xref: /rk3399_rockchip-uboot/common/edid.c (revision cbfcaedb2b42d90f95783eb836cee6cbd224719e)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * (C) Copyright 2010
5  * Petr Stetiar <ynezz@true.cz>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Contains stolen code from ddcprobe project which is:
10  * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11  * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12  */
13 
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28 
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr)             ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 	(((edid)->version > (maj)) || \
38 	 ((edid)->version == (maj) && (edid)->revision > (min)))
39 
40 /*
41  * EDID blocks out in the wild have a variety of bugs, try to collect
42  * them here (note that userspace may work around broken monitors first,
43  * but fixes should make their way here so that the kernel "just works"
44  * on as many displays as possible).
45  */
46 
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60		BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75		BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM		BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56  * maximum size and use that.
57  */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP		BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC			BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC			BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC			BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC			BIT(11)
73 
74 struct detailed_mode_closure {
75 	struct edid *edid;
76 	struct hdmi_edid_data *data;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101 
102 	/* Belinea 10 15 55 */
103 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Envision Peripherals, Inc. EN-7100e */
107 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 	/* Envision EN2028 */
109 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110 
111 	/* Funai Electronics PM36B */
112 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 	  EDID_QUIRK_DETAILED_IN_CM },
114 
115 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 
146 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149 
150 /*
151  * Probably taken from CEA-861 spec.
152  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153  *
154  * Index using the VIC.
155  */
156 /*
157  * From CEA/CTA-861 spec.
158  * Do not access directly, instead always use cea_mode_for_vic().
159  */
160 static const struct drm_display_mode edid_cea_modes_1[] = {
161 	/* 0 - dummy, VICs start at 1 */
162 	{ },
163 	/* 1 - 640x480@60Hz */
164 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
165 		   752, 800, 480, 490, 492, 525, 0,
166 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
167 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
168 	/* 2 - 720x480@60Hz */
169 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
170 		   798, 858, 480, 489, 495, 525, 0,
171 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
172 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
173 	/* 3 - 720x480@60Hz */
174 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
175 		   798, 858, 480, 489, 495, 525, 0,
176 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
177 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
178 	/* 4 - 1280x720@60Hz */
179 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
180 		   1430, 1650, 720, 725, 730, 750, 0,
181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
182 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
183 	/* 5 - 1920x1080i@60Hz */
184 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
185 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
186 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
187 			DRM_MODE_FLAG_INTERLACE),
188 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
189 	/* 6 - 720(1440)x480i@60Hz */
190 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
191 		   801, 858, 480, 488, 494, 525, 0,
192 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
193 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
194 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
195 	/* 7 - 720(1440)x480i@60Hz */
196 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
197 		   801, 858, 480, 488, 494, 525, 0,
198 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
199 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
200 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
201 	/* 8 - 720(1440)x240@60Hz */
202 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
203 		   801, 858, 240, 244, 247, 262, 0,
204 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
205 			DRM_MODE_FLAG_DBLCLK),
206 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
207 	/* 9 - 720(1440)x240@60Hz */
208 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
209 		   801, 858, 240, 244, 247, 262, 0,
210 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
211 			DRM_MODE_FLAG_DBLCLK),
212 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
213 	/* 10 - 2880x480i@60Hz */
214 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
215 		   3204, 3432, 480, 488, 494, 525, 0,
216 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
217 			DRM_MODE_FLAG_INTERLACE),
218 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
219 	/* 11 - 2880x480i@60Hz */
220 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
221 		   3204, 3432, 480, 488, 494, 525, 0,
222 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
223 			DRM_MODE_FLAG_INTERLACE),
224 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
225 	/* 12 - 2880x240@60Hz */
226 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
227 		   3204, 3432, 240, 244, 247, 262, 0,
228 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
229 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
230 	/* 13 - 2880x240@60Hz */
231 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
232 		   3204, 3432, 240, 244, 247, 262, 0,
233 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
234 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
235 	/* 14 - 1440x480@60Hz */
236 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
237 		   1596, 1716, 480, 489, 495, 525, 0,
238 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
239 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
240 	/* 15 - 1440x480@60Hz */
241 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
242 		   1596, 1716, 480, 489, 495, 525, 0,
243 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
244 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
245 	/* 16 - 1920x1080@60Hz */
246 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
247 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
249 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
250 	/* 17 - 720x576@50Hz */
251 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
252 		   796, 864, 576, 581, 586, 625, 0,
253 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
254 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
255 	/* 18 - 720x576@50Hz */
256 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
257 		   796, 864, 576, 581, 586, 625, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
259 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
260 	/* 19 - 1280x720@50Hz */
261 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
262 		   1760, 1980, 720, 725, 730, 750, 0,
263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
264 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
265 	/* 20 - 1920x1080i@50Hz */
266 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
267 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
268 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
269 			DRM_MODE_FLAG_INTERLACE),
270 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
271 	/* 21 - 720(1440)x576i@50Hz */
272 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
273 		   795, 864, 576, 580, 586, 625, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
275 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
276 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
277 	/* 22 - 720(1440)x576i@50Hz */
278 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
279 		   795, 864, 576, 580, 586, 625, 0,
280 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
281 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
282 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
283 	/* 23 - 720(1440)x288@50Hz */
284 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
285 		   795, 864, 288, 290, 293, 312, 0,
286 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
287 			DRM_MODE_FLAG_DBLCLK),
288 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
289 	/* 24 - 720(1440)x288@50Hz */
290 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
291 		   795, 864, 288, 290, 293, 312, 0,
292 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
293 			DRM_MODE_FLAG_DBLCLK),
294 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
295 	/* 25 - 2880x576i@50Hz */
296 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
297 		   3180, 3456, 576, 580, 586, 625, 0,
298 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
299 			DRM_MODE_FLAG_INTERLACE),
300 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
301 	/* 26 - 2880x576i@50Hz */
302 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
303 		   3180, 3456, 576, 580, 586, 625, 0,
304 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
305 			DRM_MODE_FLAG_INTERLACE),
306 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
307 	/* 27 - 2880x288@50Hz */
308 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
309 		   3180, 3456, 288, 290, 293, 312, 0,
310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
311 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
312 	/* 28 - 2880x288@50Hz */
313 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
314 		   3180, 3456, 288, 290, 293, 312, 0,
315 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
316 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
317 	/* 29 - 1440x576@50Hz */
318 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
319 		   1592, 1728, 576, 581, 586, 625, 0,
320 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
321 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
322 	/* 30 - 1440x576@50Hz */
323 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
324 		   1592, 1728, 576, 581, 586, 625, 0,
325 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
326 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
327 	/* 31 - 1920x1080@50Hz */
328 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
329 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
330 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
331 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
332 	/* 32 - 1920x1080@24Hz */
333 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
334 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
336 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
337 	/* 33 - 1920x1080@25Hz */
338 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
339 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
340 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
341 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
342 	/* 34 - 1920x1080@30Hz */
343 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
344 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
345 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
346 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
347 	/* 35 - 2880x480@60Hz */
348 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
349 		   3192, 3432, 480, 489, 495, 525, 0,
350 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
351 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
352 	/* 36 - 2880x480@60Hz */
353 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
354 		   3192, 3432, 480, 489, 495, 525, 0,
355 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
356 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
357 	/* 37 - 2880x576@50Hz */
358 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
359 		   3184, 3456, 576, 581, 586, 625, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
361 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
362 	/* 38 - 2880x576@50Hz */
363 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
364 		   3184, 3456, 576, 581, 586, 625, 0,
365 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
366 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
367 	/* 39 - 1920x1080i@50Hz */
368 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
369 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
371 			DRM_MODE_FLAG_INTERLACE),
372 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
373 	/* 40 - 1920x1080i@100Hz */
374 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
375 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
376 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
377 			DRM_MODE_FLAG_INTERLACE),
378 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
379 	/* 41 - 1280x720@100Hz */
380 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
381 		   1760, 1980, 720, 725, 730, 750, 0,
382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
383 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
384 	/* 42 - 720x576@100Hz */
385 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
386 		   796, 864, 576, 581, 586, 625, 0,
387 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
388 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
389 	/* 43 - 720x576@100Hz */
390 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
391 		   796, 864, 576, 581, 586, 625, 0,
392 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
393 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
394 	/* 44 - 720(1440)x576i@100Hz */
395 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
396 		   795, 864, 576, 580, 586, 625, 0,
397 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
398 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
399 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
400 	/* 45 - 720(1440)x576i@100Hz */
401 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
402 		   795, 864, 576, 580, 586, 625, 0,
403 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
404 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
405 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
406 	/* 46 - 1920x1080i@120Hz */
407 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
408 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
410 			DRM_MODE_FLAG_INTERLACE),
411 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
412 	/* 47 - 1280x720@120Hz */
413 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
414 		   1430, 1650, 720, 725, 730, 750, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
416 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
417 	/* 48 - 720x480@120Hz */
418 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
419 		   798, 858, 480, 489, 495, 525, 0,
420 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
421 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
422 	/* 49 - 720x480@120Hz */
423 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
424 		   798, 858, 480, 489, 495, 525, 0,
425 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
426 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
427 	/* 50 - 720(1440)x480i@120Hz */
428 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
429 		   801, 858, 480, 488, 494, 525, 0,
430 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
431 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
432 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
433 	/* 51 - 720(1440)x480i@120Hz */
434 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
435 		   801, 858, 480, 488, 494, 525, 0,
436 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
437 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
438 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
439 	/* 52 - 720x576@200Hz */
440 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
441 		   796, 864, 576, 581, 586, 625, 0,
442 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
443 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
444 	/* 53 - 720x576@200Hz */
445 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
446 		   796, 864, 576, 581, 586, 625, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
448 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
449 	/* 54 - 720(1440)x576i@200Hz */
450 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
451 		   795, 864, 576, 580, 586, 625, 0,
452 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
453 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
454 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
455 	/* 55 - 720(1440)x576i@200Hz */
456 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
457 		   795, 864, 576, 580, 586, 625, 0,
458 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
459 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
460 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
461 	/* 56 - 720x480@240Hz */
462 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
463 		   798, 858, 480, 489, 495, 525, 0,
464 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
465 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
466 	/* 57 - 720x480@240Hz */
467 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
468 		   798, 858, 480, 489, 495, 525, 0,
469 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
470 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
471 	/* 58 - 720(1440)x480i@240 */
472 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
473 		   801, 858, 480, 488, 494, 525, 0,
474 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
475 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
476 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
477 	/* 59 - 720(1440)x480i@240 */
478 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
479 		   801, 858, 480, 488, 494, 525, 0,
480 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
481 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
482 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
483 	/* 60 - 1280x720@24Hz */
484 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
485 		   3080, 3300, 720, 725, 730, 750, 0,
486 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
487 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
488 	/* 61 - 1280x720@25Hz */
489 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
490 		   3740, 3960, 720, 725, 730, 750, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
492 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
493 	/* 62 - 1280x720@30Hz */
494 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
495 		   3080, 3300, 720, 725, 730, 750, 0,
496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
497 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
498 	/* 63 - 1920x1080@120Hz */
499 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
500 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
502 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
503 	/* 64 - 1920x1080@100Hz */
504 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
505 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
507 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
508 	/* 65 - 1280x720@24Hz */
509 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
510 		   3080, 3300, 720, 725, 730, 750, 0,
511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
512 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
513 	/* 66 - 1280x720@25Hz */
514 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
515 		   3740, 3960, 720, 725, 730, 750, 0,
516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
517 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
518 	/* 67 - 1280x720@30Hz */
519 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
520 		   3080, 3300, 720, 725, 730, 750, 0,
521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
522 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
523 	/* 68 - 1280x720@50Hz */
524 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
525 		   1760, 1980, 720, 725, 730, 750, 0,
526 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
527 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
528 	/* 69 - 1280x720@60Hz */
529 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
530 		   1430, 1650, 720, 725, 730, 750, 0,
531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
532 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
533 	/* 70 - 1280x720@100Hz */
534 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
535 		   1760, 1980, 720, 725, 730, 750, 0,
536 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
537 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
538 	/* 71 - 1280x720@120Hz */
539 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
540 		   1430, 1650, 720, 725, 730, 750, 0,
541 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
542 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
543 	/* 72 - 1920x1080@24Hz */
544 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
545 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
546 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
547 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
548 	/* 73 - 1920x1080@25Hz */
549 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
550 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
551 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
552 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
553 	/* 74 - 1920x1080@30Hz */
554 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
555 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
556 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
557 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
558 	/* 75 - 1920x1080@50Hz */
559 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
560 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
562 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
563 	/* 76 - 1920x1080@60Hz */
564 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
565 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
566 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
567 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
568 	/* 77 - 1920x1080@100Hz */
569 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
570 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
572 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
573 	/* 78 - 1920x1080@120Hz */
574 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
575 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
576 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
577 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
578 	/* 79 - 1680x720@24Hz */
579 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
580 		   3080, 3300, 720, 725, 730, 750, 0,
581 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
582 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
583 	/* 80 - 1680x720@25Hz */
584 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
585 		   2948, 3168, 720, 725, 730, 750, 0,
586 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
587 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
588 	/* 81 - 1680x720@30Hz */
589 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
590 		   2420, 2640, 720, 725, 730, 750, 0,
591 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
592 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
593 	/* 82 - 1680x720@50Hz */
594 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
595 		   1980, 2200, 720, 725, 730, 750, 0,
596 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
597 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
598 	/* 83 - 1680x720@60Hz */
599 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
600 		   1980, 2200, 720, 725, 730, 750, 0,
601 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
602 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
603 	/* 84 - 1680x720@100Hz */
604 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
605 		   1780, 2000, 720, 725, 730, 825, 0,
606 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
607 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
608 	/* 85 - 1680x720@120Hz */
609 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
610 		   1780, 2000, 720, 725, 730, 825, 0,
611 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
612 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
613 	/* 86 - 2560x1080@24Hz */
614 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
615 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
616 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
617 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
618 	/* 87 - 2560x1080@25Hz */
619 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
620 		   3052, 3200, 1080, 1084, 1089, 1125, 0,
621 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
622 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
623 	/* 88 - 2560x1080@30Hz */
624 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
625 		   3372, 3520, 1080, 1084, 1089, 1125, 0,
626 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
627 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
628 	/* 89 - 2560x1080@50Hz */
629 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
630 		   3152, 3300, 1080, 1084, 1089, 1125, 0,
631 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
632 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
633 	/* 90 - 2560x1080@60Hz */
634 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
635 		   2852, 3000, 1080, 1084, 1089, 1100, 0,
636 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
637 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
638 	/* 91 - 2560x1080@100Hz */
639 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
640 		   2822, 2970, 1080, 1084, 1089, 1250, 0,
641 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
642 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
643 	/* 92 - 2560x1080@120Hz */
644 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
645 		   3152, 3300, 1080, 1084, 1089, 1250, 0,
646 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
647 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
648 	/* 93 - 3840x2160p@24Hz 16:9 */
649 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
650 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
651 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
652 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
653 	/* 94 - 3840x2160p@25Hz 16:9 */
654 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
655 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
657 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
658 	/* 95 - 3840x2160p@30Hz 16:9 */
659 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
660 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
661 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
662 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
663 	/* 96 - 3840x2160p@50Hz 16:9 */
664 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
665 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
666 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
667 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
668 	/* 97 - 3840x2160p@60Hz 16:9 */
669 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
670 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
671 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
672 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
673 	/* 98 - 4096x2160p@24Hz 256:135 */
674 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
675 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
676 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
677 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
678 	/* 99 - 4096x2160p@25Hz 256:135 */
679 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
680 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
681 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
682 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
683 	/* 100 - 4096x2160p@30Hz 256:135 */
684 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
685 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
686 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
687 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
688 	/* 101 - 4096x2160p@50Hz 256:135 */
689 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
690 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
691 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
692 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
693 	/* 102 - 4096x2160p@60Hz 256:135 */
694 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
695 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
696 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
697 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
698 	/* 103 - 3840x2160p@24Hz 64:27 */
699 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
700 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
701 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
702 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
703 	/* 104 - 3840x2160p@25Hz 64:27 */
704 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
705 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
706 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
707 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
708 	/* 105 - 3840x2160p@30Hz 64:27 */
709 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
710 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
711 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
712 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
713 	/* 106 - 3840x2160p@50Hz 64:27 */
714 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
715 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
716 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
717 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
718 	/* 107 - 3840x2160p@60Hz 64:27 */
719 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
720 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
721 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
722 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
723 	/* 108 - 1280x720@48Hz 16:9 */
724 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
725 		   2280, 2500, 720, 725, 730, 750, 0,
726 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
727 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
728 	/* 109 - 1280x720@48Hz 64:27 */
729 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
730 		   2280, 2500, 720, 725, 730, 750, 0,
731 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
732 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
733 	/* 110 - 1680x720@48Hz 64:27 */
734 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
735 		   2530, 2750, 720, 725, 730, 750, 0,
736 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
737 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
738 	/* 111 - 1920x1080@48Hz 16:9 */
739 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
740 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
741 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
742 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
743 	/* 112 - 1920x1080@48Hz 64:27 */
744 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
745 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
746 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
747 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
748 	/* 113 - 2560x1080@48Hz 64:27 */
749 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
750 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
751 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
752 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
753 	/* 114 - 3840x2160@48Hz 16:9 */
754 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
755 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
756 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
757 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 	/* 115 - 4096x2160@48Hz 256:135 */
759 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
760 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
761 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
762 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
763 	/* 116 - 3840x2160@48Hz 64:27 */
764 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
765 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
766 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
767 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
768 	/* 117 - 3840x2160@100Hz 16:9 */
769 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
770 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
771 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 	/* 118 - 3840x2160@120Hz 16:9 */
774 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
775 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
776 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 	/* 119 - 3840x2160@100Hz 64:27 */
779 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
780 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
781 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
783 	/* 120 - 3840x2160@120Hz 64:27 */
784 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
785 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
786 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
787 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
788 	/* 121 - 5120x2160@24Hz 64:27 */
789 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
790 		   7204, 7500, 2160, 2168, 2178, 2200, 0,
791 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
792 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
793 	/* 122 - 5120x2160@25Hz 64:27 */
794 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
795 		   6904, 7200, 2160, 2168, 2178, 2200, 0,
796 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
797 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
798 	/* 123 - 5120x2160@30Hz 64:27 */
799 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
800 		   5872, 6000, 2160, 2168, 2178, 2200, 0,
801 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
802 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
803 	/* 124 - 5120x2160@48Hz 64:27 */
804 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
805 		   5954, 6250, 2160, 2168, 2178, 2475, 0,
806 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
807 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
808 	/* 125 - 5120x2160@50Hz 64:27 */
809 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
810 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
811 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
812 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
813 	/* 126 - 5120x2160@60Hz 64:27 */
814 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
815 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
816 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
817 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
818 	/* 127 - 5120x2160@100Hz 64:27 */
819 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
820 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
821 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
822 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
823 };
824 
825 static const struct drm_display_mode edid_cea_modes_193[] = {
826 	/* 193 - 5120x2160@120Hz 64:27 */
827 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
828 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
829 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
830 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
831 	/* 194 - 7680x4320@24Hz 16:9 */
832 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
833 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
834 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
835 	 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 	/* 195 - 7680x4320@25Hz 16:9 */
837 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
838 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
839 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
840 	 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
841 	/* 196 - 7680x4320@30Hz 16:9 */
842 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
843 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
844 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
845 	 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846 	/* 197 - 7680x4320@48Hz 16:9 */
847 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
848 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
849 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
850 	 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
851 	/* 198 - 7680x4320@50Hz 16:9 */
852 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
853 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
854 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
855 	 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
856 	/* 199 - 7680x4320@60Hz 16:9 */
857 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
858 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
859 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
860 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 	/* 200 - 7680x4320@100Hz 16:9 */
862 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
863 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
864 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
865 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
866 	/* 201 - 7680x4320@120Hz 16:9 */
867 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
868 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
869 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
870 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
871 	/* 202 - 7680x4320@24Hz 64:27 */
872 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
873 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
874 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
875 	.vrefresh = 24,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
876 	/* 203 - 7680x4320@25Hz 64:27 */
877 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
878 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
879 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
880 	.vrefresh = 25,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
881 	/* 204 - 7680x4320@30Hz 64:27 */
882 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
883 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
884 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
885 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
886 	/* 205 - 7680x4320@48Hz 64:27 */
887 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
888 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
889 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
890 	.vrefresh = 48,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
891 	/* 206 - 7680x4320@50Hz 64:27 */
892 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
893 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
894 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
895 	.vrefresh = 50,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
896 	/* 207 - 7680x4320@60Hz 64:27 */
897 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
898 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
899 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
900 	.vrefresh = 60,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
901 	/* 208 - 7680x4320@100Hz 64:27 */
902 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
903 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
904 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
905 	.vrefresh = 100,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
906 	/* 209 - 7680x4320@120Hz 64:27 */
907 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
908 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
909 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
910 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
911 	/* 210 - 10240x4320@24Hz 64:27 */
912 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
913 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
914 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
915 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
916 	/* 211 - 10240x4320@25Hz 64:27 */
917 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
918 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
919 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
920 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
921 	/* 212 - 10240x4320@30Hz 64:27 */
922 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
923 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
924 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
925 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
926 	/* 213 - 10240x4320@48Hz 64:27 */
927 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
928 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
929 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
930 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
931 	/* 214 - 10240x4320@50Hz 64:27 */
932 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
933 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
934 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
935 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
936 	/* 215 - 10240x4320@60Hz 64:27 */
937 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
938 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
939 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
940 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
941 	/* 216 - 10240x4320@100Hz 64:27 */
942 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
943 		   12608, 13200, 4320, 4336, 4356, 4500, 0,
944 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
945 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
946 	/* 217 - 10240x4320@120Hz 64:27 */
947 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
948 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
949 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
950 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
951 	/* 218 - 4096x2160@100Hz 256:135 */
952 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
953 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
956 	/* 219 - 4096x2160@120Hz 256:135 */
957 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
958 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
959 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
960 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
961 };
962 
963 /*
964  * HDMI 1.4 4k modes. Index using the VIC.
965  */
966 static const struct drm_display_mode edid_4k_modes[] = {
967 	/* 0 - dummy, VICs start at 1 */
968 	{ },
969 	/* 1 - 3840x2160@30Hz */
970 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
971 		   3840, 4016, 4104, 4400,
972 		   2160, 2168, 2178, 2250, 0,
973 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
974 	  .vrefresh = 30, },
975 	/* 2 - 3840x2160@25Hz */
976 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
977 		   3840, 4896, 4984, 5280,
978 		   2160, 2168, 2178, 2250, 0,
979 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
980 	  .vrefresh = 25, },
981 	/* 3 - 3840x2160@24Hz */
982 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
983 		   3840, 5116, 5204, 5500,
984 		   2160, 2168, 2178, 2250, 0,
985 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
986 	  .vrefresh = 24, },
987 	/* 4 - 4096x2160@24Hz (SMPTE) */
988 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
989 		   4096, 5116, 5204, 5500,
990 		   2160, 2168, 2178, 2250, 0,
991 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
992 	  .vrefresh = 24, },
993 };
994 
995 /*
996  * Autogenerated from the DMT spec.
997  * This table is copied from xfree86/modes/xf86EdidModes.c.
