf("Estabilished timings:\n");
1777 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
1778 		printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
1779 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
1780 		printf("\t720x400\t\t88 Hz (XGA2)\n");
1781 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
1782 		printf("\t640x480\t\t60 Hz (VGA)\n");
1783 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
1784 		printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
1785 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
1786 		printf("\t640x480\t\t72 Hz (VESA)\n");
1787 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
1788 		printf("\t640x480\t\t75 Hz (VESA)\n");
1789 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
1790 		printf("\t800x600\t\t56 Hz (VESA)\n");
1791 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
1792 		printf("\t800x600\t\t60 Hz (VESA)\n");
1793 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
1794 		printf("\t800x600\t\t72 Hz (VESA)\n");
1795 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
1796 		printf("\t800x600\t\t75 Hz (VESA)\n");
1797 	if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
1798 		printf("\t832x624\t\t75 Hz (Mac II)\n");
1799 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
1800 		printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
1801 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
1802 		printf("\t1024x768\t60 Hz (VESA)\n");
1803 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
1804 		printf("\t1024x768\t70 Hz (VESA)\n");
1805 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
1806 		printf("\t1024x768\t75 Hz (VESA)\n");
1807 	if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
1808 		printf("\t1280x1024\t75 (VESA)\n");
1809 	if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
1810 		printf("\t1152x870\t75 (Mac II)\n");
1811 
1812 	/* Standard timings. */
1813 	printf("Standard timings:\n");
1814 	for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
1815 		unsigned int aspect = 10000;
1816 		unsigned int x, y;
1817 		unsigned char xres, vfreq;
1818 
1819 		xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
1820 		vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
1821 		if ((xres != vfreq) ||
1822 		    ((xres != 0) && (xres != 1)) ||
1823 		    ((vfreq != 0) && (vfreq != 1))) {
1824 			switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
1825 				i)) {
1826 			case ASPECT_625:
1827 				aspect = 6250;
1828 				break;
1829 			case ASPECT_75:
1830 				aspect = 7500;
1831 				break;
1832 			case ASPECT_8:
1833 				aspect = 8000;
1834 				break;
1835 			case ASPECT_5625:
1836 				aspect = 5625;
1837 				break;
1838 			}
1839 			x = (xres + 31) * 8;
1840 			y = x * aspect / 10000;
1841 			printf("\t%dx%d%c\t%d Hz\n", x, y,
1842 			       x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
1843 			have_timing = 1;
1844 		}
1845 	}
1846 
1847 	/* Detailed timing information. */
1848 	for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
1849 			i++) {
1850 		edid_print_dtd(&edid_info->monitor_details.descriptor[i],
1851 			       &have_timing);
1852 	}
1853 
1854 	if (!have_timing)
1855 		printf("\tNone\n");
1856 }
1857 
1858 /**
1859  * drm_mode_create - create a new display mode
1860  *
1861  * Create a new, cleared drm_display_mode.
1862  *
1863  * Returns:
1864  * Pointer to new mode on success, NULL on error.
1865  */
1866 static struct drm_display_mode *drm_mode_create(void)
1867 {
1868 	struct drm_display_mode *nmode;
1869 
1870 	nmode = malloc(sizeof(struct drm_display_mode));
1871 	memset(nmode, 0, sizeof(struct drm_display_mode));
1872 	if (!nmode)
1873 		return NULL;
1874 
1875 	return nmode;
1876 }
1877 
1878 /**
1879  * drm_mode_destroy - remove a mode
1880  * @mode: mode to remove
1881  *
1882  */
1883 static void drm_mode_destroy(struct drm_display_mode *mode)
1884 {
1885 	if (!mode)
1886 		return;
1887 
1888 	kfree(mode);
1889 }
1890 
1891 /**
1892  * drm_cvt_mode -create a modeline based on the CVT algorithm
1893  * @hdisplay: hdisplay size
1894  * @vdisplay: vdisplay size
1895  * @vrefresh: vrefresh rate
1896  * @reduced: whether to use reduced blanking
1897  * @interlaced: whether to compute an interlaced mode
1898  * @margins: whether to add margins (borders)
1899  *
1900  * This function is called to generate the modeline based on CVT algorithm
1901  * according to the hdisplay, vdisplay, vrefresh.
1902  * It is based from the VESA(TM) Coordinated Video Timing Generator by
1903  * Graham Loveridge April 9, 2003 available at
1904  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
1905  *
1906  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
1907  * What I have done is to translate it by using integer calculation.
1908  *
1909  * Returns:
1910  * The modeline based on the CVT algorithm stored in a drm_display_mode object.
1911  * The display mode object is allocated with drm_mode_create(). Returns NULL
1912  * when no mode could be allocated.
1913  */
1914 static
1915 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
1916 				      bool reduced, bool interlaced,
1917 				      bool margins)
1918 {
1919 #define HV_FACTOR			1000
1920 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
1921 #define	CVT_MARGIN_PERCENTAGE		18
1922 	/* 2) character cell horizontal granularity (pixels) - default 8 */
1923 #define	CVT_H_GRANULARITY		8
1924 	/* 3) Minimum vertical porch (lines) - default 3 */
1925 #define	CVT_MIN_V_PORCH			3
1926 	/* 4) Minimum number of vertical back porch lines - default 6 */
1927 #define	CVT_MIN_V_BPORCH		6
1928 	/* Pixel Clock step (kHz) */
1929 #define CVT_CLOCK_STEP			250
1930 	struct drm_display_mode *drm_mode;
1931 	unsigned int vfieldrate, hperiod;
1932 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
1933 	int interlace;
1934 
1935 	/* allocate the drm_display_mode structure. If failure, we will
1936 	 * return directly
1937 	 */
1938 	drm_mode = drm_mode_create();
1939 	if (!drm_mode)
1940 		return NULL;
1941 
1942 	/* the CVT default refresh rate is 60Hz */
1943 	if (!vrefresh)
1944 		vrefresh = 60;
1945 
1946 	/* the required field fresh rate */
1947 	if (interlaced)
1948 		vfieldrate = vrefresh * 2;
1949 	else
1950 		vfieldrate = vrefresh;
1951 
1952 	/* horizontal pixels */
1953 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
1954 
1955 	/* determine the left&right borders */
1956 	hmargin = 0;
1957 	if (margins) {
1958 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
1959 		hmargin -= hmargin % CVT_H_GRANULARITY;
1960 	}
1961 	/* find the total active pixels */
1962 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
1963 
1964 	/* find the number of lines per field */
1965 	if (interlaced)
1966 		vdisplay_rnd = vdisplay / 2;
1967 	else
1968 		vdisplay_rnd = vdisplay;
1969 
1970 	/* find the top & bottom borders */
1971 	vmargin = 0;
1972 	if (margins)
1973 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
1974 
1975 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
1976 
1977 	/* Interlaced */
1978 	if (interlaced)
1979 		interlace = 1;
1980 	else
1981 		interlace = 0;
1982 
1983 	/* Determine VSync Width from aspect ratio */
1984 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
1985 		vsync = 4;
1986 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
1987 		vsync = 5;
1988 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
1989 		vsync = 6;
1990 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
1991 		vsync = 7;
1992 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
1993 		vsync = 7;
1994 	else /* custom */
1995 		vsync = 10;
1996 
1997 	if (!reduced) {
1998 		/* simplify the GTF calculation */
1999 		/* 4) Minimum time of vertical sync + back porch interval
2000 		 * default 550.0
2001 		 */
2002 		int tmp1, tmp2;
2003 #define CVT_MIN_VSYNC_BP	550
2004 		/* 3) Nominal HSync width (% of line period) - default 8 */
2005 #define CVT_HSYNC_PERCENTAGE	8
2006 		unsigned int hblank_percentage;
2007 		int vsyncandback_porch, hblank;
2008 
2009 		/* estimated the horizontal period */
2010 		tmp1 = HV_FACTOR * 1000000  -
2011 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2012 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2013 				interlace;
2014 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2015 
2016 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2017 		/* 9. Find number of lines in sync + backporch */
2018 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2019 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2020 		else
2021 			vsyncandback_porch = tmp1;
2022 		/* 10. Find number of lines in back porch
2023 		 *		vback_porch = vsyncandback_porch - vsync;
2024 		 */
2025 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2026 				vsyncandback_porch + CVT_MIN_V_PORCH;
2027 		/* 5) Definition of Horizontal blanking time limitation */
2028 		/* Gradient (%/kHz) - default 600 */
2029 #define CVT_M_FACTOR	600
2030 		/* Offset (%) - default 40 */
2031 #define CVT_C_FACTOR	40
2032 		/* Blanking time scaling factor - default 128 */
2033 #define CVT_K_FACTOR	128
2034 		/* Scaling factor weighting - default 20 */
2035 #define CVT_J_FACTOR	20
2036 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
2037 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2038 			 CVT_J_FACTOR)
2039 		/* 12. Find ideal blanking duty cycle from formula */
2040 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2041 					hperiod / 1000;
2042 		/* 13. Blanking time */
2043 		if (hblank_percentage < 20 * HV_FACTOR)
2044 			hblank_percentage = 20 * HV_FACTOR;
2045 		hblank = drm_mode->hdisplay * hblank_percentage /
2046 			 (100 * HV_FACTOR - hblank_percentage);
2047 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
2048 		/* 14. find the total pixels per line */
2049 		drm_mode->htotal = drm_mode->hdisplay + hblank;
2050 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2051 		drm_mode->hsync_start = drm_mode->hsync_end -
2052 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2053 		drm_mode->hsync_start += CVT_H_GRANULARITY -
2054 			drm_mode->hsync_start % CVT_H_GRANULARITY;
2055 		/* fill the Vsync values */
2056 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2057 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2058 	} else {
2059 		/* Reduced blanking */
2060 		/* Minimum vertical blanking interval time - default 460 */
2061 #define CVT_RB_MIN_VBLANK	460
2062 		/* Fixed number of clocks for horizontal sync */
2063 #define CVT_RB_H_SYNC		32
2064 		/* Fixed number of clocks for horizontal blanking */
2065 #define CVT_RB_H_BLANK		160
2066 		/* Fixed number of lines for vertical front porch - default 3*/
2067 #define CVT_RB_VFPORCH		3
2068 		int vbilines;
2069 		int tmp1, tmp2;
2070 		/* 8. Estimate Horizontal period. */
2071 		tmp1 = HV_FACTOR * 1000000 -
2072 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2073 		tmp2 = vdisplay_rnd + 2 * vmargin;
2074 		hperiod = tmp1 / (tmp2 * vfieldrate);
2075 		/* 9. Find number of lines in vertical blanking */
2076 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2077 		/* 10. Check if vertical blanking is sufficient */
2078 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2079 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2080 		/* 11. Find total number of lines in vertical field */
2081 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2082 		/* 12. Find total number of pixels in a line */
2083 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2084 		/* Fill in HSync values */
2085 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2086 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2087 		/* Fill in VSync values */
2088 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2089 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2090 	}
2091 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
2092 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2093 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2094 	/* 18/16. Find actual vertical frame frequency */
2095 	/* ignore - just set the mode flag for interlaced */
2096 	if (interlaced) {
2097 		drm_mode->vtotal *= 2;
2098 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2099 	}
2100 
2101 	if (reduced)
2102 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2103 					DRM_MODE_FLAG_NVSYNC);
2104 	else
2105 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2106 					DRM_MODE_FLAG_NHSYNC);
2107 
2108 	return drm_mode;
2109 }
2110 
2111 static int
2112 cea_db_payload_len(const u8 *db)
2113 {
2114 	return db[0] & 0x1f;
2115 }
2116 
2117 static int
2118 cea_db_extended_tag(const u8 *db)
2119 {
2120 	return db[1];
2121 }
2122 
2123 static int
2124 cea_db_tag(const u8 *db)
2125 {
2126 	return db[0] >> 5;
2127 }
2128 
2129 #define for_each_cea_db(cea, i, start, end) \
2130 	for ((i) = (start); (i) < (end) && (i) + \
2131 	cea_db_payload_len(&(cea)[(i)]) < \
2132 	(end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2133 
2134 static int
2135 cea_revision(const u8 *cea)
2136 {
2137 	return cea[1];
2138 }
2139 
2140 static int
2141 cea_db_offsets(const u8 *cea, int *start, int *end)
2142 {
2143 	/* Data block offset in CEA extension block */
2144 	*start = 4;
2145 	*end = cea[2];
2146 	if (*end == 0)
2147 		*end = 127;
2148 	if (*end < 4 || *end > 127)
2149 		return -ERANGE;
2150 
2151 	/*
2152 	 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2153 	 */
2154 	if (*end != 4) {
2155 		int i;
2156 
2157 		i = *start;
2158 		while (i < (*end) &&
2159 		       i + cea_db_payload_len(&(cea)[i]) < (*end))
2160 			i += cea_db_payload_len(&(cea)[i]) + 1;
2161 
2162 		if (cea_db_payload_len(&(cea)[i]) &&
2163 		    i + cea_db_payload_len(&(cea)[i]) == (*end))
2164 			(*end)++;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2171 {
2172 	int hdmi_id;
2173 
2174 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2175 		return false;
2176 
2177 	if (cea_db_payload_len(db) < 5)
2178 		return false;
2179 
2180 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2181 
2182 	return hdmi_id == HDMI_IEEE_OUI;
2183 }
2184 
2185 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2186 {
2187 	unsigned int oui;
2188 
2189 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2190 		return false;
2191 
2192 	if (cea_db_payload_len(db) < 7)
2193 		return false;
2194 
2195 	oui = db[3] << 16 | db[2] << 8 | db[1];
2196 
2197 	return oui == HDMI_FORUM_IEEE_OUI;
2198 }
2199 
2200 static bool cea_db_is_y420cmdb(const u8 *db)
2201 {
2202 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2203 		return false;
2204 
2205 	if (!cea_db_payload_len(db))
2206 		return false;
2207 
2208 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2209 		return false;
2210 
2211 	return true;
2212 }
2213 
2214 static bool cea_db_is_y420vdb(const u8 *db)
2215 {
2216 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2217 		return false;
2218 
2219 	if (!cea_db_payload_len(db))
2220 		return false;
2221 
2222 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2223 		return false;
2224 
2225 	return true;
2226 }
2227 
2228 static bool drm_valid_hdmi_vic(u8 vic)
2229 {
2230 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2231 }
2232 
2233 static void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2234 			       const struct drm_display_mode *mode)
2235 {
2236 	struct drm_display_mode *mode_buf = data->mode_buf;
2237 
2238 	if (data->modes >= MODE_LEN)
2239 		return;
2240 	mode_buf[(data->modes)++] = *mode;
2241 }
2242 
2243 static bool drm_valid_cea_vic(u8 vic)
2244 {
2245 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2246 }
2247 
2248 static u8 svd_to_vic(u8 svd)
2249 {
2250 	/* 0-6 bit vic, 7th bit native mode indicator */
2251 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
2252 		return svd & 127;
2253 
2254 	return svd;
2255 }
2256 
2257 static struct drm_display_mode *
2258 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2259 				u8 video_index)
2260 {
2261 	struct drm_display_mode *newmode;
2262 	u8 vic;
2263 
2264 	if (!video_db || video_index >= video_len)
2265 		return NULL;
2266 
2267 	/* CEA modes are numbered 1..127 */
2268 	vic = svd_to_vic(video_db[video_index]);
2269 	if (!drm_valid_cea_vic(vic))
2270 		return NULL;
2271 
2272 	newmode = drm_mode_create();
2273 	if (!newmode)
2274 		return NULL;
2275 
2276 	*newmode = edid_cea_modes[vic];
2277 	newmode->vrefresh = 0;
2278 
2279 	return newmode;
2280 }
2281 
2282 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2283 {
2284 	unsigned long *p = map + BIT_WORD(start);
2285 	const unsigned int size = start + len;
2286 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2287 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2288 
2289 	while (len - bits_to_set >= 0) {
2290 		*p |= mask_to_set;
2291 		len -= bits_to_set;
2292 		bits_to_set = BITS_PER_LONG;
2293 		mask_to_set = ~0UL;
2294 		p++;
2295 	}
2296 	if (len) {
2297 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2298 		*p |= mask_to_set;
2299 	}
2300 }
2301 
2302 static void
2303 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2304 {
2305 	u8 vic = svd_to_vic(svd);
2306 
2307 	if (!drm_valid_cea_vic(vic))
2308 		return;
2309 
2310 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2311 }
2312 
2313 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2314 {
2315 	int i, modes = 0;
2316 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2317 
2318 	for (i = 0; i < len; i++) {
2319 		struct drm_display_mode *mode;
2320 
2321 		mode = drm_display_mode_from_vic_index(db, len, i);
2322 		if (mode) {
2323 			/*
2324 			 * YCBCR420 capability block contains a bitmap which
2325 			 * gives the index of CEA modes from CEA VDB, which
2326 			 * can support YCBCR 420 sampling output also (apart
2327 			 * from RGB/YCBCR444 etc).
