xref: /rk3399_rockchip-uboot/common/edid.c (revision 7e044b9aeceaa3c07ba4dd8939761bd87f4c8300)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * (C) Copyright 2010
5  * Petr Stetiar <ynezz@true.cz>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Contains stolen code from ddcprobe project which is:
10  * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11  * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12  */
13 
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28 
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr)             ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 	(((edid)->version > (maj)) || \
38 	 ((edid)->version == (maj) && (edid)->revision > (min)))
39 
40 /*
41  * EDID blocks out in the wild have a variety of bugs, try to collect
42  * them here (note that userspace may work around broken monitors first,
43  * but fixes should make their way here so that the kernel "just works"
44  * on as many displays as possible).
45  */
46 
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60		BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75		BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM		BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56  * maximum size and use that.
57  */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP		BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC			BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC			BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC			BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC			BIT(11)
73 
74 struct detailed_mode_closure {
75 	struct edid *edid;
76 	struct hdmi_edid_data *data;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101 
102 	/* Belinea 10 15 55 */
103 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Envision Peripherals, Inc. EN-7100e */
107 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 	/* Envision EN2028 */
109 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110 
111 	/* Funai Electronics PM36B */
112 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 	  EDID_QUIRK_DETAILED_IN_CM },
114 
115 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 
146 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149 
150 /*
151  * Probably taken from CEA-861 spec.
152  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153  *
154  * Index using the VIC.
155  */
156 /*
157  * From CEA/CTA-861 spec.
158  * Do not access directly, instead always use cea_mode_for_vic().
159  */
160 static const struct drm_display_mode edid_cea_modes_1[] = {
161 	/* 1 - 640x480@60Hz */
162 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 		   752, 800, 480, 490, 492, 525, 0,
164 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
165 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
166 	/* 2 - 720x480@60Hz */
167 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
168 		   798, 858, 480, 489, 495, 525, 0,
169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
170 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
171 	/* 3 - 720x480@60Hz */
172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
173 		   798, 858, 480, 489, 495, 525, 0,
174 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
175 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
176 	/* 4 - 1280x720@60Hz */
177 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
178 		   1430, 1650, 720, 725, 730, 750, 0,
179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
180 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
181 	/* 5 - 1920x1080i@60Hz */
182 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
183 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
185 			DRM_MODE_FLAG_INTERLACE),
186 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
187 	/* 6 - 720(1440)x480i@60Hz */
188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
189 		   801, 858, 480, 488, 494, 525, 0,
190 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
191 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
192 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
193 	/* 7 - 720(1440)x480i@60Hz */
194 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
195 		   801, 858, 480, 488, 494, 525, 0,
196 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
197 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
198 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
199 	/* 8 - 720(1440)x240@60Hz */
200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
201 		   801, 858, 240, 244, 247, 262, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
203 			DRM_MODE_FLAG_DBLCLK),
204 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
205 	/* 9 - 720(1440)x240@60Hz */
206 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
207 		   801, 858, 240, 244, 247, 262, 0,
208 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
209 			DRM_MODE_FLAG_DBLCLK),
210 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
211 	/* 10 - 2880x480i@60Hz */
212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
213 		   3204, 3432, 480, 488, 494, 525, 0,
214 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
215 			DRM_MODE_FLAG_INTERLACE),
216 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
217 	/* 11 - 2880x480i@60Hz */
218 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
219 		   3204, 3432, 480, 488, 494, 525, 0,
220 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
221 			DRM_MODE_FLAG_INTERLACE),
222 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
223 	/* 12 - 2880x240@60Hz */
224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
225 		   3204, 3432, 240, 244, 247, 262, 0,
226 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
227 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
228 	/* 13 - 2880x240@60Hz */
229 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
230 		   3204, 3432, 240, 244, 247, 262, 0,
231 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
232 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
233 	/* 14 - 1440x480@60Hz */
234 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
235 		   1596, 1716, 480, 489, 495, 525, 0,
236 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
237 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
238 	/* 15 - 1440x480@60Hz */
239 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
240 		   1596, 1716, 480, 489, 495, 525, 0,
241 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
242 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
243 	/* 16 - 1920x1080@60Hz */
244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
245 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
247 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
248 	/* 17 - 720x576@50Hz */
249 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
250 		   796, 864, 576, 581, 586, 625, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
252 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
253 	/* 18 - 720x576@50Hz */
254 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
255 		   796, 864, 576, 581, 586, 625, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
257 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
258 	/* 19 - 1280x720@50Hz */
259 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
260 		   1760, 1980, 720, 725, 730, 750, 0,
261 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
262 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
263 	/* 20 - 1920x1080i@50Hz */
264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
265 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
267 			DRM_MODE_FLAG_INTERLACE),
268 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
269 	/* 21 - 720(1440)x576i@50Hz */
270 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
271 		   795, 864, 576, 580, 586, 625, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
273 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
274 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
275 	/* 22 - 720(1440)x576i@50Hz */
276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
277 		   795, 864, 576, 580, 586, 625, 0,
278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
279 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
280 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
281 	/* 23 - 720(1440)x288@50Hz */
282 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
283 		   795, 864, 288, 290, 293, 312, 0,
284 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
285 			DRM_MODE_FLAG_DBLCLK),
286 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
287 	/* 24 - 720(1440)x288@50Hz */
288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
289 		   795, 864, 288, 290, 293, 312, 0,
290 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
291 			DRM_MODE_FLAG_DBLCLK),
292 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
293 	/* 25 - 2880x576i@50Hz */
294 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
295 		   3180, 3456, 576, 580, 586, 625, 0,
296 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
297 			DRM_MODE_FLAG_INTERLACE),
298 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
299 	/* 26 - 2880x576i@50Hz */
300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
301 		   3180, 3456, 576, 580, 586, 625, 0,
302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
303 			DRM_MODE_FLAG_INTERLACE),
304 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
305 	/* 27 - 2880x288@50Hz */
306 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
307 		   3180, 3456, 288, 290, 293, 312, 0,
308 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
309 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
310 	/* 28 - 2880x288@50Hz */
311 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
312 		   3180, 3456, 288, 290, 293, 312, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
314 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
315 	/* 29 - 1440x576@50Hz */
316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
317 		   1592, 1728, 576, 581, 586, 625, 0,
318 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
319 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
320 	/* 30 - 1440x576@50Hz */
321 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
322 		   1592, 1728, 576, 581, 586, 625, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
324 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
325 	/* 31 - 1920x1080@50Hz */
326 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
327 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
329 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
330 	/* 32 - 1920x1080@24Hz */
331 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
332 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
334 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
335 	/* 33 - 1920x1080@25Hz */
336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
337 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
339 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
340 	/* 34 - 1920x1080@30Hz */
341 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
342 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
344 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
345 	/* 35 - 2880x480@60Hz */
346 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
347 		   3192, 3432, 480, 489, 495, 525, 0,
348 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
349 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
350 	/* 36 - 2880x480@60Hz */
351 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
352 		   3192, 3432, 480, 489, 495, 525, 0,
353 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
354 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
355 	/* 37 - 2880x576@50Hz */
356 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
357 		   3184, 3456, 576, 581, 586, 625, 0,
358 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
359 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
360 	/* 38 - 2880x576@50Hz */
361 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
362 		   3184, 3456, 576, 581, 586, 625, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
364 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
365 	/* 39 - 1920x1080i@50Hz */
366 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
367 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
369 			DRM_MODE_FLAG_INTERLACE),
370 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
371 	/* 40 - 1920x1080i@100Hz */
372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
373 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
375 			DRM_MODE_FLAG_INTERLACE),
376 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
377 	/* 41 - 1280x720@100Hz */
378 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
379 		   1760, 1980, 720, 725, 730, 750, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
381 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
382 	/* 42 - 720x576@100Hz */
383 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
384 		   796, 864, 576, 581, 586, 625, 0,
385 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
386 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
387 	/* 43 - 720x576@100Hz */
388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
389 		   796, 864, 576, 581, 586, 625, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
391 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
392 	/* 44 - 720(1440)x576i@100Hz */