998  */
999 static const struct drm_display_mode drm_dmt_modes[] = {
1000 	/* 0x01 - 640x350@85Hz */
1001 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1002 		   736, 832, 350, 382, 385, 445, 0,
1003 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1004 	/* 0x02 - 640x400@85Hz */
1005 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1006 		   736, 832, 400, 401, 404, 445, 0,
1007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1008 	/* 0x03 - 720x400@85Hz */
1009 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
1010 		   828, 936, 400, 401, 404, 446, 0,
1011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1012 	/* 0x04 - 640x480@60Hz */
1013 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1014 		   752, 800, 480, 490, 492, 525, 0,
1015 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1016 	/* 0x05 - 640x480@72Hz */
1017 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1018 		   704, 832, 480, 489, 492, 520, 0,
1019 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1020 	/* 0x06 - 640x480@75Hz */
1021 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1022 		   720, 840, 480, 481, 484, 500, 0,
1023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1024 	/* 0x07 - 640x480@85Hz */
1025 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
1026 		   752, 832, 480, 481, 484, 509, 0,
1027 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1028 	/* 0x08 - 800x600@56Hz */
1029 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1030 		   896, 1024, 600, 601, 603, 625, 0,
1031 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1032 	/* 0x09 - 800x600@60Hz */
1033 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1034 		   968, 1056, 600, 601, 605, 628, 0,
1035 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1036 	/* 0x0a - 800x600@72Hz */
1037 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1038 		   976, 1040, 600, 637, 643, 666, 0,
1039 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1040 	/* 0x0b - 800x600@75Hz */
1041 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1042 		   896, 1056, 600, 601, 604, 625, 0,
1043 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1044 	/* 0x0c - 800x600@85Hz */
1045 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
1046 		   896, 1048, 600, 601, 604, 631, 0,
1047 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1048 	/* 0x0d - 800x600@120Hz RB */
1049 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
1050 		   880, 960, 600, 603, 607, 636, 0,
1051 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1052 	/* 0x0e - 848x480@60Hz */
1053 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
1054 		   976, 1088, 480, 486, 494, 517, 0,
1055 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1056 	/* 0x0f - 1024x768@43Hz, interlace */
1057 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1058 		   1208, 1264, 768, 768, 772, 817, 0,
1059 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1060 		   DRM_MODE_FLAG_INTERLACE) },
1061 	/* 0x10 - 1024x768@60Hz */
1062 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1063 		   1184, 1344, 768, 771, 777, 806, 0,
1064 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1065 	/* 0x11 - 1024x768@70Hz */
1066 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1067 		   1184, 1328, 768, 771, 777, 806, 0,
1068 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1069 	/* 0x12 - 1024x768@75Hz */
1070 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1071 		   1136, 1312, 768, 769, 772, 800, 0,
1072 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1073 	/* 0x13 - 1024x768@85Hz */
1074 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1075 		   1168, 1376, 768, 769, 772, 808, 0,
1076 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1077 	/* 0x14 - 1024x768@120Hz RB */
1078 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1079 		   1104, 1184, 768, 771, 775, 813, 0,
1080 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1081 	/* 0x15 - 1152x864@75Hz */
1082 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1083 		   1344, 1600, 864, 865, 868, 900, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1085 	/* 0x55 - 1280x720@60Hz */
1086 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1087 		   1430, 1650, 720, 725, 730, 750, 0,
1088 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1089 	/* 0x16 - 1280x768@60Hz RB */
1090 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1091 		   1360, 1440, 768, 771, 778, 790, 0,
1092 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1093 	/* 0x17 - 1280x768@60Hz */
1094 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1095 		   1472, 1664, 768, 771, 778, 798, 0,
1096 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1097 	/* 0x18 - 1280x768@75Hz */
1098 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1099 		   1488, 1696, 768, 771, 778, 805, 0,
1100 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1101 	/* 0x19 - 1280x768@85Hz */
1102 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1103 		   1496, 1712, 768, 771, 778, 809, 0,
1104 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1105 	/* 0x1a - 1280x768@120Hz RB */
1106 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1107 		   1360, 1440, 768, 771, 778, 813, 0,
1108 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1109 	/* 0x1b - 1280x800@60Hz RB */
1110 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1111 		   1360, 1440, 800, 803, 809, 823, 0,
1112 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1113 	/* 0x1c - 1280x800@60Hz */
1114 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1115 		   1480, 1680, 800, 803, 809, 831, 0,
1116 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1117 	/* 0x1d - 1280x800@75Hz */
1118 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1119 		   1488, 1696, 800, 803, 809, 838, 0,
1120 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1121 	/* 0x1e - 1280x800@85Hz */
1122 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1123 		   1496, 1712, 800, 803, 809, 843, 0,
1124 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1125 	/* 0x1f - 1280x800@120Hz RB */
1126 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1127 		   1360, 1440, 800, 803, 809, 847, 0,
1128 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1129 	/* 0x20 - 1280x960@60Hz */
1130 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1131 		   1488, 1800, 960, 961, 964, 1000, 0,
1132 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1133 	/* 0x21 - 1280x960@85Hz */
1134 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1135 		   1504, 1728, 960, 961, 964, 1011, 0,
1136 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1137 	/* 0x22 - 1280x960@120Hz RB */
1138 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1139 		   1360, 1440, 960, 963, 967, 1017, 0,
1140 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1141 	/* 0x23 - 1280x1024@60Hz */
1142 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1143 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1145 	/* 0x24 - 1280x1024@75Hz */
1146 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1147 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1148 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1149 	/* 0x25 - 1280x1024@85Hz */
1150 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1151 		   1504, 1728, 1024, 1025, 1028, 1072, 0,
1152 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1153 	/* 0x26 - 1280x1024@120Hz RB */
1154 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1155 		   1360, 1440, 1024, 1027, 1034, 1084, 0,
1156 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1157 	/* 0x27 - 1360x768@60Hz */
1158 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1159 		   1536, 1792, 768, 771, 777, 795, 0,
1160 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1161 	/* 0x28 - 1360x768@120Hz RB */
1162 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1163 		   1440, 1520, 768, 771, 776, 813, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1165 	/* 0x51 - 1366x768@60Hz */
1166 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1167 		   1579, 1792, 768, 771, 774, 798, 0,
1168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1169 	/* 0x56 - 1366x768@60Hz */
1170 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1171 		   1436, 1500, 768, 769, 772, 800, 0,
1172 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1173 	/* 0x29 - 1400x1050@60Hz RB */
1174 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1175 		   1480, 1560, 1050, 1053, 1057, 1080, 0,
1176 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1177 	/* 0x2a - 1400x1050@60Hz */
1178 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1179 		   1632, 1864, 1050, 1053, 1057, 1089, 0,
1180 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1181 	/* 0x2b - 1400x1050@75Hz */
1182 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1183 		   1648, 1896, 1050, 1053, 1057, 1099, 0,
1184 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1185 	/* 0x2c - 1400x1050@85Hz */
1186 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1187 		   1656, 1912, 1050, 1053, 1057, 1105, 0,
1188 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1189 	/* 0x2d - 1400x1050@120Hz RB */
1190 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1191 		   1480, 1560, 1050, 1053, 1057, 1112, 0,
1192 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1193 	/* 0x2e - 1440x900@60Hz RB */
1194 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1195 		   1520, 1600, 900, 903, 909, 926, 0,
1196 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1197 	/* 0x2f - 1440x900@60Hz */
1198 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1199 		   1672, 1904, 900, 903, 909, 934, 0,
1200 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1201 	/* 0x30 - 1440x900@75Hz */
1202 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1203 		   1688, 1936, 900, 903, 909, 942, 0,
1204 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1205 	/* 0x31 - 1440x900@85Hz */
1206 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1207 		   1696, 1952, 900, 903, 909, 948, 0,
1208 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1209 	/* 0x32 - 1440x900@120Hz RB */
1210 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1211 		   1520, 1600, 900, 903, 909, 953, 0,
1212 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1213 	/* 0x53 - 1600x900@60Hz */
1214 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1215 		   1704, 1800, 900, 901, 904, 1000, 0,
1216 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1217 	/* 0x33 - 1600x1200@60Hz */
1218 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1219 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1220 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1221 	/* 0x34 - 1600x1200@65Hz */
1222 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1223 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1225 	/* 0x35 - 1600x1200@70Hz */
1226 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1227 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1229 	/* 0x36 - 1600x1200@75Hz */
1230 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1231 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1232 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1233 	/* 0x37 - 1600x1200@85Hz */
1234 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1235 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1236 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1237 	/* 0x38 - 1600x1200@120Hz RB */
1238 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1239 		   1680, 1760, 1200, 1203, 1207, 1271, 0,
1240 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1241 	/* 0x39 - 1680x1050@60Hz RB */
1242 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1243 		   1760, 1840, 1050, 1053, 1059, 1080, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1245 	/* 0x3a - 1680x1050@60Hz */
1246 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1247 		   1960, 2240, 1050, 1053, 1059, 1089, 0,
1248 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1249 	/* 0x3b - 1680x1050@75Hz */
1250 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1251 		   1976, 2272, 1050, 1053, 1059, 1099, 0,
1252 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1253 	/* 0x3c - 1680x1050@85Hz */
1254 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1255 		   1984, 2288, 1050, 1053, 1059, 1105, 0,
1256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1257 	/* 0x3d - 1680x1050@120Hz RB */
1258 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1259 		   1760, 1840, 1050, 1053, 1059, 1112, 0,
1260 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1261 	/* 0x3e - 1792x1344@60Hz */
1262 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1263 		   2120, 2448, 1344, 1345, 1348, 1394, 0,
1264 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1265 	/* 0x3f - 1792x1344@75Hz */
1266 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1267 		   2104, 2456, 1344, 1345, 1348, 1417, 0,
1268 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1269 	/* 0x40 - 1792x1344@120Hz RB */
1270 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1271 		   1872, 1952, 1344, 1347, 1351, 1423, 0,
1272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1273 	/* 0x41 - 1856x1392@60Hz */
1274 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1275 		   2176, 2528, 1392, 1393, 1396, 1439, 0,
1276 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1277 	/* 0x42 - 1856x1392@75Hz */
1278 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1279 		   2208, 2560, 1392, 1393, 1396, 1500, 0,
1280 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1281 	/* 0x43 - 1856x1392@120Hz RB */
1282 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1283 		   1936, 2016, 1392, 1395, 1399, 1474, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1285 	/* 0x52 - 1920x1080@60Hz */
1286 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1287 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1288 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1289 	/* 0x44 - 1920x1200@60Hz RB */
1290 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1291 		   2000, 2080, 1200, 1203, 1209, 1235, 0,
1292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1293 	/* 0x45 - 1920x1200@60Hz */
1294 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1295 		   2256, 2592, 1200, 1203, 1209, 1245, 0,
1296 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1297 	/* 0x46 - 1920x1200@75Hz */
1298 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1299 		   2264, 2608, 1200, 1203, 1209, 1255, 0,
1300 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1301 	/* 0x47 - 1920x1200@85Hz */
1302 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1303 		   2272, 2624, 1200, 1203, 1209, 1262, 0,
1304 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1305 	/* 0x48 - 1920x1200@120Hz RB */
1306 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1307 		   2000, 2080, 1200, 1203, 1209, 1271, 0,
1308 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1309 	/* 0x49 - 1920x1440@60Hz */
1310 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1311 		   2256, 2600, 1440, 1441, 1444, 1500, 0,
1312 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1313 	/* 0x4a - 1920x1440@75Hz */
1314 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1315 		   2288, 2640, 1440, 1441, 1444, 1500, 0,
1316 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1317 	/* 0x4b - 1920x1440@120Hz RB */
1318 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1319 		   2000, 2080, 1440, 1443, 1447, 1525, 0,
1320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1321 	/* 0x54 - 2048x1152@60Hz */
1322 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1323 		   2154, 2250, 1152, 1153, 1156, 1200, 0,
1324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1325 	/* 0x4c - 2560x1600@60Hz RB */
1326 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1327 		   2640, 2720, 1600, 1603, 1609, 1646, 0,
1328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1329 	/* 0x4d - 2560x1600@60Hz */
1330 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1331 		   3032, 3504, 1600, 1603, 1609, 1658, 0,
1332 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1333 	/* 0x4e - 2560x1600@75Hz */
1334 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1335 		   3048, 3536, 1600, 1603, 1609, 1672, 0,
1336 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1337 	/* 0x4f - 2560x1600@85Hz */
1338 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1339 		   3048, 3536, 1600, 1603, 1609, 1682, 0,
1340 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1341 	/* 0x50 - 2560x1600@120Hz RB */
1342 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1343 		   2640, 2720, 1600, 1603, 1609, 1694, 0,
1344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1345 	/* 0x57 - 4096x2160@60Hz RB */
1346 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1347 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1349 	/* 0x58 - 4096x2160@59.94Hz RB */
1350 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1351 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1352 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1353 };
1354 
1355 /*
1356  * These more or less come from the DMT spec.  The 720x400 modes are
1357  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
1358  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
1359  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1360  * mode.
1361  *
1362  * The DMT modes have been fact-checked; the rest are mild guesses.
1363  */
1364 static const struct drm_display_mode edid_est_modes[] = {
1365 	/* 800x600@60Hz */
1366 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1367 		   968, 1056, 600, 601, 605, 628, 0,
1368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1369 	/* 800x600@56Hz */
1370 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1371 		   896, 1024, 600, 601, 603,  625, 0,
1372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1373 	/* 640x480@75Hz */
1374 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1375 		   720, 840, 480, 481, 484, 500, 0,
1376 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1377 	/* 640x480@72Hz */
1378 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1379 		   704,  832, 480, 489, 492, 520, 0,
1380 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1381 	/* 640x480@67Hz */
1382 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1383 		   768,  864, 480, 483, 486, 525, 0,
1384 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1385 	/* 640x480@60Hz */
1386 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1387 		   752, 800, 480, 490, 492, 525, 0,
1388 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1389 	/* 720x400@88Hz */
1390 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1391 		   846, 900, 400, 421, 423,  449, 0,
1392 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1393 	/* 720x400@70Hz */
1394 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1395 		   846,  900, 400, 412, 414, 449, 0,
1396 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1397 	/* 1280x1024@75Hz */
1398 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1399 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1400 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1401 	/* 1024x768@75Hz */
1402 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1403 		   1136, 1312,  768, 769, 772, 800, 0,
1404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1405 	/* 1024x768@70Hz */
1406 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1407 		   1184, 1328, 768, 771, 777, 806, 0,
1408 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1409 	/* 1024x768@60Hz */
1410 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1411 		   1184, 1344, 768, 771, 777, 806, 0,
1412 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1413 	/* 1024x768@43Hz */
1414 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1415 		   1208, 1264, 768, 768, 776, 817, 0,
1416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1417 		   DRM_MODE_FLAG_INTERLACE) },
1418 	/* 832x624@75Hz */
1419 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1420 		   928, 1152, 624, 625, 628, 667, 0,
1421 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1422 	/* 800x600@75Hz */
1423 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1424 		   896, 1056, 600, 601, 604,  625, 0,
1425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1426 	/* 800x600@72Hz */
1427 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1428 		   976, 1040, 600, 637, 643, 666, 0,
1429 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1430 	/* 1152x864@75Hz */
1431 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1432 		   1344, 1600, 864, 865, 868, 900, 0,
1433 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1434 };
1435 
1436 #define DRM_BASE_MODE(c, hd, hss, hse, ht, vd, vss, vse, vt, vs, f) \
1437 	.clock = (c), \
1438 	.hdisplay = (hd), .hsync_start = (hss), .hsync_end = (hse), \
1439 	.htotal = (ht), .vdisplay = (vd), \
1440 	.vsync_start = (vss), .vsync_end = (vse), .vtotal = (vt), \
1441 	.vscan = (vs), .flags = (f)
1442 
1443 static const struct base_drm_display_mode resolution_white[] = {
1444 	/* 0. vic:2 - 720x480@60Hz */
1445 	{ DRM_BASE_MODE(27000, 720, 736,
1446 			798, 858, 480, 489, 495, 525, 0,
1447 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1448 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1449 	/* 1. vic:3 - 720x480@60Hz */
1450 	{ DRM_BASE_MODE(27000, 720, 736,
1451 			798, 858, 480, 489, 495, 525, 0,
1452 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1453 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 1024x768@60Hz */
1455 	{ DRM_BASE_MODE(65000, 1024, 1048,
1456 			1184, 1344, 768, 771, 777, 806, 0,
1457 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1458 	/* 2. vic:4 - 1280x720@60Hz */
1459 	{ DRM_BASE_MODE(74250, 1280, 1390,
1460 			1430, 1650, 720, 725, 730, 750, 0,
1461 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1463 	/* 3. vic:5 - 1920x1080i@60Hz */
1464 	{ DRM_BASE_MODE(74250, 1920, 2008,
1465 			2052, 2200, 1080, 1084, 1094, 1125, 0,
1466 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1467 			DRM_MODE_FLAG_INTERLACE),
1468 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1469 	/* 4. vic:6 - 720(1440)x480i@60Hz */
1470 	{ DRM_BASE_MODE(13500, 720, 739,
1471 			801, 858, 480, 488, 494, 525, 0,
1472 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1473 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1474 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1475 	/* 5. vic:16 - 1920x1080@60Hz */
1476 	{ DRM_BASE_MODE(148500, 1920, 2008,
1477 			2052, 2200, 1080, 1084, 1089, 1125, 0,
1478 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1479 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1480 	/* 6. vic:17 - 720x576@50Hz */
1481 	{ DRM_BASE_MODE(27000, 720, 732,
1482 			796, 864, 576, 581, 586, 625, 0,
1483 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1484 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1485 	/* 7. vic:18 - 720x576@50Hz */
1486 	{ DRM_BASE_MODE(27000, 720, 732,
1487 			796, 864, 576, 581, 586, 625, 0,
1488 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1489 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1490 	/* 8. vic:19 - 1280x720@50Hz */
1491 	{ DRM_BASE_MODE(74250, 1280, 1720,
1492 			1760, 1980, 720, 725, 730, 750, 0,
1493 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1494 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1495 	/* 9. vic:20 - 1920x1080i@50Hz */
1496 	{ DRM_BASE_MODE(74250, 1920, 2448,
1497 			2492, 2640, 1080, 1084, 1094, 1125, 0,
1498 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1499 			DRM_MODE_FLAG_INTERLACE),
1500 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1501 	/* 10. vic:21 - 720(1440)x576i@50Hz */
1502 	{ DRM_BASE_MODE(13500, 720, 732,
1503 			795, 864, 576, 580, 586, 625, 0,
1504 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1505 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1506 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1507 	/* 11. vic:31 - 1920x1080@50Hz */
1508 	{ DRM_BASE_MODE(148500, 1920, 2448,
1509 			2492, 2640, 1080, 1084, 1089, 1125, 0,
1510 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1512 	/* 12. vic:32 - 1920x1080@24Hz */
1513 	{ DRM_BASE_MODE(74250, 1920, 2558,
1514 			2602, 2750, 1080, 1084, 1089, 1125, 0,
1515 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1517 	/* 13. vic:33 - 1920x1080@25Hz */
1518 	{ DRM_BASE_MODE(74250, 1920, 2448,
1519 			2492, 2640, 1080, 1084, 1089, 1125, 0,
1520 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1522 	/* 14. vic:34 - 1920x1080@30Hz */
1523 	{ DRM_BASE_MODE(74250, 1920, 2008,
1524 			2052, 2200, 1080, 1084, 1089, 1125, 0,
1525 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1526 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1527 	/* 15. vic:39 - 1920x1080i@50Hz */
1528 	{ DRM_BASE_MODE(72000, 1920, 1952,
1529 			2120, 2304, 1080, 1126, 1136, 1250, 0,
1530 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
1531 			DRM_MODE_FLAG_INTERLACE),
1532 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1533 	/* 16. vic:60 - 1280x720@24Hz */
1534 	{ DRM_BASE_MODE(59400, 1280, 3040,
1535 			3080, 3300, 720, 725, 730, 750, 0,
1536 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1538 	/* 17. vic:61 - 1280x720@25Hz */
1539 	{ DRM_BASE_MODE(74250, 1280, 3700,
1540 			3740, 3960, 720, 725, 730, 750, 0,
1541 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1542 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1543 	/* 18. vic:62 - 1280x720@30Hz */
1544 	{ DRM_BASE_MODE(74250, 1280, 3040,
1545 			3080, 3300, 720, 725, 730, 750, 0,
1546 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1548 	/* 19. vic:93 - 3840x2160p@24Hz 16:9 */
1549 	{ DRM_BASE_MODE(297000, 3840, 5116,
1550 			5204, 5500, 2160, 2168, 2178, 2250, 0,
1551 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1552 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1553 	/* 20. vic:94 - 3840x2160p@25Hz 16:9 */
1554 	{ DRM_BASE_MODE(297000, 3840, 4896,
1555 			4984, 5280, 2160, 2168, 2178, 2250, 0,
1556 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 	/* 21. vic:95 - 3840x2160p@30Hz 16:9 */
1559 	{ DRM_BASE_MODE(297000, 3840, 4016,
1560 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1561 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1562 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1563 	/* 22. vic:96 - 3840x2160p@50Hz 16:9 */
1564 	{ DRM_BASE_MODE(594000, 3840, 4896,
1565 			4984, 5280, 2160, 2168, 2178, 2250, 0,
1566 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1567 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1568 	/* 23. vic:97 - 3840x2160p@60Hz 16:9 */
1569 	{ DRM_BASE_MODE(594000, 3840, 4016,
1570 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1571 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1573 	/* 24. vic:98 - 4096x2160p@24Hz 256:135 */
1574 	{ DRM_BASE_MODE(297000, 4096, 5116,
1575 			5204, 5500, 2160, 2168, 2178, 2250, 0,
1576 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1577 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1578 	/* 25. vic:99 - 4096x2160p@25Hz 256:135 */
1579 	{ DRM_BASE_MODE(297000, 4096, 5064,
1580 			5152, 5280, 2160, 2168, 2178, 2250, 0,
1581 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1582 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1583 	/* 26. vic:100 - 4096x2160p@30Hz 256:135 */
1584 	{ DRM_BASE_MODE(297000, 4096, 4184,
1585 			4272, 4400, 2160, 2168, 2178, 2250, 0,
1586 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1587 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1588 	/* 27. vic:101 - 4096x2160p@50Hz 256:135 */
1589 	{ DRM_BASE_MODE(594000, 4096, 5064,
1590 			5152, 5280, 2160, 2168, 2178, 2250, 0,
1591 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1592 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1593 	/* 28. vic:102 - 4096x2160p@60Hz 256:135 */
1594 	{ DRM_BASE_MODE(594000, 4096, 4184,
1595 			4272, 4400, 2160, 2168, 2178, 2250, 0,
1596 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1597 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1598 	/* 29. vic:118 - 3840x2160@120Hz 16:9 */
1599 	{ DRM_BASE_MODE(1188000, 3840, 4016,
1600 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1601 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1602 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1603 	/* 30. vic:196 - 7680x4320@30Hz 16:9 */
1604 	{ DRM_BASE_MODE(1188000, 7680, 8232,
1605 			8408, 9000, 4320, 4336, 4356, 4400, 0,
1606 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1607 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1608 	/* 31. vic:198 - 7680x4320@50Hz 16:9 */
1609 	{ DRM_BASE_MODE(2376000, 7680, 10032,
1610 			10208, 10800, 4320, 4336, 4356, 4400, 0,
1611 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1612 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1613 	/* 32. vic:199 - 7680x4320@60Hz 16:9 */
1614 	{ DRM_BASE_MODE(2376000, 7680, 8232,
1615 			8408, 9000, 4320, 4336, 4356, 4400, 0,
1616 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1617 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1618 };
1619 
1620 struct minimode {
1621 	short w;
1622 	short h;
1623 	short r;
1624 	short rb;
1625 };
1626 
1627 static const struct minimode est3_modes[] = {
1628 	/* byte 6 */
1629 	{ 640, 350, 85, 0 },
1630 	{ 640, 400, 85, 0 },
1631 	{ 720, 400, 85, 0 },
1632 	{ 640, 480, 85, 0 },
1633 	{ 848, 480, 60, 0 },
1634 	{ 800, 600, 85, 0 },
1635 	{ 1024, 768, 85, 0 },
1636 	{ 1152, 864, 75, 0 },
1637 	/* byte 7 */
1638 	{ 1280, 768, 60, 1 },
1639 	{ 1280, 768, 60, 0 },
1640 	{ 1280, 768, 75, 0 },
1641 	{ 1280, 768, 85, 0 },
1642 	{ 1280, 960, 60, 0 },
1643 	{ 1280, 960, 85, 0 },
1644 	{ 1280, 1024, 60, 0 },
1645 	{ 1280, 1024, 85, 0 },
1646 	/* byte 8 */
1647 	{ 1360, 768, 60, 0 },
1648 	{ 1440, 900, 60, 1 },
1649 	{ 1440, 900, 60, 0 },
1650 	{ 1440, 900, 75, 0 },
1651 	{ 1440, 900, 85, 0 },
1652 	{ 1400, 1050, 60, 1 },
1653 	{ 1400, 1050, 60, 0 },
1654 	{ 1400, 1050, 75, 0 },
1655 	/* byte 9 */
1656 	{ 1400, 1050, 85, 0 },
1657 	{ 1680, 1050, 60, 1 },
1658 	{ 1680, 1050, 60, 0 },
1659 	{ 1680, 1050, 75, 0 },
1660 	{ 1680, 1050, 85, 0 },
1661 	{ 1600, 1200, 60, 0 },
1662 	{ 1600, 1200, 65, 0 },
1663 	{ 1600, 1200, 70, 0 },
1664 	/* byte 10 */
1665 	{ 1600, 1200, 75, 0 },
1666 	{ 1600, 1200, 85, 0 },
1667 	{ 1792, 1344, 60, 0 },
1668 	{ 1792, 1344, 75, 0 },
1669 	{ 1856, 1392, 60, 0 },
1670 	{ 1856, 1392, 75, 0 },
1671 	{ 1920, 1200, 60, 1 },
1672 	{ 1920, 1200, 60, 0 },
1673 	/* byte 11 */
1674 	{ 1920, 1200, 75, 0 },
1675 	{ 1920, 1200, 85, 0 },
1676 	{ 1920, 1440, 60, 0 },
1677 	{ 1920, 1440, 75, 0 },
1678 };
1679 
1680 static const struct minimode extra_modes[] = {
1681 	{ 1024, 576,  60, 0 },
1682 	{ 1366, 768,  60, 0 },
1683 	{ 1600, 900,  60, 0 },
1684 	{ 1680, 945,  60, 0 },
1685 	{ 1920, 1080, 60, 0 },
1686 	{ 2048, 1152, 60, 0 },
1687 	{ 2048, 1536, 60, 0 },
1688 };
1689 
1690 static const struct drm_display_mode *cea_mode_for_vic(u8 vic)
1691 {
1692 	if (!vic)
1693 		return NULL;
1694 	else if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
1695 		return &edid_cea_modes_1[vic - 1];
1696 	else if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
1697 		return &edid_cea_modes_193[vic - 193];
1698 
1699 	return NULL;
1700 }
1701 
1702 static u8 cea_num_vics(void)
1703 {
1704 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
1705 }
1706 
1707 static u8 cea_next_vic(u8 vic)
1708 {
1709 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
1710 		vic = 193;
1711 
1712 	return vic;
1713 }
1714 
1715 int edid_check_info(struct edid1_info *edid_info)
1716 {
1717 	if ((edid_info == NULL) || (edid_info->version == 0))
1718 		return -1;
1719 
1720 	if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1721 		return -1;
1722 
1723 	if (edid_info->version == 0xff && edid_info->revision == 0xff)
1724 		return -1;
1725 
1726 	return 0;
1727 }
1728 
1729 int edid_check_checksum(u8 *edid_block)
1730 {
1731 	u8 checksum = 0;
1732 	int i;
1733 
1734 	for (i = 0; i < 128; i++)
1735 		checksum += edid_block[i];
1736 
1737 	return (checksum == 0) ? 0 : -EINVAL;
1738 }
1739 
1740 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1741 		    unsigned int *hmax, unsigned int *vmin,
1742 		    unsigned int *vmax)
1743 {
1744 	int i;
1745 	struct edid_monitor_descriptor *monitor;
1746 
1747 	*hmin = *hmax = *vmin = *vmax = 0;
1748 	if (edid_check_info(edid))
1749 		return -1;
1750 
1751 	for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1752 		monitor = &edid->monitor_details.descriptor[i];
1753 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1754 			*hmin = monitor->data.range_data.horizontal_min;
1755 			*hmax = monitor->data.range_data.horizontal_max;
1756 			*vmin = monitor->data.range_data.vertical_min;
1757 			*vmax = monitor->data.range_data.vertical_max;
1758 			return 0;
1759 		}
1760 	}
1761 	return -1;
1762 }
1763 
1764 /* Set all parts of a timing entry to the same value */
1765 static void set_entry(struct timing_entry *entry, u32 value)
1766 {
1767 	entry->min = value;
1768 	entry->typ = value;
1769 	entry->max = value;
1770 }
1771 
1772 /**
1773  * decode_timing() - Decoding an 18-byte detailed timing record
1774  *
1775  * @buf:	Pointer to EDID detailed timing record
1776  * @timing:	Place to put timing
1777  */
1778 static void decode_timing(u8 *buf, struct display_timing *timing)
1779 {
1780 	uint x_mm, y_mm;
1781 	unsigned int ha, hbl, hso, hspw, hborder;
1782 	unsigned int va, vbl, vso, vspw, vborder;
1783 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1784 
1785 	/* Edid contains pixel clock in terms of 10KHz */
1786 	set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1787 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1788 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1789 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1790 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1791 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1792 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1793 	hborder = buf[15];
1794 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1795 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1796 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1797 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1798 	vborder = buf[16];
1799 
1800 	set_entry(&timing->hactive, ha);
1801 	set_entry(&timing->hfront_porch, hso);
1802 	set_entry(&timing->hback_porch, hbl - hso - hspw);
1803 	set_entry(&timing->hsync_len, hspw);
1804 
1805 	set_entry(&timing->vactive, va);
1806 	set_entry(&timing->vfront_porch, vso);
1807 	set_entry(&timing->vback_porch, vbl - vso - vspw);
1808 	set_entry(&timing->vsync_len, vspw);
1809 
1810 	timing->flags = 0;
1811 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1812 		timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1813 	else
1814 		timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1815 	if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1816 		timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1817 	else
1818 		timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1819 
1820 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1821 		timing->flags = DISPLAY_FLAGS_INTERLACED;
1822 
1823 	debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1824 	      "               %04x %04x %04x %04x hborder %x\n"
1825 	      "               %04x %04x %04x %04x vborder %x\n",
1826 	      timing->pixelclock.typ,
1827 	      x_mm, y_mm,
1828 	      ha, ha + hso, ha + hso + hspw,
1829 	      ha + hbl, hborder,
1830 	      va, va + vso, va + vso + vspw,
1831 	      va + vbl, vborder);
1832 }
1833 
1834 /**
1835  * decode_mode() - Decoding an 18-byte detailed timing record
1836  *
1837  * @buf:	Pointer to EDID detailed timing record
1838  * @timing:	Place to put timing
1839  */
1840 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1841 {
1842 	uint x_mm, y_mm;
1843 	unsigned int ha, hbl, hso, hspw, hborder;
1844 	unsigned int va, vbl, vso, vspw, vborder;
1845 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1846 
1847 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1848 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1849 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1850 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1851 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1852 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1853 	hborder = buf[15];
1854 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1855 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1856 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1857 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1858 	vborder = buf[16];
1859 
1860 	/* Edid contains pixel clock in terms of 10KHz */
1861 	mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1862 	mode->hdisplay = ha;
1863 	mode->hsync_start = ha + hso;
1864 	mode->hsync_end = ha + hso + hspw;
1865 	mode->htotal = ha + hbl;
1866 	mode->vdisplay = va;
1867 	mode->vsync_start = va + vso;
1868 	mode->vsync_end = va + vso + vspw;
1869 	mode->vtotal = va + vbl;
1870 
1871 	mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1872 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1873 	mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1874 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1875 
1876 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1877 		mode->flags |= DRM_MODE_FLAG_INTERLACE;
1878 
1879 	debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1880 	      "     %04d %04d %04d %04d hborder %d\n"
1881 	      "     %04d %04d %04d %04d vborder %d\n",
1882 	      mode->clock,
1883 	      x_mm, y_mm, mode->flags,
1884 	      mode->hdisplay, mode->hsync_start, mode->hsync_end,
1885 	      mode->htotal, hborder,
1886 	      mode->vdisplay, mode->vsync_start, mode->vsync_end,
1887 	      mode->vtotal, vborder);
1888 }
1889 
1890 /**
1891  * edid_vendor - match a string against EDID's obfuscated vendor field
1892  * @edid: EDID to match
1893  * @vendor: vendor string
1894  *
1895  * Returns true if @vendor is in @edid, false otherwise
1896  */
1897 static bool edid_vendor(struct edid *edid, char *vendor)
1898 {
1899 	char edid_vendor[3];
1900 
1901 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1902 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1903 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1904 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1905 
1906 	return !strncmp(edid_vendor, vendor, 3);
1907 }
1908 
1909 /**
1910  * Check if HDMI vendor specific data block is present in CEA block
1911  * @param info	CEA extension block
1912  * @return true if block is found
1913  */
1914 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1915 {
1916 	u8 end, i = 0;
1917 
1918 	/* check for end of data block */
1919 	end = info->dtd_offset;
1920 	if (end == 0)
1921 		end = sizeof(info->data);
1922 	if (end < 4 || end > sizeof(info->data))
1923 		return false;
1924 	end -= 4;
1925 
1926 	while (i < end) {
1927 		/* Look for vendor specific data block of appropriate size */
1928 		if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1929 		    (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1930 			u8 *db = &info->data[i + 1];
1931 			u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1932 
1933 			if (oui == HDMI_IEEE_OUI)
1934 				return true;
1935 		}
1936 		i += EDID_CEA861_DB_LEN(*info, i) + 1;
1937 	}
1938 
1939 	return false;
1940 }
1941 
1942 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1943 {
1944 	int refresh = 0;
1945 	unsigned int calc_val;
1946 
1947 	if (mode->vrefresh > 0) {
1948 		refresh = mode->vrefresh;
1949 	} else if (mode->htotal > 0 && mode->vtotal > 0) {
1950 		int vtotal;
1951 
1952 		vtotal = mode->vtotal;
1953 		/* work out vrefresh the value will be x1000 */
1954 		calc_val = (mode->clock * 1000);
1955 		calc_val /= mode->htotal;
1956 		refresh = (calc_val + vtotal / 2) / vtotal;
1957 
1958 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1959 			refresh *= 2;
1960 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1961 			refresh /= 2;
1962 		if (mode->vscan > 1)
1963 			refresh /= mode->vscan;
1964 	}
1965 	return refresh;
1966 }
1967 
1968 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1969 		      int *panel_bits_per_colourp)
1970 {
1971 	struct edid1_info *edid = (struct edid1_info *)buf;
1972 	bool timing_done;
1973 	int i;
1974 
1975 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1976 		debug("%s: Invalid buffer\n", __func__);
1977 		return -EINVAL;
1978 	}
1979 
1980 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1981 		debug("%s: No preferred timing\n", __func__);
1982 		return -ENOENT;
1983 	}
1984 
1985 	/* Look for detailed timing */
1986 	timing_done = false;
1987 	for (i = 0; i < 4; i++) {
1988 		struct edid_monitor_descriptor *desc;
1989 
1990 		desc = &edid->monitor_details.descriptor[i];
1991 		if (desc->zero_flag_1 != 0) {
1992 			decode_mode((u8 *)desc, mode);
1993 			timing_done = true;
1994 			break;
1995 		}
1996 	}
1997 	if (!timing_done)
1998 		return -EINVAL;
1999 
2000 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2001 		debug("%s: Not a digital display\n", __func__);
2002 		return -ENOSYS;
2003 	}
2004 	if (edid->version != 1 || edid->revision < 4) {
2005 		debug("%s: EDID version %d.%d does not have required info\n",
2006 		      __func__, edid->version, edid->revision);
2007 		*panel_bits_per_colourp = -1;
2008 	} else  {
2009 		*panel_bits_per_colourp =
2010 			((edid->video_input_definition & 0x70) >> 3) + 4;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
2017 		    int *panel_bits_per_colourp)
2018 {
2019 	struct edid1_info *edid = (struct edid1_info *)buf;
2020 	bool timing_done;
2021 	int i;
2022 
2023 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
2024 		debug("%s: Invalid buffer\n", __func__);
2025 		return -EINVAL;
2026 	}
2027 
2028 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
2029 		debug("%s: No preferred timing\n", __func__);
2030 		return -ENOENT;
2031 	}
2032 
2033 	/* Look for detailed timing */
2034 	timing_done = false;
2035 	for (i = 0; i < 4; i++) {
2036 		struct edid_monitor_descriptor *desc;
2037 
2038 		desc = &edid->monitor_details.descriptor[i];
2039 		if (desc->zero_flag_1 != 0) {
2040 			decode_timing((u8 *)desc, timing);
2041 			timing_done = true;
2042 			break;
2043 		}
2044 	}
2045 	if (!timing_done)
2046 		return -EINVAL;
2047 
2048 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2049 		debug("%s: Not a digital display\n", __func__);
2050 		return -ENOSYS;
2051 	}
2052 	if (edid->version != 1 || edid->revision < 4) {
2053 		debug("%s: EDID version %d.%d does not have required info\n",
2054 		      __func__, edid->version, edid->revision);
2055 		*panel_bits_per_colourp = -1;
2056 	} else  {
2057 		*panel_bits_per_colourp =
2058 			((edid->video_input_definition & 0x70) >> 3) + 4;
2059 	}
2060 
2061 	timing->hdmi_monitor = false;
2062 	if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
2063 		struct edid_cea861_info *info =
2064 			(struct edid_cea861_info *)(buf + sizeof(*edid));
2065 
2066 		if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
2067 			timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /**
2074  * Snip the tailing whitespace/return of a string.