2328 			 * For example, if the bit 0 in bitmap is set,
2329 			 * first mode in VDB can support YCBCR420 output too.
2330 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2331 			 */
2332 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2333 				drm_add_cmdb_modes(db[i], hdmi);
2334 			drm_add_hdmi_modes(data, mode);
2335 			drm_mode_destroy(mode);
2336 			modes++;
2337 		}
2338 	}
2339 
2340 	return modes;
2341 }
2342 
2343 /*
2344  * do_y420vdb_modes - Parse YCBCR 420 only modes
2345  * @data: the structure that save parsed hdmi edid data
2346  * @svds: start of the data block of CEA YCBCR 420 VDB
2347  * @svds_len: length of the CEA YCBCR 420 VDB
2348  * @hdmi: runtime information about the connected HDMI sink
2349  *
2350  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2351  * which contains modes which can be supported in YCBCR 420
2352  * output format only.
2353  */
2354 static int
2355 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2356 {
2357 	int modes = 0, i;
2358 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2359 
2360 	for (i = 0; i < svds_len; i++) {
2361 		u8 vic = svd_to_vic(svds[i]);
2362 
2363 		if (!drm_valid_cea_vic(vic))
2364 			continue;
2365 
2366 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2367 		drm_add_hdmi_modes(data, &edid_cea_modes[vic]);
2368 		modes++;
2369 	}
2370 
2371 	return modes;
2372 }
2373 
2374 struct stereo_mandatory_mode {
2375 	int width, height, vrefresh;
2376 	unsigned int flags;
2377 };
2378 
2379 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2380 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2381 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2382 	{ 1920, 1080, 50,
2383 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2384 	{ 1920, 1080, 60,
2385 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2386 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2387 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2388 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2389 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2390 };
2391 
2392 static bool
2393 stereo_match_mandatory(const struct drm_display_mode *mode,
2394 		       const struct stereo_mandatory_mode *stereo_mode)
2395 {
2396 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2397 
2398 	return mode->hdisplay == stereo_mode->width &&
2399 	       mode->vdisplay == stereo_mode->height &&
2400 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2401 	       drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2402 }
2403 
2404 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2405 {
2406 	const struct drm_display_mode *mode;
2407 	int num = data->modes, modes = 0, i, k;
2408 
2409 	for (k = 0; k < num; k++) {
2410 		mode = &data->mode_buf[k];
2411 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2412 			const struct stereo_mandatory_mode *mandatory;
2413 			struct drm_display_mode *new_mode;
2414 
2415 			if (!stereo_match_mandatory(mode,
2416 						    &stereo_mandatory_modes[i]))
2417 				continue;
2418 
2419 			mandatory = &stereo_mandatory_modes[i];
2420 			new_mode = drm_mode_create();
2421 			if (!new_mode)
2422 				continue;
2423 
2424 			*new_mode = *mode;
2425 			new_mode->flags |= mandatory->flags;
2426 			drm_add_hdmi_modes(data, new_mode);
2427 			drm_mode_destroy(new_mode);
2428 			modes++;
2429 		}
2430 	}
2431 
2432 	return modes;
2433 }
2434 
2435 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2436 			       const u8 *video_db, u8 video_len, u8 video_index)
2437 {
2438 	struct drm_display_mode *newmode;
2439 	int modes = 0;
2440 
2441 	if (structure & (1 << 0)) {
2442 		newmode = drm_display_mode_from_vic_index(video_db,
2443 							  video_len,
2444 							  video_index);
2445 		if (newmode) {
2446 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2447 			drm_add_hdmi_modes(data, newmode);
2448 			modes++;
2449 			drm_mode_destroy(newmode);
2450 		}
2451 	}
2452 	if (structure & (1 << 6)) {
2453 		newmode = drm_display_mode_from_vic_index(video_db,
2454 							  video_len,
2455 							  video_index);
2456 		if (newmode) {
2457 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2458 			drm_add_hdmi_modes(data, newmode);
2459 			modes++;
2460 			drm_mode_destroy(newmode);
2461 		}
2462 	}
2463 	if (structure & (1 << 8)) {
2464 		newmode = drm_display_mode_from_vic_index(video_db,
2465 							  video_len,
2466 							  video_index);
2467 		if (newmode) {
2468 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2469 			drm_add_hdmi_modes(data, newmode);
2470 			modes++;
2471 			drm_mode_destroy(newmode);
2472 		}
2473 	}
2474 
2475 	return modes;
2476 }
2477 
2478 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2479 {
2480 	if (!drm_valid_hdmi_vic(vic)) {
2481 		debug("Unknown HDMI VIC: %d\n", vic);
2482 		return 0;
2483 	}
2484 
2485 	drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2486 
2487 	return 1;
2488 }
2489 
2490 /*
2491  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2492  * @db: start of the CEA vendor specific block
2493  * @len: length of the CEA block payload, ie. one can access up to db[len]
2494  *
2495  * Parses the HDMI VSDB looking for modes to add to @data. This function
2496  * also adds the stereo 3d modes when applicable.
2497  */
2498 static int
2499 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2500 		   struct hdmi_edid_data *data)
2501 {
2502 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2503 	u8 vic_len, hdmi_3d_len = 0;
2504 	u16 mask;
2505 	u16 structure_all;
2506 
2507 	if (len < 8)
2508 		goto out;
2509 
2510 	/* no HDMI_Video_Present */
2511 	if (!(db[8] & (1 << 5)))
2512 		goto out;
2513 
2514 	/* Latency_Fields_Present */
2515 	if (db[8] & (1 << 7))
2516 		offset += 2;
2517 
2518 	/* I_Latency_Fields_Present */
2519 	if (db[8] & (1 << 6))
2520 		offset += 2;
2521 
2522 	/* the declared length is not long enough for the 2 first bytes
2523 	 * of additional video format capabilities
2524 	 */
2525 	if (len < (8 + offset + 2))
2526 		goto out;
2527 
2528 	/* 3D_Present */
2529 	offset++;
2530 	if (db[8 + offset] & (1 << 7)) {
2531 		modes += add_hdmi_mandatory_stereo_modes(data);
2532 
2533 		/* 3D_Multi_present */
2534 		multi_present = (db[8 + offset] & 0x60) >> 5;
2535 	}
2536 
2537 	offset++;
2538 	vic_len = db[8 + offset] >> 5;
2539 	hdmi_3d_len = db[8 + offset] & 0x1f;
2540 
2541 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2542 		u8 vic;
2543 
2544 		vic = db[9 + offset + i];
2545 		modes += add_hdmi_mode(data, vic);
2546 	}
2547 
2548 	offset += 1 + vic_len;
2549 
2550 	if (multi_present == 1)
2551 		multi_len = 2;
2552 	else if (multi_present == 2)
2553 		multi_len = 4;
2554 	else
2555 		multi_len = 0;
2556 
2557 	if (len < (8 + offset + hdmi_3d_len - 1))
2558 		goto out;
2559 
2560 	if (hdmi_3d_len < multi_len)
2561 		goto out;
2562 
2563 	if (multi_present == 1 || multi_present == 2) {
2564 		/* 3D_Structure_ALL */
2565 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2566 
2567 		/* check if 3D_MASK is present */
2568 		if (multi_present == 2)
2569 			mask = (db[10 + offset] << 8) | db[11 + offset];
2570 		else
2571 			mask = 0xffff;
2572 
2573 		for (i = 0; i < 16; i++) {
2574 			if (mask & (1 << i))
2575 				modes += add_3d_struct_modes(data,
2576 						structure_all,
2577 						video_db,
2578 						video_len, i);
2579 		}
2580 	}
2581 
2582 	offset += multi_len;
2583 
2584 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2585 		int vic_index;
2586 		struct drm_display_mode *newmode = NULL;
2587 		unsigned int newflag = 0;
2588 		bool detail_present;
2589 
2590 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2591 
2592 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2593 			break;
2594 
2595 		/* 2D_VIC_order_X */
2596 		vic_index = db[8 + offset + i] >> 4;
2597 
2598 		/* 3D_Structure_X */
2599 		switch (db[8 + offset + i] & 0x0f) {
2600 		case 0:
2601 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2602 			break;
2603 		case 6:
2604 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2605 			break;
2606 		case 8:
2607 			/* 3D_Detail_X */
2608 			if ((db[9 + offset + i] >> 4) == 1)
2609 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2610 			break;
2611 		}
2612 
2613 		if (newflag != 0) {
2614 			newmode = drm_display_mode_from_vic_index(
2615 								  video_db,
2616 								  video_len,
2617 								  vic_index);
2618 
2619 			if (newmode) {
2620 				newmode->flags |= newflag;
2621 				drm_add_hdmi_modes(data, newmode);
2622 				modes++;
2623 				drm_mode_destroy(newmode);
2624 			}
2625 		}
2626 
2627 		if (detail_present)
2628 			i++;
2629 	}
2630 
2631 out:
2632 	return modes;
2633 }
2634 
2635 /**
2636  * edid_get_quirks - return quirk flags for a given EDID
2637  * @edid: EDID to process
2638  *
2639  * This tells subsequent routines what fixes they need to apply.
2640  */
2641 static u32 edid_get_quirks(struct edid *edid)
2642 {
2643 	struct edid_quirk *quirk;
2644 	int i;
2645 
2646 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2647 		quirk = &edid_quirk_list[i];
2648 
2649 		if (edid_vendor(edid, quirk->vendor) &&
2650 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
2651 			return quirk->quirks;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
2658 				      const u8 *db)
2659 {
2660 	struct drm_display_info *info = &data->display_info;
2661 	struct drm_hdmi_info *hdmi = &info->hdmi;
2662 	u8 map_len = cea_db_payload_len(db) - 1;
2663 	u8 count;
2664 	u64 map = 0;
2665 
2666 	if (map_len == 0) {
2667 		/* All CEA modes support ycbcr420 sampling also.*/
2668 		hdmi->y420_cmdb_map = U64_MAX;
2669 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
2670 		return;
2671 	}
2672 
2673 	/*
2674 	 * This map indicates which of the existing CEA block modes
2675 	 * from VDB can support YCBCR420 output too. So if bit=0 is
2676 	 * set, first mode from VDB can support YCBCR420 output too.
2677 	 * We will parse and keep this map, before parsing VDB itself
2678 	 * to avoid going through the same block again and again.
2679 	 *
2680 	 * Spec is not clear about max possible size of this block.
2681 	 * Clamping max bitmap block size at 8 bytes. Every byte can
2682 	 * address 8 CEA modes, in this way this map can address
2683 	 * 8*8 = first 64 SVDs.
2684 	 */
2685 	if (map_len > 8)
2686 		map_len = 8;
2687 
2688 	for (count = 0; count < map_len; count++)
2689 		map |= (u64)db[2 + count] << (8 * count);
2690 
2691 	if (map)
2692 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
2693 
2694 	hdmi->y420_cmdb_map = map;
2695 }
2696 
2697 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
2698 					       const u8 *db)
2699 {
2700 	u8 dc_mask;
2701 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2702 
2703 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
2704 	hdmi->y420_dc_modes |= dc_mask;
2705 }
2706 
2707 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
2708 				      const u8 *hf_vsdb)
2709 {
2710 	struct drm_display_info *display = &data->display_info;
2711 	struct drm_hdmi_info *hdmi = &display->hdmi;
2712 
2713 	if (hf_vsdb[6] & 0x80) {
2714 		hdmi->scdc.supported = true;
2715 		if (hf_vsdb[6] & 0x40)
2716 			hdmi->scdc.read_request = true;
2717 	}
2718 
2719 	/*
2720 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
2721 	 * And as per the spec, three factors confirm this:
2722 	 * * Availability of a HF-VSDB block in EDID (check)
2723 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
2724 	 * * SCDC support available (let's check)
2725 	 * Lets check it out.