393 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
394 		   795, 864, 576, 580, 586, 625, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
396 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
397 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
398 	/* 45 - 720(1440)x576i@100Hz */
399 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
400 		   795, 864, 576, 580, 586, 625, 0,
401 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
402 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
403 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
404 	/* 46 - 1920x1080i@120Hz */
405 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
406 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
408 			DRM_MODE_FLAG_INTERLACE),
409 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
410 	/* 47 - 1280x720@120Hz */
411 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
412 		   1430, 1650, 720, 725, 730, 750, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
414 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
415 	/* 48 - 720x480@120Hz */
416 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
417 		   798, 858, 480, 489, 495, 525, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
419 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
420 	/* 49 - 720x480@120Hz */
421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
422 		   798, 858, 480, 489, 495, 525, 0,
423 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
424 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
425 	/* 50 - 720(1440)x480i@120Hz */
426 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
427 		   801, 858, 480, 488, 494, 525, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
429 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
430 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
431 	/* 51 - 720(1440)x480i@120Hz */
432 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
433 		   801, 858, 480, 488, 494, 525, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
435 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
436 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
437 	/* 52 - 720x576@200Hz */
438 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
439 		   796, 864, 576, 581, 586, 625, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
441 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
442 	/* 53 - 720x576@200Hz */
443 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
444 		   796, 864, 576, 581, 586, 625, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
446 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
447 	/* 54 - 720(1440)x576i@200Hz */
448 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
449 		   795, 864, 576, 580, 586, 625, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
451 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
452 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
453 	/* 55 - 720(1440)x576i@200Hz */
454 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
455 		   795, 864, 576, 580, 586, 625, 0,
456 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
457 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
458 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
459 	/* 56 - 720x480@240Hz */
460 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
461 		   798, 858, 480, 489, 495, 525, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
463 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
464 	/* 57 - 720x480@240Hz */
465 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
466 		   798, 858, 480, 489, 495, 525, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
468 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
469 	/* 58 - 720(1440)x480i@240 */
470 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
471 		   801, 858, 480, 488, 494, 525, 0,
472 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
473 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
474 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
475 	/* 59 - 720(1440)x480i@240 */
476 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
477 		   801, 858, 480, 488, 494, 525, 0,
478 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
479 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
480 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
481 	/* 60 - 1280x720@24Hz */
482 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
483 		   3080, 3300, 720, 725, 730, 750, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
485 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
486 	/* 61 - 1280x720@25Hz */
487 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
488 		   3740, 3960, 720, 725, 730, 750, 0,
489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
490 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
491 	/* 62 - 1280x720@30Hz */
492 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
493 		   3080, 3300, 720, 725, 730, 750, 0,
494 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
495 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
496 	/* 63 - 1920x1080@120Hz */
497 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
498 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
500 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
501 	/* 64 - 1920x1080@100Hz */
502 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
503 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
505 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
506 	/* 65 - 1280x720@24Hz */
507 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
508 		   3080, 3300, 720, 725, 730, 750, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
510 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
511 	/* 66 - 1280x720@25Hz */
512 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
513 		   3740, 3960, 720, 725, 730, 750, 0,
514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
515 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
516 	/* 67 - 1280x720@30Hz */
517 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
518 		   3080, 3300, 720, 725, 730, 750, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
520 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
521 	/* 68 - 1280x720@50Hz */
522 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
523 		   1760, 1980, 720, 725, 730, 750, 0,
524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
525 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
526 	/* 69 - 1280x720@60Hz */
527 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
528 		   1430, 1650, 720, 725, 730, 750, 0,
529 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
530 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
531 	/* 70 - 1280x720@100Hz */
532 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
533 		   1760, 1980, 720, 725, 730, 750, 0,
534 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
535 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
536 	/* 71 - 1280x720@120Hz */
537 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
538 		   1430, 1650, 720, 725, 730, 750, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
540 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
541 	/* 72 - 1920x1080@24Hz */
542 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
543 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
544 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
545 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
546 	/* 73 - 1920x1080@25Hz */
547 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
548 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
550 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
551 	/* 74 - 1920x1080@30Hz */
552 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
553 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
554 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
555 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
556 	/* 75 - 1920x1080@50Hz */
557 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
558 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
559 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
560 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
561 	/* 76 - 1920x1080@60Hz */
562 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
563 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
565 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
566 	/* 77 - 1920x1080@100Hz */
567 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
568 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
569 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
570 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
571 	/* 78 - 1920x1080@120Hz */
572 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
573 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
575 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
576 	/* 79 - 1680x720@24Hz */
577 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
578 		   3080, 3300, 720, 725, 730, 750, 0,
579 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
580 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
581 	/* 80 - 1680x720@25Hz */
582 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
583 		   2948, 3168, 720, 725, 730, 750, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
585 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
586 	/* 81 - 1680x720@30Hz */
587 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
588 		   2420, 2640, 720, 725, 730, 750, 0,
589 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
590 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
591 	/* 82 - 1680x720@50Hz */
592 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
593 		   1980, 2200, 720, 725, 730, 750, 0,
594 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
595 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
596 	/* 83 - 1680x720@60Hz */
597 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
598 		   1980, 2200, 720, 725, 730, 750, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
600 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
601 	/* 84 - 1680x720@100Hz */
602 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
603 		   1780, 2000, 720, 725, 730, 825, 0,
604 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
605 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
606 	/* 85 - 1680x720@120Hz */
607 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
608 		   1780, 2000, 720, 725, 730, 825, 0,
609 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
610 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
611 	/* 86 - 2560x1080@24Hz */
612 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
613 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
615 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
616 	/* 87 - 2560x1080@25Hz */
617 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
618 		   3052, 3200, 1080, 1084, 1089, 1125, 0,
619 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
620 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
621 	/* 88 - 2560x1080@30Hz */
622 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
623 		   3372, 3520, 1080, 1084, 1089, 1125, 0,
624 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
625 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
626 	/* 89 - 2560x1080@50Hz */
627 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
628 		   3152, 3300, 1080, 1084, 1089, 1125, 0,
629 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
630 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
631 	/* 90 - 2560x1080@60Hz */
632 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
633 		   2852, 3000, 1080, 1084, 1089, 1100, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
635 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
636 	/* 91 - 2560x1080@100Hz */
637 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
638 		   2822, 2970, 1080, 1084, 1089, 1250, 0,
639 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
640 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
641 	/* 92 - 2560x1080@120Hz */
642 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
643 		   3152, 3300, 1080, 1084, 1089, 1250, 0,
644 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
645 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
646 	/* 93 - 3840x2160p@24Hz 16:9 */
647 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
648 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
649 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
650 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
651 	/* 94 - 3840x2160p@25Hz 16:9 */
652 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
653 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
654 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
655 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
656 	/* 95 - 3840x2160p@30Hz 16:9 */
657 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
658 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
660 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 	/* 96 - 3840x2160p@50Hz 16:9 */
662 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
663 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
664 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
665 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 	/* 97 - 3840x2160p@60Hz 16:9 */
667 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