2075  *
2076  * @param string	The string to be snipped
2077  * @return the snipped string
2078  */
2079 static char *snip(char *string)
2080 {
2081 	char *s;
2082 
2083 	/*
2084 	 * This is always a 13 character buffer
2085 	 * and it's not always terminated.
2086 	 */
2087 	string[12] = '\0';
2088 	s = &string[strlen(string) - 1];
2089 
2090 	while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
2091 	       *s == '\0'))
2092 		*(s--) = '\0';
2093 
2094 	return string;
2095 }
2096 
2097 /**
2098  * Print an EDID monitor descriptor block
2099  *
2100  * @param monitor	The EDID monitor descriptor block
2101  * @have_timing		Modifies to 1 if the desciptor contains timing info
2102  */
2103 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
2104 			   unsigned int *have_timing)
2105 {
2106 	unsigned char *bytes = (unsigned char *)monitor;
2107 	struct edid_detailed_timing *timing =
2108 			(struct edid_detailed_timing *)monitor;
2109 
2110 	if (bytes[0] == 0 && bytes[1] == 0) {
2111 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
2112 			printf("Monitor serial number: %s\n",
2113 			       snip(monitor->data.string));
2114 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
2115 			printf("Monitor ID: %s\n",
2116 			       snip(monitor->data.string));
2117 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
2118 			printf("Monitor name: %s\n",
2119 			       snip(monitor->data.string));
2120 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
2121 			printf("Monitor range limits, horizontal sync: "
2122 			       "%d-%d kHz, vertical refresh: "
2123 			       "%d-%d Hz, max pixel clock: "
2124 			       "%d MHz\n",
2125 			       monitor->data.range_data.horizontal_min,
2126 			       monitor->data.range_data.horizontal_max,
2127 			       monitor->data.range_data.vertical_min,
2128 			       monitor->data.range_data.vertical_max,
2129 			       monitor->data.range_data.pixel_clock_max * 10);
2130 	} else {
2131 		u32 pixclock, h_active, h_blanking, v_active, v_blanking;
2132 		u32 h_total, v_total, vfreq;
2133 
2134 		pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
2135 		h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
2136 		h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
2137 		v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
2138 		v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
2139 
2140 		h_total = h_active + h_blanking;
2141 		v_total = v_active + v_blanking;
2142 		if (v_total > 0 && h_total > 0)
2143 			vfreq = pixclock / (v_total * h_total);
2144 		else
2145 			vfreq = 1; /* Error case */
2146 		printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
2147 		       v_active, h_active > 1000 ? ' ' : '\t', vfreq);
2148 		*have_timing = 1;
2149 	}
2150 }
2151 
2152 /**
2153  * Get the manufacturer name from an EDID info.
2154  *
2155  * @param edid_info     The EDID info to be printed
2156  * @param name		Returns the string of the manufacturer name
2157  */
2158 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
2159 {
2160 	name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
2161 	name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
2162 	name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
2163 	name[3] = '\0';
2164 }
2165 
2166 void edid_print_info(struct edid1_info *edid_info)
2167 {
2168 	int i;
2169 	char manufacturer[4];
2170 	unsigned int have_timing = 0;
2171 	u32 serial_number;
2172 
2173 	if (edid_check_info(edid_info)) {
2174 		printf("Not a valid EDID\n");
2175 		return;
2176 	}
2177 
2178 	printf("EDID version: %d.%d\n",
2179 	       edid_info->version, edid_info->revision);
2180 
2181 	printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
2182 
2183 	edid_get_manufacturer_name(edid_info, manufacturer);
2184 	printf("Manufacturer: %s\n", manufacturer);
2185 
2186 	serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
2187 	if (serial_number != 0xffffffff) {
2188 		if (strcmp(manufacturer, "MAG") == 0)
2189 			serial_number -= 0x7000000;
2190 		if (strcmp(manufacturer, "OQI") == 0)
2191 			serial_number -= 456150000;
2192 		if (strcmp(manufacturer, "VSC") == 0)
2193 			serial_number -= 640000000;
2194 	}
2195 	printf("Serial number: %08x\n", serial_number);
2196 	printf("Manufactured in week: %d year: %d\n",
2197 	       edid_info->week, edid_info->year + 1990);
2198 
2199 	printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
2200 	       EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
2201 	       "digital signal, " : "analog signal, ",
2202 	       EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
2203 	       EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
2204 	       ", blank to black" : "",
2205 	       EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
2206 	       ", separate sync" : "",
2207 	       EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
2208 	       ", composite sync" : "",
2209 	       EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
2210 	       ", sync on green" : "",
2211 	       EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
2212 	       ", serration v" : "");
2213 
2214 	printf("Monitor is %s\n",
2215 	       EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
2216 
2217 	printf("Maximum visible display size: %d cm x %d cm\n",
2218 	       edid_info->max_size_horizontal,
2219 	       edid_info->max_size_vertical);
2220 
2221 	printf("Power management features: %s%s, %s%s, %s%s\n",
2222 	       EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
2223 	       "" : "no ", "active off",
2224 	       EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
2225 	       EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
2226 
2227 	printf("Estabilished timings:\n");
2228 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
2229 		printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
2230 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
2231 		printf("\t720x400\t\t88 Hz (XGA2)\n");
2232 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
2233 		printf("\t640x480\t\t60 Hz (VGA)\n");
2234 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
2235 		printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
2236 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
2237 		printf("\t640x480\t\t72 Hz (VESA)\n");
2238 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
2239 		printf("\t640x480\t\t75 Hz (VESA)\n");
2240 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
2241 		printf("\t800x600\t\t56 Hz (VESA)\n");
2242 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
2243 		printf("\t800x600\t\t60 Hz (VESA)\n");
2244 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
2245 		printf("\t800x600\t\t72 Hz (VESA)\n");
2246 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
2247 		printf("\t800x600\t\t75 Hz (VESA)\n");
2248 	if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
2249 		printf("\t832x624\t\t75 Hz (Mac II)\n");
2250 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
2251 		printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
2252 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
2253 		printf("\t1024x768\t60 Hz (VESA)\n");
2254 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
2255 		printf("\t1024x768\t70 Hz (VESA)\n");
2256 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
2257 		printf("\t1024x768\t75 Hz (VESA)\n");
2258 	if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
2259 		printf("\t1280x1024\t75 (VESA)\n");
2260 	if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
2261 		printf("\t1152x870\t75 (Mac II)\n");
2262 
2263 	/* Standard timings. */
2264 	printf("Standard timings:\n");
2265 	for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
2266 		unsigned int aspect = 10000;
2267 		unsigned int x, y;
2268 		unsigned char xres, vfreq;
2269 
2270 		xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
2271 		vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
2272 		if ((xres != vfreq) ||
2273 		    ((xres != 0) && (xres != 1)) ||
2274 		    ((vfreq != 0) && (vfreq != 1))) {
2275 			switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
2276 				i)) {
2277 			case ASPECT_625:
2278 				aspect = 6250;
2279 				break;
2280 			case ASPECT_75:
2281 				aspect = 7500;
2282 				break;
2283 			case ASPECT_8:
2284 				aspect = 8000;
2285 				break;
2286 			case ASPECT_5625:
2287 				aspect = 5625;
2288 				break;
2289 			}
2290 			x = (xres + 31) * 8;
2291 			y = x * aspect / 10000;
2292 			printf("\t%dx%d%c\t%d Hz\n", x, y,
2293 			       x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
2294 			have_timing = 1;
2295 		}
2296 	}
2297 
2298 	/* Detailed timing information. */
2299 	for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
2300 			i++) {
2301 		edid_print_dtd(&edid_info->monitor_details.descriptor[i],
2302 			       &have_timing);
2303 	}
2304 
2305 	if (!have_timing)
2306 		printf("\tNone\n");
2307 }
2308 
2309 /**
2310  * drm_mode_create - create a new display mode
2311  *
2312  * Create a new, cleared drm_display_mode.
2313  *
2314  * Returns:
2315  * Pointer to new mode on success, NULL on error.
2316  */
2317 static struct drm_display_mode *drm_mode_create(void)
2318 {
2319 	struct drm_display_mode *nmode;
2320 
2321 	nmode = malloc(sizeof(struct drm_display_mode));
2322 	memset(nmode, 0, sizeof(struct drm_display_mode));
2323 	if (!nmode)
2324 		return NULL;
2325 
2326 	return nmode;
2327 }
2328 
2329 /**
2330  * drm_mode_destroy - remove a mode
2331  * @mode: mode to remove
2332  *
2333  */
2334 static void drm_mode_destroy(struct drm_display_mode *mode)
2335 {
2336 	if (!mode)
2337 		return;
2338 
2339 	kfree(mode);
2340 }
2341 
2342 /**
2343  * drm_cvt_mode -create a modeline based on the CVT algorithm
2344  * @hdisplay: hdisplay size
2345  * @vdisplay: vdisplay size
2346  * @vrefresh: vrefresh rate
2347  * @reduced: whether to use reduced blanking
2348  * @interlaced: whether to compute an interlaced mode
2349  * @margins: whether to add margins (borders)
2350  *
2351  * This function is called to generate the modeline based on CVT algorithm
2352  * according to the hdisplay, vdisplay, vrefresh.
2353  * It is based from the VESA(TM) Coordinated Video Timing Generator by
2354  * Graham Loveridge April 9, 2003 available at
2355  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
2356  *
2357  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
2358  * What I have done is to translate it by using integer calculation.
2359  *
2360  * Returns:
2361  * The modeline based on the CVT algorithm stored in a drm_display_mode object.
2362  * The display mode object is allocated with drm_mode_create(). Returns NULL
2363  * when no mode could be allocated.
2364  */
2365 static
2366 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
2367 				      bool reduced, bool interlaced,
2368 				      bool margins)
2369 {
2370 #define HV_FACTOR			1000
2371 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
2372 #define	CVT_MARGIN_PERCENTAGE		18
2373 	/* 2) character cell horizontal granularity (pixels) - default 8 */
2374 #define	CVT_H_GRANULARITY		8
2375 	/* 3) Minimum vertical porch (lines) - default 3 */
2376 #define	CVT_MIN_V_PORCH			3
2377 	/* 4) Minimum number of vertical back porch lines - default 6 */
2378 #define	CVT_MIN_V_BPORCH		6
2379 	/* Pixel Clock step (kHz) */
2380 #define CVT_CLOCK_STEP			250
2381 	struct drm_display_mode *drm_mode;
2382 	unsigned int vfieldrate, hperiod;
2383 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
2384 	int interlace;
2385 
2386 	/* allocate the drm_display_mode structure. If failure, we will
2387 	 * return directly
2388 	 */
2389 	drm_mode = drm_mode_create();
2390 	if (!drm_mode)
2391 		return NULL;
2392 
2393 	/* the CVT default refresh rate is 60Hz */
2394 	if (!vrefresh)
2395 		vrefresh = 60;
2396 
2397 	/* the required field fresh rate */
2398 	if (interlaced)
2399 		vfieldrate = vrefresh * 2;
2400 	else
2401 		vfieldrate = vrefresh;
2402 
2403 	/* horizontal pixels */
2404 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
2405 
2406 	/* determine the left&right borders */
2407 	hmargin = 0;
2408 	if (margins) {
2409 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2410 		hmargin -= hmargin % CVT_H_GRANULARITY;
2411 	}
2412 	/* find the total active pixels */
2413 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
2414 
2415 	/* find the number of lines per field */
2416 	if (interlaced)
2417 		vdisplay_rnd = vdisplay / 2;
2418 	else
2419 		vdisplay_rnd = vdisplay;
2420 
2421 	/* find the top & bottom borders */
2422 	vmargin = 0;
2423 	if (margins)
2424 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2425 
2426 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
2427 
2428 	/* Interlaced */
2429 	if (interlaced)
2430 		interlace = 1;
2431 	else
2432 		interlace = 0;
2433 
2434 	/* Determine VSync Width from aspect ratio */
2435 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
2436 		vsync = 4;
2437 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
2438 		vsync = 5;
2439 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
2440 		vsync = 6;
2441 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
2442 		vsync = 7;
2443 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
2444 		vsync = 7;
2445 	else /* custom */
2446 		vsync = 10;
2447 
2448 	if (!reduced) {
2449 		/* simplify the GTF calculation */
2450 		/* 4) Minimum time of vertical sync + back porch interval
2451 		 * default 550.0
2452 		 */
2453 		int tmp1, tmp2;
2454 #define CVT_MIN_VSYNC_BP	550
2455 		/* 3) Nominal HSync width (% of line period) - default 8 */
2456 #define CVT_HSYNC_PERCENTAGE	8
2457 		unsigned int hblank_percentage;
2458 		int vsyncandback_porch, hblank;
2459 
2460 		/* estimated the horizontal period */
2461 		tmp1 = HV_FACTOR * 1000000  -
2462 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2463 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2464 				interlace;
2465 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2466 
2467 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2468 		/* 9. Find number of lines in sync + backporch */
2469 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2470 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2471 		else
2472 			vsyncandback_porch = tmp1;
2473 		/* 10. Find number of lines in back porch
2474 		 *		vback_porch = vsyncandback_porch - vsync;
2475 		 */
2476 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2477 				vsyncandback_porch + CVT_MIN_V_PORCH;
2478 		/* 5) Definition of Horizontal blanking time limitation */
2479 		/* Gradient (%/kHz) - default 600 */
2480 #define CVT_M_FACTOR	600
2481 		/* Offset (%) - default 40 */
2482 #define CVT_C_FACTOR	40
2483 		/* Blanking time scaling factor - default 128 */
2484 #define CVT_K_FACTOR	128
2485 		/* Scaling factor weighting - default 20 */
2486 #define CVT_J_FACTOR	20
2487 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
2488 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2489 			 CVT_J_FACTOR)
2490 		/* 12. Find ideal blanking duty cycle from formula */
2491 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2492 					hperiod / 1000;
2493 		/* 13. Blanking time */
2494 		if (hblank_percentage < 20 * HV_FACTOR)
2495 			hblank_percentage = 20 * HV_FACTOR;
2496 		hblank = drm_mode->hdisplay * hblank_percentage /
2497 			 (100 * HV_FACTOR - hblank_percentage);
2498 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
2499 		/* 14. find the total pixels per line */
2500 		drm_mode->htotal = drm_mode->hdisplay + hblank;
2501 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2502 		drm_mode->hsync_start = drm_mode->hsync_end -
2503 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2504 		drm_mode->hsync_start += CVT_H_GRANULARITY -
2505 			drm_mode->hsync_start % CVT_H_GRANULARITY;
2506 		/* fill the Vsync values */
2507 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2508 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2509 	} else {
2510 		/* Reduced blanking */
2511 		/* Minimum vertical blanking interval time - default 460 */
2512 #define CVT_RB_MIN_VBLANK	460
2513 		/* Fixed number of clocks for horizontal sync */
2514 #define CVT_RB_H_SYNC		32
2515 		/* Fixed number of clocks for horizontal blanking */
2516 #define CVT_RB_H_BLANK		160
2517 		/* Fixed number of lines for vertical front porch - default 3*/
2518 #define CVT_RB_VFPORCH		3
2519 		int vbilines;
2520 		int tmp1, tmp2;
2521 		/* 8. Estimate Horizontal period. */
2522 		tmp1 = HV_FACTOR * 1000000 -
2523 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2524 		tmp2 = vdisplay_rnd + 2 * vmargin;
2525 		hperiod = tmp1 / (tmp2 * vfieldrate);
2526 		/* 9. Find number of lines in vertical blanking */
2527 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2528 		/* 10. Check if vertical blanking is sufficient */
2529 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2530 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2531 		/* 11. Find total number of lines in vertical field */
2532 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2533 		/* 12. Find total number of pixels in a line */
2534 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2535 		/* Fill in HSync values */
2536 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2537 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2538 		/* Fill in VSync values */
2539 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2540 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2541 	}
2542 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
2543 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2544 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2545 	/* 18/16. Find actual vertical frame frequency */
2546 	/* ignore - just set the mode flag for interlaced */
2547 	if (interlaced) {
2548 		drm_mode->vtotal *= 2;
2549 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2550 	}
2551 
2552 	if (reduced)
2553 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2554 					DRM_MODE_FLAG_NVSYNC);
2555 	else
2556 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2557 					DRM_MODE_FLAG_NHSYNC);
2558 
2559 	return drm_mode;
2560 }
2561 
2562 static int
2563 cea_db_payload_len(const u8 *db)
2564 {
2565 	return db[0] & 0x1f;
2566 }
2567 
2568 static int
2569 cea_db_extended_tag(const u8 *db)
2570 {
2571 	return db[1];
2572 }
2573 
2574 static int
2575 cea_db_tag(const u8 *db)
2576 {
2577 	return db[0] >> 5;
2578 }
2579 
2580 #define for_each_cea_db(cea, i, start, end) \
2581 	for ((i) = (start); (i) < (end) && (i) + \
2582 	cea_db_payload_len(&(cea)[(i)]) < \
2583 	(end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2584 
2585 static int
2586 cea_revision(const u8 *cea)
2587 {
2588 	return cea[1];
2589 }
2590 
2591 static int
2592 cea_db_offsets(const u8 *cea, int *start, int *end)
2593 {
2594 	/* Data block offset in CEA extension block */
2595 	*start = 4;
2596 	*end = cea[2];
2597 	if (*end == 0)
2598 		*end = 127;
2599 	if (*end < 4 || *end > 127)
2600 		return -ERANGE;
2601 
2602 	/*
2603 	 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2604 	 */
2605 	if (*end != 4) {
2606 		int i;
2607 
2608 		i = *start;
2609 		while (i < (*end) &&
2610 		       i + cea_db_payload_len(&(cea)[i]) < (*end))
2611 			i += cea_db_payload_len(&(cea)[i]) + 1;
2612 
2613 		if (cea_db_payload_len(&(cea)[i]) &&
2614 		    i + cea_db_payload_len(&(cea)[i]) == (*end))
2615 			(*end)++;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2622 {
2623 	int hdmi_id;
2624 
2625 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2626 		return false;
2627 
2628 	if (cea_db_payload_len(db) < 5)
2629 		return false;
2630 
2631 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2632 
2633 	return hdmi_id == HDMI_IEEE_OUI;
2634 }
2635 
2636 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2637 {
2638 	unsigned int oui;
2639 
2640 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2641 		return false;
2642 
2643 	if (cea_db_payload_len(db) < 7)
2644 		return false;
2645 
2646 	oui = db[3] << 16 | db[2] << 8 | db[1];
2647 
2648 	return oui == HDMI_FORUM_IEEE_OUI;
2649 }
2650 
2651 static bool cea_db_is_y420cmdb(const u8 *db)
2652 {
2653 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2654 		return false;
2655 
2656 	if (!cea_db_payload_len(db))
2657 		return false;
2658 
2659 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2660 		return false;
2661 
2662 	return true;
2663 }
2664 
2665 static bool cea_db_is_y420vdb(const u8 *db)
2666 {
2667 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2668 		return false;
2669 
2670 	if (!cea_db_payload_len(db))
2671 		return false;
2672 
2673 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2674 		return false;
2675 
2676 	return true;
2677 }
2678 
2679 static bool drm_valid_hdmi_vic(u8 vic)
2680 {
2681 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2682 }
2683 
2684 static void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2685 			       const struct drm_display_mode *mode)
2686 {
2687 	struct drm_display_mode *mode_buf = data->mode_buf;
2688 
2689 	if (data->modes >= MODE_LEN)
2690 		return;
2691 	mode_buf[(data->modes)++] = *mode;
2692 }
2693 
2694 static bool drm_valid_cea_vic(u8 vic)
2695 {
2696 	return cea_mode_for_vic(vic) ? true : false;
2697 }
2698 
2699 static u8 svd_to_vic(u8 svd)
2700 {
2701 	/* 0-6 bit vic, 7th bit native mode indicator */
2702 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
2703 		return svd & 127;
2704 
2705 	return svd;
2706 }
2707 
2708 static struct drm_display_mode *
2709 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2710 				u8 video_index)
2711 {
2712 	struct drm_display_mode *newmode;
2713 	u8 vic;
2714 
2715 	if (!video_db || video_index >= video_len)
2716 		return NULL;
2717 
2718 	/* CEA modes are numbered 1..127 */
2719 	vic = svd_to_vic(video_db[video_index]);
2720 	if (!drm_valid_cea_vic(vic))
2721 		return NULL;
2722 
2723 	newmode = drm_mode_create();
2724 	if (!newmode)
2725 		return NULL;
2726 
2727 	*newmode = *cea_mode_for_vic(vic);
2728 	newmode->vrefresh = 0;
2729 
2730 	return newmode;
2731 }
2732 
2733 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2734 {
2735 	unsigned long *p = map + BIT_WORD(start);
2736 	const unsigned int size = start + len;
2737 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2738 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2739 
2740 	while (len - bits_to_set >= 0) {
2741 		*p |= mask_to_set;
2742 		len -= bits_to_set;
2743 		bits_to_set = BITS_PER_LONG;
2744 		mask_to_set = ~0UL;
2745 		p++;
2746 	}
2747 	if (len) {
2748 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2749 		*p |= mask_to_set;
2750 	}
2751 }
2752 
2753 static void
2754 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2755 {
2756 	u8 vic = svd_to_vic(svd);
2757 
2758 	if (!drm_valid_cea_vic(vic))
2759 		return;
2760 
2761 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2762 }
2763 
2764 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2765 {
2766 	int i, modes = 0;
2767 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2768 
2769 	for (i = 0; i < len; i++) {
2770 		struct drm_display_mode *mode;
2771 
2772 		mode = drm_display_mode_from_vic_index(db, len, i);
2773 		if (mode) {
2774 			/*
2775 			 * YCBCR420 capability block contains a bitmap which
2776 			 * gives the index of CEA modes from CEA VDB, which
2777 			 * can support YCBCR 420 sampling output also (apart
2778 			 * from RGB/YCBCR444 etc).