2726 	 */
2727 
2728 	if (hf_vsdb[5]) {
2729 		/* max clock is 5000 KHz times block value */
2730 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
2731 		struct drm_scdc *scdc = &hdmi->scdc;
2732 
2733 		if (max_tmds_clock > 340000) {
2734 			display->max_tmds_clock = max_tmds_clock;
2735 			debug("HF-VSDB: max TMDS clock %d kHz\n",
2736 			      display->max_tmds_clock);
2737 		}
2738 
2739 		if (scdc->supported) {
2740 			scdc->scrambling.supported = true;
2741 
2742 			/* Few sinks support scrambling for cloks < 340M */
2743 			if ((hf_vsdb[6] & 0x8))
2744 				scdc->scrambling.low_rates = true;
2745 		}
2746 	}
2747 
2748 	drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
2749 }
2750 
2751 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
2752 					   const u8 *hdmi)
2753 {
2754 	struct drm_display_info *info = &data->display_info;
2755 	unsigned int dc_bpc = 0;
2756 
2757 	/* HDMI supports at least 8 bpc */
2758 	info->bpc = 8;
2759 
2760 	if (cea_db_payload_len(hdmi) < 6)
2761 		return;
2762 
2763 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
2764 		dc_bpc = 10;
2765 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
2766 		debug("HDMI sink does deep color 30.\n");
2767 	}
2768 
2769 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
2770 		dc_bpc = 12;
2771 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
2772 		debug("HDMI sink does deep color 36.\n");
2773 	}
2774 
2775 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
2776 		dc_bpc = 16;
2777 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
2778 		debug("HDMI sink does deep color 48.\n");
2779 	}
2780 
2781 	if (dc_bpc == 0) {
2782 		debug("No deep color support on this HDMI sink.\n");
2783 		return;
2784 	}
2785 
2786 	debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
2787 	info->bpc = dc_bpc;
2788 
2789 	/* YCRCB444 is optional according to spec. */
2790 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
2791 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
2792 		debug("HDMI sink does YCRCB444 in deep color.\n");
2793 	}
2794 
2795 	/*
2796 	 * Spec says that if any deep color mode is supported at all,
2797 	 * then deep color 36 bit must be supported.
2798 	 */
2799 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
2800 		debug("HDMI sink should do DC_36, but does not!\n");
2801 }
2802 
2803 /*
2804  * Search EDID for CEA extension block.
2805  */
2806 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2807 {
2808 	u8 *edid_ext = NULL;
2809 	int i;
2810 
2811 	/* No EDID or EDID extensions */
2812 	if (!edid || !edid->extensions)
2813 		return NULL;
2814 
2815 	/* Find CEA extension */
2816 	for (i = 0; i < edid->extensions; i++) {
2817 		edid_ext = (u8 *)edid + EDID_SIZE * (i + 1);
2818 		if (edid_ext[0] == ext_id)
2819 			break;
2820 	}
2821 
2822 	if (i == edid->extensions)
2823 		return NULL;
2824 
2825 	return edid_ext;
2826 }
2827 
2828 static u8 *drm_find_cea_extension(struct edid *edid)
2829 {
2830 	return drm_find_edid_extension(edid, 0x02);
2831 }
2832 
2833 #define AUDIO_BLOCK	0x01
2834 #define VIDEO_BLOCK     0x02
2835 #define VENDOR_BLOCK    0x03
2836 #define SPEAKER_BLOCK	0x04
2837 #define EDID_BASIC_AUDIO BIT(6)
2838 
2839 /**
2840  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
2841  * @edid: monitor EDID information
2842  *
2843  * Parse the CEA extension according to CEA-861-B.
2844  *
2845  * Return: True if the monitor is HDMI, false if not or unknown.
2846  */
2847 bool drm_detect_hdmi_monitor(struct edid *edid)
2848 {
2849 	u8 *edid_ext;
2850 	int i;
2851 	int start_offset, end_offset;
2852 
2853 	edid_ext = drm_find_cea_extension(edid);
2854 	if (!edid_ext)
2855 		return false;
2856 
2857 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2858 		return false;
2859 
2860 	/*
2861 	 * Because HDMI identifier is in Vendor Specific Block,
2862 	 * search it from all data blocks of CEA extension.
2863 	 */
2864 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2865 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2866 			return true;
2867 	}
2868 
2869 	return false;
2870 }
2871 
2872 /**
2873  * drm_detect_monitor_audio - check monitor audio capability
2874  * @edid: EDID block to scan
2875  *
2876  * Monitor should have CEA extension block.
2877  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2878  * audio' only. If there is any audio extension block and supported
2879  * audio format, assume at least 'basic audio' support, even if 'basic
2880  * audio' is not defined in EDID.
2881  *
2882  * Return: True if the monitor supports audio, false otherwise.
2883  */
2884 bool drm_detect_monitor_audio(struct edid *edid)
2885 {
2886 	u8 *edid_ext;
2887 	int i, j;
2888 	bool has_audio = false;
2889 	int start_offset, end_offset;
2890 
2891 	edid_ext = drm_find_cea_extension(edid);
2892 	if (!edid_ext)
2893 		goto end;
2894 
2895 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2896 
2897 	if (has_audio) {
2898 		printf("Monitor has basic audio support\n");
2899 		goto end;
2900 	}
2901 
2902 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2903 		goto end;
2904 
2905 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2906 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
2907 			has_audio = true;
2908 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
2909 			     j += 3)
2910 				debug("CEA audio format %d\n",
2911 				      (edid_ext[i + j] >> 3) & 0xf);
2912 			goto end;
2913 		}
2914 	}
2915 end:
2916 	return has_audio;
2917 }
2918 
2919 static void
2920 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
2921 {
2922 	struct drm_display_info *info = &data->display_info;
2923 	u8 len = cea_db_payload_len(db);
2924 
2925 	if (len >= 6)
2926 		info->dvi_dual = db[6] & 1;
2927 	if (len >= 7)
2928 		info->max_tmds_clock = db[7] * 5000;
2929 
2930 	drm_parse_hdmi_deep_color_info(data, db);
2931 }
2932 
2933 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
2934 			      struct edid *edid)
2935 {
2936 	struct drm_display_info *info = &data->display_info;
2937 	const u8 *edid_ext;
2938 	int i, start, end;
2939 
2940 	edid_ext = drm_find_cea_extension(edid);
2941 	if (!edid_ext)
2942 		return;
2943 
2944 	info->cea_rev = edid_ext[1];
2945 
2946 	/* The existence of a CEA block should imply RGB support */
2947 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
2948 	if (edid_ext[3] & EDID_CEA_YCRCB444)
2949 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2950 	if (edid_ext[3] & EDID_CEA_YCRCB422)
2951 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2952 
2953 	if (cea_db_offsets(edid_ext, &start, &end))
2954 		return;
2955 
2956 	for_each_cea_db(edid_ext, i, start, end) {
2957 		const u8 *db = &edid_ext[i];
2958 
2959 		if (cea_db_is_hdmi_vsdb(db))
2960 			drm_parse_hdmi_vsdb_video(data, db);
2961 		if (cea_db_is_hdmi_forum_vsdb(db))
2962 			drm_parse_hdmi_forum_vsdb(data, db);
2963 		if (cea_db_is_y420cmdb(db))
2964 			drm_parse_y420cmdb_bitmap(data, db);
2965 	}
2966 }
2967 
2968 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
2969 {
2970 	struct drm_display_info *info = &data->display_info;
2971 
2972 	info->width_mm = edid->width_cm * 10;
2973 	info->height_mm = edid->height_cm * 10;
2974 
2975 	/* driver figures it out in this case */
2976 	info->bpc = 0;
2977 	info->color_formats = 0;
2978 	info->cea_rev = 0;
2979 	info->max_tmds_clock = 0;
2980 	info->dvi_dual = false;
2981 	info->edid_hdmi_dc_modes = 0;
2982 
2983 	memset(&info->hdmi, 0, sizeof(info->hdmi));
2984 
2985 	if (edid->revision < 3)
2986 		return;
2987 
2988 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2989 		return;
2990 
2991 	drm_parse_cea_ext(data, edid);
2992 
2993 	/*
2994 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
2995 	 *
2996 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
2997 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
2998 	 * extensions which tell otherwise.
2999 	 */
3000 	if ((info->bpc == 0) && (edid->revision < 4) &&
3001 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3002 		info->bpc = 8;
3003 		debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3004 	}
3005 
3006 	/* Only defined for 1.4 with digital displays */
3007 	if (edid->revision < 4)
3008 		return;
3009 
3010 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3011 	case DRM_EDID_DIGITAL_DEPTH_6:
3012 		info->bpc = 6;
3013 		break;
3014 	case DRM_EDID_DIGITAL_DEPTH_8:
3015 		info->bpc = 8;
3016 		break;
3017 	case DRM_EDID_DIGITAL_DEPTH_10:
3018 		info->bpc = 10;
3019 		break;
3020 	case DRM_EDID_DIGITAL_DEPTH_12:
3021 		info->bpc = 12;
3022 		break;
3023 	case DRM_EDID_DIGITAL_DEPTH_14:
3024 		info->bpc = 14;
3025 		break;
3026 	case DRM_EDID_DIGITAL_DEPTH_16:
3027 		info->bpc = 16;
3028 		break;
3029 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3030 	default:
3031 		info->bpc = 0;
3032 		break;
3033 	}
3034 
3035 	debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3036 	      info->bpc);
3037 
3038 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3039 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3040 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3041 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3042 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3043 }
3044 
3045 static
3046 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3047 {
3048 	const u8 *cea = drm_find_cea_extension(edid);
3049 	const u8 *db, *hdmi = NULL, *video = NULL;
3050 	u8 dbl, hdmi_len, video_len = 0;
3051 	int modes = 0;
3052 
3053 	if (cea && cea_revision(cea) >= 3) {
3054 		int i, start, end;
3055 
3056 		if (cea_db_offsets(cea, &start, &end))
3057 			return 0;
3058 
3059 		for_each_cea_db(cea, i, start, end) {
3060 			db = &cea[i];
3061 			dbl = cea_db_payload_len(db);
3062 
3063 			if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3064 				video = db + 1;
3065 				video_len = dbl;
3066 				modes += do_cea_modes(data, video, dbl);
3067 			} else if (cea_db_is_hdmi_vsdb(db)) {
3068 				hdmi = db;
3069 				hdmi_len = dbl;
3070 			} else if (cea_db_is_y420vdb(db)) {
3071 				const u8 *vdb420 = &db[2];
3072 
3073 				/* Add 4:2:0(only) modes present in EDID */
3074 				modes += do_y420vdb_modes(data, vdb420,
3075 							  dbl - 1);
3076 			}
3077 		}
3078 	}
3079 
3080 	/*
3081 	 * We parse the HDMI VSDB after having added the cea modes as we will
3082 	 * be patching their flags when the sink supports stereo 3D.
3083 	 */
3084 	if (hdmi)
3085 		modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3086 					    video_len, data);
3087 
3088 	return modes;
3089 }
3090 
3091 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3092 
3093 static void
3094 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3095 {
3096 	int i, n = 0;
3097 	u8 d = ext[0x02];
3098 	u8 *det_base = ext + d;
3099 
3100 	n = (127 - d) / 18;
3101 	for (i = 0; i < n; i++)
3102 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3103 }
3104 
3105 static void
3106 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3107 {
3108 	unsigned int i, n = min((int)ext[0x02], 6);
3109 	u8 *det_base = ext + 5;
3110 
3111 	if (ext[0x01] != 1)
3112 		return; /* unknown version */
3113 
3114 	for (i = 0; i < n; i++)
3115 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3116 }
3117 
3118 static void
3119 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3120 {
3121 	int i;
3122 	struct edid *edid = (struct edid *)raw_edid;
3123 
3124 	if (!edid)
3125 		return;
3126 
3127 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3128 		cb(&edid->detailed_timings[i], closure);
3129 
3130 	for (i = 1; i <= raw_edid[0x7e]; i++) {
3131 		u8 *ext = raw_edid + (i * EDID_SIZE);
3132 
3133 		switch (*ext) {
3134 		case CEA_EXT:
3135 			cea_for_each_detailed_block(ext, cb, closure);
3136 			break;
3137 		case VTB_EXT:
3138 			vtb_for_each_detailed_block(ext, cb, closure);
3139 			break;
3140 		default:
3141 			break;
3142 		}
3143 	}
3144 }
3145 
3146 /*
3147  * EDID is delightfully ambiguous about how interlaced modes are to be
3148  * encoded.  Our internal representation is of frame height, but some
3149  * HDTV detailed timings are encoded as field height.
3150  *
3151  * The format list here is from CEA, in frame size.  Technically we
3152  * should be checking refresh rate too.  Whatever.
3153  */
3154 static void
3155 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3156 			    struct detailed_pixel_timing *pt)
3157 {
3158 	int i;
3159 
3160 	static const struct {
3161 		int w, h;
3162 	} cea_interlaced[] = {
3163 		{ 1920, 1080 },
3164 		{  720,  480 },
3165 		{ 1440,  480 },
3166 		{ 2880,  480 },
3167 		{  720,  576 },
3168 		{ 1440,  576 },
3169 		{ 2880,  576 },
3170 	};
3171 
3172 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3173 		return;
3174 
3175 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3176 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3177 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3178 			mode->vdisplay *= 2;
3179 			mode->vsync_start *= 2;
3180 			mode->vsync_end *= 2;
3181 			mode->vtotal *= 2;
3182 			mode->vtotal |= 1;
3183 		}
3184 	}
3185 
3186 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3187 }
3188 
3189 /**
3190  * drm_mode_detailed - create a new mode from an EDID detailed timing section
3191  * @edid: EDID block
3192  * @timing: EDID detailed timing info
3193  * @quirks: quirks to apply
3194  *
3195  * An EDID detailed timing block contains enough info for us to create and
3196  * return a new struct drm_display_mode.