668 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
669 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
670 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
671 	/* 98 - 4096x2160p@24Hz 256:135 */
672 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
673 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
674 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
675 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
676 	/* 99 - 4096x2160p@25Hz 256:135 */
677 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
678 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
679 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
680 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
681 	/* 100 - 4096x2160p@30Hz 256:135 */
682 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
683 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
684 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
686 	/* 101 - 4096x2160p@50Hz 256:135 */
687 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
688 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
689 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
691 	/* 102 - 4096x2160p@60Hz 256:135 */
692 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
693 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
694 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
695 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
696 	/* 103 - 3840x2160p@24Hz 64:27 */
697 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
698 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
699 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
701 	/* 104 - 3840x2160p@25Hz 64:27 */
702 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
703 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
704 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
706 	/* 105 - 3840x2160p@30Hz 64:27 */
707 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
708 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
709 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
710 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
711 	/* 106 - 3840x2160p@50Hz 64:27 */
712 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
713 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
714 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
715 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
716 	/* 107 - 3840x2160p@60Hz 64:27 */
717 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
718 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
719 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
720 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
721 	/* 108 - 1280x720@48Hz 16:9 */
722 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
723 		   2280, 2500, 720, 725, 730, 750, 0,
724 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
725 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 	/* 109 - 1280x720@48Hz 64:27 */
727 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
728 		   2280, 2500, 720, 725, 730, 750, 0,
729 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
730 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
731 	/* 110 - 1680x720@48Hz 64:27 */
732 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
733 		   2530, 2750, 720, 725, 730, 750, 0,
734 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
735 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
736 	/* 111 - 1920x1080@48Hz 16:9 */
737 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
738 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
739 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
740 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 	/* 112 - 1920x1080@48Hz 64:27 */
742 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
743 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
744 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
745 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
746 	/* 113 - 2560x1080@48Hz 64:27 */
747 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
748 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
749 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
751 	/* 114 - 3840x2160@48Hz 16:9 */
752 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
753 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
754 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 115 - 4096x2160@48Hz 256:135 */
757 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
758 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
761 	/* 116 - 3840x2160@48Hz 64:27 */
762 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
763 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
766 	/* 117 - 3840x2160@100Hz 16:9 */
767 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
768 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 	/* 118 - 3840x2160@120Hz 16:9 */
772 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
773 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
774 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
775 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 119 - 3840x2160@100Hz 64:27 */
777 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
778 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
779 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
780 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
781 	/* 120 - 3840x2160@120Hz 64:27 */
782 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
783 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
784 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
785 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
786 	/* 121 - 5120x2160@24Hz 64:27 */
787 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
788 		   7204, 7500, 2160, 2168, 2178, 2200, 0,
789 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
790 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
791 	/* 122 - 5120x2160@25Hz 64:27 */
792 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
793 		   6904, 7200, 2160, 2168, 2178, 2200, 0,
794 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
795 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
796 	/* 123 - 5120x2160@30Hz 64:27 */
797 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
798 		   5872, 6000, 2160, 2168, 2178, 2200, 0,
799 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
800 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
801 	/* 124 - 5120x2160@48Hz 64:27 */
802 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
803 		   5954, 6250, 2160, 2168, 2178, 2475, 0,
804 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
805 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
806 	/* 125 - 5120x2160@50Hz 64:27 */
807 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
808 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
809 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
811 	/* 126 - 5120x2160@60Hz 64:27 */
812 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
813 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
814 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
816 	/* 127 - 5120x2160@100Hz 64:27 */
817 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
818 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
819 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
821 };
822 
823 static const struct drm_display_mode edid_cea_modes_193[] = {
824 	/* 193 - 5120x2160@120Hz 64:27 */
825 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
826 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
829 	/* 194 - 7680x4320@24Hz 16:9 */
830 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
831 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
832 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 	 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 	/* 195 - 7680x4320@25Hz 16:9 */
835 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
836 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
837 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 	 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 	/* 196 - 7680x4320@30Hz 16:9 */
840 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
841 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
842 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 	 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 	/* 197 - 7680x4320@48Hz 16:9 */
845 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
846 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
847 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
848 	 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 198 - 7680x4320@50Hz 16:9 */
850 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
851 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
852 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
853 	 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 199 - 7680x4320@60Hz 16:9 */
855 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
856 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 200 - 7680x4320@100Hz 16:9 */
860 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
861 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 	/* 201 - 7680x4320@120Hz 16:9 */
865 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
866 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 202 - 7680x4320@24Hz 64:27 */
870 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
871 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
872 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 	.vrefresh = 24,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
874 	/* 203 - 7680x4320@25Hz 64:27 */
875 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
876 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
877 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
878 	.vrefresh = 25,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
879 	/* 204 - 7680x4320@30Hz 64:27 */
880 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
881 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
882 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
883 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
884 	/* 205 - 7680x4320@48Hz 64:27 */
885 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
886 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
887 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
888 	.vrefresh = 48,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
889 	/* 206 - 7680x4320@50Hz 64:27 */
890 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
891 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
892 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
893 	.vrefresh = 50,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
894 	/* 207 - 7680x4320@60Hz 64:27 */
895 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
896 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
897 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
898 	.vrefresh = 60,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
899 	/* 208 - 7680x4320@100Hz 64:27 */
900 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
901 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
902 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 	.vrefresh = 100,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
904 	/* 209 - 7680x4320@120Hz 64:27 */
905 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
906 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
909 	/* 210 - 10240x4320@24Hz 64:27 */
910 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
911 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
912 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
914 	/* 211 - 10240x4320@25Hz 64:27 */
915 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
916 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
917 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
919 	/* 212 - 10240x4320@30Hz 64:27 */
920 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
921 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
924 	/* 213 - 10240x4320@48Hz 64:27 */
925 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
926 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
929 	/* 214 - 10240x4320@50Hz 64:27 */
930 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
931 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
934 	/* 215 - 10240x4320@60Hz 64:27 */
935 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
936 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
939 	/* 216 - 10240x4320@100Hz 64:27 */
940 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
941 		   12608, 13200, 4320, 4336, 4356, 4500, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
944 	/* 217 - 10240x4320@120Hz 64:27 */
945 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
946 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
947 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
949 	/* 218 - 4096x2160@100Hz 256:135 */
950 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
951 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
952 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
953 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
954 	/* 219 - 4096x2160@120Hz 256:135 */
955 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
956 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
959 };
960 
961 /*
962  * HDMI 1.4 4k modes. Index using the VIC.