2779 			 * For example, if the bit 0 in bitmap is set,
2780 			 * first mode in VDB can support YCBCR420 output too.
2781 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2782 			 */
2783 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2784 				drm_add_cmdb_modes(db[i], hdmi);
2785 			drm_add_hdmi_modes(data, mode);
2786 			drm_mode_destroy(mode);
2787 			modes++;
2788 		}
2789 	}
2790 
2791 	return modes;
2792 }
2793 
2794 /*
2795  * do_y420vdb_modes - Parse YCBCR 420 only modes
2796  * @data: the structure that save parsed hdmi edid data
2797  * @svds: start of the data block of CEA YCBCR 420 VDB
2798  * @svds_len: length of the CEA YCBCR 420 VDB
2799  * @hdmi: runtime information about the connected HDMI sink
2800  *
2801  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2802  * which contains modes which can be supported in YCBCR 420
2803  * output format only.
2804  */
2805 static int
2806 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2807 {
2808 	int modes = 0, i;
2809 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2810 
2811 	for (i = 0; i < svds_len; i++) {
2812 		u8 vic = svd_to_vic(svds[i]);
2813 
2814 		if (!drm_valid_cea_vic(vic))
2815 			continue;
2816 
2817 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2818 		drm_add_hdmi_modes(data, cea_mode_for_vic(vic));
2819 		modes++;
2820 	}
2821 
2822 	return modes;
2823 }
2824 
2825 struct stereo_mandatory_mode {
2826 	int width, height, vrefresh;
2827 	unsigned int flags;
2828 };
2829 
2830 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2831 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2832 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2833 	{ 1920, 1080, 50,
2834 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2835 	{ 1920, 1080, 60,
2836 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2837 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2838 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2839 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2840 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2841 };
2842 
2843 static bool
2844 stereo_match_mandatory(const struct drm_display_mode *mode,
2845 		       const struct stereo_mandatory_mode *stereo_mode)
2846 {
2847 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2848 
2849 	return mode->hdisplay == stereo_mode->width &&
2850 	       mode->vdisplay == stereo_mode->height &&
2851 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2852 	       drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2853 }
2854 
2855 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2856 {
2857 	const struct drm_display_mode *mode;
2858 	int num = data->modes, modes = 0, i, k;
2859 
2860 	for (k = 0; k < num; k++) {
2861 		mode = &data->mode_buf[k];
2862 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2863 			const struct stereo_mandatory_mode *mandatory;
2864 			struct drm_display_mode *new_mode;
2865 
2866 			if (!stereo_match_mandatory(mode,
2867 						    &stereo_mandatory_modes[i]))
2868 				continue;
2869 
2870 			mandatory = &stereo_mandatory_modes[i];
2871 			new_mode = drm_mode_create();
2872 			if (!new_mode)
2873 				continue;
2874 
2875 			*new_mode = *mode;
2876 			new_mode->flags |= mandatory->flags;
2877 			drm_add_hdmi_modes(data, new_mode);
2878 			drm_mode_destroy(new_mode);
2879 			modes++;
2880 		}
2881 	}
2882 
2883 	return modes;
2884 }
2885 
2886 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2887 			       const u8 *video_db, u8 video_len, u8 video_index)
2888 {
2889 	struct drm_display_mode *newmode;
2890 	int modes = 0;
2891 
2892 	if (structure & (1 << 0)) {
2893 		newmode = drm_display_mode_from_vic_index(video_db,
2894 							  video_len,
2895 							  video_index);
2896 		if (newmode) {
2897 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2898 			drm_add_hdmi_modes(data, newmode);
2899 			modes++;
2900 			drm_mode_destroy(newmode);
2901 		}
2902 	}
2903 	if (structure & (1 << 6)) {
2904 		newmode = drm_display_mode_from_vic_index(video_db,
2905 							  video_len,
2906 							  video_index);
2907 		if (newmode) {
2908 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2909 			drm_add_hdmi_modes(data, newmode);
2910 			modes++;
2911 			drm_mode_destroy(newmode);
2912 		}
2913 	}
2914 	if (structure & (1 << 8)) {
2915 		newmode = drm_display_mode_from_vic_index(video_db,
2916 							  video_len,
2917 							  video_index);
2918 		if (newmode) {
2919 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2920 			drm_add_hdmi_modes(data, newmode);
2921 			modes++;
2922 			drm_mode_destroy(newmode);
2923 		}
2924 	}
2925 
2926 	return modes;
2927 }
2928 
2929 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2930 {
2931 	if (!drm_valid_hdmi_vic(vic)) {
2932 		debug("Unknown HDMI VIC: %d\n", vic);
2933 		return 0;
2934 	}
2935 
2936 	drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2937 
2938 	return 1;
2939 }
2940 
2941 /*
2942  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2943  * @db: start of the CEA vendor specific block
2944  * @len: length of the CEA block payload, ie. one can access up to db[len]
2945  *
2946  * Parses the HDMI VSDB looking for modes to add to @data. This function
2947  * also adds the stereo 3d modes when applicable.
2948  */
2949 static int
2950 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2951 		   struct hdmi_edid_data *data)
2952 {
2953 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2954 	u8 vic_len, hdmi_3d_len = 0;
2955 	u16 mask;
2956 	u16 structure_all;
2957 
2958 	if (len < 8)
2959 		goto out;
2960 
2961 	/* no HDMI_Video_Present */
2962 	if (!(db[8] & (1 << 5)))
2963 		goto out;
2964 
2965 	/* Latency_Fields_Present */
2966 	if (db[8] & (1 << 7))
2967 		offset += 2;
2968 
2969 	/* I_Latency_Fields_Present */
2970 	if (db[8] & (1 << 6))
2971 		offset += 2;
2972 
2973 	/* the declared length is not long enough for the 2 first bytes
2974 	 * of additional video format capabilities
2975 	 */
2976 	if (len < (8 + offset + 2))
2977 		goto out;
2978 
2979 	/* 3D_Present */
2980 	offset++;
2981 	if (db[8 + offset] & (1 << 7)) {
2982 		modes += add_hdmi_mandatory_stereo_modes(data);
2983 
2984 		/* 3D_Multi_present */
2985 		multi_present = (db[8 + offset] & 0x60) >> 5;
2986 	}
2987 
2988 	offset++;
2989 	vic_len = db[8 + offset] >> 5;
2990 	hdmi_3d_len = db[8 + offset] & 0x1f;
2991 
2992 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2993 		u8 vic;
2994 
2995 		vic = db[9 + offset + i];
2996 		modes += add_hdmi_mode(data, vic);
2997 	}
2998 
2999 	offset += 1 + vic_len;
3000 
3001 	if (multi_present == 1)
3002 		multi_len = 2;
3003 	else if (multi_present == 2)
3004 		multi_len = 4;
3005 	else
3006 		multi_len = 0;
3007 
3008 	if (len < (8 + offset + hdmi_3d_len - 1))
3009 		goto out;
3010 
3011 	if (hdmi_3d_len < multi_len)
3012 		goto out;
3013 
3014 	if (multi_present == 1 || multi_present == 2) {
3015 		/* 3D_Structure_ALL */
3016 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3017 
3018 		/* check if 3D_MASK is present */
3019 		if (multi_present == 2)
3020 			mask = (db[10 + offset] << 8) | db[11 + offset];
3021 		else
3022 			mask = 0xffff;
3023 
3024 		for (i = 0; i < 16; i++) {
3025 			if (mask & (1 << i))
3026 				modes += add_3d_struct_modes(data,
3027 						structure_all,
3028 						video_db,
3029 						video_len, i);
3030 		}
3031 	}
3032 
3033 	offset += multi_len;
3034 
3035 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3036 		int vic_index;
3037 		struct drm_display_mode *newmode = NULL;
3038 		unsigned int newflag = 0;
3039 		bool detail_present;
3040 
3041 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3042 
3043 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3044 			break;
3045 
3046 		/* 2D_VIC_order_X */
3047 		vic_index = db[8 + offset + i] >> 4;
3048 
3049 		/* 3D_Structure_X */
3050 		switch (db[8 + offset + i] & 0x0f) {
3051 		case 0:
3052 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3053 			break;
3054 		case 6:
3055 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3056 			break;
3057 		case 8:
3058 			/* 3D_Detail_X */
3059 			if ((db[9 + offset + i] >> 4) == 1)
3060 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3061 			break;
3062 		}
3063 
3064 		if (newflag != 0) {
3065 			newmode = drm_display_mode_from_vic_index(
3066 								  video_db,
3067 								  video_len,
3068 								  vic_index);
3069 
3070 			if (newmode) {
3071 				newmode->flags |= newflag;
3072 				drm_add_hdmi_modes(data, newmode);
3073 				modes++;
3074 				drm_mode_destroy(newmode);
3075 			}
3076 		}
3077 
3078 		if (detail_present)
3079 			i++;
3080 	}
3081 
3082 out:
3083 	return modes;
3084 }
3085 
3086 /**
3087  * edid_get_quirks - return quirk flags for a given EDID
3088  * @edid: EDID to process
3089  *
3090  * This tells subsequent routines what fixes they need to apply.
3091  */
3092 static u32 edid_get_quirks(struct edid *edid)
3093 {
3094 	struct edid_quirk *quirk;
3095 	int i;
3096 
3097 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
3098 		quirk = &edid_quirk_list[i];
3099 
3100 		if (edid_vendor(edid, quirk->vendor) &&
3101 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
3102 			return quirk->quirks;
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
3109 				      const u8 *db)
3110 {
3111 	struct drm_display_info *info = &data->display_info;
3112 	struct drm_hdmi_info *hdmi = &info->hdmi;
3113 	u8 map_len = cea_db_payload_len(db) - 1;
3114 	u8 count;
3115 	u64 map = 0;
3116 
3117 	if (map_len == 0) {
3118 		/* All CEA modes support ycbcr420 sampling also.*/
3119 		hdmi->y420_cmdb_map = U64_MAX;
3120 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3121 		return;
3122 	}
3123 
3124 	/*
3125 	 * This map indicates which of the existing CEA block modes
3126 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3127 	 * set, first mode from VDB can support YCBCR420 output too.
3128 	 * We will parse and keep this map, before parsing VDB itself
3129 	 * to avoid going through the same block again and again.
3130 	 *
3131 	 * Spec is not clear about max possible size of this block.
3132 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3133 	 * address 8 CEA modes, in this way this map can address
3134 	 * 8*8 = first 64 SVDs.
3135 	 */
3136 	if (map_len > 8)
3137 		map_len = 8;
3138 
3139 	for (count = 0; count < map_len; count++)
3140 		map |= (u64)db[2 + count] << (8 * count);
3141 
3142 	if (map)
3143 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3144 
3145 	hdmi->y420_cmdb_map = map;
3146 }
3147 
3148 static
3149 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
3150 {
3151 	switch (max_frl_rate) {
3152 	case 1:
3153 		*max_lanes = 3;
3154 		*max_rate_per_lane = 3;
3155 		break;
3156 	case 2:
3157 		*max_lanes = 3;
3158 		*max_rate_per_lane = 6;
3159 		break;
3160 	case 3:
3161 		*max_lanes = 4;
3162 		*max_rate_per_lane = 6;
3163 		break;
3164 	case 4:
3165 		*max_lanes = 4;
3166 		*max_rate_per_lane = 8;
3167 		break;
3168 	case 5:
3169 		*max_lanes = 4;
3170 		*max_rate_per_lane = 10;
3171 		break;
3172 	case 6:
3173 		*max_lanes = 4;
3174 		*max_rate_per_lane = 12;
3175 		break;
3176 	case 0:
3177 	default:
3178 		*max_lanes = 0;
3179 		*max_rate_per_lane = 0;
3180 	}
3181 }
3182 
3183 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
3184 					       const u8 *db)
3185 {
3186 	u8 dc_mask;
3187 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
3188 
3189 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
3190 	hdmi->y420_dc_modes |= dc_mask;
3191 }
3192 
3193 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
3194 				      const u8 *hf_vsdb)
3195 {
3196 	struct drm_display_info *display = &data->display_info;
3197 	struct drm_hdmi_info *hdmi = &display->hdmi;
3198 
3199 	if (hf_vsdb[6] & 0x80) {
3200 		hdmi->scdc.supported = true;
3201 		if (hf_vsdb[6] & 0x40)
3202 			hdmi->scdc.read_request = true;
3203 	}
3204 
3205 	/*
3206 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3207 	 * And as per the spec, three factors confirm this:
3208 	 * * Availability of a HF-VSDB block in EDID (check)
3209 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3210 	 * * SCDC support available (let's check)
3211 	 * Lets check it out.
3212 	 */
3213 
3214 	if (hf_vsdb[5]) {
3215 		/* max clock is 5000 KHz times block value */
3216 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
3217 		struct drm_scdc *scdc = &hdmi->scdc;
3218 
3219 		if (max_tmds_clock > 340000) {
3220 			display->max_tmds_clock = max_tmds_clock;
3221 			debug("HF-VSDB: max TMDS clock %d kHz\n",
3222 			      display->max_tmds_clock);
3223 		}
3224 
3225 		if (scdc->supported) {
3226 			scdc->scrambling.supported = true;
3227 
3228 			/* Few sinks support scrambling for cloks < 340M */
3229 			if ((hf_vsdb[6] & 0x8))
3230 				scdc->scrambling.low_rates = true;
3231 		}
3232 	}
3233 
3234 	if (hf_vsdb[7]) {
3235 		u8 max_frl_rate;
3236 		u8 dsc_max_frl_rate;
3237 		u8 dsc_max_slices;
3238 		struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
3239 
3240 		debug("hdmi_21 sink detected. parsing edid\n");
3241 		max_frl_rate = (hf_vsdb[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
3242 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
3243 				     &hdmi->max_frl_rate_per_lane);
3244 		hdmi_dsc->v_1p2 = hf_vsdb[11] & DRM_EDID_DSC_1P2;
3245 
3246 		if (hdmi_dsc->v_1p2) {
3247 			hdmi_dsc->native_420 = hf_vsdb[11] & DRM_EDID_DSC_NATIVE_420;
3248 			hdmi_dsc->all_bpp = hf_vsdb[11] & DRM_EDID_DSC_ALL_BPP;
3249 
3250 			if (hf_vsdb[11] & DRM_EDID_DSC_16BPC)
3251 				hdmi_dsc->bpc_supported = 16;
3252 			else if (hf_vsdb[11] & DRM_EDID_DSC_12BPC)
3253 				hdmi_dsc->bpc_supported = 12;
3254 			else if (hf_vsdb[11] & DRM_EDID_DSC_10BPC)
3255 				hdmi_dsc->bpc_supported = 10;
3256 			else
3257 				hdmi_dsc->bpc_supported = 0;
3258 
3259 			dsc_max_frl_rate = (hf_vsdb[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
3260 			drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
3261 					     &hdmi_dsc->max_frl_rate_per_lane);
3262 			hdmi_dsc->total_chunk_kbytes =
3263 				hf_vsdb[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
3264 
3265 			dsc_max_slices = hf_vsdb[12] & DRM_EDID_DSC_MAX_SLICES;
3266 			switch (dsc_max_slices) {
3267 			case 1:
3268 				hdmi_dsc->max_slices = 1;
3269 				hdmi_dsc->clk_per_slice = 340;
3270 				break;
3271 			case 2:
3272 				hdmi_dsc->max_slices = 2;
3273 				hdmi_dsc->clk_per_slice = 340;
3274 				break;
3275 			case 3:
3276 				hdmi_dsc->max_slices = 4;
3277 				hdmi_dsc->clk_per_slice = 340;
3278 				break;
3279 			case 4:
3280 				hdmi_dsc->max_slices = 8;
3281 				hdmi_dsc->clk_per_slice = 340;
3282 				break;
3283 			case 5:
3284 				hdmi_dsc->max_slices = 8;
3285 				hdmi_dsc->clk_per_slice = 400;
3286 				break;
3287 			case 6:
3288 				hdmi_dsc->max_slices = 12;
3289 				hdmi_dsc->clk_per_slice = 400;
3290 				break;
3291 			case 7:
3292 				hdmi_dsc->max_slices = 16;
3293 				hdmi_dsc->clk_per_slice = 400;
3294 				break;
3295 			case 0:
3296 			default:
3297 				hdmi_dsc->max_slices = 0;
3298 				hdmi_dsc->clk_per_slice = 0;
3299 			}
3300 		}
3301 	}
3302 
3303 	drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
3304 }
3305 
3306 /**
3307  * drm_default_rgb_quant_range - default RGB quantization range
3308  * @mode: display mode
3309  *
3310  * Determine the default RGB quantization range for the mode,
3311  * as specified in CEA-861.
3312  *
3313  * Return: The default RGB quantization range for the mode
3314  */
3315 enum hdmi_quantization_range
3316 drm_default_rgb_quant_range(struct drm_display_mode *mode)
3317 {
3318 	/* All CEA modes other than VIC 1 use limited quantization range. */
3319 	return drm_match_cea_mode(mode) > 1 ?
3320 		HDMI_QUANTIZATION_RANGE_LIMITED :
3321 		HDMI_QUANTIZATION_RANGE_FULL;
3322 }
3323 
3324 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
3325 					   const u8 *hdmi)
3326 {
3327 	struct drm_display_info *info = &data->display_info;
3328 	unsigned int dc_bpc = 0;
3329 
3330 	/* HDMI supports at least 8 bpc */
3331 	info->bpc = 8;
3332 
3333 	if (cea_db_payload_len(hdmi) < 6)
3334 		return;
3335 
3336 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3337 		dc_bpc = 10;
3338 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3339 		debug("HDMI sink does deep color 30.\n");
3340 	}
3341 
3342 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3343 		dc_bpc = 12;
3344 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3345 		debug("HDMI sink does deep color 36.\n");
3346 	}
3347 
3348 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3349 		dc_bpc = 16;
3350 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3351 		debug("HDMI sink does deep color 48.\n");
3352 	}
3353 
3354 	if (dc_bpc == 0) {
3355 		debug("No deep color support on this HDMI sink.\n");
3356 		return;
3357 	}
3358 
3359 	debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
3360 	info->bpc = dc_bpc;
3361 
3362 	/* YCRCB444 is optional according to spec. */
3363 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3364 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
3365 		debug("HDMI sink does YCRCB444 in deep color.\n");
3366 	}
3367 
3368 	/*
3369 	 * Spec says that if any deep color mode is supported at all,
3370 	 * then deep color 36 bit must be supported.
3371 	 */
3372 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
3373 		debug("HDMI sink should do DC_36, but does not!\n");
3374 }
3375 
3376 /*
3377  * Search EDID for CEA extension block.
3378  */
3379 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
3380 {
3381 	u8 *edid_ext = NULL;
3382 	int i;
3383 
3384 	/* No EDID or EDID extensions */
3385 	if (!edid || !edid->extensions)
3386 		return NULL;
3387 
3388 	/* Find CEA extension */
3389 	for (i = 0; i < edid->extensions; i++) {
3390 		edid_ext = (u8 *)edid + EDID_SIZE * (i + 1);
3391 		if (edid_ext[0] == ext_id)
3392 			break;
3393 	}
3394 
3395 	if (i == edid->extensions)
3396 		return NULL;
3397 
3398 	return edid_ext;
3399 }
3400 
3401 static u8 *drm_find_cea_extension(struct edid *edid)
3402 {
3403 	return drm_find_edid_extension(edid, 0x02);
3404 }
3405 
3406 #define AUDIO_BLOCK	0x01
3407 #define VIDEO_BLOCK     0x02
3408 #define VENDOR_BLOCK    0x03
3409 #define SPEAKER_BLOCK	0x04
3410 #define EDID_BASIC_AUDIO BIT(6)
3411 
3412 /**
3413  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3414  * @edid: monitor EDID information
3415  *
3416  * Parse the CEA extension according to CEA-861-B.
3417  *
3418  * Return: True if the monitor is HDMI, false if not or unknown.
3419  */
3420 bool drm_detect_hdmi_monitor(struct edid *edid)
3421 {
3422 	u8 *edid_ext;
3423 	int i;
3424 	int start_offset, end_offset;
3425 
3426 	edid_ext = drm_find_cea_extension(edid);
3427 	if (!edid_ext)
3428 		return false;
3429 
3430 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3431 		return false;
3432 
3433 	/*
3434 	 * Because HDMI identifier is in Vendor Specific Block,
3435 	 * search it from all data blocks of CEA extension.
3436 	 */
3437 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3438 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3439 			return true;
3440 	}
3441 
3442 	return false;
3443 }
3444 
3445 /**
3446  * drm_detect_monitor_audio - check monitor audio capability
3447  * @edid: EDID block to scan
3448  *
3449  * Monitor should have CEA extension block.
3450  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3451  * audio' only. If there is any audio extension block and supported
3452  * audio format, assume at least 'basic audio' support, even if 'basic
3453  * audio' is not defined in EDID.
3454  *
3455  * Return: True if the monitor supports audio, false otherwise.
3456  */
3457 bool drm_detect_monitor_audio(struct edid *edid)
3458 {
3459 	u8 *edid_ext;
3460 	int i, j;
3461 	bool has_audio = false;
3462 	int start_offset, end_offset;
3463 
3464 	edid_ext = drm_find_cea_extension(edid);
3465 	if (!edid_ext)
3466 		goto end;
3467 
3468 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3469 
3470 	if (has_audio) {
3471 		printf("Monitor has basic audio support\n");
3472 		goto end;
3473 	}
3474 
3475 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3476 		goto end;
3477 
3478 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3479 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3480 			has_audio = true;
3481 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
3482 			     j += 3)
3483 				debug("CEA audio format %d\n",
3484 				      (edid_ext[i + j] >> 3) & 0xf);
3485 			goto end;
3486 		}
3487 	}
3488 end:
3489 	return has_audio;
3490 }
3491 
3492 static void
3493 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
3494 {
3495 	struct drm_display_info *info = &data->display_info;
3496 	u8 len = cea_db_payload_len(db);
3497 
3498 	if (len >= 6)
3499 		info->dvi_dual = db[6] & 1;
3500 	if (len >= 7)
3501 		info->max_tmds_clock = db[7] * 5000;
3502 
3503 	drm_parse_hdmi_deep_color_info(data, db);
3504 }
3505 
3506 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
3507 			      struct edid *edid)
3508 {
3509 	struct drm_display_info *info = &data->display_info;
3510 	const u8 *edid_ext;
3511 	int i, start, end;
3512 
3513 	edid_ext = drm_find_cea_extension(edid);
3514 	if (!edid_ext)
3515 		return;
3516 
3517 	info->cea_rev = edid_ext[1];
3518 
3519 	/* The existence of a CEA block should imply RGB support */
3520 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3521 	if (edid_ext[3] & EDID_CEA_YCRCB444)
3522 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3523 	if (edid_ext[3] & EDID_CEA_YCRCB422)
3524 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3525 
3526 	if (cea_db_offsets(edid_ext, &start, &end))
3527 		return;
3528 
3529 	for_each_cea_db(edid_ext, i, start, end) {
3530 		const u8 *db = &edid_ext[i];
3531 
3532 		if (cea_db_is_hdmi_vsdb(db))
3533 			drm_parse_hdmi_vsdb_video(data, db);
3534 		if (cea_db_is_hdmi_forum_vsdb(db))
3535 			drm_parse_hdmi_forum_vsdb(data, db);
3536 		if (cea_db_is_y420cmdb(db))
3537 			drm_parse_y420cmdb_bitmap(data, db);
3538 	}
3539 }
3540 
3541 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
3542 {
3543 	struct drm_display_info *info = &data->display_info;
3544 
3545 	info->width_mm = edid->width_cm * 10;
3546 	info->height_mm = edid->height_cm * 10;
3547 
3548 	/* driver figures it out in this case */
3549 	info->bpc = 0;
3550 	info->color_formats = 0;
3551 	info->cea_rev = 0;
3552 	info->max_tmds_clock = 0;
3553 	info->dvi_dual = false;
3554 	info->edid_hdmi_dc_modes = 0;
3555 
3556 	memset(&info->hdmi, 0, sizeof(info->hdmi));
3557 
3558 	if (edid->revision < 3)
3559 		return;
3560 
3561 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3562 		return;
3563 
3564 	drm_parse_cea_ext(data, edid);
3565 
3566 	/*
3567 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3568 	 *
3569 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3570 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
3571 	 * extensions which tell otherwise.