3197  */
3198 static
3199 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3200 					   struct detailed_timing *timing,
3201 					   u32 quirks)
3202 {
3203 	struct drm_display_mode *mode;
3204 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3205 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3206 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3207 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3208 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3209 	unsigned hsync_offset =
3210 		(pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3211 		pt->hsync_offset_lo;
3212 	unsigned hsync_pulse_width =
3213 		(pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3214 		pt->hsync_pulse_width_lo;
3215 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3216 		2 | pt->vsync_offset_pulse_width_lo >> 4;
3217 	unsigned vsync_pulse_width =
3218 		(pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3219 		(pt->vsync_offset_pulse_width_lo & 0xf);
3220 
3221 	/* ignore tiny modes */
3222 	if (hactive < 64 || vactive < 64)
3223 		return NULL;
3224 
3225 	if (pt->misc & DRM_EDID_PT_STEREO) {
3226 		debug("stereo mode not supported\n");
3227 		return NULL;
3228 	}
3229 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3230 		debug("composite sync not supported\n");
3231 
3232 	/* it is incorrect if hsync/vsync width is zero */
3233 	if (!hsync_pulse_width || !vsync_pulse_width) {
3234 		debug("Incorrect Detailed timing. ");
3235 		debug("Wrong Hsync/Vsync pulse width\n");
3236 		return NULL;
3237 	}
3238 
3239 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3240 		mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3241 		if (!mode)
3242 			return NULL;
3243 
3244 		goto set_refresh;
3245 	}
3246 
3247 	mode = drm_mode_create();
3248 	if (!mode)
3249 		return NULL;
3250 
3251 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3252 		timing->pixel_clock = cpu_to_le16(1088);
3253 
3254 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3255 
3256 	mode->hdisplay = hactive;
3257 	mode->hsync_start = mode->hdisplay + hsync_offset;
3258 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3259 	mode->htotal = mode->hdisplay + hblank;
3260 
3261 	mode->vdisplay = vactive;
3262 	mode->vsync_start = mode->vdisplay + vsync_offset;
3263 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3264 	mode->vtotal = mode->vdisplay + vblank;
3265 
3266 	/* Some EDIDs have bogus h/vtotal values */
3267 	if (mode->hsync_end > mode->htotal)
3268 		mode->htotal = mode->hsync_end + 1;
3269 	if (mode->vsync_end > mode->vtotal)
3270 		mode->vtotal = mode->vsync_end + 1;
3271 
3272 	drm_mode_do_interlace_quirk(mode, pt);
3273 
3274 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3275 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3276 			DRM_EDID_PT_VSYNC_POSITIVE;
3277 
3278 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3279 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3280 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3281 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3282 
3283 set_refresh:
3284 
3285 	mode->type = DRM_MODE_TYPE_DRIVER;
3286 	mode->vrefresh = drm_get_vrefresh(mode);
3287 
3288 	return mode;
3289 }
3290 
3291 /*
3292  * Calculate the alternate clock for the CEA mode
3293  * (60Hz vs. 59.94Hz etc.)
3294  */
3295 static unsigned int
3296 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3297 {
3298 	unsigned int clock = cea_mode->clock;
3299 
3300 	if (cea_mode->vrefresh % 6 != 0)
3301 		return clock;
3302 
3303 	/*
3304 	 * edid_cea_modes contains the 59.94Hz
3305 	 * variant for 240 and 480 line modes,
3306 	 * and the 60Hz variant otherwise.
3307 	 */
3308 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3309 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3310 	else
3311 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3312 
3313 	return clock;
3314 }
3315 
3316 /**
3317  * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3318  * @mode1: first mode
3319  * @mode2: second mode
3320  *
3321  * Check to see if @mode1 and @mode2 are equivalent, but
3322  * don't check the pixel clocks nor the stereo layout.
3323  *
3324  * Returns:
3325  * True if the modes are equal, false otherwise.
3326  */
3327 
3328 static
3329 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
3330 					const struct drm_display_mode *mode2)
3331 {
3332 	unsigned int flags_mask =
3333 		~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
3334 
3335 	if (mode1->hdisplay == mode2->hdisplay &&
3336 	    mode1->hsync_start == mode2->hsync_start &&
3337 	    mode1->hsync_end == mode2->hsync_end &&
3338 	    mode1->htotal == mode2->htotal &&
3339 	    mode1->vdisplay == mode2->vdisplay &&
3340 	    mode1->vsync_start == mode2->vsync_start &&
3341 	    mode1->vsync_end == mode2->vsync_end &&
3342 	    mode1->vtotal == mode2->vtotal &&
3343 	    mode1->vscan == mode2->vscan &&
3344 	    (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
3345 		return true;
3346 
3347 	return false;
3348 }
3349 
3350 /**
3351  * drm_mode_equal_no_clocks - test modes for equality
3352  * @mode1: first mode
3353  * @mode2: second mode
3354  *
3355  * Check to see if @mode1 and @mode2 are equivalent, but
3356  * don't check the pixel clocks.
3357  *
3358  * Returns:
3359  * True if the modes are equal, false otherwise.
3360  */
3361 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
3362 				     const struct drm_display_mode *mode2)
3363 {
3364 	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
3365 	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
3366 		return false;
3367 
3368 	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3369 }
3370 
3371 static
3372 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3373 				      unsigned int clock_tolerance)
3374 {
3375 	u8 vic;
3376 
3377 	if (!to_match->clock)
3378 		return 0;
3379 
3380 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3381 		const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
3382 		unsigned int clock1, clock2;
3383 
3384 		/* Check both 60Hz and 59.94Hz */
3385 		clock1 = cea_mode->clock;
3386 		clock2 = cea_mode_alternate_clock(cea_mode);
3387 
3388 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3389 		    abs(to_match->clock - clock2) > clock_tolerance)
3390 			continue;
3391 
3392 		if (drm_mode_equal_no_clocks(to_match, cea_mode))
3393 			return vic;
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 static unsigned int
3400 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3401 {
3402 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3403 		return hdmi_mode->clock;
3404 
3405 	return cea_mode_alternate_clock(hdmi_mode);
3406 }
3407 
3408 static
3409 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3410 				       unsigned int clock_tolerance)
3411 {
3412 	u8 vic;
3413 
3414 	if (!to_match->clock)
3415 		return 0;
3416 
3417 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3418 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3419 		unsigned int clock1, clock2;
3420 
3421 		/* Make sure to also match alternate clocks */
3422 		clock1 = hdmi_mode->clock;
3423 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3424 
3425 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3426 		    abs(to_match->clock - clock2) > clock_tolerance)
3427 			continue;
3428 
3429 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3430 			return vic;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3437 {
3438 	const struct drm_display_mode *cea_mode;
3439 	int clock1, clock2, clock;
3440 	u8 vic;
3441 	const char *type;
3442 
3443 	/*
3444 	 * allow 5kHz clock difference either way to account for
3445 	 * the 10kHz clock resolution limit of detailed timings.
3446 	 */
3447 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3448 	if (drm_valid_cea_vic(vic)) {
3449 		type = "CEA";
3450 		cea_mode = &edid_cea_modes[vic];
3451 		clock1 = cea_mode->clock;
3452 		clock2 = cea_mode_alternate_clock(cea_mode);
3453 	} else {
3454 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3455 		if (drm_valid_hdmi_vic(vic)) {
3456 			type = "HDMI";
3457 			cea_mode = &edid_4k_modes[vic];
3458 			clock1 = cea_mode->clock;
3459 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3460 		} else {
3461 			return;
3462 		}
3463 	}
3464 
3465 	/* pick whichever is closest */
3466 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3467 		clock = clock1;
3468 	else
3469 		clock = clock2;
3470 
3471 	if (mode->clock == clock)
3472 		return;
3473 
3474 	debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3475 	      type, vic, mode->clock, clock);
3476 	mode->clock = clock;
3477 }
3478 
3479 static void
3480 do_detailed_mode(struct detailed_timing *timing, void *c)
3481 {
3482 	struct detailed_mode_closure *closure = c;
3483 	struct drm_display_mode *newmode;
3484 
3485 	if (timing->pixel_clock) {
3486 		newmode = drm_mode_detailed(
3487 					    closure->edid, timing,
3488 					    closure->quirks);
3489 		if (!newmode)
3490 			return;
3491 
3492 		if (closure->preferred)
3493 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
3494 
3495 		/*
3496 		 * Detailed modes are limited to 10kHz pixel clock resolution,
3497 		 * so fix up anything that looks like CEA/HDMI mode,
3498 		 * but the clock is just slightly off.
3499 		 */
3500 		fixup_detailed_cea_mode_clock(newmode);
3501 		drm_add_hdmi_modes(closure->data, newmode);
3502 		drm_mode_destroy(newmode);
3503 		closure->modes++;
3504 		closure->preferred = 0;
3505 	}
3506 }
3507 
3508 /*
3509  * add_detailed_modes - Add modes from detailed timings
3510  * @data: attached data
3511  * @edid: EDID block to scan
3512  * @quirks: quirks to apply
3513  */
3514 static int
3515 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
3516 		   u32 quirks)
3517 {
3518 	struct detailed_mode_closure closure = {
3519 		.data = data,
3520 		.edid = edid,
3521 		.preferred = 1,
3522 		.quirks = quirks,
3523 	};
3524 
3525 	if (closure.preferred && !version_greater(edid, 1, 3))
3526 		closure.preferred =
3527 			(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
3528 
3529 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
3530 
3531 	return closure.modes;
3532 }
3533 
3534 static int drm_cvt_modes(struct hdmi_edid_data *data,
3535 			 struct detailed_timing *timing)
3536 {
3537 	int i, j, modes = 0;
3538 	struct drm_display_mode *newmode;
3539 	struct cvt_timing *cvt;
3540 	const int rates[] = { 60, 85, 75, 60, 50 };
3541 	const u8 empty[3] = { 0, 0, 0 };
3542 
3543 	for (i = 0; i < 4; i++) {
3544 		int uninitialized_var(width), height;
3545 
3546 		cvt = &timing->data.other_data.data.cvt[i];
3547 
3548 		if (!memcmp(cvt->code, empty, 3))
3549 			continue;
3550 
3551 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3552 		switch (cvt->code[1] & 0x0c) {
3553 		case 0x00:
3554 			width = height * 4 / 3;
3555 			break;
3556 		case 0x04:
3557 			width = height * 16 / 9;
3558 			break;
3559 		case 0x08:
3560 			width = height * 16 / 10;
3561 			break;
3562 		case 0x0c:
3563 			width = height * 15 / 9;
3564 			break;
3565 		}
3566 
3567 		for (j = 1; j < 5; j++) {
3568 			if (cvt->code[2] & (1 << j)) {
3569 				newmode = drm_cvt_mode(width, height,
3570 						       rates[j], j == 0,
3571 						       false, false);
3572 				if (newmode) {
3573 					drm_add_hdmi_modes(data, newmode);
3574 					modes++;
3575 					drm_mode_destroy(newmode);
3576 				}
3577 			}
3578 		}
3579 	}
3580 
3581 	return modes;
3582 }
3583 
3584 static void
3585 do_cvt_mode(struct detailed_timing *timing, void *c)
3586 {
3587 	struct detailed_mode_closure *closure = c;
3588 	struct detailed_non_pixel *data = &timing->data.other_data;
3589 
3590 	if (data->type == EDID_DETAIL_CVT_3BYTE)
3591 		closure->modes += drm_cvt_modes(closure->data, timing);
3592 }
3593 
3594 static int
3595 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
3596 {
3597 	struct detailed_mode_closure closure = {
3598 		.data = data,
3599 		.edid = edid,
3600 	};
3601 
3602 	if (version_greater(edid, 1, 2))
3603 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
3604 
3605 	/* XXX should also look for CVT codes in VTB blocks */
3606 
3607 	return closure.modes;
3608 }
3609 
3610 static void
3611 find_gtf2(struct detailed_timing *t, void *data)
3612 {
3613 	u8 *r = (u8 *)t;
3614 
3615 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
3616 		*(u8 **)data = r;
3617 }
3618 
3619 /* Secondary GTF curve kicks in above some break frequency */
3620 static int
3621 drm_gtf2_hbreak(struct edid *edid)
3622 {
3623 	u8 *r = NULL;
3624 
3625 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
3626 	return r ? (r[12] * 2) : 0;
3627 }
3628 
3629 static int
3630 drm_gtf2_2c(struct edid *edid)
3631 {
3632 	u8 *r = NULL;
3633 
3634 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
3635 	return r ? r[13] : 0;
3636 }
3637 
3638 static int
3639 drm_gtf2_m(struct edid *edid)
3640 {
3641 	u8 *r = NULL;
3642 
3643 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
3644 	return r ? (r[15] << 8) + r[14] : 0;
3645 }
3646 
3647 static int
3648 drm_gtf2_k(struct edid *edid)
3649 {
3650 	u8 *r = NULL;
3651 
3652 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
3653 	return r ? r[16] : 0;
3654 }
3655 
3656 static int
3657 drm_gtf2_2j(struct edid *edid)
3658 {
3659 	u8 *r = NULL;
3660 
3661 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
3662 	return r ? r[17] : 0;
3663 }
3664 
3665 /**
3666  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
3667  * @edid: EDID block to scan
3668  */
3669 static int standard_timing_level(struct edid *edid)
3670 {
3671 	if (edid->revision >= 2) {
3672 		if (edid->revision >= 4 &&
3673 		    (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
3674 			return LEVEL_CVT;
3675 		if (drm_gtf2_hbreak(edid))
3676 			return LEVEL_GTF2;
3677 		return LEVEL_GTF;
3678 	}
3679 	return LEVEL_DMT;
3680 }
3681 
3682 /*
3683  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3684  * monitors fill with ascii space (0x20) instead.