963  */
964 static const struct drm_display_mode edid_4k_modes[] = {
965 	/* 0 - dummy, VICs start at 1 */
966 	{ },
967 	/* 1 - 3840x2160@30Hz */
968 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
969 		   3840, 4016, 4104, 4400,
970 		   2160, 2168, 2178, 2250, 0,
971 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 	  .vrefresh = 30, },
973 	/* 2 - 3840x2160@25Hz */
974 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
975 		   3840, 4896, 4984, 5280,
976 		   2160, 2168, 2178, 2250, 0,
977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 	  .vrefresh = 25, },
979 	/* 3 - 3840x2160@24Hz */
980 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
981 		   3840, 5116, 5204, 5500,
982 		   2160, 2168, 2178, 2250, 0,
983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 	  .vrefresh = 24, },
985 	/* 4 - 4096x2160@24Hz (SMPTE) */
986 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
987 		   4096, 5116, 5204, 5500,
988 		   2160, 2168, 2178, 2250, 0,
989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
990 	  .vrefresh = 24, },
991 };
992 
993 /*
994  * Autogenerated from the DMT spec.
995  * This table is copied from xfree86/modes/xf86EdidModes.c.
996  */
997 static const struct drm_display_mode drm_dmt_modes[] = {
998 	/* 0x01 - 640x350@85Hz */
999 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1000 		   736, 832, 350, 382, 385, 445, 0,
1001 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1002 	/* 0x02 - 640x400@85Hz */
1003 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1004 		   736, 832, 400, 401, 404, 445, 0,
1005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1006 	/* 0x03 - 720x400@85Hz */
1007 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
1008 		   828, 936, 400, 401, 404, 446, 0,
1009 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1010 	/* 0x04 - 640x480@60Hz */
1011 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1012 		   752, 800, 480, 490, 492, 525, 0,
1013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1014 	/* 0x05 - 640x480@72Hz */
1015 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1016 		   704, 832, 480, 489, 492, 520, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1018 	/* 0x06 - 640x480@75Hz */
1019 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1020 		   720, 840, 480, 481, 484, 500, 0,
1021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1022 	/* 0x07 - 640x480@85Hz */
1023 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
1024 		   752, 832, 480, 481, 484, 509, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1026 	/* 0x08 - 800x600@56Hz */
1027 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1028 		   896, 1024, 600, 601, 603, 625, 0,
1029 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1030 	/* 0x09 - 800x600@60Hz */
1031 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1032 		   968, 1056, 600, 601, 605, 628, 0,
1033 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1034 	/* 0x0a - 800x600@72Hz */
1035 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1036 		   976, 1040, 600, 637, 643, 666, 0,
1037 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1038 	/* 0x0b - 800x600@75Hz */
1039 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1040 		   896, 1056, 600, 601, 604, 625, 0,
1041 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1042 	/* 0x0c - 800x600@85Hz */
1043 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
1044 		   896, 1048, 600, 601, 604, 631, 0,
1045 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1046 	/* 0x0d - 800x600@120Hz RB */
1047 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
1048 		   880, 960, 600, 603, 607, 636, 0,
1049 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1050 	/* 0x0e - 848x480@60Hz */
1051 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
1052 		   976, 1088, 480, 486, 494, 517, 0,
1053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1054 	/* 0x0f - 1024x768@43Hz, interlace */
1055 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1056 		   1208, 1264, 768, 768, 772, 817, 0,
1057 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1058 		   DRM_MODE_FLAG_INTERLACE) },
1059 	/* 0x10 - 1024x768@60Hz */
1060 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1061 		   1184, 1344, 768, 771, 777, 806, 0,
1062 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1063 	/* 0x11 - 1024x768@70Hz */
1064 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1065 		   1184, 1328, 768, 771, 777, 806, 0,
1066 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1067 	/* 0x12 - 1024x768@75Hz */
1068 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1069 		   1136, 1312, 768, 769, 772, 800, 0,
1070 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1071 	/* 0x13 - 1024x768@85Hz */
1072 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1073 		   1168, 1376, 768, 769, 772, 808, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1075 	/* 0x14 - 1024x768@120Hz RB */
1076 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1077 		   1104, 1184, 768, 771, 775, 813, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1079 	/* 0x15 - 1152x864@75Hz */
1080 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1081 		   1344, 1600, 864, 865, 868, 900, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1083 	/* 0x55 - 1280x720@60Hz */
1084 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1085 		   1430, 1650, 720, 725, 730, 750, 0,
1086 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1087 	/* 0x16 - 1280x768@60Hz RB */
1088 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1089 		   1360, 1440, 768, 771, 778, 790, 0,
1090 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1091 	/* 0x17 - 1280x768@60Hz */
1092 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1093 		   1472, 1664, 768, 771, 778, 798, 0,
1094 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1095 	/* 0x18 - 1280x768@75Hz */
1096 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1097 		   1488, 1696, 768, 771, 778, 805, 0,
1098 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1099 	/* 0x19 - 1280x768@85Hz */
1100 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1101 		   1496, 1712, 768, 771, 778, 809, 0,
1102 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1103 	/* 0x1a - 1280x768@120Hz RB */
1104 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1105 		   1360, 1440, 768, 771, 778, 813, 0,
1106 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1107 	/* 0x1b - 1280x800@60Hz RB */
1108 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1109 		   1360, 1440, 800, 803, 809, 823, 0,
1110 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1111 	/* 0x1c - 1280x800@60Hz */
1112 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1113 		   1480, 1680, 800, 803, 809, 831, 0,
1114 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1115 	/* 0x1d - 1280x800@75Hz */
1116 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1117 		   1488, 1696, 800, 803, 809, 838, 0,
1118 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1119 	/* 0x1e - 1280x800@85Hz */
1120 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1121 		   1496, 1712, 800, 803, 809, 843, 0,
1122 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1123 	/* 0x1f - 1280x800@120Hz RB */
1124 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1125 		   1360, 1440, 800, 803, 809, 847, 0,
1126 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1127 	/* 0x20 - 1280x960@60Hz */
1128 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1129 		   1488, 1800, 960, 961, 964, 1000, 0,
1130 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1131 	/* 0x21 - 1280x960@85Hz */
1132 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1133 		   1504, 1728, 960, 961, 964, 1011, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1135 	/* 0x22 - 1280x960@120Hz RB */
1136 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1137 		   1360, 1440, 960, 963, 967, 1017, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1139 	/* 0x23 - 1280x1024@60Hz */
1140 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1141 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1143 	/* 0x24 - 1280x1024@75Hz */
1144 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1145 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1146 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1147 	/* 0x25 - 1280x1024@85Hz */
1148 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1149 		   1504, 1728, 1024, 1025, 1028, 1072, 0,
1150 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1151 	/* 0x26 - 1280x1024@120Hz RB */
1152 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1153 		   1360, 1440, 1024, 1027, 1034, 1084, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1155 	/* 0x27 - 1360x768@60Hz */
1156 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1157 		   1536, 1792, 768, 771, 777, 795, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1159 	/* 0x28 - 1360x768@120Hz RB */
1160 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1161 		   1440, 1520, 768, 771, 776, 813, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1163 	/* 0x51 - 1366x768@60Hz */