3572 	 */
3573 	if ((info->bpc == 0) && (edid->revision < 4) &&
3574 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3575 		info->bpc = 8;
3576 		debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3577 	}
3578 
3579 	/* Only defined for 1.4 with digital displays */
3580 	if (edid->revision < 4)
3581 		return;
3582 
3583 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3584 	case DRM_EDID_DIGITAL_DEPTH_6:
3585 		info->bpc = 6;
3586 		break;
3587 	case DRM_EDID_DIGITAL_DEPTH_8:
3588 		info->bpc = 8;
3589 		break;
3590 	case DRM_EDID_DIGITAL_DEPTH_10:
3591 		info->bpc = 10;
3592 		break;
3593 	case DRM_EDID_DIGITAL_DEPTH_12:
3594 		info->bpc = 12;
3595 		break;
3596 	case DRM_EDID_DIGITAL_DEPTH_14:
3597 		info->bpc = 14;
3598 		break;
3599 	case DRM_EDID_DIGITAL_DEPTH_16:
3600 		info->bpc = 16;
3601 		break;
3602 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3603 	default:
3604 		info->bpc = 0;
3605 		break;
3606 	}
3607 
3608 	debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3609 	      info->bpc);
3610 
3611 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3612 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3613 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3614 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3615 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3616 }
3617 
3618 static
3619 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3620 {
3621 	const u8 *cea = drm_find_cea_extension(edid);
3622 	const u8 *db, *hdmi = NULL, *video = NULL;
3623 	u8 dbl, hdmi_len, video_len = 0;
3624 	int modes = 0;
3625 
3626 	if (cea && cea_revision(cea) >= 3) {
3627 		int i, start, end;
3628 
3629 		if (cea_db_offsets(cea, &start, &end))
3630 			return 0;
3631 
3632 		for_each_cea_db(cea, i, start, end) {
3633 			db = &cea[i];
3634 			dbl = cea_db_payload_len(db);
3635 
3636 			if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3637 				video = db + 1;
3638 				video_len = dbl;
3639 				modes += do_cea_modes(data, video, dbl);
3640 			} else if (cea_db_is_hdmi_vsdb(db)) {
3641 				hdmi = db;
3642 				hdmi_len = dbl;
3643 			} else if (cea_db_is_y420vdb(db)) {
3644 				const u8 *vdb420 = &db[2];
3645 
3646 				/* Add 4:2:0(only) modes present in EDID */
3647 				modes += do_y420vdb_modes(data, vdb420,
3648 							  dbl - 1);
3649 			}
3650 		}
3651 	}
3652 
3653 	/*
3654 	 * We parse the HDMI VSDB after having added the cea modes as we will
3655 	 * be patching their flags when the sink supports stereo 3D.
3656 	 */
3657 	if (hdmi)
3658 		modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3659 					    video_len, data);
3660 
3661 	return modes;
3662 }
3663 
3664 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3665 
3666 static void
3667 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3668 {
3669 	int i, n = 0;
3670 	u8 d = ext[0x02];
3671 	u8 *det_base = ext + d;
3672 
3673 	if (d < 4 || d > 127)
3674 		return;
3675 
3676 	n = (127 - d) / 18;
3677 	for (i = 0; i < n; i++)
3678 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3679 }
3680 
3681 static void
3682 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3683 {
3684 	unsigned int i, n = min((int)ext[0x02], 6);
3685 	u8 *det_base = ext + 5;
3686 
3687 	if (ext[0x01] != 1)
3688 		return; /* unknown version */
3689 
3690 	for (i = 0; i < n; i++)
3691 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3692 }
3693 
3694 static void
3695 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3696 {
3697 	int i;
3698 	struct edid *edid = (struct edid *)raw_edid;
3699 
3700 	if (!edid)
3701 		return;
3702 
3703 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3704 		cb(&edid->detailed_timings[i], closure);
3705 
3706 	for (i = 1; i <= raw_edid[0x7e]; i++) {
3707 		u8 *ext = raw_edid + (i * EDID_SIZE);
3708 
3709 		switch (*ext) {
3710 		case CEA_EXT:
3711 			cea_for_each_detailed_block(ext, cb, closure);
3712 			break;
3713 		case VTB_EXT:
3714 			vtb_for_each_detailed_block(ext, cb, closure);
3715 			break;
3716 		default:
3717 			break;
3718 		}
3719 	}
3720 }
3721 
3722 /*
3723  * EDID is delightfully ambiguous about how interlaced modes are to be
3724  * encoded.  Our internal representation is of frame height, but some
3725  * HDTV detailed timings are encoded as field height.
3726  *
3727  * The format list here is from CEA, in frame size.  Technically we
3728  * should be checking refresh rate too.  Whatever.
3729  */
3730 static void
3731 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3732 			    struct detailed_pixel_timing *pt)
3733 {
3734 	int i;
3735 
3736 	static const struct {
3737 		int w, h;
3738 	} cea_interlaced[] = {
3739 		{ 1920, 1080 },
3740 		{  720,  480 },
3741 		{ 1440,  480 },
3742 		{ 2880,  480 },
3743 		{  720,  576 },
3744 		{ 1440,  576 },
3745 		{ 2880,  576 },
3746 	};
3747 
3748 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3749 		return;
3750 
3751 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3752 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3753 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3754 			mode->vdisplay *= 2;
3755 			mode->vsync_start *= 2;
3756 			mode->vsync_end *= 2;
3757 			mode->vtotal *= 2;
3758 			mode->vtotal |= 1;
3759 		}
3760 	}
3761 
3762 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3763 }
3764 
3765 /**
3766  * drm_mode_detailed - create a new mode from an EDID detailed timing section
3767  * @edid: EDID block
3768  * @timing: EDID detailed timing info
3769  * @quirks: quirks to apply
3770  *
3771  * An EDID detailed timing block contains enough info for us to create and
3772  * return a new struct drm_display_mode.
3773  */
3774 static
3775 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3776 					   struct detailed_timing *timing,
3777 					   u32 quirks)
3778 {
3779 	struct drm_display_mode *mode;
3780 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3781 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3782 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3783 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3784 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3785 	unsigned hsync_offset =
3786 		(pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3787 		pt->hsync_offset_lo;
3788 	unsigned hsync_pulse_width =
3789 		(pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3790 		pt->hsync_pulse_width_lo;
3791 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3792 		2 | pt->vsync_offset_pulse_width_lo >> 4;
3793 	unsigned vsync_pulse_width =
3794 		(pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3795 		(pt->vsync_offset_pulse_width_lo & 0xf);
3796 
3797 	/* ignore tiny modes */
3798 	if (hactive < 64 || vactive < 64)
3799 		return NULL;
3800 
3801 	if (pt->misc & DRM_EDID_PT_STEREO) {
3802 		debug("stereo mode not supported\n");
3803 		return NULL;
3804 	}
3805 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3806 		debug("composite sync not supported\n");
3807 
3808 	/* it is incorrect if hsync/vsync width is zero */
3809 	if (!hsync_pulse_width || !vsync_pulse_width) {
3810 		debug("Incorrect Detailed timing. ");
3811 		debug("Wrong Hsync/Vsync pulse width\n");
3812 		return NULL;
3813 	}
3814 
3815 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3816 		mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3817 		if (!mode)
3818 			return NULL;
3819 
3820 		goto set_refresh;
3821 	}
3822 
3823 	mode = drm_mode_create();
3824 	if (!mode)
3825 		return NULL;
3826 
3827 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3828 		timing->pixel_clock = cpu_to_le16(1088);
3829 
3830 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3831 
3832 	mode->hdisplay = hactive;
3833 	mode->hsync_start = mode->hdisplay + hsync_offset;
3834 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3835 	mode->htotal = mode->hdisplay + hblank;
3836 
3837 	mode->vdisplay = vactive;
3838 	mode->vsync_start = mode->vdisplay + vsync_offset;
3839 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3840 	mode->vtotal = mode->vdisplay + vblank;
3841 
3842 	/* Some EDIDs have bogus h/vtotal values */
3843 	if (mode->hsync_end > mode->htotal)
3844 		mode->htotal = mode->hsync_end + 1;
3845 	if (mode->vsync_end > mode->vtotal)
3846 		mode->vtotal = mode->vsync_end + 1;
3847 
3848 	drm_mode_do_interlace_quirk(mode, pt);
3849 
3850 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3851 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3852 			DRM_EDID_PT_VSYNC_POSITIVE;
3853 
3854 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3855 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3856 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3857 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3858 
3859 set_refresh:
3860 
3861 	mode->type = DRM_MODE_TYPE_DRIVER;
3862 	mode->vrefresh = drm_get_vrefresh(mode);
3863 
3864 	return mode;
3865 }
3866 
3867 /*
3868  * Calculate the alternate clock for the CEA mode
3869  * (60Hz vs. 59.94Hz etc.)
3870  */
3871 static unsigned int
3872 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3873 {
3874 	unsigned int clock = cea_mode->clock;
3875 
3876 	if (cea_mode->vrefresh % 6 != 0)
3877 		return clock;
3878 
3879 	/*
3880 	 * edid_cea_modes contains the 59.94Hz
3881 	 * variant for 240 and 480 line modes,
3882 	 * and the 60Hz variant otherwise.
3883 	 */
3884 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3885 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3886 	else
3887 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3888 
3889 	return clock;
3890 }
3891 
3892 /**
3893  * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3894  * @mode1: first mode
3895  * @mode2: second mode
3896  *
3897  * Check to see if @mode1 and @mode2 are equivalent, but
3898  * don't check the pixel clocks nor the stereo layout.
3899  *
3900  * Returns:
3901  * True if the modes are equal, false otherwise.
3902  */
3903 
3904 static
3905 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
3906 					const struct drm_display_mode *mode2)
3907 {
3908 	unsigned int flags_mask =
3909 		~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
3910 
3911 	if (mode1->hdisplay == mode2->hdisplay &&
3912 	    mode1->hsync_start == mode2->hsync_start &&
3913 	    mode1->hsync_end == mode2->hsync_end &&
3914 	    mode1->htotal == mode2->htotal &&
3915 	    mode1->vdisplay == mode2->vdisplay &&
3916 	    mode1->vsync_start == mode2->vsync_start &&
3917 	    mode1->vsync_end == mode2->vsync_end &&
3918 	    mode1->vtotal == mode2->vtotal &&
3919 	    mode1->vscan == mode2->vscan &&
3920 	    (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
3921 		return true;
3922 
3923 	return false;
3924 }
3925 
3926 /**
3927  * drm_mode_equal_no_clocks - test modes for equality
3928  * @mode1: first mode
3929  * @mode2: second mode
3930  *
3931  * Check to see if @mode1 and @mode2 are equivalent, but
3932  * don't check the pixel clocks.
3933  *
3934  * Returns:
3935  * True if the modes are equal, false otherwise.
3936  */
3937 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
3938 				     const struct drm_display_mode *mode2)
3939 {
3940 	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
3941 	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
3942 		return false;
3943 
3944 	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3945 }
3946 
3947 static
3948 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3949 				      unsigned int clock_tolerance)
3950 {
3951 	u8 vic;
3952 
3953 	if (!to_match->clock)
3954 		return 0;
3955 
3956 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3957 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
3958 		unsigned int clock1, clock2;
3959 
3960 		/* Check both 60Hz and 59.94Hz */
3961 		clock1 = cea_mode->clock;
3962 		clock2 = cea_mode_alternate_clock(cea_mode);
3963 
3964 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3965 		    abs(to_match->clock - clock2) > clock_tolerance)
3966 			continue;
3967 
3968 		if (drm_mode_equal_no_clocks(to_match, cea_mode))
3969 			return vic;
3970 	}
3971 
3972 	return 0;
3973 }
3974 
3975 static unsigned int
3976 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3977 {
3978 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3979 		return hdmi_mode->clock;
3980 
3981 	return cea_mode_alternate_clock(hdmi_mode);
3982 }
3983 
3984 static
3985 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3986 				       unsigned int clock_tolerance)
3987 {
3988 	u8 vic;
3989 
3990 	if (!to_match->clock)
3991 		return 0;
3992 
3993 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3994 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3995 		unsigned int clock1, clock2;
3996 
3997 		/* Make sure to also match alternate clocks */
3998 		clock1 = hdmi_mode->clock;
3999 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4000 
4001 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4002 		    abs(to_match->clock - clock2) > clock_tolerance)
4003 			continue;
4004 
4005 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
4006 			return vic;
4007 	}
4008 
4009 	return 0;
4010 }
4011 
4012 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
4013 {
4014 	const struct drm_display_mode *cea_mode;
4015 	int clock1, clock2, clock;
4016 	u8 vic;
4017 	const char *type;
4018 
4019 	/*
4020 	 * allow 5kHz clock difference either way to account for
4021 	 * the 10kHz clock resolution limit of detailed timings.
4022 	 */
4023 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4024 	if (drm_valid_cea_vic(vic)) {
4025 		type = "CEA";
4026 		cea_mode = cea_mode_for_vic(vic);
4027 		clock1 = cea_mode->clock;
4028 		clock2 = cea_mode_alternate_clock(cea_mode);
4029 	} else {
4030 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4031 		if (drm_valid_hdmi_vic(vic)) {
4032 			type = "HDMI";
4033 			cea_mode = &edid_4k_modes[vic];
4034 			clock1 = cea_mode->clock;
4035 			clock2 = hdmi_mode_alternate_clock(cea_mode);
4036 		} else {
4037 			return;
4038 		}
4039 	}
4040 
4041 	/* pick whichever is closest */
4042 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4043 		clock = clock1;
4044 	else
4045 		clock = clock2;
4046 
4047 	if (mode->clock == clock)
4048 		return;
4049 
4050 	debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4051 	      type, vic, mode->clock, clock);
4052 	mode->clock = clock;
4053 }
4054 
4055 static void
4056 do_detailed_mode(struct detailed_timing *timing, void *c)
4057 {
4058 	struct detailed_mode_closure *closure = c;
4059 	struct drm_display_mode *newmode;
4060 
4061 	if (timing->pixel_clock) {
4062 		newmode = drm_mode_detailed(
4063 					    closure->edid, timing,
4064 					    closure->quirks);
4065 		if (!newmode)
4066 			return;
4067 
4068 		if (closure->preferred)
4069 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
4070 
4071 		/*
4072 		 * Detailed modes are limited to 10kHz pixel clock resolution,
4073 		 * so fix up anything that looks like CEA/HDMI mode,
4074 		 * but the clock is just slightly off.
4075 		 */
4076 		fixup_detailed_cea_mode_clock(newmode);
4077 		drm_add_hdmi_modes(closure->data, newmode);
4078 		drm_mode_destroy(newmode);
4079 		closure->modes++;
4080 		closure->preferred = 0;
4081 	}
4082 }
4083 
4084 /*
4085  * add_detailed_modes - Add modes from detailed timings
4086  * @data: attached data
4087  * @edid: EDID block to scan
4088  * @quirks: quirks to apply
4089  */
4090 static int
4091 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
4092 		   u32 quirks)
4093 {
4094 	struct detailed_mode_closure closure = {
4095 		.data = data,
4096 		.edid = edid,
4097 		.preferred = 1,
4098 		.quirks = quirks,
4099 	};
4100 
4101 	if (closure.preferred && !version_greater(edid, 1, 3))
4102 		closure.preferred =
4103 			(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
4104 
4105 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
4106 
4107 	return closure.modes;
4108 }
4109 
4110 static int drm_cvt_modes(struct hdmi_edid_data *data,
4111 			 struct detailed_timing *timing)
4112 {
4113 	int i, j, modes = 0;
4114 	struct drm_display_mode *newmode;
4115 	struct cvt_timing *cvt;
4116 	const int rates[] = { 60, 85, 75, 60, 50 };
4117 	const u8 empty[3] = { 0, 0, 0 };
4118 
4119 	for (i = 0; i < 4; i++) {
4120 		int uninitialized_var(width), height;
4121 
4122 		cvt = &timing->data.other_data.data.cvt[i];
4123 
4124 		if (!memcmp(cvt->code, empty, 3))
4125 			continue;
4126 
4127 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4128 		switch (cvt->code[1] & 0x0c) {
4129 		case 0x00:
4130 			width = height * 4 / 3;
4131 			break;
4132 		case 0x04:
4133 			width = height * 16 / 9;
4134 			break;
4135 		case 0x08:
4136 			width = height * 16 / 10;
4137 			break;
4138 		case 0x0c:
4139 			width = height * 15 / 9;
4140 			break;
4141 		}
4142 
4143 		for (j = 1; j < 5; j++) {
4144 			if (cvt->code[2] & (1 << j)) {
4145 				newmode = drm_cvt_mode(width, height,
4146 						       rates[j], j == 0,
4147 						       false, false);
4148 				if (newmode) {
4149 					drm_add_hdmi_modes(data, newmode);
4150 					modes++;
4151 					drm_mode_destroy(newmode);
4152 				}
4153 			}
4154 		}
4155 	}
4156 
4157 	return modes;
4158 }
4159 
4160 static void
4161 do_cvt_mode(struct detailed_timing *timing, void *c)
4162 {
4163 	struct detailed_mode_closure *closure = c;
4164 	struct detailed_non_pixel *data = &timing->data.other_data;
4165 
4166 	if (data->type == EDID_DETAIL_CVT_3BYTE)
4167 		closure->modes += drm_cvt_modes(closure->data, timing);
4168 }
4169 
4170 static int
4171 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
4172 {
4173 	struct detailed_mode_closure closure = {
4174 		.data = data,
4175 		.edid = edid,
4176 	};
4177 
4178 	if (version_greater(edid, 1, 2))
4179 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
4180 
4181 	/* XXX should also look for CVT codes in VTB blocks */
4182 
4183 	return closure.modes;
4184 }
4185 
4186 static void
4187 find_gtf2(struct detailed_timing *t, void *data)
4188 {
4189 	u8 *r = (u8 *)t;
4190 
4191 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
4192 		*(u8 **)data = r;
4193 }
4194 
4195 /* Secondary GTF curve kicks in above some break frequency */
4196 static int
4197 drm_gtf2_hbreak(struct edid *edid)
4198 {
4199 	u8 *r = NULL;
4200 
4201 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4202 	return r ? (r[12] * 2) : 0;
4203 }
4204 
4205 static int
4206 drm_gtf2_2c(struct edid *edid)
4207 {
4208 	u8 *r = NULL;
4209 
4210 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4211 	return r ? r[13] : 0;
4212 }
4213 
4214 static int
4215 drm_gtf2_m(struct edid *edid)
4216 {
4217 	u8 *r = NULL;
4218 
4219 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4220 	return r ? (r[15] << 8) + r[14] : 0;
4221 }
4222 
4223 static int
4224 drm_gtf2_k(struct edid *edid)
4225 {
4226 	u8 *r = NULL;
4227 
4228 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4229 	return r ? r[16] : 0;
4230 }
4231 
4232 static int
4233 drm_gtf2_2j(struct edid *edid)
4234 {
4235 	u8 *r = NULL;
4236 
4237 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4238 	return r ? r[17] : 0;
4239 }
4240 
4241 /**
4242  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
4243  * @edid: EDID block to scan
4244  */
4245 static int standard_timing_level(struct edid *edid)
4246 {
4247 	if (edid->revision >= 2) {
4248 		if (edid->revision >= 4 &&
4249 		    (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
4250 			return LEVEL_CVT;
4251 		if (drm_gtf2_hbreak(edid))
4252 			return LEVEL_GTF2;
4253 		return LEVEL_GTF;
4254 	}
4255 	return LEVEL_DMT;
4256 }
4257 
4258 /*
4259  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
4260  * monitors fill with ascii space (0x20) instead.
4261  */
4262 static int
4263 bad_std_timing(u8 a, u8 b)
4264 {
4265 	return (a == 0x00 && b == 0x00) ||
4266 	       (a == 0x01 && b == 0x01) ||
4267 	       (a == 0x20 && b == 0x20);
4268 }
4269 
4270 static void
4271 is_rb(struct detailed_timing *t, void *data)
4272 {
4273 	u8 *r = (u8 *)t;
4274 
4275 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
4276 		if (r[15] & 0x10)
4277 			*(bool *)data = true;
4278 }
4279 
4280 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
4281 static bool
4282 drm_monitor_supports_rb(struct edid *edid)
4283 {
4284 	if (edid->revision >= 4) {
4285 		bool ret = false;
4286 
4287 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
4288 		return ret;
4289 	}
4290 
4291 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
4292 }
4293 
4294 static bool
4295 mode_is_rb(const struct drm_display_mode *mode)
4296 {
4297 	return (mode->htotal - mode->hdisplay == 160) &&
4298 	       (mode->hsync_end - mode->hdisplay == 80) &&
4299 	       (mode->hsync_end - mode->hsync_start == 32) &&
4300 	       (mode->vsync_start - mode->vdisplay == 3);
4301 }
4302 
4303 /*
4304  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
4305  * @hsize: Mode width
4306  * @vsize: Mode height
4307  * @fresh: Mode refresh rate
4308  * @rb: Mode reduced-blanking-ness
4309  *
4310  * Walk the DMT mode list looking for a match for the given parameters.
4311  *
4312  * Return: A newly allocated copy of the mode, or NULL if not found.
4313  */
4314 static struct drm_display_mode *drm_mode_find_dmt(
4315 					   int hsize, int vsize, int fresh,
4316 					   bool rb)
4317 {
4318 	int i;
4319 	struct drm_display_mode *newmode;
4320 
4321 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4322 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4323 
4324 		if (hsize != ptr->hdisplay)
4325 			continue;
4326 		if (vsize != ptr->vdisplay)
4327 			continue;
4328 		if (fresh != drm_get_vrefresh(ptr))
4329 			continue;
4330 		if (rb != mode_is_rb(ptr))
4331 			continue;
4332 
4333 		newmode = drm_mode_create();
4334 		*newmode = *ptr;
4335 		return newmode;
4336 	}
4337 
4338 	return NULL;
4339 }
4340 
4341 static struct drm_display_mode *
4342 drm_gtf_mode_complex(int hdisplay, int vdisplay,
4343 		     int vrefresh, bool interlaced, int margins,
4344 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
4345 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
4346 #define	GTF_MARGIN_PERCENTAGE		18
4347 	/* 2) character cell horizontal granularity (pixels) - default 8 */
4348 #define	GTF_CELL_GRAN			8
4349 	/* 3) Minimum vertical porch (lines) - default 3 */
4350 #define	GTF_MIN_V_PORCH			1
4351 	/* width of vsync in lines */
4352 #define V_SYNC_RQD			3
4353 	/* width of hsync as % of total line */
4354 #define H_SYNC_PERCENT			8
4355 	/* min time of vsync + back porch (microsec) */
4356 #define MIN_VSYNC_PLUS_BP		550
4357 	/* C' and M' are part of the Blanking Duty Cycle computation */
4358 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
4359 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
4360 	struct drm_display_mode *drm_mode;
4361 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
4362 	int top_margin, bottom_margin;
4363 	int interlace;
4364 	unsigned int hfreq_est;
4365 	int vsync_plus_bp;
4366 	unsigned int vtotal_lines;
4367 	int left_margin, right_margin;
4368 	unsigned int total_active_pixels, ideal_duty_cycle;
4369 	unsigned int hblank, total_pixels, pixel_freq;
4370 	int hsync, hfront_porch, vodd_front_porch_lines;
4371 	unsigned int tmp1, tmp2;
4372 
4373 	drm_mode = drm_mode_create();
4374 	if (!drm_mode)
4375 		return NULL;
4376 
4377 	/* 1. In order to give correct results, the number of horizontal
4378 	 * pixels requested is first processed to ensure that it is divisible
4379 	 * by the character size, by rounding it to the nearest character
4380 	 * cell boundary:
4381 	 */
4382 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4383 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
4384 
4385 	/* 2. If interlace is requested, the number of vertical lines assumed
4386 	 * by the calculation must be halved, as the computation calculates
4387 	 * the number of vertical lines per field.
4388 	 */
4389 	if (interlaced)
4390 		vdisplay_rnd = vdisplay / 2;
4391 	else
4392 		vdisplay_rnd = vdisplay;
4393 
4394 	/* 3. Find the frame rate required: */
4395 	if (interlaced)
4396 		vfieldrate_rqd = vrefresh * 2;
4397 	else
4398 		vfieldrate_rqd = vrefresh;
4399 
4400 	/* 4. Find number of lines in Top margin: */
4401 	top_margin = 0;
4402 	if (margins)
4403 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4404 				1000;
4405 	/* 5. Find number of lines in bottom margin: */
4406 	bottom_margin = top_margin;
4407 
4408 	/* 6. If interlace is required, then set variable interlace: */
4409 	if (interlaced)
4410 		interlace = 1;
4411 	else
4412 		interlace = 0;
4413 
4414 	/* 7. Estimate the Horizontal frequency */
4415 	{
4416 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
4417 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
4418 				2 + interlace;
4419 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
4420 	}
4421 
4422 	/* 8. Find the number of lines in V sync + back porch */
4423 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
4424 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
4425 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
4426 	/*  9. Find the number of lines in V back porch alone:
4427 	 *	vback_porch = vsync_plus_bp - V_SYNC_RQD;
4428 	 */
4429 	/*  10. Find the total number of lines in Vertical field period: */
4430 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
4431 			vsync_plus_bp + GTF_MIN_V_PORCH;
4432 	/*  11. Estimate the Vertical field frequency:
4433 	 *  vfieldrate_est = hfreq_est / vtotal_lines;
4434 	 */
4435 
4436 	/*  12. Find the actual horizontal period:
4437 	 *	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
4438 	 */
4439 	/*  13. Find the actual Vertical field frequency:
4440 	 *	vfield_rate = hfreq_est / vtotal_lines;
4441 	 */
4442 	/*  14. Find the Vertical frame frequency:
4443 	 *	if (interlaced)
4444 	 *		vframe_rate = vfield_rate / 2;
4445 	 *	else
4446 	 *		vframe_rate = vfield_rate;
4447 	 */
4448 	/*  15. Find number of pixels in left margin: */
4449 	if (margins)
4450 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4451 				1000;
4452 	else
4453 		left_margin = 0;
4454 
4455 	/* 16.Find number of pixels in right margin: */
4456 	right_margin = left_margin;
4457 	/* 17.Find total number of active pixels in image and left and right */
4458 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
4459 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
4460 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
4461 				(GTF_M_PRIME * 1000000 / hfreq_est);
4462 	/* 19.Find the number of pixels in the blanking time to the nearest
4463 	 * double character cell:
4464 	 */
4465 	hblank = total_active_pixels * ideal_duty_cycle /
4466 			(100000 - ideal_duty_cycle);
4467 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
4468 	hblank = hblank * 2 * GTF_CELL_GRAN;
4469 	/* 20.Find total number of pixels: */
4470 	total_pixels = total_active_pixels + hblank;
4471 	/* 21.Find pixel clock frequency: */
4472 	pixel_freq = total_pixels * hfreq_est / 1000;
4473 	/* Stage 1 computations are now complete; I should really pass
4474 	 * the results to another function and do the Stage 2 computations,
4475 	 * but I only need a few more values so I'll just append the
4476 	 * computations here for now
4477 	 */
4478 
4479 	/* 17. Find the number of pixels in the horizontal sync period: */
4480 	hsync = H_SYNC_PERCENT * total_pixels / 100;
4481 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4482 	hsync = hsync * GTF_CELL_GRAN;
4483 	/* 18. Find the number of pixels in horizontal front porch period */
4484 	hfront_porch = hblank / 2 - hsync;
4485 	/*  36. Find the number of lines in the odd front porch period: */
4486 	vodd_front_porch_lines = GTF_MIN_V_PORCH;
4487 
4488 	/* finally, pack the results in the mode struct */
4489 	drm_mode->hdisplay = hdisplay_rnd;
4490 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
4491 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
4492 	drm_mode->htotal = total_pixels;
4493 	drm_mode->vdisplay = vdisplay_rnd;
4494 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
4495 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
4496 	drm_mode->vtotal = vtotal_lines;
4497 
4498 	drm_mode->clock = pixel_freq;
4499 
4500 	if (interlaced) {
4501 		drm_mode->vtotal *= 2;
4502 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
4503 	}
4504 
4505 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
4506 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
4507 	else
4508 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
4509 
4510 	return drm_mode;
4511 }
4512 
4513 /**
4514  * drm_gtf_mode - create the mode based on the GTF algorithm
4515  * @hdisplay: hdisplay size
4516  * @vdisplay: vdisplay size
4517  * @vrefresh: vrefresh rate.