3685  */
3686 static int
3687 bad_std_timing(u8 a, u8 b)
3688 {
3689 	return (a == 0x00 && b == 0x00) ||
3690 	       (a == 0x01 && b == 0x01) ||
3691 	       (a == 0x20 && b == 0x20);
3692 }
3693 
3694 static void
3695 is_rb(struct detailed_timing *t, void *data)
3696 {
3697 	u8 *r = (u8 *)t;
3698 
3699 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
3700 		if (r[15] & 0x10)
3701 			*(bool *)data = true;
3702 }
3703 
3704 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3705 static bool
3706 drm_monitor_supports_rb(struct edid *edid)
3707 {
3708 	if (edid->revision >= 4) {
3709 		bool ret = false;
3710 
3711 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
3712 		return ret;
3713 	}
3714 
3715 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3716 }
3717 
3718 static bool
3719 mode_is_rb(const struct drm_display_mode *mode)
3720 {
3721 	return (mode->htotal - mode->hdisplay == 160) &&
3722 	       (mode->hsync_end - mode->hdisplay == 80) &&
3723 	       (mode->hsync_end - mode->hsync_start == 32) &&
3724 	       (mode->vsync_start - mode->vdisplay == 3);
3725 }
3726 
3727 /*
3728  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3729  * @hsize: Mode width
3730  * @vsize: Mode height
3731  * @fresh: Mode refresh rate
3732  * @rb: Mode reduced-blanking-ness
3733  *
3734  * Walk the DMT mode list looking for a match for the given parameters.
3735  *
3736  * Return: A newly allocated copy of the mode, or NULL if not found.
3737  */
3738 static struct drm_display_mode *drm_mode_find_dmt(
3739 					   int hsize, int vsize, int fresh,
3740 					   bool rb)
3741 {
3742 	int i;
3743 	struct drm_display_mode *newmode;
3744 
3745 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3746 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3747 
3748 		if (hsize != ptr->hdisplay)
3749 			continue;
3750 		if (vsize != ptr->vdisplay)
3751 			continue;
3752 		if (fresh != drm_get_vrefresh(ptr))
3753 			continue;
3754 		if (rb != mode_is_rb(ptr))
3755 			continue;
3756 
3757 		newmode = drm_mode_create();
3758 		*newmode = *ptr;
3759 		return newmode;
3760 	}
3761 
3762 	return NULL;
3763 }
3764 
3765 static struct drm_display_mode *
3766 drm_gtf_mode_complex(int hdisplay, int vdisplay,
3767 		     int vrefresh, bool interlaced, int margins,
3768 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
3769 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
3770 #define	GTF_MARGIN_PERCENTAGE		18
3771 	/* 2) character cell horizontal granularity (pixels) - default 8 */
3772 #define	GTF_CELL_GRAN			8
3773 	/* 3) Minimum vertical porch (lines) - default 3 */
3774 #define	GTF_MIN_V_PORCH			1
3775 	/* width of vsync in lines */
3776 #define V_SYNC_RQD			3
3777 	/* width of hsync as % of total line */
3778 #define H_SYNC_PERCENT			8
3779 	/* min time of vsync + back porch (microsec) */
3780 #define MIN_VSYNC_PLUS_BP		550
3781 	/* C' and M' are part of the Blanking Duty Cycle computation */
3782 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
3783 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
3784 	struct drm_display_mode *drm_mode;
3785 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
3786 	int top_margin, bottom_margin;
3787 	int interlace;
3788 	unsigned int hfreq_est;
3789 	int vsync_plus_bp;
3790 	unsigned int vtotal_lines;
3791 	int left_margin, right_margin;
3792 	unsigned int total_active_pixels, ideal_duty_cycle;
3793 	unsigned int hblank, total_pixels, pixel_freq;
3794 	int hsync, hfront_porch, vodd_front_porch_lines;
3795 	unsigned int tmp1, tmp2;
3796 
3797 	drm_mode = drm_mode_create();
3798 	if (!drm_mode)
3799 		return NULL;
3800 
3801 	/* 1. In order to give correct results, the number of horizontal
3802 	 * pixels requested is first processed to ensure that it is divisible
3803 	 * by the character size, by rounding it to the nearest character
3804 	 * cell boundary:
3805 	 */
3806 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
3807 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
3808 
3809 	/* 2. If interlace is requested, the number of vertical lines assumed
3810 	 * by the calculation must be halved, as the computation calculates
3811 	 * the number of vertical lines per field.
3812 	 */
3813 	if (interlaced)
3814 		vdisplay_rnd = vdisplay / 2;
3815 	else
3816 		vdisplay_rnd = vdisplay;
3817 
3818 	/* 3. Find the frame rate required: */
3819 	if (interlaced)
3820 		vfieldrate_rqd = vrefresh * 2;
3821 	else
3822 		vfieldrate_rqd = vrefresh;
3823 
3824 	/* 4. Find number of lines in Top margin: */
3825 	top_margin = 0;
3826 	if (margins)
3827 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
3828 				1000;
3829 	/* 5. Find number of lines in bottom margin: */
3830 	bottom_margin = top_margin;
3831 
3832 	/* 6. If interlace is required, then set variable interlace: */
3833 	if (interlaced)
3834 		interlace = 1;
3835 	else
3836 		interlace = 0;
3837 
3838 	/* 7. Estimate the Horizontal frequency */
3839 	{
3840 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
3841 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
3842 				2 + interlace;
3843 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
3844 	}
3845 
3846 	/* 8. Find the number of lines in V sync + back porch */
3847 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
3848 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
3849 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
3850 	/*  9. Find the number of lines in V back porch alone:
3851 	 *	vback_porch = vsync_plus_bp - V_SYNC_RQD;
3852 	 */
3853 	/*  10. Find the total number of lines in Vertical field period: */
3854 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
3855 			vsync_plus_bp + GTF_MIN_V_PORCH;
3856 	/*  11. Estimate the Vertical field frequency:
3857 	 *  vfieldrate_est = hfreq_est / vtotal_lines;
3858 	 */
3859 
3860 	/*  12. Find the actual horizontal period:
3861 	 *	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
3862 	 */
3863 	/*  13. Find the actual Vertical field frequency:
3864 	 *	vfield_rate = hfreq_est / vtotal_lines;
3865 	 */
3866 	/*  14. Find the Vertical frame frequency:
3867 	 *	if (interlaced)
3868 	 *		vframe_rate = vfield_rate / 2;
3869 	 *	else
3870 	 *		vframe_rate = vfield_rate;
3871 	 */
3872 	/*  15. Find number of pixels in left margin: */
3873 	if (margins)
3874 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
3875 				1000;
3876 	else
3877 		left_margin = 0;
3878 
3879 	/* 16.Find number of pixels in right margin: */
3880 	right_margin = left_margin;
3881 	/* 17.Find total number of active pixels in image and left and right */
3882 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
3883 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
3884 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
3885 				(GTF_M_PRIME * 1000000 / hfreq_est);
3886 	/* 19.Find the number of pixels in the blanking time to the nearest
3887 	 * double character cell:
3888 	 */
3889 	hblank = total_active_pixels * ideal_duty_cycle /
3890 			(100000 - ideal_duty_cycle);
3891 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
3892 	hblank = hblank * 2 * GTF_CELL_GRAN;
3893 	/* 20.Find total number of pixels: */
3894 	total_pixels = total_active_pixels + hblank;
3895 	/* 21.Find pixel clock frequency: */
3896 	pixel_freq = total_pixels * hfreq_est / 1000;
3897 	/* Stage 1 computations are now complete; I should really pass
3898 	 * the results to another function and do the Stage 2 computations,
3899 	 * but I only need a few more values so I'll just append the
3900 	 * computations here for now
3901 	 */
3902 
3903 	/* 17. Find the number of pixels in the horizontal sync period: */
3904 	hsync = H_SYNC_PERCENT * total_pixels / 100;
3905 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
3906 	hsync = hsync * GTF_CELL_GRAN;
3907 	/* 18. Find the number of pixels in horizontal front porch period */
3908 	hfront_porch = hblank / 2 - hsync;
3909 	/*  36. Find the number of lines in the odd front porch period: */
3910 	vodd_front_porch_lines = GTF_MIN_V_PORCH;
3911 
3912 	/* finally, pack the results in the mode struct */
3913 	drm_mode->hdisplay = hdisplay_rnd;
3914 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
3915 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
3916 	drm_mode->htotal = total_pixels;
3917 	drm_mode->vdisplay = vdisplay_rnd;
3918 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
3919 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
3920 	drm_mode->vtotal = vtotal_lines;
3921 
3922 	drm_mode->clock = pixel_freq;
3923 
3924 	if (interlaced) {
3925 		drm_mode->vtotal *= 2;
3926 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
3927 	}
3928 
3929 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
3930 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
3931 	else
3932 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
3933 
3934 	return drm_mode;
3935 }
3936 
3937 /**
3938  * drm_gtf_mode - create the mode based on the GTF algorithm
3939  * @hdisplay: hdisplay size
3940  * @vdisplay: vdisplay size
3941  * @vrefresh: vrefresh rate.
3942  * @interlaced: whether to compute an interlaced mode
3943  * @margins: desired margin (borders) size
3944  *
3945  * return the mode based on GTF algorithm
3946  *
3947  * This function is to create the mode based on the GTF algorithm.
3948  * Generalized Timing Formula is derived from:
3949  *	GTF Spreadsheet by Andy Morrish (1/5/97)
3950  *	available at http://www.vesa.org
3951  *
3952  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
3953  * What I have done is to translate it by using integer calculation.
3954  * I also refer to the function of fb_get_mode in the file of
3955  * drivers/video/fbmon.c
3956  *
3957  * Standard GTF parameters:
3958  * M = 600
3959  * C = 40
3960  * K = 128
3961  * J = 20
3962  *
3963  * Returns:
3964  * The modeline based on the GTF algorithm stored in a drm_display_mode object.
3965  * The display mode object is allocated with drm_mode_create(). Returns NULL
3966  * when no mode could be allocated.
3967  */
3968 static struct drm_display_mode *
3969 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
3970 	     bool interlaced, int margins)
3971 {
3972 	return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
3973 				    interlaced, margins,
3974 				    600, 40 * 2, 128, 20 * 2);
3975 }
3976 
3977 /** drm_mode_hsync - get the hsync of a mode
3978  * @mode: mode
3979  *
3980  * Returns:
3981  * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
3982  * value first if it is not yet set.
3983  */
3984 static int drm_mode_hsync(const struct drm_display_mode *mode)
3985 {
3986 	unsigned int calc_val;
3987 
3988 	if (mode->htotal < 0)
3989 		return 0;
3990 
3991 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
3992 	calc_val += 500;				/* round to 1000Hz */
3993 	calc_val /= 1000;				/* truncate to kHz */
3994 
3995 	return calc_val;
3996 }
3997 
3998 /**
3999  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4000  * @data: the structure that save parsed hdmi edid data
4001  * @edid: EDID block to scan
4002  * @t: standard timing params
4003  *
4004  * Take the standard timing params (in this case width, aspect, and refresh)
4005  * and convert them into a real mode using CVT/GTF/DMT.
4006  */
4007 static struct drm_display_mode *
4008 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4009 	     struct std_timing *t)
4010 {
4011 	struct drm_display_mode *mode = NULL;
4012 	int i, hsize, vsize;
4013 	int vrefresh_rate;
4014 	int num = data->modes;
4015 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4016 		>> EDID_TIMING_ASPECT_SHIFT;
4017 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4018 		>> EDID_TIMING_VFREQ_SHIFT;
4019 	int timing_level = standard_timing_level(edid);
4020 
4021 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
4022 		return NULL;
4023 
4024 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4025 	hsize = t->hsize * 8 + 248;
4026 	/* vrefresh_rate = vfreq + 60 */
4027 	vrefresh_rate = vfreq + 60;
4028 	/* the vdisplay is calculated based on the aspect ratio */
4029 	if (aspect_ratio == 0) {
4030 		if (edid->revision < 3)
4031 			vsize = hsize;
4032 		else
4033 			vsize = (hsize * 10) / 16;
4034 	} else if (aspect_ratio == 1) {
4035 		vsize = (hsize * 3) / 4;
4036 	} else if (aspect_ratio == 2) {
4037 		vsize = (hsize * 4) / 5;
4038 	} else {
4039 		vsize = (hsize * 9) / 16;
4040 	}
4041 
4042 	/* HDTV hack, part 1 */
4043 	if (vrefresh_rate == 60 &&
4044 	    ((hsize == 1360 && vsize == 765) ||
4045 	     (hsize == 1368 && vsize == 769))) {
4046 		hsize = 1366;
4047 		vsize = 768;
4048 	}
4049 
4050 	/*
4051 	 * If we already has a mode for this size and refresh
4052 	 * rate (because it came from detailed or CVT info), use that
4053 	 * instead.  This way we don't have to guess at interlace or
4054 	 * reduced blanking.
4055 	 */
4056 	for (i = 0; i < num; i++)
4057 		if (data->mode_buf[i].hdisplay == hsize &&
4058 		    data->mode_buf[i].vdisplay == vsize &&
4059 		    drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4060 			return NULL;
4061 
4062 	/* HDTV hack, part 2 */
4063 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4064 		mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4065 				    false);
4066 		mode->hdisplay = 1366;
4067 		mode->hsync_start = mode->hsync_start - 1;
4068 		mode->hsync_end = mode->hsync_end - 1;
4069 		return mode;
4070 	}
4071 
4072 	/* check whether it can be found in default mode table */
4073 	if (drm_monitor_supports_rb(edid)) {
4074 		mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4075 					 true);
4076 		if (mode)
4077 			return mode;
4078 	}
4079 
4080 	mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4081 	if (mode)
4082 		return mode;
4083 
4084 	/* okay, generate it */
4085 	switch (timing_level) {
4086 	case LEVEL_DMT:
4087 		break;
4088 	case LEVEL_GTF:
4089 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4090 		break;
4091 	case LEVEL_GTF2:
4092 		/*
4093 		 * This is potentially wrong if there's ever a monitor with
4094 		 * more than one ranges section, each claiming a different
4095 		 * secondary GTF curve.  Please don't do that.