1164 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1165 		   1579, 1792, 768, 771, 774, 798, 0,
1166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1167 	/* 0x56 - 1366x768@60Hz */
1168 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1169 		   1436, 1500, 768, 769, 772, 800, 0,
1170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1171 	/* 0x29 - 1400x1050@60Hz RB */
1172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1173 		   1480, 1560, 1050, 1053, 1057, 1080, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1175 	/* 0x2a - 1400x1050@60Hz */
1176 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1177 		   1632, 1864, 1050, 1053, 1057, 1089, 0,
1178 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1179 	/* 0x2b - 1400x1050@75Hz */
1180 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1181 		   1648, 1896, 1050, 1053, 1057, 1099, 0,
1182 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1183 	/* 0x2c - 1400x1050@85Hz */
1184 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1185 		   1656, 1912, 1050, 1053, 1057, 1105, 0,
1186 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1187 	/* 0x2d - 1400x1050@120Hz RB */
1188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1189 		   1480, 1560, 1050, 1053, 1057, 1112, 0,
1190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1191 	/* 0x2e - 1440x900@60Hz RB */
1192 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1193 		   1520, 1600, 900, 903, 909, 926, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1195 	/* 0x2f - 1440x900@60Hz */
1196 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1197 		   1672, 1904, 900, 903, 909, 934, 0,
1198 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1199 	/* 0x30 - 1440x900@75Hz */
1200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1201 		   1688, 1936, 900, 903, 909, 942, 0,
1202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1203 	/* 0x31 - 1440x900@85Hz */
1204 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1205 		   1696, 1952, 900, 903, 909, 948, 0,
1206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1207 	/* 0x32 - 1440x900@120Hz RB */
1208 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1209 		   1520, 1600, 900, 903, 909, 953, 0,
1210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1211 	/* 0x53 - 1600x900@60Hz */
1212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1213 		   1704, 1800, 900, 901, 904, 1000, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1215 	/* 0x33 - 1600x1200@60Hz */
1216 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1217 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1219 	/* 0x34 - 1600x1200@65Hz */
1220 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1221 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1223 	/* 0x35 - 1600x1200@70Hz */
1224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1225 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1227 	/* 0x36 - 1600x1200@75Hz */
1228 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1229 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1231 	/* 0x37 - 1600x1200@85Hz */
1232 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1233 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1235 	/* 0x38 - 1600x1200@120Hz RB */
1236 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1237 		   1680, 1760, 1200, 1203, 1207, 1271, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1239 	/* 0x39 - 1680x1050@60Hz RB */
1240 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1241 		   1760, 1840, 1050, 1053, 1059, 1080, 0,
1242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1243 	/* 0x3a - 1680x1050@60Hz */
1244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1245 		   1960, 2240, 1050, 1053, 1059, 1089, 0,
1246 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1247 	/* 0x3b - 1680x1050@75Hz */
1248 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1249 		   1976, 2272, 1050, 1053, 1059, 1099, 0,
1250 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1251 	/* 0x3c - 1680x1050@85Hz */
1252 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1253 		   1984, 2288, 1050, 1053, 1059, 1105, 0,
1254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1255 	/* 0x3d - 1680x1050@120Hz RB */
1256 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1257 		   1760, 1840, 1050, 1053, 1059, 1112, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1259 	/* 0x3e - 1792x1344@60Hz */
1260 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1261 		   2120, 2448, 1344, 1345, 1348, 1394, 0,
1262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1263 	/* 0x3f - 1792x1344@75Hz */
1264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1265 		   2104, 2456, 1344, 1345, 1348, 1417, 0,
1266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1267 	/* 0x40 - 1792x1344@120Hz RB */
1268 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1269 		   1872, 1952, 1344, 1347, 1351, 1423, 0,
1270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1271 	/* 0x41 - 1856x1392@60Hz */
1272 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1273 		   2176, 2528, 1392, 1393, 1396, 1439, 0,
1274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1275 	/* 0x42 - 1856x1392@75Hz */
1276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1277 		   2208, 2560, 1392, 1393, 1396, 1500, 0,
1278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1279 	/* 0x43 - 1856x1392@120Hz RB */
1280 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1281 		   1936, 2016, 1392, 1395, 1399, 1474, 0,
1282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1283 	/* 0x52 - 1920x1080@60Hz */
1284 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1285 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1286 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1287 	/* 0x44 - 1920x1200@60Hz RB */
1288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1289 		   2000, 2080, 1200, 1203, 1209, 1235, 0,
1290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1291 	/* 0x45 - 1920x1200@60Hz */
1292 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1293 		   2256, 2592, 1200, 1203, 1209, 1245, 0,
1294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1295 	/* 0x46 - 1920x1200@75Hz */
1296 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1297 		   2264, 2608, 1200, 1203, 1209, 1255, 0,
1298 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1299 	/* 0x47 - 1920x1200@85Hz */
1300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1301 		   2272, 2624, 1200, 1203, 1209, 1262, 0,
1302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1303 	/* 0x48 - 1920x1200@120Hz RB */
1304 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1305 		   2000, 2080, 1200, 1203, 1209, 1271, 0,
1306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1307 	/* 0x49 - 1920x1440@60Hz */
1308 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1309 		   2256, 2600, 1440, 1441, 1444, 1500, 0,
1310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1311 	/* 0x4a - 1920x1440@75Hz */
1312 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1313 		   2288, 2640, 1440, 1441, 1444, 1500, 0,
1314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1315 	/* 0x4b - 1920x1440@120Hz RB */
1316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1317 		   2000, 2080, 1440, 1443, 1447, 1525, 0,
1318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1319 	/* 0x54 - 2048x1152@60Hz */
1320 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1321 		   2154, 2250, 1152, 1153, 1156, 1200, 0,
1322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1323 	/* 0x4c - 2560x1600@60Hz RB */
1324 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1325 		   2640, 2720, 1600, 1603, 1609, 1646, 0,
1326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1327 	/* 0x4d - 2560x1600@60Hz */
1328 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1329 		   3032, 3504, 1600, 1603, 1609, 1658, 0,
1330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1331 	/* 0x4e - 2560x1600@75Hz */
1332 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1333 		   3048, 3536, 1600, 1603, 1609, 1672, 0,
1334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1335 	/* 0x4f - 2560x1600@85Hz */
1336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1337 		   3048, 3536, 1600, 1603, 1609, 1682, 0,
1338 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1339 	/* 0x50 - 2560x1600@120Hz RB */
1340 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1341 		   2640, 2720, 1600, 1603, 1609, 1694, 0,
1342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1343 	/* 0x57 - 4096x2160@60Hz RB */
1344 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1345 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1347 	/* 0x58 - 4096x2160@59.94Hz RB */
1348 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1349 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1351 };
1352 
1353 /*
1354  * These more or less come from the DMT spec.  The 720x400 modes are
1355  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
1356  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
1357  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1358  * mode.
1359  *
1360  * The DMT modes have been fact-checked; the rest are mild guesses.