4518  * @interlaced: whether to compute an interlaced mode
4519  * @margins: desired margin (borders) size
4520  *
4521  * return the mode based on GTF algorithm
4522  *
4523  * This function is to create the mode based on the GTF algorithm.
4524  * Generalized Timing Formula is derived from:
4525  *	GTF Spreadsheet by Andy Morrish (1/5/97)
4526  *	available at http://www.vesa.org
4527  *
4528  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
4529  * What I have done is to translate it by using integer calculation.
4530  * I also refer to the function of fb_get_mode in the file of
4531  * drivers/video/fbmon.c
4532  *
4533  * Standard GTF parameters:
4534  * M = 600
4535  * C = 40
4536  * K = 128
4537  * J = 20
4538  *
4539  * Returns:
4540  * The modeline based on the GTF algorithm stored in a drm_display_mode object.
4541  * The display mode object is allocated with drm_mode_create(). Returns NULL
4542  * when no mode could be allocated.
4543  */
4544 static struct drm_display_mode *
4545 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
4546 	     bool interlaced, int margins)
4547 {
4548 	return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
4549 				    interlaced, margins,
4550 				    600, 40 * 2, 128, 20 * 2);
4551 }
4552 
4553 /** drm_mode_hsync - get the hsync of a mode
4554  * @mode: mode
4555  *
4556  * Returns:
4557  * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
4558  * value first if it is not yet set.
4559  */
4560 static int drm_mode_hsync(const struct drm_display_mode *mode)
4561 {
4562 	unsigned int calc_val;
4563 
4564 	if (mode->htotal < 0)
4565 		return 0;
4566 
4567 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
4568 	calc_val += 500;				/* round to 1000Hz */
4569 	calc_val /= 1000;				/* truncate to kHz */
4570 
4571 	return calc_val;
4572 }
4573 
4574 /**
4575  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4576  * @data: the structure that save parsed hdmi edid data
4577  * @edid: EDID block to scan
4578  * @t: standard timing params
4579  *
4580  * Take the standard timing params (in this case width, aspect, and refresh)
4581  * and convert them into a real mode using CVT/GTF/DMT.
4582  */
4583 static struct drm_display_mode *
4584 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4585 	     struct std_timing *t)
4586 {
4587 	struct drm_display_mode *mode = NULL;
4588 	int i, hsize, vsize;
4589 	int vrefresh_rate;
4590 	int num = data->modes;
4591 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4592 		>> EDID_TIMING_ASPECT_SHIFT;
4593 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4594 		>> EDID_TIMING_VFREQ_SHIFT;
4595 	int timing_level = standard_timing_level(edid);
4596 
4597 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
4598 		return NULL;
4599 
4600 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4601 	hsize = t->hsize * 8 + 248;
4602 	/* vrefresh_rate = vfreq + 60 */
4603 	vrefresh_rate = vfreq + 60;
4604 	/* the vdisplay is calculated based on the aspect ratio */
4605 	if (aspect_ratio == 0) {
4606 		if (edid->revision < 3)
4607 			vsize = hsize;
4608 		else
4609 			vsize = (hsize * 10) / 16;
4610 	} else if (aspect_ratio == 1) {
4611 		vsize = (hsize * 3) / 4;
4612 	} else if (aspect_ratio == 2) {
4613 		vsize = (hsize * 4) / 5;
4614 	} else {
4615 		vsize = (hsize * 9) / 16;
4616 	}
4617 
4618 	/* HDTV hack, part 1 */
4619 	if (vrefresh_rate == 60 &&
4620 	    ((hsize == 1360 && vsize == 765) ||
4621 	     (hsize == 1368 && vsize == 769))) {
4622 		hsize = 1366;
4623 		vsize = 768;
4624 	}
4625 
4626 	/*
4627 	 * If we already has a mode for this size and refresh
4628 	 * rate (because it came from detailed or CVT info), use that
4629 	 * instead.  This way we don't have to guess at interlace or
4630 	 * reduced blanking.
4631 	 */
4632 	for (i = 0; i < num; i++)
4633 		if (data->mode_buf[i].hdisplay == hsize &&
4634 		    data->mode_buf[i].vdisplay == vsize &&
4635 		    drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4636 			return NULL;
4637 
4638 	/* HDTV hack, part 2 */
4639 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4640 		mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4641 				    false);
4642 		mode->hdisplay = 1366;
4643 		mode->hsync_start = mode->hsync_start - 1;
4644 		mode->hsync_end = mode->hsync_end - 1;
4645 		return mode;
4646 	}
4647 
4648 	/* check whether it can be found in default mode table */
4649 	if (drm_monitor_supports_rb(edid)) {
4650 		mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4651 					 true);
4652 		if (mode)
4653 			return mode;
4654 	}
4655 
4656 	mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4657 	if (mode)
4658 		return mode;
4659 
4660 	/* okay, generate it */
4661 	switch (timing_level) {
4662 	case LEVEL_DMT:
4663 		break;
4664 	case LEVEL_GTF:
4665 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4666 		break;
4667 	case LEVEL_GTF2:
4668 		/*
4669 		 * This is potentially wrong if there's ever a monitor with
4670 		 * more than one ranges section, each claiming a different
4671 		 * secondary GTF curve.  Please don't do that.
4672 		 */
4673 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4674 		if (!mode)
4675 			return NULL;
4676 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4677 			drm_mode_destroy(mode);
4678 			mode = drm_gtf_mode_complex(hsize, vsize,
4679 						    vrefresh_rate, 0, 0,
4680 						    drm_gtf2_m(edid),
4681 						    drm_gtf2_2c(edid),
4682 						    drm_gtf2_k(edid),
4683 						    drm_gtf2_2j(edid));
4684 		}
4685 		break;
4686 	case LEVEL_CVT:
4687 		mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4688 				    false);
4689 		break;
4690 	}
4691 
4692 	return mode;
4693 }
4694 
4695 static void
4696 do_standard_modes(struct detailed_timing *timing, void *c)
4697 {
4698 	struct detailed_mode_closure *closure = c;
4699 	struct detailed_non_pixel *data = &timing->data.other_data;
4700 	struct edid *edid = closure->edid;
4701 
4702 	if (data->type == EDID_DETAIL_STD_MODES) {
4703 		int i;
4704 
4705 		for (i = 0; i < 6; i++) {
4706 			struct std_timing *std;
4707 			struct drm_display_mode *newmode;
4708 
4709 			std = &data->data.timings[i];
4710 			newmode = drm_mode_std(closure->data, edid, std);
4711 			if (newmode) {
4712 				drm_add_hdmi_modes(closure->data, newmode);
4713 				closure->modes++;
4714 				drm_mode_destroy(newmode);
4715 			}
4716 		}
4717 	}
4718 }
4719 
4720 /**
4721  * add_standard_modes - get std. modes from EDID and add them
4722  * @data: data to add mode(s) to
4723  * @edid: EDID block to scan
4724  *
4725  * Standard modes can be calculated using the appropriate standard (DMT,
4726  * GTF or CVT. Grab them from @edid and add them to the list.
4727  */
4728 static int
4729 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4730 {
4731 	int i, modes = 0;
4732 	struct detailed_mode_closure closure = {
4733 		.data = data,
4734 		.edid = edid,
4735 	};
4736 
4737 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4738 		struct drm_display_mode *newmode;
4739 
4740 		newmode = drm_mode_std(data, edid,
4741 				       &edid->standard_timings[i]);
4742 		if (newmode) {
4743 			drm_add_hdmi_modes(data, newmode);
4744 			modes++;
4745 			drm_mode_destroy(newmode);
4746 		}
4747 	}
4748 
4749 	if (version_greater(edid, 1, 0))
4750 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4751 					    &closure);
4752 
4753 	/* XXX should also look for standard codes in VTB blocks */
4754 
4755 	return modes + closure.modes;
4756 }
4757 
4758 static int
4759 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4760 {
4761 	int i, j, m, modes = 0;
4762 	struct drm_display_mode *mode;
4763 	u8 *est = ((u8 *)timing) + 6;
4764 
4765 	for (i = 0; i < 6; i++) {
4766 		for (j = 7; j >= 0; j--) {
4767 			m = (i * 8) + (7 - j);
4768 			if (m >= ARRAY_SIZE(est3_modes))
4769 				break;
4770 			if (est[i] & (1 << j)) {
4771 				mode = drm_mode_find_dmt(
4772 							 est3_modes[m].w,
4773 							 est3_modes[m].h,
4774 							 est3_modes[m].r,
4775 							 est3_modes[m].rb);
4776 				if (mode) {
4777 					drm_add_hdmi_modes(data, mode);
4778 					modes++;
4779 					drm_mode_destroy(mode);
4780 				}
4781 			}
4782 		}
4783 	}
4784 
4785 	return modes;
4786 }
4787 
4788 static void
4789 do_established_modes(struct detailed_timing *timing, void *c)
4790 {
4791 	struct detailed_mode_closure *closure = c;
4792 	struct detailed_non_pixel *data = &timing->data.other_data;
4793 
4794 	if (data->type == EDID_DETAIL_EST_TIMINGS)
4795 		closure->modes += drm_est3_modes(closure->data, timing);
4796 }
4797 
4798 /**
4799  * add_established_modes - get est. modes from EDID and add them
4800  * @data: data to add mode(s) to
4801  * @edid: EDID block to scan
4802  *
4803  * Each EDID block contains a bitmap of the supported "established modes" list
4804  * (defined above).  Tease them out and add them to the modes list.
4805  */
4806 static int
4807 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4808 {
4809 	unsigned long est_bits = edid->established_timings.t1 |
4810 		(edid->established_timings.t2 << 8) |
4811 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
4812 	int i, modes = 0;
4813 	struct detailed_mode_closure closure = {
4814 		.data = data,
4815 		.edid = edid,
4816 	};
4817 
4818 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4819 		if (est_bits & (1 << i)) {
4820 			struct drm_display_mode *newmode = drm_mode_create();
4821 			*newmode = edid_est_modes[i];
4822 			if (newmode) {
4823 				drm_add_hdmi_modes(data, newmode);
4824 				modes++;
4825 				drm_mode_destroy(newmode);
4826 			}
4827 		}
4828 	}
4829 
4830 	if (version_greater(edid, 1, 0))
4831 		drm_for_each_detailed_block((u8 *)edid,
4832 					    do_established_modes, &closure);
4833 
4834 	return modes + closure.modes;
4835 }
4836 
4837 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4838 {
4839 	u8 vic;
4840 
4841 	if (!to_match->clock)
4842 		return 0;
4843 
4844 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4845 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4846 		unsigned int clock1, clock2;
4847 
4848 		/* Make sure to also match alternate clocks */
4849 		clock1 = hdmi_mode->clock;
4850 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4851 
4852 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4853 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4854 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4855 			return vic;
4856 	}
4857 	return 0;
4858 }
4859 
4860 static int
4861 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4862 {
4863 	struct drm_display_mode *mode;
4864 	int i, num, modes = 0;
4865 
4866 	/* Don't add CEA modes if the CEA extension block is missing */
4867 	if (!drm_find_cea_extension(edid))
4868 		return 0;
4869 
4870 	/*
4871 	 * Go through all probed modes and create a new mode
4872 	 * with the alternate clock for certain CEA modes.
4873 	 */
4874 	num = data->modes;
4875 
4876 	for (i = 0; i < num; i++) {
4877 		const struct drm_display_mode *cea_mode = NULL;
4878 		struct drm_display_mode *newmode;
4879 		u8 vic;
4880 		unsigned int clock1, clock2;
4881 
4882 		mode = &data->mode_buf[i];
4883 		vic = drm_match_cea_mode(mode);
4884 
4885 		if (drm_valid_cea_vic(vic)) {
4886 			cea_mode = cea_mode_for_vic(vic);
4887 			clock2 = cea_mode_alternate_clock(cea_mode);
4888 		} else {
4889 			vic = drm_match_hdmi_mode(mode);
4890 			if (drm_valid_hdmi_vic(vic)) {
4891 				cea_mode = &edid_4k_modes[vic];
4892 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4893 			}
4894 		}
4895 
4896 		if (!cea_mode)
4897 			continue;
4898 
4899 		clock1 = cea_mode->clock;
4900 
4901 		if (clock1 == clock2)
4902 			continue;
4903 
4904 		if (mode->clock != clock1 && mode->clock != clock2)
4905 			continue;
4906 
4907 		newmode = drm_mode_create();
4908 		*newmode = *cea_mode;
4909 		if (!newmode)
4910 			continue;
4911 
4912 		/* Carry over the stereo flags */
4913 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4914 
4915 		/*
4916 		 * The current mode could be either variant. Make
4917 		 * sure to pick the "other" clock for the new mode.
4918 		 */
4919 		if (mode->clock != clock1)
4920 			newmode->clock = clock1;
4921 		else
4922 			newmode->clock = clock2;
4923 
4924 		drm_add_hdmi_modes(data, newmode);
4925 		modes++;
4926 		drm_mode_destroy(newmode);
4927 	}
4928 
4929 	return modes;
4930 }
4931 
4932 static u8 *drm_find_displayid_extension(struct edid *edid)
4933 {
4934 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
4935 }
4936 
4937 static int validate_displayid(u8 *displayid, int length, int idx)
4938 {
4939 	int i;
4940 	u8 csum = 0;
4941 	struct displayid_hdr *base;
4942 
4943 	base = (struct displayid_hdr *)&displayid[idx];
4944 
4945 	debug("base revision 0x%x, length %d, %d %d\n",
4946 	      base->rev, base->bytes, base->prod_id, base->ext_count);
4947 
4948 	if (base->bytes + 5 > length - idx)
4949 		return -EINVAL;
4950 	for (i = idx; i <= base->bytes + 5; i++)
4951 		csum += displayid[i];
4952 	if (csum) {
4953 		debug("DisplayID checksum invalid, remainder is %d\n", csum);
4954 		return -EINVAL;
4955 	}
4956 	return 0;
4957 }
4958 
4959 static struct
4960 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
4961 					      *timings)
4962 {
4963 	struct drm_display_mode *mode;
4964 	unsigned pixel_clock = (timings->pixel_clock[0] |
4965 				(timings->pixel_clock[1] << 8) |
4966 				(timings->pixel_clock[2] << 16));
4967 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4968 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4969 	unsigned hsync = (timings->hsync[0] |
4970 		(timings->hsync[1] & 0x7f) << 8) + 1;
4971 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4972 	unsigned vactive = (timings->vactive[0] |
4973 		timings->vactive[1] << 8) + 1;
4974 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4975 	unsigned vsync = (timings->vsync[0] |
4976 		(timings->vsync[1] & 0x7f) << 8) + 1;
4977 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4978 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4979 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4980 
4981 	mode = drm_mode_create();
4982 	if (!mode)
4983 		return NULL;
4984 
4985 	mode->clock = pixel_clock * 10;
4986 	mode->hdisplay = hactive;
4987 	mode->hsync_start = mode->hdisplay + hsync;
4988 	mode->hsync_end = mode->hsync_start + hsync_width;
4989 	mode->htotal = mode->hdisplay + hblank;
4990 
4991 	mode->vdisplay = vactive;
4992 	mode->vsync_start = mode->vdisplay + vsync;
4993 	mode->vsync_end = mode->vsync_start + vsync_width;
4994 	mode->vtotal = mode->vdisplay + vblank;
4995 
4996 	mode->flags = 0;
4997 	mode->flags |=
4998 		hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4999 	mode->flags |=
5000 		vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
5001 	mode->type = DRM_MODE_TYPE_DRIVER;
5002 
5003 	if (timings->flags & 0x80)
5004 		mode->type |= DRM_MODE_TYPE_PREFERRED;
5005 	mode->vrefresh = drm_get_vrefresh(mode);
5006 
5007 	return mode;
5008 }
5009 
5010 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
5011 					  struct displayid_block *block)
5012 {
5013 	struct displayid_detailed_timing_block *det;
5014 	int i;
5015 	int num_timings;
5016 	struct drm_display_mode *newmode;
5017 	int num_modes = 0;
5018 
5019 	det = (struct displayid_detailed_timing_block *)block;
5020 	/* blocks must be multiple of 20 bytes length */
5021 	if (block->num_bytes % 20)
5022 		return 0;
5023 
5024 	num_timings = block->num_bytes / 20;
5025 	for (i = 0; i < num_timings; i++) {
5026 		struct displayid_detailed_timings_1 *timings =
5027 			&det->timings[i];
5028 
5029 		newmode = drm_displayid_detailed(timings);
5030 		if (!newmode)
5031 			continue;
5032 
5033 		drm_add_hdmi_modes(data, newmode);
5034 		num_modes++;
5035 		drm_mode_destroy(newmode);
5036 	}
5037 	return num_modes;
5038 }
5039 
5040 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
5041 					struct edid *edid)
5042 {
5043 	u8 *displayid;
5044 	int ret;
5045 	int idx = 1;
5046 	int length = EDID_SIZE;
5047 	struct displayid_block *block;
5048 	int num_modes = 0;
5049 
5050 	displayid = drm_find_displayid_extension(edid);
5051 	if (!displayid)
5052 		return 0;
5053 
5054 	ret = validate_displayid(displayid, length, idx);
5055 	if (ret)
5056 		return 0;
5057 
5058 	idx += sizeof(struct displayid_hdr);
5059 	while (block = (struct displayid_block *)&displayid[idx],
5060 	       idx + sizeof(struct displayid_block) <= length &&
5061 	       idx + sizeof(struct displayid_block) + block->num_bytes <=
5062 	       length && block->num_bytes > 0) {
5063 		idx += block->num_bytes + sizeof(struct displayid_block);
5064 		switch (block->tag) {
5065 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5066 			num_modes +=
5067 				add_displayid_detailed_1_modes(data, block);
5068 			break;
5069 		}
5070 	}
5071 	return num_modes;
5072 }
5073 
5074 static bool
5075 mode_in_hsync_range(const struct drm_display_mode *mode,
5076 		    struct edid *edid, u8 *t)
5077 {
5078 	int hsync, hmin, hmax;
5079 
5080 	hmin = t[7];
5081 	if (edid->revision >= 4)
5082 		hmin += ((t[4] & 0x04) ? 255 : 0);
5083 	hmax = t[8];
5084 	if (edid->revision >= 4)
5085 		hmax += ((t[4] & 0x08) ? 255 : 0);
5086 	hsync = drm_mode_hsync(mode);
5087 
5088 	return (hsync <= hmax && hsync >= hmin);
5089 }
5090 
5091 static bool
5092 mode_in_vsync_range(const struct drm_display_mode *mode,
5093 		    struct edid *edid, u8 *t)
5094 {
5095 	int vsync, vmin, vmax;
5096 
5097 	vmin = t[5];
5098 	if (edid->revision >= 4)
5099 		vmin += ((t[4] & 0x01) ? 255 : 0);
5100 	vmax = t[6];
5101 	if (edid->revision >= 4)
5102 		vmax += ((t[4] & 0x02) ? 255 : 0);
5103 	vsync = drm_get_vrefresh(mode);
5104 
5105 	return (vsync <= vmax && vsync >= vmin);
5106 }
5107 
5108 static u32
5109 range_pixel_clock(struct edid *edid, u8 *t)
5110 {
5111 	/* unspecified */
5112 	if (t[9] == 0 || t[9] == 255)
5113 		return 0;
5114 
5115 	/* 1.4 with CVT support gives us real precision, yay */
5116 	if (edid->revision >= 4 && t[10] == 0x04)
5117 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
5118 
5119 	/* 1.3 is pathetic, so fuzz up a bit */
5120 	return t[9] * 10000 + 5001;
5121 }
5122 
5123 static bool
5124 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
5125 	      struct detailed_timing *timing)
5126 {
5127 	u32 max_clock;
5128 	u8 *t = (u8 *)timing;
5129 
5130 	if (!mode_in_hsync_range(mode, edid, t))
5131 		return false;
5132 
5133 	if (!mode_in_vsync_range(mode, edid, t))
5134 		return false;
5135 
5136 	max_clock = range_pixel_clock(edid, t);
5137 	if (max_clock)
5138 		if (mode->clock > max_clock)
5139 			return false;
5140 
5141 	/* 1.4 max horizontal check */
5142 	if (edid->revision >= 4 && t[10] == 0x04)
5143 		if (t[13] && mode->hdisplay > 8 *
5144 		    (t[13] + (256 * (t[12] & 0x3))))
5145 			return false;
5146 
5147 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
5148 		return false;
5149 
5150 	return true;
5151 }
5152 
5153 static bool valid_inferred_mode(struct hdmi_edid_data *data,
5154 				const struct drm_display_mode *mode)
5155 {
5156 	const struct drm_display_mode *m;
5157 	bool ok = false;
5158 	int i;
5159 
5160 	for (i = 0; i < data->modes; i++) {
5161 		m = &data->mode_buf[i];
5162 		if (mode->hdisplay == m->hdisplay &&
5163 		    mode->vdisplay == m->vdisplay &&
5164 		    drm_get_vrefresh(mode) == drm_get_vrefresh(m))
5165 			return false; /* duplicated */
5166 		if (mode->hdisplay <= m->hdisplay &&
5167 		    mode->vdisplay <= m->vdisplay)
5168 			ok = true;
5169 	}
5170 	return ok;
5171 }
5172 
5173 static int
5174 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5175 			struct detailed_timing *timing)
5176 {
5177 	int i, modes = 0;
5178 
5179 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
5180 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
5181 		    valid_inferred_mode(data, drm_dmt_modes + i)) {
5182 			drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
5183 			modes++;
5184 		}
5185 	}
5186 
5187 	return modes;
5188 }
5189 
5190 /* fix up 1366x768 mode from 1368x768;
5191  * GFT/CVT can't express 1366 width which isn't dividable by 8
5192  */
5193 static void fixup_mode_1366x768(struct drm_display_mode *mode)
5194 {
5195 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
5196 		mode->hdisplay = 1366;
5197 		mode->hsync_start--;
5198 		mode->hsync_end--;
5199 	}
5200 }
5201 
5202 static int
5203 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5204 			struct detailed_timing *timing)
5205 {
5206 	int i, modes = 0;
5207 	struct drm_display_mode *newmode;
5208 
5209 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5210 		const struct minimode *m = &extra_modes[i];
5211 
5212 		newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
5213 		if (!newmode)
5214 			return modes;
5215 
5216 		fixup_mode_1366x768(newmode);
5217 		if (!mode_in_range(newmode, edid, timing) ||
5218 		    !valid_inferred_mode(data, newmode)) {
5219 			drm_mode_destroy(newmode);
5220 			continue;
5221 		}
5222 
5223 		drm_add_hdmi_modes(data, newmode);
5224 		modes++;
5225 		drm_mode_destroy(newmode);
5226 	}
5227 
5228 	return modes;
5229 }
5230 
5231 static int
5232 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5233 			struct detailed_timing *timing)
5234 {
5235 	int i, modes = 0;
5236 	struct drm_display_mode *newmode;
5237 	bool rb = drm_monitor_supports_rb(edid);
5238 
5239 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5240 		const struct minimode *m = &extra_modes[i];
5241 
5242 		newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
5243 		if (!newmode)
5244 			return modes;
5245 
5246 		fixup_mode_1366x768(newmode);
5247 		if (!mode_in_range(newmode, edid, timing) ||
5248 		    !valid_inferred_mode(data, newmode)) {
5249 			drm_mode_destroy(newmode);
5250 			continue;
5251 		}
5252 
5253 		drm_add_hdmi_modes(data, newmode);
5254 		modes++;
5255 		drm_mode_destroy(newmode);
5256 	}
5257 
5258 	return modes;
5259 }
5260 
5261 static void
5262 do_inferred_modes(struct detailed_timing *timing, void *c)
5263 {
5264 	struct detailed_mode_closure *closure = c;
5265 	struct detailed_non_pixel *data = &timing->data.other_data;
5266 	struct detailed_data_monitor_range *range = &data->data.range;
5267 
5268 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
5269 		return;
5270 
5271 	closure->modes += drm_dmt_modes_for_range(closure->data,
5272 						  closure->edid,
5273 						  timing);
5274 
5275 	if (!version_greater(closure->edid, 1, 1))
5276 		return; /* GTF not defined yet */
5277 
5278 	switch (range->flags) {
5279 	case 0x02: /* secondary gtf, XXX could do more */
5280 	case 0x00: /* default gtf */
5281 		closure->modes += drm_gtf_modes_for_range(closure->data,
5282 							  closure->edid,
5283 							  timing);
5284 		break;
5285 	case 0x04: /* cvt, only in 1.4+ */
5286 		if (!version_greater(closure->edid, 1, 3))
5287 			break;
5288 
5289 		closure->modes += drm_cvt_modes_for_range(closure->data,
5290 							  closure->edid,
5291 							  timing);
5292 		break;
5293 	case 0x01: /* just the ranges, no formula */
5294 	default:
5295 		break;
5296 	}
5297 }
5298 
5299 static int
5300 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
5301 {
5302 	struct detailed_mode_closure closure = {
5303 		.data = data,
5304 		.edid = edid,
5305 	};
5306 
5307 	if (version_greater(edid, 1, 0))
5308 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
5309 					    &closure);
5310 
5311 	return closure.modes;
5312 }
5313 
5314 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
5315 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
5316 
5317 /**
5318  * edid_fixup_preferred - set preferred modes based on quirk list
5319  * @data: the structure that save parsed hdmi edid data
5320  * @quirks: quirks list
5321  *
5322  * Walk the mode list, clearing the preferred status
5323  * on existing modes and setting it anew for the right mode ala @quirks.
5324  */
5325 static void edid_fixup_preferred(struct hdmi_edid_data *data,
5326 				 u32 quirks)
5327 {
5328 	struct drm_display_mode *cur_mode, *preferred_mode;
5329 	int i, target_refresh = 0;
5330 	int num = data->modes;
5331 	int cur_vrefresh, preferred_vrefresh;
5332 
5333 	if (!num)
5334 		return;
5335 
5336 	preferred_mode = data->preferred_mode;
5337 
5338 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
5339 		target_refresh = 60;
5340 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
5341 		target_refresh = 75;
5342 
5343 	for (i = 0; i < num; i++) {
5344 		cur_mode = &data->mode_buf[i];
5345 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
5346 
5347 		if (cur_mode == preferred_mode)
5348 			continue;
5349 
5350 		/* Largest mode is preferred */
5351 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
5352 			preferred_mode = cur_mode;
5353 
5354 		cur_vrefresh = cur_mode->vrefresh ?
5355 		cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
5356 		preferred_vrefresh = preferred_mode->vrefresh ?
5357 		preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
5358 		/* At a given size, try to get closest to target refresh */
5359 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
5360 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
5361 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
5362 			preferred_mode = cur_mode;
5363 		}
5364 	}
5365 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
5366 	data->preferred_mode = preferred_mode;
5367 }
5368 
5369 static const u8 edid_header[] = {
5370 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
5371 };
5372 
5373 /**
5374  * drm_edid_header_is_valid - sanity check the header of the base EDID block
5375  * @raw_edid: pointer to raw base EDID block
5376  *
5377  * Sanity check the header of the base EDID block.