4096 		 */
4097 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4098 		if (!mode)
4099 			return NULL;
4100 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4101 			drm_mode_destroy(mode);
4102 			mode = drm_gtf_mode_complex(hsize, vsize,
4103 						    vrefresh_rate, 0, 0,
4104 						    drm_gtf2_m(edid),
4105 						    drm_gtf2_2c(edid),
4106 						    drm_gtf2_k(edid),
4107 						    drm_gtf2_2j(edid));
4108 		}
4109 		break;
4110 	case LEVEL_CVT:
4111 		mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4112 				    false);
4113 		break;
4114 	}
4115 
4116 	return mode;
4117 }
4118 
4119 static void
4120 do_standard_modes(struct detailed_timing *timing, void *c)
4121 {
4122 	struct detailed_mode_closure *closure = c;
4123 	struct detailed_non_pixel *data = &timing->data.other_data;
4124 	struct edid *edid = closure->edid;
4125 
4126 	if (data->type == EDID_DETAIL_STD_MODES) {
4127 		int i;
4128 
4129 		for (i = 0; i < 6; i++) {
4130 			struct std_timing *std;
4131 			struct drm_display_mode *newmode;
4132 
4133 			std = &data->data.timings[i];
4134 			newmode = drm_mode_std(closure->data, edid, std);
4135 			if (newmode) {
4136 				drm_add_hdmi_modes(closure->data, newmode);
4137 				closure->modes++;
4138 				drm_mode_destroy(newmode);
4139 			}
4140 		}
4141 	}
4142 }
4143 
4144 /**
4145  * add_standard_modes - get std. modes from EDID and add them
4146  * @data: data to add mode(s) to
4147  * @edid: EDID block to scan
4148  *
4149  * Standard modes can be calculated using the appropriate standard (DMT,
4150  * GTF or CVT. Grab them from @edid and add them to the list.
4151  */
4152 static int
4153 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4154 {
4155 	int i, modes = 0;
4156 	struct detailed_mode_closure closure = {
4157 		.data = data,
4158 		.edid = edid,
4159 	};
4160 
4161 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4162 		struct drm_display_mode *newmode;
4163 
4164 		newmode = drm_mode_std(data, edid,
4165 				       &edid->standard_timings[i]);
4166 		if (newmode) {
4167 			drm_add_hdmi_modes(data, newmode);
4168 			modes++;
4169 			drm_mode_destroy(newmode);
4170 		}
4171 	}
4172 
4173 	if (version_greater(edid, 1, 0))
4174 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4175 					    &closure);
4176 
4177 	/* XXX should also look for standard codes in VTB blocks */
4178 
4179 	return modes + closure.modes;
4180 }
4181 
4182 static int
4183 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4184 {
4185 	int i, j, m, modes = 0;
4186 	struct drm_display_mode *mode;
4187 	u8 *est = ((u8 *)timing) + 6;
4188 
4189 	for (i = 0; i < 6; i++) {
4190 		for (j = 7; j >= 0; j--) {
4191 			m = (i * 8) + (7 - j);
4192 			if (m >= ARRAY_SIZE(est3_modes))
4193 				break;
4194 			if (est[i] & (1 << j)) {
4195 				mode = drm_mode_find_dmt(
4196 							 est3_modes[m].w,
4197 							 est3_modes[m].h,
4198 							 est3_modes[m].r,
4199 							 est3_modes[m].rb);
4200 				if (mode) {
4201 					drm_add_hdmi_modes(data, mode);
4202 					modes++;
4203 					drm_mode_destroy(mode);
4204 				}
4205 			}
4206 		}
4207 	}
4208 
4209 	return modes;
4210 }
4211 
4212 static void
4213 do_established_modes(struct detailed_timing *timing, void *c)
4214 {
4215 	struct detailed_mode_closure *closure = c;
4216 	struct detailed_non_pixel *data = &timing->data.other_data;
4217 
4218 	if (data->type == EDID_DETAIL_EST_TIMINGS)
4219 		closure->modes += drm_est3_modes(closure->data, timing);
4220 }
4221 
4222 /**
4223  * add_established_modes - get est. modes from EDID and add them
4224  * @data: data to add mode(s) to
4225  * @edid: EDID block to scan
4226  *
4227  * Each EDID block contains a bitmap of the supported "established modes" list
4228  * (defined above).  Tease them out and add them to the modes list.
4229  */
4230 static int
4231 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4232 {
4233 	unsigned long est_bits = edid->established_timings.t1 |
4234 		(edid->established_timings.t2 << 8) |
4235 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
4236 	int i, modes = 0;
4237 	struct detailed_mode_closure closure = {
4238 		.data = data,
4239 		.edid = edid,
4240 	};
4241 
4242 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4243 		if (est_bits & (1 << i)) {
4244 			struct drm_display_mode *newmode = drm_mode_create();
4245 			*newmode = edid_est_modes[i];
4246 			if (newmode) {
4247 				drm_add_hdmi_modes(data, newmode);
4248 				modes++;
4249 				drm_mode_destroy(newmode);
4250 			}
4251 		}
4252 	}
4253 
4254 	if (version_greater(edid, 1, 0))
4255 		drm_for_each_detailed_block((u8 *)edid,
4256 					    do_established_modes, &closure);
4257 
4258 	return modes + closure.modes;
4259 }
4260 
4261 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4262 {
4263 	u8 vic;
4264 
4265 	if (!to_match->clock)
4266 		return 0;
4267 
4268 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4269 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4270 		unsigned int clock1, clock2;
4271 
4272 		/* Make sure to also match alternate clocks */
4273 		clock1 = hdmi_mode->clock;
4274 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4275 
4276 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4277 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4278 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4279 			return vic;
4280 	}
4281 	return 0;
4282 }
4283 
4284 static int
4285 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4286 {
4287 	struct drm_display_mode *mode;
4288 	int i, num, modes = 0;
4289 
4290 	/* Don't add CEA modes if the CEA extension block is missing */
4291 	if (!drm_find_cea_extension(edid))
4292 		return 0;
4293 
4294 	/*
4295 	 * Go through all probed modes and create a new mode
4296 	 * with the alternate clock for certain CEA modes.
4297 	 */
4298 	num = data->modes;
4299 
4300 	for (i = 0; i < num; i++) {
4301 		const struct drm_display_mode *cea_mode = NULL;
4302 		struct drm_display_mode *newmode;
4303 		u8 vic;
4304 		unsigned int clock1, clock2;
4305 
4306 		mode = &data->mode_buf[i];
4307 		vic = drm_match_cea_mode(mode);
4308 
4309 		if (drm_valid_cea_vic(vic)) {
4310 			cea_mode = &edid_cea_modes[vic];
4311 			clock2 = cea_mode_alternate_clock(cea_mode);
4312 		} else {
4313 			vic = drm_match_hdmi_mode(mode);
4314 			if (drm_valid_hdmi_vic(vic)) {
4315 				cea_mode = &edid_4k_modes[vic];
4316 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4317 			}
4318 		}
4319 
4320 		if (!cea_mode)
4321 			continue;
4322 
4323 		clock1 = cea_mode->clock;
4324 
4325 		if (clock1 == clock2)
4326 			continue;
4327 
4328 		if (mode->clock != clock1 && mode->clock != clock2)
4329 			continue;
4330 
4331 		newmode = drm_mode_create();
4332 		*newmode = *cea_mode;
4333 		if (!newmode)
4334 			continue;
4335 
4336 		/* Carry over the stereo flags */
4337 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4338 
4339 		/*
4340 		 * The current mode could be either variant. Make
4341 		 * sure to pick the "other" clock for the new mode.
4342 		 */
4343 		if (mode->clock != clock1)
4344 			newmode->clock = clock1;
4345 		else
4346 			newmode->clock = clock2;
4347 
4348 		drm_add_hdmi_modes(data, newmode);
4349 		modes++;
4350 		drm_mode_destroy(newmode);
4351 	}
4352 
4353 	return modes;
4354 }
4355 
4356 static u8 *drm_find_displayid_extension(struct edid *edid)
4357 {
4358 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
4359 }
4360 
4361 static int validate_displayid(u8 *displayid, int length, int idx)
4362 {
4363 	int i;
4364 	u8 csum = 0;
4365 	struct displayid_hdr *base;
4366 
4367 	base = (struct displayid_hdr *)&displayid[idx];
4368 
4369 	debug("base revision 0x%x, length %d, %d %d\n",
4370 	      base->rev, base->bytes, base->prod_id, base->ext_count);
4371 
4372 	if (base->bytes + 5 > length - idx)
4373 		return -EINVAL;
4374 	for (i = idx; i <= base->bytes + 5; i++)
4375 		csum += displayid[i];
4376 	if (csum) {
4377 		debug("DisplayID checksum invalid, remainder is %d\n", csum);
4378 		return -EINVAL;
4379 	}
4380 	return 0;
4381 }
4382 
4383 static struct
4384 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
4385 					      *timings)
4386 {
4387 	struct drm_display_mode *mode;
4388 	unsigned pixel_clock = (timings->pixel_clock[0] |
4389 				(timings->pixel_clock[1] << 8) |
4390 				(timings->pixel_clock[2] << 16));
4391 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4392 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4393 	unsigned hsync = (timings->hsync[0] |
4394 		(timings->hsync[1] & 0x7f) << 8) + 1;
4395 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4396 	unsigned vactive = (timings->vactive[0] |
4397 		timings->vactive[1] << 8) + 1;
4398 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4399 	unsigned vsync = (timings->vsync[0] |
4400 		(timings->vsync[1] & 0x7f) << 8) + 1;
4401 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4402 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4403 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4404 
4405 	mode = drm_mode_create();
4406 	if (!mode)
4407 		return NULL;
4408 
4409 	mode->clock = pixel_clock * 10;
4410 	mode->hdisplay = hactive;
4411 	mode->hsync_start = mode->hdisplay + hsync;
4412 	mode->hsync_end = mode->hsync_start + hsync_width;
4413 	mode->htotal = mode->hdisplay + hblank;
4414 
4415 	mode->vdisplay = vactive;
4416 	mode->vsync_start = mode->vdisplay + vsync;
4417 	mode->vsync_end = mode->vsync_start + vsync_width;
4418 	mode->vtotal = mode->vdisplay + vblank;
4419 
4420 	mode->flags = 0;
4421 	mode->flags |=
4422 		hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4423 	mode->flags |=
4424 		vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4425 	mode->type = DRM_MODE_TYPE_DRIVER;
4426 
4427 	if (timings->flags & 0x80)
4428 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4429 	mode->vrefresh = drm_get_vrefresh(mode);
4430 
4431 	return mode;
4432 }
4433 
4434 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
4435 					  struct displayid_block *block)
4436 {
4437 	struct displayid_detailed_timing_block *det;
4438 	int i;
4439 	int num_timings;
4440 	struct drm_display_mode *newmode;
4441 	int num_modes = 0;
4442 
4443 	det = (struct displayid_detailed_timing_block *)block;
4444 	/* blocks must be multiple of 20 bytes length */
4445 	if (block->num_bytes % 20)
4446 		return 0;
4447 
4448 	num_timings = block->num_bytes / 20;
4449 	for (i = 0; i < num_timings; i++) {
4450 		struct displayid_detailed_timings_1 *timings =
4451 			&det->timings[i];
4452 
4453 		newmode = drm_displayid_detailed(timings);
4454 		if (!newmode)
4455 			continue;
4456 
4457 		drm_add_hdmi_modes(data, newmode);
4458 		num_modes++;
4459 		drm_mode_destroy(newmode);
4460 	}
4461 	return num_modes;
4462 }
4463 
4464 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
4465 					struct edid *edid)
4466 {
4467 	u8 *displayid;
4468 	int ret;
4469 	int idx = 1;
4470 	int length = EDID_SIZE;
4471 	struct displayid_block *block;
4472 	int num_modes = 0;
4473 
4474 	displayid = drm_find_displayid_extension(edid);
4475 	if (!displayid)
4476 		return 0;
4477 
4478 	ret = validate_displayid(displayid, length, idx);
4479 	if (ret)
4480 		return 0;
4481 
4482 	idx += sizeof(struct displayid_hdr);
4483 	while (block = (struct displayid_block *)&displayid[idx],
4484 	       idx + sizeof(struct displayid_block) <= length &&
4485 	       idx + sizeof(struct displayid_block) + block->num_bytes <=
4486 	       length && block->num_bytes > 0) {
4487 		idx += block->num_bytes + sizeof(struct displayid_block);
4488 		switch (block->tag) {
4489 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4490 			num_modes +=
4491 				add_displayid_detailed_1_modes(data, block);
4492 			break;
4493 		}
4494 	}
4495 	return num_modes;
4496 }
4497 
4498 static bool
4499 mode_in_hsync_range(const struct drm_display_mode *mode,
4500 		    struct edid *edid, u8 *t)
4501 {
4502 	int hsync, hmin, hmax;
4503 
4504 	hmin = t[7];
4505 	if (edid->revision >= 4)
4506 		hmin += ((t[4] & 0x04) ? 255 : 0);
4507 	hmax = t[8];
4508 	if (edid->revision >= 4)
4509 		hmax += ((t[4] & 0x08) ? 255 : 0);
4510 	hsync = drm_mode_hsync(mode);
4511 
4512 	return (hsync <= hmax && hsync >= hmin);
4513 }
4514 
4515 static bool
4516 mode_in_vsync_range(const struct drm_display_mode *mode,
4517 		    struct edid *edid, u8 *t)
4518 {
4519 	int vsync, vmin, vmax;
4520 
4521 	vmin = t[5];
4522 	if (edid->revision >= 4)
4523 		vmin += ((t[4] & 0x01) ? 255 : 0);
4524 	vmax = t[6];
4525 	if (edid->revision >= 4)
4526 		vmax += ((t[4] & 0x02) ? 255 : 0);
4527 	vsync = drm_get_vrefresh(mode);
4528 
4529 	return (vsync <= vmax && vsync >= vmin);
4530 }
4531 
4532 static u32
4533 range_pixel_clock(struct edid *edid, u8 *t)
4534 {
4535 	/* unspecified */
4536 	if (t[9] == 0 || t[9] == 255)
4537 		return 0;
4538 
4539 	/* 1.4 with CVT support gives us real precision, yay */
4540 	if (edid->revision >= 4 && t[10] == 0x04)
4541 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
4542 