1361  */
1362 static const struct drm_display_mode edid_est_modes[] = {
1363 	/* 800x600@60Hz */
1364 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1365 		   968, 1056, 600, 601, 605, 628, 0,
1366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1367 	/* 800x600@56Hz */
1368 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1369 		   896, 1024, 600, 601, 603,  625, 0,
1370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1371 	/* 640x480@75Hz */
1372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1373 		   720, 840, 480, 481, 484, 500, 0,
1374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1375 	/* 640x480@72Hz */
1376 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1377 		   704,  832, 480, 489, 492, 520, 0,
1378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1379 	/* 640x480@67Hz */
1380 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1381 		   768,  864, 480, 483, 486, 525, 0,
1382 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1383 	/* 640x480@60Hz */
1384 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1385 		   752, 800, 480, 490, 492, 525, 0,
1386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1387 	/* 720x400@88Hz */
1388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1389 		   846, 900, 400, 421, 423,  449, 0,
1390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1391 	/* 720x400@70Hz */
1392 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1393 		   846,  900, 400, 412, 414, 449, 0,
1394 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1395 	/* 1280x1024@75Hz */
1396 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1397 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1399 	/* 1024x768@75Hz */
1400 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1401 		   1136, 1312,  768, 769, 772, 800, 0,
1402 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1403 	/* 1024x768@70Hz */
1404 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1405 		   1184, 1328, 768, 771, 777, 806, 0,
1406 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1407 	/* 1024x768@60Hz */
1408 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1409 		   1184, 1344, 768, 771, 777, 806, 0,
1410 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1411 	/* 1024x768@43Hz */
1412 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1413 		   1208, 1264, 768, 768, 776, 817, 0,
1414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1415 		   DRM_MODE_FLAG_INTERLACE) },
1416 	/* 832x624@75Hz */
1417 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1418 		   928, 1152, 624, 625, 628, 667, 0,
1419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1420 	/* 800x600@75Hz */
1421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1422 		   896, 1056, 600, 601, 604,  625, 0,
1423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1424 	/* 800x600@72Hz */
1425 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1426 		   976, 1040, 600, 637, 643, 666, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1428 	/* 1152x864@75Hz */
1429 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1430 		   1344, 1600, 864, 865, 868, 900, 0,
1431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1432 };
1433 
1434 #define DRM_BASE_MODE(c, hd, hss, hse, ht, vd, vss, vse, vt, vs, f) \
1435 	.clock = (c), \
1436 	.hdisplay = (hd), .hsync_start = (hss), .hsync_end = (hse), \
1437 	.htotal = (ht), .vdisplay = (vd), \
1438 	.vsync_start = (vss), .vsync_end = (vse), .vtotal = (vt), \
1439 	.vscan = (vs), .flags = (f)
1440 
1441 static const struct base_drm_display_mode resolution_white[] = {
1442 	/* 0. vic:2 - 720x480@60Hz */
1443 	{ DRM_BASE_MODE(27000, 720, 736,
1444 			798, 858, 480, 489, 495, 525, 0,
1445 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1446 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1447 	/* 1. vic:3 - 720x480@60Hz */
1448 	{ DRM_BASE_MODE(27000, 720, 736,
1449 			798, 858, 480, 489, 495, 525, 0,
1450 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1451 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1452 	/* 1024x768@60Hz */
1453 	{ DRM_BASE_MODE(65000, 1024, 1048,
1454 			1184, 1344, 768, 771, 777, 806, 0,
1455 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1456 	/* 2. vic:4 - 1280x720@60Hz */
1457 	{ DRM_BASE_MODE(74250, 1280, 1390,
1458 			1430, 1650, 720, 725, 730, 750, 0,
1459 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1460 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1461 	/* 3. vic:5 - 1920x1080i@60Hz */
1462 	{ DRM_BASE_MODE(74250, 1920, 2008,
1463 			2052, 2200, 1080, 1084, 1094, 1125, 0,
1464 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1465 			DRM_MODE_FLAG_INTERLACE),
1466 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1467 	/* 4. vic:6 - 720(1440)x480i@60Hz */
1468 	{ DRM_BASE_MODE(13500, 720, 739,
1469 			801, 858, 480, 488, 494, 525, 0,
1470 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1471 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1472 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1473 	/* 5. vic:16 - 1920x1080@60Hz */
1474 	{ DRM_BASE_MODE(148500, 1920, 2008,
1475 			2052, 2200, 1080, 1084, 1089, 1125, 0,
1476 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1478 	/* 6. vic:17 - 720x576@50Hz */
1479 	{ DRM_BASE_MODE(27000, 720, 732,
1480 			796, 864, 576, 581, 586, 625, 0,
1481 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1482 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1483 	/* 7. vic:18 - 720x576@50Hz */
1484 	{ DRM_BASE_MODE(27000, 720, 732,
1485 			796, 864, 576, 581, 586, 625, 0,
1486 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1487 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1488 	/* 8. vic:19 - 1280x720@50Hz */
1489 	{ DRM_BASE_MODE(74250, 1280, 1720,
1490 			1760, 1980, 720, 725, 730, 750, 0,
1491 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1493 	/* 9. vic:20 - 1920x1080i@50Hz */
1494 	{ DRM_BASE_MODE(74250, 1920, 2448,
1495 			2492, 2640, 1080, 1084, 1094, 1125, 0,
1496 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1497 			DRM_MODE_FLAG_INTERLACE),
1498 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1499 	/* 10. vic:21 - 720(1440)x576i@50Hz */
1500 	{ DRM_BASE_MODE(13500, 720, 732,
1501 			795, 864, 576, 580, 586, 625, 0,
1502 			DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1503 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1504 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1505 	/* 11. vic:31 - 1920x1080@50Hz */
1506 	{ DRM_BASE_MODE(148500, 1920, 2448,
1507 			2492, 2640, 1080, 1084, 1089, 1125, 0,
1508 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1509 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1510 	/* 12. vic:32 - 1920x1080@24Hz */
1511 	{ DRM_BASE_MODE(74250, 1920, 2558,
1512 			2602, 2750, 1080, 1084, 1089, 1125, 0,
1513 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1514 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1515 	/* 13. vic:33 - 1920x1080@25Hz */
1516 	{ DRM_BASE_MODE(74250, 1920, 2448,
1517 			2492, 2640, 1080, 1084, 1089, 1125, 0,
1518 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1519 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1520 	/* 14. vic:34 - 1920x1080@30Hz */
1521 	{ DRM_BASE_MODE(74250, 1920, 2008,
1522 			2052, 2200, 1080, 1084, 1089, 1125, 0,
1523 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1524 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1525 	/* 15. vic:39 - 1920x1080i@50Hz */
1526 	{ DRM_BASE_MODE(72000, 1920, 1952,
1527 			2120, 2304, 1080, 1126, 1136, 1250, 0,
1528 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
1529 			DRM_MODE_FLAG_INTERLACE),