5378  *
5379  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
5380  */
5381 static int drm_edid_header_is_valid(const u8 *raw_edid)
5382 {
5383 	int i, score = 0;
5384 
5385 	for (i = 0; i < sizeof(edid_header); i++)
5386 		if (raw_edid[i] == edid_header[i])
5387 			score++;
5388 
5389 	return score;
5390 }
5391 
5392 static int drm_edid_block_checksum(const u8 *raw_edid)
5393 {
5394 	int i;
5395 	u8 csum = 0;
5396 
5397 	for (i = 0; i < EDID_SIZE; i++)
5398 		csum += raw_edid[i];
5399 
5400 	return csum;
5401 }
5402 
5403 static bool drm_edid_is_zero(const u8 *in_edid, int length)
5404 {
5405 	if (memchr_inv(in_edid, 0, length))
5406 		return false;
5407 
5408 	return true;
5409 }
5410 
5411 /**
5412  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
5413  * @raw_edid: pointer to raw EDID block
5414  * @block: type of block to validate (0 for base, extension otherwise)
5415  * @print_bad_edid: if true, dump bad EDID blocks to the console
5416  * @edid_corrupt: if true, the header or checksum is invalid
5417  *
5418  * Validate a base or extension EDID block and optionally dump bad blocks to
5419  * the console.
5420  *
5421  * Return: True if the block is valid, false otherwise.
5422  */
5423 static
5424 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
5425 			  bool *edid_corrupt)
5426 {
5427 	u8 csum;
5428 	int edid_fixup = 6;
5429 	struct edid *edid = (struct edid *)raw_edid;
5430 
5431 	if ((!raw_edid))
5432 		return false;
5433 
5434 	if (block == 0) {
5435 		int score = drm_edid_header_is_valid(raw_edid);
5436 
5437 		if (score == 8) {
5438 			if (edid_corrupt)
5439 				*edid_corrupt = false;
5440 		} else if (score >= edid_fixup) {
5441 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
5442 			 * The corrupt flag needs to be set here otherwise, the
5443 			 * fix-up code here will correct the problem, the
5444 			 * checksum is correct and the test fails
5445 			 */
5446 			if (edid_corrupt)
5447 				*edid_corrupt = true;
5448 			debug("Fixing header, your hardware may be failing\n");
5449 			memcpy(raw_edid, edid_header, sizeof(edid_header));
5450 		} else {
5451 			if (edid_corrupt)
5452 				*edid_corrupt = true;
5453 			goto bad;
5454 		}
5455 	}
5456 
5457 	csum = drm_edid_block_checksum(raw_edid);
5458 	if (csum) {
5459 		if (print_bad_edid) {
5460 			debug("EDID checksum is invalid, remainder is %d\n",
5461 			      csum);
5462 		}
5463 
5464 		if (edid_corrupt)
5465 			*edid_corrupt = true;
5466 
5467 		/* allow CEA to slide through, switches mangle this */
5468 		if (raw_edid[0] != 0x02)
5469 			goto bad;
5470 	}
5471 
5472 	/* per-block-type checks */
5473 	switch (raw_edid[0]) {
5474 	case 0: /* base */
5475 		if (edid->version != 1) {
5476 			debug("EDID has major version %d, instead of 1\n",
5477 			      edid->version);
5478 			goto bad;
5479 		}
5480 
5481 		if (edid->revision > 4)
5482 			debug("minor > 4, assuming backward compatibility\n");
5483 		break;
5484 
5485 	default:
5486 		break;
5487 	}
5488 
5489 	return true;
5490 
5491 bad:
5492 	if (print_bad_edid) {
5493 		if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
5494 			debug("EDID block is all zeroes\n");
5495 		} else {
5496 			debug("Raw EDID:\n");
5497 			print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
5498 				       raw_edid, EDID_SIZE, false);
5499 		}
5500 	}
5501 	return false;
5502 }
5503 
5504 /**
5505  * drm_edid_is_valid - sanity check EDID data
5506  * @edid: EDID data
5507  *
5508  * Sanity-check an entire EDID record (including extensions)
5509  *
5510  * Return: True if the EDID data is valid, false otherwise.
5511  */
5512 static bool drm_edid_is_valid(struct edid *edid)
5513 {
5514 	int i;
5515 	u8 *raw = (u8 *)edid;
5516 
5517 	if (!edid)
5518 		return false;
5519 
5520 	for (i = 0; i <= edid->extensions; i++)
5521 		if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
5522 			return false;
5523 
5524 	return true;
5525 }
5526 
5527 /**
5528  * drm_add_edid_modes - add modes from EDID data, if available
5529  * @data: data we're probing
5530  * @edid: EDID data
5531  *
5532  * Add the specified modes to the data's mode list.
5533  *
5534  * Return: The number of modes added or 0 if we couldn't find any.
5535  */
5536 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
5537 {
5538 	int num_modes = 0;
5539 	u32 quirks;
5540 	struct edid *edid = (struct edid *)raw_edid;
5541 
5542 	if (!edid) {
5543 		debug("no edid\n");
5544 		return 0;
5545 	}
5546 
5547 	if (!drm_edid_is_valid(edid)) {
5548 		debug("EDID invalid\n");
5549 		return 0;
5550 	}
5551 
5552 	if (!data->mode_buf) {
5553 		debug("mode buff is null\n");
5554 		return 0;
5555 	}
5556 
5557 	quirks = edid_get_quirks(edid);
5558 	/*
5559 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5560 	 * To avoid multiple parsing of same block, lets parse that map
5561 	 * from sink info, before parsing CEA modes.
5562 	 */
5563 	drm_add_display_info(data, edid);
5564 
5565 	/*
5566 	 * EDID spec says modes should be preferred in this order:
5567 	 * - preferred detailed mode
5568 	 * - other detailed modes from base block
5569 	 * - detailed modes from extension blocks
5570 	 * - CVT 3-byte code modes
5571 	 * - standard timing codes
5572 	 * - established timing codes
5573 	 * - modes inferred from GTF or CVT range information
5574 	 *
5575 	 * We get this pretty much right.
5576 	 *
5577 	 * XXX order for additional mode types in extension blocks?
5578 	 */
5579 	num_modes += add_detailed_modes(data, edid, quirks);
5580 	num_modes += add_cvt_modes(data, edid);
5581 	num_modes += add_standard_modes(data, edid);
5582 	num_modes += add_established_modes(data, edid);
5583 	num_modes += add_cea_modes(data, edid);
5584 	num_modes += add_alternate_cea_modes(data, edid);
5585 	num_modes += add_displayid_detailed_modes(data, edid);
5586 
5587 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5588 		num_modes += add_inferred_modes(data, edid);
5589 
5590 	if (num_modes > 0)
5591 		data->preferred_mode = &data->mode_buf[0];
5592 
5593 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5594 		edid_fixup_preferred(data, quirks);
5595 
5596 	if (quirks & EDID_QUIRK_FORCE_6BPC)
5597 		data->display_info.bpc = 6;
5598 
5599 	if (quirks & EDID_QUIRK_FORCE_8BPC)
5600 		data->display_info.bpc = 8;
5601 
5602 	if (quirks & EDID_QUIRK_FORCE_10BPC)
5603 		data->display_info.bpc = 10;
5604 
5605 	if (quirks & EDID_QUIRK_FORCE_12BPC)
5606 		data->display_info.bpc = 12;
5607 
5608 	return num_modes;
5609 }
5610 
5611 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5612 {
5613 	u8 vic;
5614 
5615 	if (!to_match->clock) {
5616 		printf("can't find to match\n");
5617 		return 0;
5618 	}
5619 
5620 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
5621 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
5622 		unsigned int clock1, clock2;
5623 
5624 		/* Check both 60Hz and 59.94Hz */
5625 		clock1 = cea_mode->clock;
5626 		clock2 = cea_mode_alternate_clock(cea_mode);
5627 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5628 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5629 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5630 			return vic;
5631 	}
5632 
5633 	return 0;
5634 }
5635 
5636 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5637 {
5638 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
5639 
5640 	if (mode)
5641 		return mode->picture_aspect_ratio;
5642 
5643 	return HDMI_PICTURE_ASPECT_NONE;
5644 }
5645 
5646 int
5647 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5648 					 struct drm_display_mode *mode,
5649 					 bool is_hdmi2_sink)
5650 {
5651 	int err;
5652 
5653 	if (!frame || !mode)
5654 		return -EINVAL;
5655 
5656 	err = hdmi_avi_infoframe_init(frame);
5657 	if (err < 0)
5658 		return err;
5659 
5660 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5661 		frame->pixel_repeat = 1;
5662 
5663 	frame->video_code = drm_match_cea_mode(mode);
5664 
5665 	/*
5666 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5667 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5668 	 * have to make sure we dont break HDMI 1.4 sinks.
5669 	 */
5670 	if (!is_hdmi2_sink && frame->video_code > 64)
5671 		frame->video_code = 0;
5672 
5673 	/*
5674 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5675 	 * we should send its VIC in vendor infoframes, else send the
5676 	 * VIC in AVI infoframes. Lets check if this mode is present in
5677 	 * HDMI 1.4b 4K modes
5678 	 */
5679 	if (frame->video_code) {
5680 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5681 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5682 
5683 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5684 			frame->video_code = 0;
5685 	}
5686 
5687 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5688 
5689 	/*
5690 	 * Populate picture aspect ratio from either
5691 	 * user input (if specified) or from the CEA mode list.
5692 	 */
5693 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5694 	    mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5695 		frame->picture_aspect = mode->picture_aspect_ratio;
5696 	else if (frame->video_code > 0)
5697 		frame->picture_aspect = drm_get_cea_aspect_ratio(
5698 						frame->video_code);
5699 
5700 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5701 		frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5702 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5703 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5704 
5705 	return 0;
5706 }
5707 
5708 /**
5709  * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5710  * @frame: HDMI vendor infoframe
5711  *
5712  * Returns 0 on success or a negative error code on failure.
5713  */
5714 int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5715 {
5716 	memset(frame, 0, sizeof(*frame));
5717 
5718 	frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5719 	frame->version = 1;
5720 
5721 	frame->oui = HDMI_IEEE_OUI;
5722 
5723 	/*
5724 	 * 0 is a valid value for s3d_struct, so we use a special "not set"
5725 	 * value
5726 	 */
5727 	frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5728 
5729 	return 0;
5730 }
5731 
5732 /**
5733  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5734  *                                        quantization range information
5735  * @frame: HDMI AVI infoframe
5736  * @rgb_quant_range: RGB quantization range (Q)
5737  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
5738  */
5739 void
5740 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5741 				   struct drm_display_mode *mode,
5742 				   enum hdmi_quantization_range rgb_quant_range,
5743 				   bool rgb_quant_range_selectable)
5744 {
5745 	/*
5746 	 * CEA-861:
5747 	 * "A Source shall not send a non-zero Q value that does not correspond
5748 	 *  to the default RGB Quantization Range for the transmitted Picture
5749 	 *  unless the Sink indicates support for the Q bit in a Video
5750 	 *  Capabilities Data Block."
5751 	 *
5752 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5753 	 * default RGB quantization range for the mode, even when QS=0.
5754 	 */
5755 	if (rgb_quant_range_selectable ||
5756 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5757 		frame->quantization_range = rgb_quant_range;
5758 	else
5759 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5760 
5761 	/*
5762 	 * CEA-861-F:
5763 	 * "When transmitting any RGB colorimetry, the Source should set the
5764 	 *  YQ-field to match the RGB Quantization Range being transmitted
5765 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5766 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5767 	 */
5768 	if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5769 		frame->ycc_quantization_range =
5770 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5771 	else
5772 		frame->ycc_quantization_range =
5773 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5774 }
5775 
5776 static enum hdmi_3d_structure
5777 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5778 {
5779 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5780 
5781 	switch (layout) {
5782 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5783 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5784 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5785 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5786 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5787 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5788 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5789 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5790 	case DRM_MODE_FLAG_3D_L_DEPTH:
5791 		return HDMI_3D_STRUCTURE_L_DEPTH;
5792 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5793 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5794 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5795 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5796 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5797 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5798 	default:
5799 		return HDMI_3D_STRUCTURE_INVALID;
5800 	}
5801 }
5802 
5803 int
5804 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5805 					    struct drm_display_mode *mode)
5806 {
5807 	int err;
5808 	u32 s3d_flags;
5809 	u8 vic;
5810 
5811 	if (!frame || !mode)
5812 		return -EINVAL;
5813 
5814 	vic = drm_match_hdmi_mode(mode);
5815 
5816 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5817 
5818 	if (!vic && !s3d_flags)
5819 		return -EINVAL;
5820 
5821 	if (vic && s3d_flags)
5822 		return -EINVAL;
5823 
5824 	err = hdmi_vendor_infoframe_init(frame);
5825 	if (err < 0)
5826 		return err;
5827 
5828 	if (vic)
5829 		frame->vic = vic;
5830 	else
5831 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
5832 
5833 	return 0;
5834 }
5835 
5836 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5837 {
5838 	u8 csum = 0;
5839 	size_t i;
5840 
5841 	/* compute checksum */
5842 	for (i = 0; i < size; i++)
5843 		csum += ptr[i];
5844 
5845 	return 256 - csum;
5846 }
5847 
5848 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5849 {
5850 	u8 *ptr = buffer;
5851 
5852 	ptr[3] = hdmi_infoframe_checksum(buffer, size);
5853 }
5854 
5855 /**
5856  * hdmi_avi_infoframe_init() - initialize an HDMI AVI infoframe
5857  * @frame: HDMI AVI infoframe
5858  *
5859  * Returns 0 on success or a negative error code on failure.
5860  */
5861 int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5862 {
5863 	memset(frame, 0, sizeof(*frame));
5864 
5865 	frame->type = HDMI_INFOFRAME_TYPE_AVI;
5866 	frame->version = 2;
5867 	frame->length = HDMI_AVI_INFOFRAME_SIZE;
5868 
5869 	return 0;
5870 }
5871 EXPORT_SYMBOL(hdmi_avi_infoframe_init);
5872 
5873 /**
5874  * hdmi_avi_infoframe_pack() - write HDMI AVI infoframe to binary buffer
5875  * @frame: HDMI AVI infoframe
5876  * @buffer: destination buffer
5877  * @size: size of buffer
5878  *
5879  * Packs the information contained in the @frame structure into a binary
5880  * representation that can be written into the corresponding controller
5881  * registers. Also computes the checksum as required by section 5.3.5 of
5882  * the HDMI 1.4 specification.
5883  *
5884  * Returns the number of bytes packed into the binary buffer or a negative
5885  * error code on failure.
5886  */
5887 ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe *frame, void *buffer,
5888 				size_t size)
5889 {
5890 	u8 *ptr = buffer;
5891 	size_t length;
5892 
5893 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5894 
5895 	if (size < length)
5896 		return -ENOSPC;
5897 
5898 	memset(buffer, 0, size);
5899 
5900 	ptr[0] = frame->type;
5901 	ptr[1] = frame->version;
5902 	ptr[2] = frame->length;
5903 	ptr[3] = 0; /* checksum */
5904 
5905 	/* start infoframe payload */
5906 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
5907 
5908 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5909 
5910 	/*
5911 	 * Data byte 1, bit 4 has to be set if we provide the active format
5912 	 * aspect ratio
5913 	 */
5914 	if (frame->active_aspect & 0xf)
5915 		ptr[0] |= BIT(4);
5916 
5917 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5918 	if (frame->top_bar || frame->bottom_bar)
5919 		ptr[0] |= BIT(3);
5920 
5921 	if (frame->left_bar || frame->right_bar)
5922 		ptr[0] |= BIT(2);
5923 
5924 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
5925 		 ((frame->picture_aspect & 0x3) << 4) |
5926 		 (frame->active_aspect & 0xf);
5927 
5928 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
5929 		 ((frame->quantization_range & 0x3) << 2) |
5930 		 (frame->nups & 0x3);
5931 
5932 	if (frame->itc)
5933 		ptr[2] |= BIT(7);
5934 
5935 	ptr[3] = frame->video_code & 0x7f;
5936 
5937 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
5938 		 ((frame->content_type & 0x3) << 4) |
5939 		 (frame->pixel_repeat & 0xf);
5940 
5941 	ptr[5] = frame->top_bar & 0xff;
5942 	ptr[6] = (frame->top_bar >> 8) & 0xff;
5943 	ptr[7] = frame->bottom_bar & 0xff;
5944 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
5945 	ptr[9] = frame->left_bar & 0xff;
5946 	ptr[10] = (frame->left_bar >> 8) & 0xff;
5947 	ptr[11] = frame->right_bar & 0xff;
5948 	ptr[12] = (frame->right_bar >> 8) & 0xff;
5949 
5950 	hdmi_infoframe_set_checksum(buffer, length);
5951 
5952 	return length;
5953 }
5954 EXPORT_SYMBOL(hdmi_avi_infoframe_pack);
5955 
5956 static int hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe *frame)
5957 {
5958 	if (frame->type != HDMI_INFOFRAME_TYPE_AVI ||
5959 	    frame->version != 2 ||
5960 	    frame->length != HDMI_AVI_INFOFRAME_SIZE)
5961 		return -EINVAL;
5962 
5963 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5964 		return -EINVAL;
5965 
5966 	return 0;
5967 }
5968 
5969 /**
5970  * hdmi_avi_infoframe_check() - check a HDMI AVI infoframe
5971  * @frame: HDMI AVI infoframe
5972  *
5973  * Validates that the infoframe is consistent and updates derived fields
5974  * (eg. length) based on other fields.
5975  *
5976  * Returns 0 on success or a negative error code on failure.
5977  */
5978 int hdmi_avi_infoframe_check(struct hdmi_avi_infoframe *frame)
5979 {
5980 	return hdmi_avi_infoframe_check_only(frame);
5981 }
5982 EXPORT_SYMBOL(hdmi_avi_infoframe_check);
5983 
5984 /**
5985  * hdmi_avi_infoframe_pack_only() - write HDMI AVI infoframe to binary buffer
5986  * @frame: HDMI AVI infoframe
5987  * @buffer: destination buffer
5988  * @size: size of buffer
5989  *
5990  * Packs the information contained in the @frame structure into a binary
5991  * representation that can be written into the corresponding controller
5992  * registers. Also computes the checksum as required by section 5.3.5 of
5993  * the HDMI 1.4 specification.
5994  *
5995  * Returns the number of bytes packed into the binary buffer or a negative
5996  * error code on failure.
5997  */
5998 ssize_t hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe *frame,
5999 				     void *buffer, size_t size)
6000 {
6001 	u8 *ptr = buffer;
6002 	size_t length;
6003 	int ret;
6004 
6005 	ret = hdmi_avi_infoframe_check_only(frame);
6006 	if (ret)
6007 		return ret;
6008 
6009 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6010 
6011 	if (size < length)
6012 		return -ENOSPC;
6013 
6014 	memset(buffer, 0, size);
6015 
6016 	ptr[0] = frame->type;
6017 	ptr[1] = frame->version;
6018 	ptr[2] = frame->length;
6019 	ptr[3] = 0; /* checksum */
6020 
6021 	/* start infoframe payload */
6022 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6023 
6024 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
6025 
6026 	/*
6027 	 * Data byte 1, bit 4 has to be set if we provide the active format
6028 	 * aspect ratio
6029 	 */
6030 	if (frame->active_aspect & 0xf)
6031 		ptr[0] |= BIT(4);
6032 
6033 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
6034 	if (frame->top_bar || frame->bottom_bar)
6035 		ptr[0] |= BIT(3);
6036 
6037 	if (frame->left_bar || frame->right_bar)
6038 		ptr[0] |= BIT(2);
6039 
6040 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6041 		 ((frame->picture_aspect & 0x3) << 4) |
6042 		 (frame->active_aspect & 0xf);
6043 
6044 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6045 		 ((frame->quantization_range & 0x3) << 2) |
6046 		 (frame->nups & 0x3);
6047 
6048 	if (frame->itc)
6049 		ptr[2] |= BIT(7);
6050 
6051 	ptr[3] = frame->video_code & 0xff;
6052 
6053 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6054 		 ((frame->content_type & 0x3) << 4) |
6055 		 (frame->pixel_repeat & 0xf);
6056 
6057 	ptr[5] = frame->top_bar & 0xff;
6058 	ptr[6] = (frame->top_bar >> 8) & 0xff;
6059 	ptr[7] = frame->bottom_bar & 0xff;
6060 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6061 	ptr[9] = frame->left_bar & 0xff;
6062 	ptr[10] = (frame->left_bar >> 8) & 0xff;
6063 	ptr[11] = frame->right_bar & 0xff;
6064 	ptr[12] = (frame->right_bar >> 8) & 0xff;
6065 
6066 	hdmi_infoframe_set_checksum(buffer, length);
6067 
6068 	return length;
6069 }
6070 EXPORT_SYMBOL(hdmi_avi_infoframe_pack_only);
6071 
6072 /**
6073  * hdmi_spd_infoframe_init() - initialize an HDMI SPD infoframe
6074  * @frame: HDMI SPD infoframe
6075  * @vendor: vendor string
6076  * @product: product string
6077  *
6078  * Returns 0 on success or a negative error code on failure.
6079  */
6080 int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe *frame,
6081 			    const char *vendor, const char *product)
6082 {
6083 	memset(frame, 0, sizeof(*frame));
6084 
6085 	frame->type = HDMI_INFOFRAME_TYPE_SPD;
6086 	frame->version = 1;
6087 	frame->length = HDMI_SPD_INFOFRAME_SIZE;
6088 
6089 	strncpy(frame->vendor, vendor, sizeof(frame->vendor));
6090 	strncpy(frame->product, product, sizeof(frame->product));
6091 
6092 	return 0;
6093 }
6094 EXPORT_SYMBOL(hdmi_spd_infoframe_init);
6095 
6096 /**
6097  * hdmi_spd_infoframe_pack() - write HDMI SPD infoframe to binary buffer
6098  * @frame: HDMI SPD infoframe
6099  * @buffer: destination buffer
6100  * @size: size of buffer
6101  *
6102  * Packs the information contained in the @frame structure into a binary
6103  * representation that can be written into the corresponding controller
6104  * registers. Also computes the checksum as required by section 5.3.5 of
6105  * the HDMI 1.4 specification.
6106  *
6107  * Returns the number of bytes packed into the binary buffer or a negative
6108  * error code on failure.
6109  */
6110 ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe *frame, void *buffer,
6111 				size_t size)
6112 {
6113 	u8 *ptr = buffer;
6114 	size_t length;
6115 
6116 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6117 
6118 	if (size < length)
6119 		return -ENOSPC;
6120 
6121 	memset(buffer, 0, size);
6122 
6123 	ptr[0] = frame->type;
6124 	ptr[1] = frame->version;
6125 	ptr[2] = frame->length;
6126 	ptr[3] = 0; /* checksum */
6127 
6128 	/* start infoframe payload */
6129 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6130 
6131 	memcpy(ptr, frame->vendor, sizeof(frame->vendor));
6132 	memcpy(ptr + 8, frame->product, sizeof(frame->product));
6133 
6134 	ptr[24] = frame->sdi;
6135 
6136 	hdmi_infoframe_set_checksum(buffer, length);
6137 
6138 	return length;
6139 }
6140 EXPORT_SYMBOL(hdmi_spd_infoframe_pack);
6141 
6142 /**
6143  * hdmi_audio_infoframe_init() - initialize an HDMI audio infoframe
6144  * @frame: HDMI audio infoframe
6145  *
6146  * Returns 0 on success or a negative error code on failure.
6147  */
6148 int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe *frame)
6149 {
6150 	memset(frame, 0, sizeof(*frame));
6151 
6152 	frame->type = HDMI_INFOFRAME_TYPE_AUDIO;
6153 	frame->version = 1;
6154 	frame->length = HDMI_AUDIO_INFOFRAME_SIZE;
6155 
6156 	return 0;
6157 }
6158 
6159 /**
6160  * hdmi_audio_infoframe_pack() - write HDMI audio infoframe to binary buffer
6161  * @frame: HDMI audio infoframe
6162  * @buffer: destination buffer
6163  * @size: size of buffer
6164  *
6165  * Packs the information contained in the @frame structure into a binary
6166  * representation that can be written into the corresponding controller
6167  * registers. Also computes the checksum as required by section 5.3.5 of
6168  * the HDMI 1.4 specification.
6169  *
6170  * Returns the number of bytes packed into the binary buffer or a negative
6171  * error code on failure.
6172  */
6173 ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe *frame,
6174 				  void *buffer, size_t size)
6175 {
6176 	unsigned char channels;
6177 	char *ptr = buffer;
6178 	size_t length;
6179 
6180 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6181 
6182 	if (size < length)
6183 		return -ENOSPC;
6184 
6185 	memset(buffer, 0, size);
6186 
6187 	if (frame->channels >= 2)
6188 		channels = frame->channels - 1;
6189 	else
6190 		channels = 0;
6191 
6192 	ptr[0] = frame->type;
6193 	ptr[1] = frame->version;
6194 	ptr[2] = frame->length;
6195 	ptr[3] = 0; /* checksum */
6196 
6197 	/* start infoframe payload */
6198 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6199 
6200 	ptr[0] = ((frame->coding_type & 0xf) << 4) | (channels & 0x7);
6201 	ptr[1] = ((frame->sample_frequency & 0x7) << 2) |
6202 		 (frame->sample_size & 0x3);
6203 	ptr[2] = frame->coding_type_ext & 0x1f;
6204 	ptr[3] = frame->channel_allocation;
6205 	ptr[4] = (frame->level_shift_value & 0xf) << 3;
6206 
6207 	if (frame->downmix_inhibit)
6208 		ptr[4] |= BIT(7);
6209 
6210 	hdmi_infoframe_set_checksum(buffer, length);
6211 
6212 	return length;
6213 }
6214 
6215 /**
6216  * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
6217  * @frame: HDMI infoframe
6218  * @buffer: destination buffer
6219  * @size: size of buffer
6220  *
6221  * Packs the information contained in the @frame structure into a binary
6222  * representation that can be written into the corresponding controller
6223  * registers. Also computes the checksum as required by section 5.3.5 of
6224  * the HDMI 1.4 specification.
6225  *
6226  * Returns the number of bytes packed into the binary buffer or a negative
6227  * error code on failure.
6228  */
6229 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
6230 				   void *buffer, size_t size)
6231 {
6232 	char *ptr = buffer;
6233 	size_t length;
6234 
6235 	/* empty info frame */
6236 	if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
6237 		return -EINVAL;
6238 
6239 	/* only one of those can be supplied */
6240 	if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
6241 		return -EINVAL;
6242 
6243 	/* for side by side (half) we also need to provide 3D_Ext_Data */
6244 	if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6245 		frame->length = 6;
6246 	else
6247 		frame->length = 5;
6248 
6249 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6250 
6251 	if (size < length)
6252 		return -ENOSPC;
6253 
6254 	memset(buffer, 0, size);
6255 
6256 	ptr[0] = frame->type;
6257 	ptr[1] = frame->version;
6258 	ptr[2] = frame->length;
6259 	ptr[3] = 0; /* checksum */
6260 
6261 	/* HDMI OUI */
6262 	ptr[4] = 0x03;
6263 	ptr[5] = 0x0c;
6264 	ptr[6] = 0x00;
6265 
6266 	if (frame->vic) {
6267 		ptr[7] = 0x1 << 5;	/* video format */
6268 		ptr[8] = frame->vic;
6269 	} else {
6270 		ptr[7] = 0x2 << 5;	/* video format */
6271 		ptr[8] = (frame->s3d_struct & 0xf) << 4;
6272 		if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6273 			ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
6274 	}
6275 
6276 	hdmi_infoframe_set_checksum(buffer, length);
6277 
6278 	return length;
6279 }
6280 
6281 /**
6282  * hdmi_drm_infoframe_init() - initialize an HDMI Dynaminc Range and
6283  * mastering infoframe
6284  * @frame: HDMI DRM infoframe
6285  *
6286  * Returns 0 on success or a negative error code on failure.