4543 	/* 1.3 is pathetic, so fuzz up a bit */
4544 	return t[9] * 10000 + 5001;
4545 }
4546 
4547 static bool
4548 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
4549 	      struct detailed_timing *timing)
4550 {
4551 	u32 max_clock;
4552 	u8 *t = (u8 *)timing;
4553 
4554 	if (!mode_in_hsync_range(mode, edid, t))
4555 		return false;
4556 
4557 	if (!mode_in_vsync_range(mode, edid, t))
4558 		return false;
4559 
4560 	max_clock = range_pixel_clock(edid, t);
4561 	if (max_clock)
4562 		if (mode->clock > max_clock)
4563 			return false;
4564 
4565 	/* 1.4 max horizontal check */
4566 	if (edid->revision >= 4 && t[10] == 0x04)
4567 		if (t[13] && mode->hdisplay > 8 *
4568 		    (t[13] + (256 * (t[12] & 0x3))))
4569 			return false;
4570 
4571 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
4572 		return false;
4573 
4574 	return true;
4575 }
4576 
4577 static bool valid_inferred_mode(struct hdmi_edid_data *data,
4578 				const struct drm_display_mode *mode)
4579 {
4580 	const struct drm_display_mode *m;
4581 	bool ok = false;
4582 	int i;
4583 
4584 	for (i = 0; i < data->modes; i++) {
4585 		m = &data->mode_buf[i];
4586 		if (mode->hdisplay == m->hdisplay &&
4587 		    mode->vdisplay == m->vdisplay &&
4588 		    drm_get_vrefresh(mode) == drm_get_vrefresh(m))
4589 			return false; /* duplicated */
4590 		if (mode->hdisplay <= m->hdisplay &&
4591 		    mode->vdisplay <= m->vdisplay)
4592 			ok = true;
4593 	}
4594 	return ok;
4595 }
4596 
4597 static int
4598 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
4599 			struct detailed_timing *timing)
4600 {
4601 	int i, modes = 0;
4602 
4603 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4604 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
4605 		    valid_inferred_mode(data, drm_dmt_modes + i)) {
4606 			drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
4607 			modes++;
4608 		}
4609 	}
4610 
4611 	return modes;
4612 }
4613 
4614 /* fix up 1366x768 mode from 1368x768;
4615  * GFT/CVT can't express 1366 width which isn't dividable by 8
4616  */
4617 static void fixup_mode_1366x768(struct drm_display_mode *mode)
4618 {
4619 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
4620 		mode->hdisplay = 1366;
4621 		mode->hsync_start--;
4622 		mode->hsync_end--;
4623 	}
4624 }
4625 
4626 static int
4627 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
4628 			struct detailed_timing *timing)
4629 {
4630 	int i, modes = 0;
4631 	struct drm_display_mode *newmode;
4632 
4633 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
4634 		const struct minimode *m = &extra_modes[i];
4635 
4636 		newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
4637 		if (!newmode)
4638 			return modes;
4639 
4640 		fixup_mode_1366x768(newmode);
4641 		if (!mode_in_range(newmode, edid, timing) ||
4642 		    !valid_inferred_mode(data, newmode)) {
4643 			drm_mode_destroy(newmode);
4644 			continue;
4645 		}
4646 
4647 		drm_add_hdmi_modes(data, newmode);
4648 		modes++;
4649 		drm_mode_destroy(newmode);
4650 	}
4651 
4652 	return modes;
4653 }
4654 
4655 static int
4656 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
4657 			struct detailed_timing *timing)
4658 {
4659 	int i, modes = 0;
4660 	struct drm_display_mode *newmode;
4661 	bool rb = drm_monitor_supports_rb(edid);
4662 
4663 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
4664 		const struct minimode *m = &extra_modes[i];
4665 
4666 		newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
4667 		if (!newmode)
4668 			return modes;
4669 
4670 		fixup_mode_1366x768(newmode);
4671 		if (!mode_in_range(newmode, edid, timing) ||
4672 		    !valid_inferred_mode(data, newmode)) {
4673 			drm_mode_destroy(newmode);
4674 			continue;
4675 		}
4676 
4677 		drm_add_hdmi_modes(data, newmode);
4678 		modes++;
4679 		drm_mode_destroy(newmode);
4680 	}
4681 
4682 	return modes;
4683 }
4684 
4685 static void
4686 do_inferred_modes(struct detailed_timing *timing, void *c)
4687 {
4688 	struct detailed_mode_closure *closure = c;
4689 	struct detailed_non_pixel *data = &timing->data.other_data;
4690 	struct detailed_data_monitor_range *range = &data->data.range;
4691 
4692 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
4693 		return;
4694 
4695 	closure->modes += drm_dmt_modes_for_range(closure->data,
4696 						  closure->edid,
4697 						  timing);
4698 
4699 	if (!version_greater(closure->edid, 1, 1))
4700 		return; /* GTF not defined yet */
4701 
4702 	switch (range->flags) {
4703 	case 0x02: /* secondary gtf, XXX could do more */
4704 	case 0x00: /* default gtf */
4705 		closure->modes += drm_gtf_modes_for_range(closure->data,
4706 							  closure->edid,
4707 							  timing);
4708 		break;
4709 	case 0x04: /* cvt, only in 1.4+ */
4710 		if (!version_greater(closure->edid, 1, 3))
4711 			break;
4712 
4713 		closure->modes += drm_cvt_modes_for_range(closure->data,
4714 							  closure->edid,
4715 							  timing);
4716 		break;
4717 	case 0x01: /* just the ranges, no formula */
4718 	default:
4719 		break;
4720 	}
4721 }
4722 
4723 static int
4724 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
4725 {
4726 	struct detailed_mode_closure closure = {
4727 		.data = data,
4728 		.edid = edid,
4729 	};
4730 
4731 	if (version_greater(edid, 1, 0))
4732 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
4733 					    &closure);
4734 
4735 	return closure.modes;
4736 }
4737 
4738 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
4739 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
4740 
4741 /**
4742  * edid_fixup_preferred - set preferred modes based on quirk list
4743  * @data: the structure that save parsed hdmi edid data
4744  * @quirks: quirks list
4745  *
4746  * Walk the mode list, clearing the preferred status
4747  * on existing modes and setting it anew for the right mode ala @quirks.
4748  */
4749 static void edid_fixup_preferred(struct hdmi_edid_data *data,
4750 				 u32 quirks)
4751 {
4752 	struct drm_display_mode *cur_mode, *preferred_mode;
4753 	int i, target_refresh = 0;
4754 	int num = data->modes;
4755 	int cur_vrefresh, preferred_vrefresh;
4756 
4757 	if (!num)
4758 		return;
4759 
4760 	preferred_mode = data->preferred_mode;
4761 
4762 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
4763 		target_refresh = 60;
4764 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
4765 		target_refresh = 75;
4766 
4767 	for (i = 0; i < num; i++) {
4768 		cur_mode = &data->mode_buf[i];
4769 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
4770 
4771 		if (cur_mode == preferred_mode)
4772 			continue;
4773 
4774 		/* Largest mode is preferred */
4775 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
4776 			preferred_mode = cur_mode;
4777 
4778 		cur_vrefresh = cur_mode->vrefresh ?
4779 		cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
4780 		preferred_vrefresh = preferred_mode->vrefresh ?
4781 		preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
4782 		/* At a given size, try to get closest to target refresh */
4783 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
4784 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
4785 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
4786 			preferred_mode = cur_mode;
4787 		}
4788 	}
4789 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
4790 	data->preferred_mode = preferred_mode;
4791 }
4792 
4793 static const u8 edid_header[] = {
4794 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
4795 };
4796 
4797 /**
4798  * drm_edid_header_is_valid - sanity check the header of the base EDID block
4799  * @raw_edid: pointer to raw base EDID block
4800  *
4801  * Sanity check the header of the base EDID block.
4802  *
4803  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
4804  */
4805 static int drm_edid_header_is_valid(const u8 *raw_edid)
4806 {
4807 	int i, score = 0;
4808 
4809 	for (i = 0; i < sizeof(edid_header); i++)
4810 		if (raw_edid[i] == edid_header[i])
4811 			score++;
4812 
4813 	return score;
4814 }
4815 
4816 static int drm_edid_block_checksum(const u8 *raw_edid)
4817 {
4818 	int i;
4819 	u8 csum = 0;
4820 
4821 	for (i = 0; i < EDID_SIZE; i++)
4822 		csum += raw_edid[i];
4823 
4824 	return csum;
4825 }
4826 
4827 static bool drm_edid_is_zero(const u8 *in_edid, int length)
4828 {
4829 	if (memchr_inv(in_edid, 0, length))
4830 		return false;
4831 
4832 	return true;
4833 }
4834 
4835 /**
4836  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
4837  * @raw_edid: pointer to raw EDID block
4838  * @block: type of block to validate (0 for base, extension otherwise)
4839  * @print_bad_edid: if true, dump bad EDID blocks to the console
4840  * @edid_corrupt: if true, the header or checksum is invalid
4841  *
4842  * Validate a base or extension EDID block and optionally dump bad blocks to
4843  * the console.
4844  *
4845  * Return: True if the block is valid, false otherwise.
4846  */
4847 static
4848 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
4849 			  bool *edid_corrupt)
4850 {
4851 	u8 csum;
4852 	int edid_fixup = 6;
4853 	struct edid *edid = (struct edid *)raw_edid;
4854 
4855 	if ((!raw_edid))
4856 		return false;
4857 
4858 	if (block == 0) {
4859 		int score = drm_edid_header_is_valid(raw_edid);
4860 
4861 		if (score == 8) {
4862 			if (edid_corrupt)
4863 				*edid_corrupt = false;
4864 		} else if (score >= edid_fixup) {
4865 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
4866 			 * The corrupt flag needs to be set here otherwise, the
4867 			 * fix-up code here will correct the problem, the
4868 			 * checksum is correct and the test fails
4869 			 */
4870 			if (edid_corrupt)
4871 				*edid_corrupt = true;
4872 			debug("Fixing header, your hardware may be failing\n");
4873 			memcpy(raw_edid, edid_header, sizeof(edid_header));
4874 		} else {
4875 			if (edid_corrupt)
4876 				*edid_corrupt = true;
4877 			goto bad;
4878 		}
4879 	}
4880 
4881 	csum = drm_edid_block_checksum(raw_edid);
4882 	if (csum) {
4883 		if (print_bad_edid) {
4884 			debug("EDID checksum is invalid, remainder is %d\n",
4885 			      csum);
4886 		}
4887 
4888 		if (edid_corrupt)
4889 			*edid_corrupt = true;
4890 
4891 		/* allow CEA to slide through, switches mangle this */
4892 		if (raw_edid[0] != 0x02)
4893 			goto bad;
4894 	}
4895 
4896 	/* per-block-type checks */
4897 	switch (raw_edid[0]) {
4898 	case 0: /* base */
4899 		if (edid->version != 1) {
4900 			debug("EDID has major version %d, instead of 1\n",
4901 			      edid->version);
4902 			goto bad;
4903 		}
4904 
4905 		if (edid->revision > 4)
4906 			debug("minor > 4, assuming backward compatibility\n");
4907 		break;
4908 
4909 	default:
4910 		break;
4911 	}
4912 
4913 	return true;
4914 
4915 bad:
4916 	if (print_bad_edid) {
4917 		if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
4918 			debug("EDID block is all zeroes\n");
4919 		} else {
4920 			debug("Raw EDID:\n");
4921 			print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
4922 				       raw_edid, EDID_SIZE, false);
4923 		}
4924 	}
4925 	return false;
4926 }
4927 
4928 /**
4929  * drm_edid_is_valid - sanity check EDID data
4930  * @edid: EDID data
4931  *
4932  * Sanity-check an entire EDID record (including extensions)
4933  *
4934  * Return: True if the EDID data is valid, false otherwise.
4935  */
4936 static bool drm_edid_is_valid(struct edid *edid)
4937 {
4938 	int i;
4939 	u8 *raw = (u8 *)edid;
4940 
4941 	if (!edid)
4942 		return false;
4943 
4944 	for (i = 0; i <= edid->extensions; i++)
4945 		if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
4946 			return false;
4947 
4948 	return true;
4949 }
4950 
4951 /**
4952  * drm_add_edid_modes - add modes from EDID data, if available
4953  * @data: data we're probing
4954  * @edid: EDID data
4955  *
4956  * Add the specified modes to the data's mode list.
4957  *
4958  * Return: The number of modes added or 0 if we couldn't find any.
4959  */
4960 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
4961 {
4962 	int num_modes = 0;
4963 	u32 quirks;
4964 	struct edid *edid = (struct edid *)raw_edid;
4965 
4966 	if (!edid) {
4967 		debug("no edid\n");
4968 		return 0;
4969 	}
4970 
4971 	if (!drm_edid_is_valid(edid)) {
4972 		debug("EDID invalid\n");
4973 		return 0;
4974 	}
4975 
4976 	if (!data->mode_buf) {
4977 		debug("mode buff is null\n");
4978 		return 0;
4979 	}
4980 
4981 	quirks = edid_get_quirks(edid);
4982 	/*
4983 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4984 	 * To avoid multiple parsing of same block, lets parse that map
4985 	 * from sink info, before parsing CEA modes.
4986 	 */
4987 	drm_add_display_info(data, edid);
4988 
4989 	/*
4990 	 * EDID spec says modes should be preferred in this order:
4991 	 * - preferred detailed mode
4992 	 * - other detailed modes from base block
4993 	 * - detailed modes from extension blocks
4994 	 * - CVT 3-byte code modes
4995 	 * - standard timing codes
4996 	 * - established timing codes
4997 	 * - modes inferred from GTF or CVT range information
4998 	 *
4999 	 * We get this pretty much right.