1530 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1531 	/* 16. vic:60 - 1280x720@24Hz */
1532 	{ DRM_BASE_MODE(59400, 1280, 3040,
1533 			3080, 3300, 720, 725, 730, 750, 0,
1534 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1535 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1536 	/* 17. vic:61 - 1280x720@25Hz */
1537 	{ DRM_BASE_MODE(74250, 1280, 3700,
1538 			3740, 3960, 720, 725, 730, 750, 0,
1539 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1540 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1541 	/* 18. vic:62 - 1280x720@30Hz */
1542 	{ DRM_BASE_MODE(74250, 1280, 3040,
1543 			3080, 3300, 720, 725, 730, 750, 0,
1544 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1545 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1546 	/* 19. vic:93 - 3840x2160p@24Hz 16:9 */
1547 	{ DRM_BASE_MODE(297000, 3840, 5116,
1548 			5204, 5500, 2160, 2168, 2178, 2250, 0,
1549 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1550 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1551 	/* 20. vic:94 - 3840x2160p@25Hz 16:9 */
1552 	{ DRM_BASE_MODE(297000, 3840, 4896,
1553 			4984, 5280, 2160, 2168, 2178, 2250, 0,
1554 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1555 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1556 	/* 21. vic:95 - 3840x2160p@30Hz 16:9 */
1557 	{ DRM_BASE_MODE(297000, 3840, 4016,
1558 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1559 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1560 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1561 	/* 22. vic:96 - 3840x2160p@50Hz 16:9 */
1562 	{ DRM_BASE_MODE(594000, 3840, 4896,
1563 			4984, 5280, 2160, 2168, 2178, 2250, 0,
1564 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1565 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1566 	/* 23. vic:97 - 3840x2160p@60Hz 16:9 */
1567 	{ DRM_BASE_MODE(594000, 3840, 4016,
1568 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1569 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1570 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1571 	/* 24. vic:98 - 4096x2160p@24Hz 256:135 */
1572 	{ DRM_BASE_MODE(297000, 4096, 5116,
1573 			5204, 5500, 2160, 2168, 2178, 2250, 0,
1574 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576 	/* 25. vic:99 - 4096x2160p@25Hz 256:135 */
1577 	{ DRM_BASE_MODE(297000, 4096, 5064,
1578 			5152, 5280, 2160, 2168, 2178, 2250, 0,
1579 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1580 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1581 	/* 26. vic:100 - 4096x2160p@30Hz 256:135 */
1582 	{ DRM_BASE_MODE(297000, 4096, 4184,
1583 			4272, 4400, 2160, 2168, 2178, 2250, 0,
1584 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1585 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1586 	/* 27. vic:101 - 4096x2160p@50Hz 256:135 */
1587 	{ DRM_BASE_MODE(594000, 4096, 5064,
1588 			5152, 5280, 2160, 2168, 2178, 2250, 0,
1589 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1590 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1591 	/* 28. vic:102 - 4096x2160p@60Hz 256:135 */
1592 	{ DRM_BASE_MODE(594000, 4096, 4184,
1593 			4272, 4400, 2160, 2168, 2178, 2250, 0,
1594 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1595 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1596 	/* 29. vic:118 - 3840x2160@120Hz 16:9 */
1597 	{ DRM_BASE_MODE(1188000, 3840, 4016,
1598 			4104, 4400, 2160, 2168, 2178, 2250, 0,
1599 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1600 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1601 	/* 30. vic:196 - 7680x4320@30Hz 16:9 */
1602 	{ DRM_BASE_MODE(1188000, 7680, 8232,
1603 			8408, 9000, 4320, 4336, 4356, 4400, 0,
1604 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1605 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1606 	/* 31. vic:198 - 7680x4320@50Hz 16:9 */
1607 	{ DRM_BASE_MODE(2376000, 7680, 10032,
1608 			10208, 10800, 4320, 4336, 4356, 4400, 0,
1609 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1610 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1611 	/* 32. vic:199 - 7680x4320@60Hz 16:9 */
1612 	{ DRM_BASE_MODE(2376000, 7680, 8232,
1613 			8408, 9000, 4320, 4336, 4356, 4400, 0,
1614 			DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1615 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1616 };
1617 
1618 struct minimode {
1619 	short w;
1620 	short h;
1621 	short r;
1622 	short rb;
1623 };
1624 
1625 static const struct minimode est3_modes[] = {
1626 	/* byte 6 */
1627 	{ 640, 350, 85, 0 },
1628 	{ 640, 400, 85, 0 },
1629 	{ 720, 400, 85, 0 },
1630 	{ 640, 480, 85, 0 },
1631 	{ 848, 480, 60, 0 },
1632 	{ 800, 600, 85, 0 },
1633 	{ 1024, 768, 85, 0 },
1634 	{ 1152, 864, 75, 0 },
1635 	/* byte 7 */
1636 	{ 1280, 768, 60, 1 },
1637 	{ 1280, 768, 60, 0 },
1638 	{ 1280, 768, 75, 0 },
1639 	{ 1280, 768, 85, 0 },
1640 	{ 1280, 960, 60, 0 },
1641 	{ 1280, 960, 85, 0 },
1642 	{ 1280, 1024, 60, 0 },
1643 	{ 1280, 1024, 85, 0 },
1644 	/* byte 8 */
1645 	{ 1360, 768, 60, 0 },
1646 	{ 1440, 900, 60, 1 },
1647 	{ 1440, 900, 60, 0 },
1648 	{ 1440, 900, 75, 0 },
1649 	{ 1440, 900, 85, 0 },
1650 	{ 1400, 1050, 60, 1 },
1651 	{ 1400, 1050, 60, 0 },
1652 	{ 1400, 1050, 75, 0 },
1653 	/* byte 9 */
1654 	{ 1400, 1050, 85, 0 },
1655 	{ 1680, 1050, 60, 1 },
1656 	{ 1680, 1050, 60, 0 },
1657 	{ 1680, 1050, 75, 0 },
1658 	{ 1680, 1050, 85, 0 },
1659 	{ 1600, 1200, 60, 0 },
1660 	{ 1600, 1200, 65, 0 },
1661 	{ 1600, 1200, 70, 0 },
1662 	/* byte 10 */
1663 	{ 1600, 1200, 75, 0 },
1664 	{ 1600, 1200, 85, 0 },
1665 	{ 1792, 1344, 60, 0 },
1666 	{ 1792, 1344, 75, 0 },
1667 	{ 1856, 1392, 60, 0 },
1668 	{ 1856, 1392, 75, 0 },
1669 	{ 1920, 1200, 60, 1 },
1670 	{ 1920, 1200, 60, 0 },
1671 	/* byte 11 */
1672 	{ 1920, 1200, 75, 0 },
1673 	{ 1920, 1200, 85, 0 },
1674 	{ 1920, 1440, 60, 0 },
1675 	{ 1920, 1440, 75, 0 },
1676 };
1677 
1678 static const struct minimode extra_modes[] = {
1679 	{ 1024, 576,  60, 0 },
1680 	{ 1366, 768,  60, 0 },
1681 	{ 1600, 900,  60, 0 },
1682 	{ 1680, 945,  60, 0 },
1683 	{ 1920, 1080, 60, 0 },
1684 	{ 2048, 1152, 60, 0 },
1685 	{ 2048, 1536, 60, 0 },
1686 };
1687 
1688 static const struct drm_display_mode *cea_mode_for_vic(u8 vic)
1689 {
1690 	if (!vic)
1691 		return NULL;
1692 	else if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
1693 		return &edid_cea_modes_1[vic - 1];
1694 	else if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
1695 		return &edid_cea_modes_193[vic - 193];
1696 
1697 	return NULL;
1698 }
1699 
1700 static u8 cea_num_vics(void)
1701 {
1702 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
1703 }
1704 
1705 static u8 cea_next_vic(u8 vic)
1706 {
1707 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
1708 		vic = 193;
1709 
1710 	return vic;
1711 }
1712 
1713 int edid_check_info(struct edid1_info *edid_info)
1714 {
1715 	if ((edid_info == NULL) || (edid_info->version == 0))
1716 		return -1;
1717 
1718 	if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1719 		return -1;
1720 
1721 	if (edid_info->version == 0xff && edid_info->revision == 0xff)
1722 		return -1;
1723 
1724 	return 0;
1725 }
1726 
1727 int edid_check_checksum(u8 *edid_block)
1728 {
1729 	u8 checksum = 0;
1730 	int i;
1731 
1732 	for (i = 0; i < 128; i++)
1733 		checksum += edid_block[i];
1734 
1735 	return (checksum == 0) ? 0 : -EINVAL;
1736 }
1737 
1738 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1739 		    unsigned int *hmax, unsigned int *vmin,
1740 		    unsigned int *vmax)
1741 {
1742 	int i;
1743 	struct edid_monitor_descriptor *monitor;
1744 
1745 	*hmin = *hmax = *vmin = *vmax = 0;
1746 	if (edid_check_info(edid))
1747 		return -1;
1748 
1749 	for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1750 		monitor = &edid->monitor_details.descriptor[i];