6287  */
6288 int hdmi_drm_infoframe_init(struct hdmi_drm_infoframe *frame)
6289 {
6290 	memset(frame, 0, sizeof(*frame));
6291 
6292 	frame->type = HDMI_INFOFRAME_TYPE_DRM;
6293 	frame->version = 1;
6294 
6295 	return 0;
6296 }
6297 
6298 /**
6299  * hdmi_drm_infoframe_pack() - write HDMI DRM infoframe to binary buffer
6300  * @frame: HDMI DRM infoframe
6301  * @buffer: destination buffer
6302  * @size: size of buffer
6303  *
6304  * Packs the information contained in the @frame structure into a binary
6305  * representation that can be written into the corresponding controller
6306  * registers. Also computes the checksum as required by section 5.3.5 of
6307  * the HDMI 1.4 specification.
6308  *
6309  * Returns the number of bytes packed into the binary buffer or a negative
6310  * error code on failure.
6311  */
6312 ssize_t hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe *frame, void *buffer,
6313 				size_t size)
6314 {
6315 	u8 *ptr = buffer;
6316 	size_t length;
6317 
6318 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6319 
6320 	if (size < length)
6321 		return -ENOSPC;
6322 
6323 	memset(buffer, 0, size);
6324 
6325 	ptr[0] = frame->type;
6326 	ptr[1] = frame->version;
6327 	ptr[2] = frame->length;
6328 	ptr[3] = 0; /* checksum */
6329 
6330 	/* start infoframe payload */
6331 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6332 
6333 	ptr[0] = frame->eotf;
6334 	ptr[1] = frame->metadata_type;
6335 
6336 	ptr[2] = frame->display_primaries_x[0] & 0xff;
6337 	ptr[3] = frame->display_primaries_x[0] >> 8;
6338 
6339 	ptr[4] = frame->display_primaries_x[1] & 0xff;
6340 	ptr[5] = frame->display_primaries_x[1] >> 8;
6341 
6342 	ptr[6] = frame->display_primaries_x[2] & 0xff;
6343 	ptr[7] = frame->display_primaries_x[2] >> 8;
6344 
6345 	ptr[9] = frame->display_primaries_y[0] & 0xff;
6346 	ptr[10] = frame->display_primaries_y[0] >> 8;
6347 
6348 	ptr[11] = frame->display_primaries_y[1] & 0xff;
6349 	ptr[12] = frame->display_primaries_y[1] >> 8;
6350 
6351 	ptr[13] = frame->display_primaries_y[2] & 0xff;
6352 	ptr[14] = frame->display_primaries_y[2] >> 8;
6353 
6354 	ptr[15] = frame->white_point_x & 0xff;
6355 	ptr[16] = frame->white_point_x >> 8;
6356 
6357 	ptr[17] = frame->white_point_y & 0xff;
6358 	ptr[18] = frame->white_point_y >> 8;
6359 
6360 	ptr[19] = frame->max_mastering_display_luminance & 0xff;
6361 	ptr[20] = frame->max_mastering_display_luminance >> 8;
6362 
6363 	ptr[21] = frame->min_mastering_display_luminance & 0xff;
6364 	ptr[22] = frame->min_mastering_display_luminance >> 8;
6365 
6366 	ptr[23] = frame->max_cll & 0xff;
6367 	ptr[24] = frame->max_cll >> 8;
6368 
6369 	ptr[25] = frame->max_fall & 0xff;
6370 	ptr[26] = frame->max_fall >> 8;
6371 
6372 	hdmi_infoframe_set_checksum(buffer, length);
6373 
6374 	return length;
6375 }
6376 
6377 /*
6378  * hdmi_vendor_any_infoframe_pack() - write a vendor infoframe to binary buffer
6379  */
6380 static ssize_t
6381 hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe *frame,
6382 			       void *buffer, size_t size)
6383 {
6384 	/* we only know about HDMI vendor infoframes */
6385 	if (frame->any.oui != HDMI_IEEE_OUI)
6386 		return -EINVAL;
6387 
6388 	return hdmi_vendor_infoframe_pack(&frame->hdmi, buffer, size);
6389 }
6390 
6391 /**
6392  * hdmi_infoframe_pack() - write a HDMI infoframe to binary buffer
6393  * @frame: HDMI infoframe
6394  * @buffer: destination buffer
6395  * @size: size of buffer
6396  *
6397  * Packs the information contained in the @frame structure into a binary
6398  * representation that can be written into the corresponding controller
6399  * registers. Also computes the checksum as required by section 5.3.5 of
6400  * the HDMI 1.4 specification.
6401  *
6402  * Returns the number of bytes packed into the binary buffer or a negative
6403  * error code on failure.
6404  */
6405 ssize_t
6406 hdmi_infoframe_pack(union hdmi_infoframe *frame, void *buffer, size_t size)
6407 {
6408 	ssize_t length;
6409 
6410 	switch (frame->any.type) {
6411 	case HDMI_INFOFRAME_TYPE_AVI:
6412 		length = hdmi_avi_infoframe_pack(&frame->avi, buffer, size);
6413 		break;
6414 	case HDMI_INFOFRAME_TYPE_DRM:
6415 		length = hdmi_drm_infoframe_pack(&frame->drm, buffer, size);
6416 		break;
6417 	case HDMI_INFOFRAME_TYPE_SPD:
6418 		length = hdmi_spd_infoframe_pack(&frame->spd, buffer, size);
6419 		break;
6420 	case HDMI_INFOFRAME_TYPE_AUDIO:
6421 		length = hdmi_audio_infoframe_pack(&frame->audio, buffer, size);
6422 		break;
6423 	case HDMI_INFOFRAME_TYPE_VENDOR:
6424 		length = hdmi_vendor_any_infoframe_pack(&frame->vendor,
6425 							buffer, size);
6426 		break;
6427 	default:
6428 		printf("Bad infoframe type %d\n", frame->any.type);
6429 		length = -EINVAL;
6430 	}
6431 
6432 	return length;
6433 }
6434 
6435 /**
6436  * hdmi_avi_infoframe_unpack() - unpack binary buffer to a HDMI AVI infoframe
6437  * @buffer: source buffer
6438  * @frame: HDMI AVI infoframe
6439  *
6440  * Unpacks the information contained in binary @buffer into a structured
6441  * @frame of the HDMI Auxiliary Video (AVI) information frame.
6442  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6443  * specification.
6444  *
6445  * Returns 0 on success or a negative error code on failure.
6446  */
6447 static int hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe *frame,
6448 				     void *buffer)
6449 {
6450 	u8 *ptr = buffer;
6451 	int ret;
6452 
6453 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AVI ||
6454 	    ptr[1] != 2 ||
6455 	    ptr[2] != HDMI_AVI_INFOFRAME_SIZE)
6456 		return -EINVAL;
6457 
6458 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AVI)) != 0)
6459 		return -EINVAL;
6460 
6461 	ret = hdmi_avi_infoframe_init(frame);
6462 	if (ret)
6463 		return ret;
6464 
6465 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6466 
6467 	frame->colorspace = (ptr[0] >> 5) & 0x3;
6468 	if (ptr[0] & 0x10)
6469 		frame->active_aspect = ptr[1] & 0xf;
6470 	if (ptr[0] & 0x8) {
6471 		frame->top_bar = (ptr[5] << 8) + ptr[6];
6472 		frame->bottom_bar = (ptr[7] << 8) + ptr[8];
6473 	}
6474 	if (ptr[0] & 0x4) {
6475 		frame->left_bar = (ptr[9] << 8) + ptr[10];
6476 		frame->right_bar = (ptr[11] << 8) + ptr[12];
6477 	}
6478 	frame->scan_mode = ptr[0] & 0x3;
6479 
6480 	frame->colorimetry = (ptr[1] >> 6) & 0x3;
6481 	frame->picture_aspect = (ptr[1] >> 4) & 0x3;
6482 	frame->active_aspect = ptr[1] & 0xf;
6483 
6484 	frame->itc = ptr[2] & 0x80 ? true : false;
6485 	frame->extended_colorimetry = (ptr[2] >> 4) & 0x7;
6486 	frame->quantization_range = (ptr[2] >> 2) & 0x3;
6487 	frame->nups = ptr[2] & 0x3;
6488 
6489 	frame->video_code = ptr[3] & 0x7f;
6490 	frame->ycc_quantization_range = (ptr[4] >> 6) & 0x3;
6491 	frame->content_type = (ptr[4] >> 4) & 0x3;
6492 
6493 	frame->pixel_repeat = ptr[4] & 0xf;
6494 
6495 	return 0;
6496 }
6497 
6498 /**
6499  * hdmi_spd_infoframe_unpack() - unpack binary buffer to a HDMI SPD infoframe
6500  * @buffer: source buffer
6501  * @frame: HDMI SPD infoframe
6502  *
6503  * Unpacks the information contained in binary @buffer into a structured
6504  * @frame of the HDMI Source Product Description (SPD) information frame.
6505  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6506  * specification.
6507  *
6508  * Returns 0 on success or a negative error code on failure.
6509  */
6510 static int hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe *frame,
6511 				     void *buffer)
6512 {
6513 	char *ptr = buffer;
6514 	int ret;
6515 
6516 	if (ptr[0] != HDMI_INFOFRAME_TYPE_SPD ||
6517 	    ptr[1] != 1 ||
6518 	    ptr[2] != HDMI_SPD_INFOFRAME_SIZE) {
6519 		return -EINVAL;
6520 	}
6521 
6522 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(SPD)) != 0)
6523 		return -EINVAL;
6524 
6525 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6526 
6527 	ret = hdmi_spd_infoframe_init(frame, ptr, ptr + 8);
6528 	if (ret)
6529 		return ret;
6530 
6531 	frame->sdi = ptr[24];
6532 
6533 	return 0;
6534 }
6535 
6536 /**
6537  * hdmi_audio_infoframe_unpack() - unpack binary buffer to a HDMI AUDIO infoframe
6538  * @buffer: source buffer
6539  * @frame: HDMI Audio infoframe
6540  *
6541  * Unpacks the information contained in binary @buffer into a structured
6542  * @frame of the HDMI Audio information frame.
6543  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6544  * specification.
6545  *
6546  * Returns 0 on success or a negative error code on failure.
6547  */
6548 static int hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe *frame,
6549 				       void *buffer)
6550 {
6551 	u8 *ptr = buffer;
6552 	int ret;
6553 
6554 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AUDIO ||
6555 	    ptr[1] != 1 ||
6556 	    ptr[2] != HDMI_AUDIO_INFOFRAME_SIZE) {
6557 		return -EINVAL;
6558 	}
6559 
6560 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AUDIO)) != 0)
6561 		return -EINVAL;
6562 
6563 	ret = hdmi_audio_infoframe_init(frame);
6564 	if (ret)
6565 		return ret;
6566 
6567 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6568 
6569 	frame->channels = ptr[0] & 0x7;
6570 	frame->coding_type = (ptr[0] >> 4) & 0xf;
6571 	frame->sample_size = ptr[1] & 0x3;
6572 	frame->sample_frequency = (ptr[1] >> 2) & 0x7;
6573 	frame->coding_type_ext = ptr[2] & 0x1f;
6574 	frame->channel_allocation = ptr[3];
6575 	frame->level_shift_value = (ptr[4] >> 3) & 0xf;
6576 	frame->downmix_inhibit = ptr[4] & 0x80 ? true : false;
6577 
6578 	return 0;
6579 }
6580 
6581 /**
6582  * hdmi_vendor_infoframe_unpack() - unpack binary buffer to a HDMI vendor infoframe
6583  * @buffer: source buffer
6584  * @frame: HDMI Vendor infoframe
6585  *
6586  * Unpacks the information contained in binary @buffer into a structured
6587  * @frame of the HDMI Vendor information frame.
6588  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6589  * specification.
6590  *
6591  * Returns 0 on success or a negative error code on failure.
6592  */
6593 static int
6594 hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe *frame,
6595 				 void *buffer)
6596 {
6597 	u8 *ptr = buffer;
6598 	size_t length;
6599 	int ret;
6600 	u8 hdmi_video_format;
6601 	struct hdmi_vendor_infoframe *hvf = &frame->hdmi;
6602 
6603 	if (ptr[0] != HDMI_INFOFRAME_TYPE_VENDOR ||
6604 	    ptr[1] != 1 ||
6605 	    (ptr[2] != 4 && ptr[2] != 5 && ptr[2] != 6))
6606 		return -EINVAL;
6607 
6608 	length = ptr[2];
6609 
6610 	if (hdmi_infoframe_checksum(buffer,
6611 				    HDMI_INFOFRAME_HEADER_SIZE + length) != 0)
6612 		return -EINVAL;
6613 
6614 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6615 
6616 	/* HDMI OUI */
6617 	if (ptr[0] != 0x03 ||
6618 	    ptr[1] != 0x0c ||
6619 	    ptr[2] != 0x00)
6620 		return -EINVAL;
6621 
6622 	hdmi_video_format = ptr[3] >> 5;
6623 
6624 	if (hdmi_video_format > 0x2)
6625 		return -EINVAL;
6626 
6627 	ret = hdmi_vendor_infoframe_init(hvf);
6628 	if (ret)
6629 		return ret;
6630 
6631 	hvf->length = length;
6632 
6633 	if (hdmi_video_format == 0x2) {
6634 		if (length != 5 && length != 6)
6635 			return -EINVAL;
6636 		hvf->s3d_struct = ptr[4] >> 4;
6637 		if (hvf->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) {
6638 			if (length != 6)
6639 				return -EINVAL;
6640 			hvf->s3d_ext_data = ptr[5] >> 4;
6641 		}
6642 	} else if (hdmi_video_format == 0x1) {
6643 		if (length != 5)
6644 			return -EINVAL;
6645 		hvf->vic = ptr[4];
6646 	} else {
6647 		if (length != 4)
6648 			return -EINVAL;
6649 	}
6650 
6651 	return 0;
6652 }
6653 
6654 /**
6655  * hdmi_infoframe_unpack() - unpack binary buffer to a HDMI infoframe
6656  * @buffer: source buffer
6657  * @frame: HDMI infoframe
6658  *
6659  * Unpacks the information contained in binary buffer @buffer into a structured
6660  * @frame of a HDMI infoframe.
6661  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6662  * specification.
6663  *
6664  * Returns 0 on success or a negative error code on failure.
6665  */
6666 int hdmi_infoframe_unpack(union hdmi_infoframe *frame, void *buffer)
6667 {
6668 	int ret;
6669 	u8 *ptr = buffer;
6670 
6671 	switch (ptr[0]) {
6672 	case HDMI_INFOFRAME_TYPE_AVI:
6673 		ret = hdmi_avi_infoframe_unpack(&frame->avi, buffer);
6674 		break;
6675 	case HDMI_INFOFRAME_TYPE_SPD:
6676 		ret = hdmi_spd_infoframe_unpack(&frame->spd, buffer);
6677 		break;
6678 	case HDMI_INFOFRAME_TYPE_AUDIO:
6679 		ret = hdmi_audio_infoframe_unpack(&frame->audio, buffer);
6680 		break;
6681 	case HDMI_INFOFRAME_TYPE_VENDOR:
6682 		ret = hdmi_vendor_any_infoframe_unpack(&frame->vendor, buffer);
6683 		break;
6684 	default:
6685 		ret = -EINVAL;
6686 		break;
6687 	}
6688 
6689 	return ret;
6690 }
6691 
6692 bool drm_mode_equal(const struct base_drm_display_mode *mode1,
6693 		    const struct drm_display_mode *mode2)
6694 {
6695 	if (mode1->clock == mode2->clock &&
6696 	    mode1->hdisplay == mode2->hdisplay &&
6697 	    mode1->hsync_start == mode2->hsync_start &&
6698 	    mode1->hsync_end == mode2->hsync_end &&
6699 	    mode1->htotal == mode2->htotal &&
6700 	    mode1->vdisplay == mode2->vdisplay &&
6701 	    mode1->vsync_start == mode2->vsync_start &&
6702 	    mode1->vsync_end == mode2->vsync_end &&
6703 	    mode1->vtotal == mode2->vtotal &&
6704 	    mode1->flags == mode2->flags)
6705 		return true;
6706 
6707 	return false;
6708 }
6709 
6710 /**
6711  * drm_mode_sort - sort mode list
6712  * @edid_data: modes structures to sort
6713  *
6714  * Sort @edid_data by favorability, moving good modes to the head of the list.
6715  */
6716 void drm_mode_sort(struct hdmi_edid_data *edid_data)
6717 {
6718 	struct drm_display_mode *a, *b;
6719 	struct drm_display_mode c;
6720 	int diff, i, j;
6721 
6722 	for (i = 0; i < (edid_data->modes - 1); i++) {
6723 		a = &edid_data->mode_buf[i];
6724 		for (j = i + 1; j < edid_data->modes; j++) {
6725 			b = &edid_data->mode_buf[j];
6726 			diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
6727 				((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
6728 			if (diff) {
6729 				if (diff > 0) {
6730 					c = *a;
6731 					*a = *b;
6732 					*b = c;
6733 				}
6734 				continue;
6735 			}
6736 
6737 			diff = b->hdisplay * b->vdisplay
6738 				- a->hdisplay * a->vdisplay;
6739 			if (diff) {
6740 				if (diff > 0) {
6741 					c = *a;
6742 					*a = *b;
6743 					*b = c;
6744 				}
6745 				continue;
6746 			}
6747 
6748 			diff = b->vrefresh - a->vrefresh;
6749 			if (diff) {
6750 				if (diff > 0) {
6751 					c = *a;
6752 					*a = *b;
6753 					*b = c;
6754 				}
6755 				continue;
6756 			}
6757 
6758 			diff = b->clock - a->clock;
6759 			if (diff > 0) {
6760 				c = *a;
6761 				*a = *b;
6762 				*b = c;
6763 			}
6764 		}
6765 	}
6766 	edid_data->preferred_mode = &edid_data->mode_buf[0];
6767 }
6768 
6769 /**
6770  * drm_mode_prune_invalid - remove invalid modes from mode list
6771  * @edid_data: structure store mode list
6772  * Returns:
6773  * Number of valid modes.
6774  */
6775 int drm_mode_prune_invalid(struct hdmi_edid_data *edid_data)
6776 {
6777 	int i, j;
6778 	int num = edid_data->modes;
6779 	int len = sizeof(struct drm_display_mode);
6780 	struct drm_display_mode *mode_buf = edid_data->mode_buf;
6781 
6782 	for (i = 0; i < num; i++) {
6783 		if (mode_buf[i].invalid) {
6784 			/* If mode is invalid, delete it. */
6785 			for (j = i; j < num - 1; j++)
6786 				memcpy(&mode_buf[j], &mode_buf[j + 1], len);
6787 
6788 			num--;
6789 			i--;
6790 		}
6791 	}
6792 	/* Clear redundant modes of mode_buf. */
6793 	memset(&mode_buf[num], 0, len * (edid_data->modes - num));
6794 
6795 	edid_data->modes = num;
6796 	return num;
6797 }
6798 
6799 /**
6800  * drm_rk_filter_whitelist - mark modes out of white list from mode list
6801  * @edid_data: structure store mode list
6802  */
6803 void drm_rk_filter_whitelist(struct hdmi_edid_data *edid_data)
6804 {
6805 	int i, j, white_len;
6806 
6807 	if (sizeof(resolution_white)) {
6808 		white_len = sizeof(resolution_white) /
6809 			sizeof(resolution_white[0]);
6810 		for (i = 0; i < edid_data->modes; i++) {
6811 			for (j = 0; j < white_len; j++) {
6812 				if (drm_mode_equal(&resolution_white[j],
6813 						   &edid_data->mode_buf[i]))
6814 					break;
6815 			}
6816 
6817 			if (j == white_len)
6818 				edid_data->mode_buf[i].invalid = true;
6819 		}
6820 	}
6821 }
6822 
6823 void drm_rk_select_mode(struct hdmi_edid_data *edid_data,
6824 			struct base_screen_info *screen_info)
6825 {
6826 	int i;
6827 	const struct base_drm_display_mode *base_mode;
6828 
6829 	if (!screen_info) {
6830 		/* define init resolution here */
6831 	} else {
6832 		base_mode = &screen_info->mode;
6833 		for (i = 0; i < edid_data->modes; i++) {
6834 			if (drm_mode_equal(base_mode,
6835 					   &edid_data->mode_buf[i])) {
6836 				edid_data->preferred_mode =
6837 					&edid_data->mode_buf[i];
6838 				break;
6839 			}
6840 		}
6841 	}
6842 }
6843 
6844 /**
6845  * drm_do_probe_ddc_edid() - get EDID information via I2C
6846  * @adap: ddc adapter
6847  * @buf: EDID data buffer to be filled
6848  * @block: 128 byte EDID block to start fetching from
6849  * @len: EDID data buffer length to fetch
6850  *
6851  * Try to fetch EDID information by calling I2C driver functions.
6852  *
6853  * Return: 0 on success or -1 on failure.
6854  */
6855 static int
6856 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
6857 		      size_t len)
6858 {
6859 	unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
6860 	unsigned char segment = block >> 1;
6861 	unsigned char xfers = segment ? 3 : 2;
6862 	int ret, retries = 5;
6863 
6864 	do {
6865 		struct i2c_msg msgs[] = {
6866 			{
6867 				.addr	= DDC_SEGMENT_ADDR,
6868 				.flags	= 0,
6869 				.len	= 1,
6870 				.buf	= &segment,
6871 			}, {
6872 				.addr	= DDC_ADDR,
6873 				.flags	= 0,
6874 				.len	= 1,
6875 				.buf	= &start,
6876 			}, {
6877 				.addr	= DDC_ADDR,
6878 				.flags	= I2C_M_RD,
6879 				.len	= len,
6880 				.buf	= buf,
6881 			}
6882 		};
6883 
6884 		if (adap->ops) {
6885 			ret = adap->ops->xfer(adap->i2c_bus, &msgs[3 - xfers],
6886 					      xfers);
6887 			if (!ret)
6888 				ret = xfers;
6889 		} else {
6890 			ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
6891 		}
6892 	} while (ret != xfers && --retries);
6893 
6894 	/* All msg transfer successfully. */
6895 	return ret == xfers ? 0 : -1;
6896 }
6897 
6898 int drm_do_get_edid(struct ddc_adapter *adap, u8 *edid)
6899 {
6900 	int i, j, block_num, block = 0;
6901 	bool edid_corrupt;
6902 #ifdef DEBUG
6903 	u8 *buff;
6904 #endif
6905 
6906 	/* base block fetch */
6907 	for (i = 0; i < 4; i++) {
6908 		if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
6909 			goto err;
6910 		if (drm_edid_block_valid(edid, 0, true,
6911 					 &edid_corrupt))
6912 			break;
6913 		if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
6914 			printf("edid base block is 0, get edid failed\n");
6915 			goto err;
6916 		}
6917 	}
6918 
6919 	if (i == 4)
6920 		goto err;
6921 
6922 	block++;
6923 	/* get the number of extensions */
6924 	block_num = edid[0x7e];
6925 
6926 	for (j = 1; j <= block_num; j++) {
6927 		for (i = 0; i < 4; i++) {
6928 			if (drm_do_probe_ddc_edid(adap, &edid[0x80 * j], j,
6929 						  HDMI_EDID_BLOCK_SIZE))
6930 				goto err;
6931 			if (drm_edid_block_valid(&edid[0x80 * j], j,
6932 						 true, NULL))
6933 				break;
6934 		}
6935 
6936 		if (i == 4)
6937 			goto err;
6938 		block++;
6939 	}
6940 
6941 #ifdef DEBUG
6942 	printf("RAW EDID:\n");
6943 	for (i = 0; i < block_num + 1; i++) {
6944 		buff = &edid[0x80 * i];
6945 		for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
6946 			if (j % 16 == 0)
6947 				printf("\n");
6948 			printf("0x%02x, ", buff[j]);
6949 		}
6950 		printf("\n");
6951 	}
6952 #endif
6953 
6954 	return 0;
6955 
6956 err:
6957 	printf("can't get edid block:%d\n", block);
6958 	/* clear all read edid block, include invalid block */
6959 	memset(edid, 0, HDMI_EDID_BLOCK_SIZE * (block + 1));
6960 	return -EFAULT;
6961 }
6962 
6963 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
6964 			     void *buffer, size_t size)
6965 {
6966 	struct i2c_msg msgs[2] = {
6967 		{
6968 			.addr = addr,
6969 			.flags = 0,
6970 			.len = 1,
6971 			.buf = &offset,
6972 		}, {
6973 			.addr = addr,
6974 			.flags = I2C_M_RD,
6975 			.len = size,
6976 			.buf = buffer,
6977 		}
6978 	};
6979 
6980 	return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
6981 }
6982 
6983 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
6984 			      const void *buffer, size_t size)
6985 {
6986 	struct i2c_msg msg = {
6987 		.addr = addr,
6988 		.flags = 0,
6989 		.len = 1 + size,
6990 		.buf = NULL,
6991 	};
6992 	void *data;
6993 	int err;
6994 
6995 	data = malloc(1 + size);
6996 	if (!data)
6997 		return -ENOMEM;
6998 
6999 	msg.buf = data;
7000 
7001 	memcpy(data, &offset, sizeof(offset));
7002 	memcpy(data + 1, buffer, size);
7003 
7004 	err = adap->ddc_xfer(adap, &msg, 1);
7005 
7006 	free(data);
7007 
7008 	return err;
7009 }
7010 
7011 /**
7012  * drm_scdc_readb - read a single byte from SCDC
7013  * @adap: ddc adapter
7014  * @offset: offset of register to read
7015  * @value: return location for the register value
7016  *
7017  * Reads a single byte from SCDC. This is a convenience wrapper around the
7018  * drm_scdc_read() function.
7019  *
7020  * Returns:
7021  * 0 on success or a negative error code on failure.
7022  */
7023 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
7024 		  u8 *value)
7025 {
7026 	return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
7027 			     sizeof(*value));
7028 }
7029 
7030 /**
7031  * drm_scdc_writeb - write a single byte to SCDC
7032  * @adap: ddc adapter
7033  * @offset: offset of register to read
7034  * @value: return location for the register value
7035  *
7036  * Writes a single byte to SCDC. This is a convenience wrapper around the
7037  * drm_scdc_write() function.
7038  *
7039  * Returns:
7040  * 0 on success or a negative error code on failure.
7041  */
7042 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
7043 		   u8 value)
7044 {
7045 	return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
7046 			      sizeof(value));
7047 }
7048 
7049