5000 	 *
5001 	 * XXX order for additional mode types in extension blocks?
5002 	 */
5003 	num_modes += add_detailed_modes(data, edid, quirks);
5004 	num_modes += add_cvt_modes(data, edid);
5005 	num_modes += add_standard_modes(data, edid);
5006 	num_modes += add_established_modes(data, edid);
5007 	num_modes += add_cea_modes(data, edid);
5008 	num_modes += add_alternate_cea_modes(data, edid);
5009 	num_modes += add_displayid_detailed_modes(data, edid);
5010 
5011 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5012 		num_modes += add_inferred_modes(data, edid);
5013 
5014 	if (num_modes > 0)
5015 		data->preferred_mode = &data->mode_buf[0];
5016 
5017 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5018 		edid_fixup_preferred(data, quirks);
5019 
5020 	if (quirks & EDID_QUIRK_FORCE_6BPC)
5021 		data->display_info.bpc = 6;
5022 
5023 	if (quirks & EDID_QUIRK_FORCE_8BPC)
5024 		data->display_info.bpc = 8;
5025 
5026 	if (quirks & EDID_QUIRK_FORCE_10BPC)
5027 		data->display_info.bpc = 10;
5028 
5029 	if (quirks & EDID_QUIRK_FORCE_12BPC)
5030 		data->display_info.bpc = 12;
5031 
5032 	return num_modes;
5033 }
5034 
5035 static int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5036 {
5037 	memset(frame, 0, sizeof(*frame));
5038 
5039 	frame->type = HDMI_INFOFRAME_TYPE_AVI;
5040 	frame->version = 2;
5041 	frame->length = HDMI_AVI_INFOFRAME_SIZE;
5042 
5043 	return 0;
5044 }
5045 
5046 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5047 {
5048 	u8 vic;
5049 
5050 	if (!to_match->clock) {
5051 		printf("can't find to match\n");
5052 		return 0;
5053 	}
5054 
5055 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
5056 		const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
5057 		unsigned int clock1, clock2;
5058 
5059 		/* Check both 60Hz and 59.94Hz */
5060 		clock1 = cea_mode->clock;
5061 		clock2 = cea_mode_alternate_clock(cea_mode);
5062 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5063 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5064 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5065 			return vic;
5066 	}
5067 
5068 	return 0;
5069 }
5070 
5071 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5072 {
5073 	return edid_cea_modes[video_code].picture_aspect_ratio;
5074 }
5075 
5076 int
5077 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5078 					 struct drm_display_mode *mode,
5079 					 bool is_hdmi2_sink)
5080 {
5081 	int err;
5082 
5083 	if (!frame || !mode)
5084 		return -EINVAL;
5085 
5086 	err = hdmi_avi_infoframe_init(frame);
5087 	if (err < 0)
5088 		return err;
5089 
5090 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5091 		frame->pixel_repeat = 1;
5092 
5093 	frame->video_code = drm_match_cea_mode(mode);
5094 
5095 	/*
5096 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5097 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5098 	 * have to make sure we dont break HDMI 1.4 sinks.
5099 	 */
5100 	if (!is_hdmi2_sink && frame->video_code > 64)
5101 		frame->video_code = 0;
5102 
5103 	/*
5104 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5105 	 * we should send its VIC in vendor infoframes, else send the
5106 	 * VIC in AVI infoframes. Lets check if this mode is present in
5107 	 * HDMI 1.4b 4K modes
5108 	 */
5109 	if (frame->video_code) {
5110 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5111 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5112 
5113 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5114 			frame->video_code = 0;
5115 	}
5116 
5117 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5118 
5119 	/*
5120 	 * Populate picture aspect ratio from either
5121 	 * user input (if specified) or from the CEA mode list.
5122 	 */
5123 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5124 	    mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5125 		frame->picture_aspect = mode->picture_aspect_ratio;
5126 	else if (frame->video_code > 0)
5127 		frame->picture_aspect = drm_get_cea_aspect_ratio(
5128 						frame->video_code);
5129 
5130 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5131 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5132 
5133 	return 0;
5134 }
5135 
5136 /**
5137  * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5138  * @frame: HDMI vendor infoframe
5139  *
5140  * Returns 0 on success or a negative error code on failure.
5141  */
5142 static int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5143 {
5144 	memset(frame, 0, sizeof(*frame));
5145 
5146 	frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5147 	frame->version = 1;
5148 
5149 	frame->oui = HDMI_IEEE_OUI;
5150 
5151 	/*
5152 	 * 0 is a valid value for s3d_struct, so we use a special "not set"
5153 	 * value
5154 	 */
5155 	frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5156 
5157 	return 0;
5158 }
5159 
5160 static enum hdmi_3d_structure
5161 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5162 {
5163 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5164 
5165 	switch (layout) {
5166 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5167 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5168 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5169 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5170 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5171 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5172 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5173 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5174 	case DRM_MODE_FLAG_3D_L_DEPTH:
5175 		return HDMI_3D_STRUCTURE_L_DEPTH;
5176 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5177 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5178 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5179 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5180 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5181 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5182 	default:
5183 		return HDMI_3D_STRUCTURE_INVALID;
5184 	}
5185 }
5186 
5187 int
5188 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5189 					    struct drm_display_mode *mode)
5190 {
5191 	int err;
5192 	u32 s3d_flags;
5193 	u8 vic;
5194 
5195 	if (!frame || !mode)
5196 		return -EINVAL;
5197 
5198 	vic = drm_match_hdmi_mode(mode);
5199 
5200 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5201 
5202 	if (!vic && !s3d_flags)
5203 		return -EINVAL;
5204 
5205 	if (vic && s3d_flags)
5206 		return -EINVAL;
5207 
5208 	err = hdmi_vendor_infoframe_init(frame);
5209 	if (err < 0)
5210 		return err;
5211 
5212 	if (vic)
5213 		frame->vic = vic;
5214 	else
5215 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
5216 
5217 	return 0;
5218 }
5219 
5220 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5221 {
5222 	u8 csum = 0;
5223 	size_t i;
5224 
5225 	/* compute checksum */
5226 	for (i = 0; i < size; i++)
5227 		csum += ptr[i];
5228 
5229 	return 256 - csum;
5230 }
5231 
5232 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5233 {
5234 	u8 *ptr = buffer;
5235 
5236 	ptr[3] = hdmi_infoframe_checksum(buffer, size);
5237 }
5238 
5239 /**
5240  * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
5241  * @frame: HDMI infoframe
5242  * @buffer: destination buffer
5243  * @size: size of buffer
5244  *
5245  * Packs the information contained in the @frame structure into a binary
5246  * representation that can be written into the corresponding controller
5247  * registers. Also computes the checksum as required by section 5.3.5 of
5248  * the HDMI 1.4 specification.
5249  *
5250  * Returns the number of bytes packed into the binary buffer or a negative
5251  * error code on failure.
5252  */
5253 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
5254 				   void *buffer, size_t size)
5255 {
5256 	u8 *ptr = buffer;
5257 	size_t length;
5258 
5259 	/* empty info frame */
5260 	if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
5261 		return -EINVAL;
5262 
5263 	/* only one of those can be supplied */
5264 	if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
5265 		return -EINVAL;
5266 
5267 	/* for side by side (half) we also need to provide 3D_Ext_Data */
5268 	if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
5269 		frame->length = 6;
5270 	else
5271 		frame->length = 5;
5272 
5273 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5274 
5275 	if (size < length)
5276 		return -ENOSPC;
5277 
5278 	memset(buffer, 0, size);
5279 
5280 	ptr[0] = frame->type;
5281 	ptr[1] = frame->version;
5282 	ptr[2] = frame->length;
5283 	ptr[3] = 0; /* checksum */
5284 
5285 	/* HDMI OUI */
5286 	ptr[4] = 0x03;
5287 	ptr[5] = 0x0c;
5288 	ptr[6] = 0x00;
5289 
5290 	if (frame->vic) {
5291 		ptr[7] = 0x1 << 5;	/* video format */
5292 		ptr[8] = frame->vic;
5293 	} else {
5294 		ptr[7] = 0x2 << 5;	/* video format */
5295 		ptr[8] = (frame->s3d_struct & 0xf) << 4;
5296 		if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
5297 			ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
5298 	}
5299 
5300 	hdmi_infoframe_set_checksum(buffer, length);
5301 
5302 	return length;
5303 }
5304 
5305 /**
5306  * drm_do_probe_ddc_edid() - get EDID information via I2C
5307  * @adap: ddc adapter
5308  * @buf: EDID data buffer to be filled
5309  * @block: 128 byte EDID block to start fetching from
5310  * @len: EDID data buffer length to fetch
5311  *
5312  * Try to fetch EDID information by calling I2C driver functions.
5313  *
5314  * Return: 0 on success or -1 on failure.
5315  */
5316 static int
5317 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
5318 		      size_t len)
5319 {
5320 	unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
5321 	unsigned char segment = block >> 1;
5322 	unsigned char xfers = segment ? 3 : 2;
5323 	int ret, retries = 5;
5324 
5325 	do {
5326 		struct i2c_msg msgs[] = {
5327 			{
5328 				.addr	= DDC_SEGMENT_ADDR,
5329 				.flags	= 0,
5330 				.len	= 1,
5331 				.buf	= &segment,
5332 			}, {
5333 				.addr	= DDC_ADDR,
5334 				.flags	= 0,
5335 				.len	= 1,
5336 				.buf	= &start,
5337 			}, {
5338 				.addr	= DDC_ADDR,
5339 				.flags	= I2C_M_RD,
5340 				.len	= len,
5341 				.buf	= buf,
5342 			}
5343 		};
5344 
5345 		ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
5346 
5347 	} while (ret != xfers && --retries);
5348 
5349 	/* All msg transfer successfully. */
5350 	return ret == xfers ? 0 : -1;
5351 }
5352 
5353 int drm_do_get_edid(struct ddc_adapter *adap, u8 *edid)
5354 {
5355 	int i, j, block_num, block = 0;
5356 	bool edid_corrupt;
5357 #ifdef DEBUG
5358 	u8 *buff;
5359 #endif
5360 
5361 	/* base block fetch */
5362 	for (i = 0; i < 4; i++) {
5363 		if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
5364 			goto err;
5365 		if (drm_edid_block_valid(edid, 0, true,
5366 					 &edid_corrupt))
5367 			break;
5368 		if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
5369 			printf("edid base block is 0, get edid failed\n");
5370 			goto err;
5371 		}
5372 	}
5373 
5374 	if (i == 4)
5375 		goto err;
5376 
5377 	block++;
5378 	/* get the number of extensions */
5379 	block_num = edid[0x7e];
5380 
5381 	for (j = 1; j <= block_num; j++) {
5382 		for (i = 0; i < 4; i++) {
5383 			if (drm_do_probe_ddc_edid(adap, &edid[0x80 * j], j,
5384 						  HDMI_EDID_BLOCK_SIZE))
5385 				goto err;
5386 			if (drm_edid_block_valid(&edid[0x80 * j], j,
5387 						 true, NULL))
5388 				break;
5389 		}
5390 
5391 		if (i == 4)
5392 			goto err;
5393 		block++;
5394 	}
5395 
5396 #ifdef DEBUG
5397 	printf("RAW EDID:\n");
5398 	for (i = 0; i < block_num + 1; i++) {
5399 		buff = &edid[0x80 * i];
5400 		for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
5401 			if (j % 16 == 0)
5402 				printf("\n");
5403 			printf("0x%02x, ", buff[j]);
5404 		}
5405 		printf("\n");
5406 	}
5407 #endif
5408 
5409 	return 0;
5410 
5411 err:
5412 	printf("can't get edid block:%d\n", block);
5413 	/* clear all read edid block, include invalid block */
5414 	memset(edid, 0, HDMI_EDID_BLOCK_SIZE * (block + 1));
5415 	return -EFAULT;
5416 }
5417 
5418 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
5419 			     void *buffer, size_t size)
5420 {
5421 	struct i2c_msg msgs[2] = {
5422 		{
5423 			.addr = addr,
5424 			.flags = 0,
5425 			.len = 1,
5426 			.buf = &offset,
5427 		}, {
5428 			.addr = addr,
5429 			.flags = I2C_M_RD,
5430 			.len = size,
5431 			.buf = buffer,
5432 		}
5433 	};
5434 
5435 	return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
5436 }
5437 
5438 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
5439 			      const void *buffer, size_t size)
5440 {
5441 	struct i2c_msg msg = {
5442 		.addr = addr,
5443 		.flags = 0,
5444 		.len = 1 + size,
5445 		.buf = NULL,
5446 	};
5447 	void *data;
5448 	int err;
5449 
5450 	data = malloc(1 + size);
5451 	if (!data)
5452 		return -ENOMEM;
5453 
5454 	msg.buf = data;
5455 
5456 	memcpy(data, &offset, sizeof(offset));
5457 	memcpy(data + 1, buffer, size);
5458 
5459 	err = adap->ddc_xfer(adap, &msg, 1);
5460 
5461 	free(data);
5462 
5463 	return err;
5464 }
5465 
5466 /**
5467  * drm_scdc_readb - read a single byte from SCDC
5468  * @adap: ddc adapter
5469  * @offset: offset of register to read
5470  * @value: return location for the register value
5471  *
5472  * Reads a single byte from SCDC. This is a convenience wrapper around the
5473  * drm_scdc_read() function.
5474  *
5475  * Returns:
5476  * 0 on success or a negative error code on failure.
5477  */
5478 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
5479 		  u8 *value)
5480 {
5481 	return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
5482 			     sizeof(*value));
5483 }
5484 
5485 /**
5486  * drm_scdc_writeb - write a single byte to SCDC
5487  * @adap: ddc adapter
5488  * @offset: offset of register to read
5489  * @value: return location for the register value
5490  *
5491  * Writes a single byte to SCDC. This is a convenience wrapper around the
5492  * drm_scdc_write() function.
5493  *
5494  * Returns:
5495  * 0 on success or a negative error code on failure.
5496  */
5497 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
5498 		   u8 value)
5499 {
5500 	return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
5501 			      sizeof(value));
5502 }
5503 
5504