1751 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1752 			*hmin = monitor->data.range_data.horizontal_min;
1753 			*hmax = monitor->data.range_data.horizontal_max;
1754 			*vmin = monitor->data.range_data.vertical_min;
1755 			*vmax = monitor->data.range_data.vertical_max;
1756 			return 0;
1757 		}
1758 	}
1759 	return -1;
1760 }
1761 
1762 /* Set all parts of a timing entry to the same value */
1763 static void set_entry(struct timing_entry *entry, u32 value)
1764 {
1765 	entry->min = value;
1766 	entry->typ = value;
1767 	entry->max = value;
1768 }
1769 
1770 /**
1771  * decode_timing() - Decoding an 18-byte detailed timing record
1772  *
1773  * @buf:	Pointer to EDID detailed timing record
1774  * @timing:	Place to put timing
1775  */
1776 static void decode_timing(u8 *buf, struct display_timing *timing)
1777 {
1778 	uint x_mm, y_mm;
1779 	unsigned int ha, hbl, hso, hspw, hborder;
1780 	unsigned int va, vbl, vso, vspw, vborder;
1781 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1782 
1783 	/* Edid contains pixel clock in terms of 10KHz */
1784 	set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1785 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1786 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1787 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1788 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1789 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1790 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1791 	hborder = buf[15];
1792 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1793 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1794 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1795 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1796 	vborder = buf[16];
1797 
1798 	set_entry(&timing->hactive, ha);
1799 	set_entry(&timing->hfront_porch, hso);
1800 	set_entry(&timing->hback_porch, hbl - hso - hspw);
1801 	set_entry(&timing->hsync_len, hspw);
1802 
1803 	set_entry(&timing->vactive, va);
1804 	set_entry(&timing->vfront_porch, vso);
1805 	set_entry(&timing->vback_porch, vbl - vso - vspw);
1806 	set_entry(&timing->vsync_len, vspw);
1807 
1808 	timing->flags = 0;
1809 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1810 		timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1811 	else
1812 		timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1813 	if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1814 		timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1815 	else
1816 		timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1817 
1818 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1819 		timing->flags = DISPLAY_FLAGS_INTERLACED;
1820 
1821 	debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1822 	      "               %04x %04x %04x %04x hborder %x\n"
1823 	      "               %04x %04x %04x %04x vborder %x\n",
1824 	      timing->pixelclock.typ,
1825 	      x_mm, y_mm,
1826 	      ha, ha + hso, ha + hso + hspw,
1827 	      ha + hbl, hborder,
1828 	      va, va + vso, va + vso + vspw,
1829 	      va + vbl, vborder);
1830 }
1831 
1832 /**
1833  * decode_mode() - Decoding an 18-byte detailed timing record
1834  *
1835  * @buf:	Pointer to EDID detailed timing record
1836  * @timing:	Place to put timing
1837  */
1838 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1839 {
1840 	uint x_mm, y_mm;
1841 	unsigned int ha, hbl, hso, hspw, hborder;
1842 	unsigned int va, vbl, vso, vspw, vborder;
1843 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1844 
1845 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1846 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1847 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1848 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1849 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1850 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1851 	hborder = buf[15];
1852 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1853 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1854 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1855 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1856 	vborder = buf[16];
1857 
1858 	/* Edid contains pixel clock in terms of 10KHz */
1859 	mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1860 	mode->hdisplay = ha;
1861 	mode->hsync_start = ha + hso;
1862 	mode->hsync_end = ha + hso + hspw;
1863 	mode->htotal = ha + hbl;
1864 	mode->vdisplay = va;
1865 	mode->vsync_start = va + vso;
1866 	mode->vsync_end = va + vso + vspw;
1867 	mode->vtotal = va + vbl;
1868 
1869 	mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1870 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1871 	mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1872 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1873 
1874 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1875 		mode->flags |= DRM_MODE_FLAG_INTERLACE;
1876 
1877 	debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1878 	      "     %04d %04d %04d %04d hborder %d\n"
1879 	      "     %04d %04d %04d %04d vborder %d\n",
1880 	      mode->clock,
1881 	      x_mm, y_mm, mode->flags,
1882 	      mode->hdisplay, mode->hsync_start, mode->hsync_end,
1883 	      mode->htotal, hborder,
1884 	      mode->vdisplay, mode->vsync_start, mode->vsync_end,
1885 	      mode->vtotal, vborder);
1886 }
1887 
1888 /**
1889  * edid_vendor - match a string against EDID's obfuscated vendor field
1890  * @edid: EDID to match
1891  * @vendor: vendor string
1892  *
1893  * Returns true if @vendor is in @edid, false otherwise
1894  */
1895 static bool edid_vendor(struct edid *edid, char *vendor)
1896 {
1897 	char edid_vendor[3];
1898 
1899 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1900 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1901 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1902 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1903 
1904 	return !strncmp(edid_vendor, vendor, 3);
1905 }
1906 
1907 /**
1908  * Check if HDMI vendor specific data block is present in CEA block
1909  * @param info	CEA extension block
1910  * @return true if block is found
1911  */
1912 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1913 {
1914 	u8 end, i = 0;
1915 
1916 	/* check for end of data block */
1917 	end = info->dtd_offset;
1918 	if (end == 0)
1919 		end = sizeof(info->data);
1920 	if (end < 4 || end > sizeof(info->data))
1921 		return false;
1922 	end -= 4;
1923 
1924 	while (i < end) {
1925 		/* Look for vendor specific data block of appropriate size */
1926 		if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1927 		    (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1928 			u8 *db = &info->data[i + 1];
1929 			u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1930 
1931 			if (oui == HDMI_IEEE_OUI)
1932 				return true;
1933 		}
1934 		i += EDID_CEA861_DB_LEN(*info, i) + 1;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1941 {
1942 	int refresh = 0;
1943 	unsigned int calc_val;
1944 
1945 	if (mode->vrefresh > 0) {
1946 		refresh = mode->vrefresh;
1947 	} else if (mode->htotal > 0 && mode->vtotal > 0) {
1948 		int vtotal;
1949 
1950 		vtotal = mode->vtotal;
1951 		/* work out vrefresh the value will be x1000 */
1952 		calc_val = (mode->clock * 1000);
1953 		calc_val /= mode->htotal;
1954 		refresh = (calc_val + vtotal / 2) / vtotal;
1955 
1956 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1957 			refresh *= 2;
1958 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1959 			refresh /= 2;
1960 		if (mode->vscan > 1)
1961 			refresh /= mode->vscan;
1962 	}
1963 	return refresh;
1964 }
1965 
1966 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1967 		      int *panel_bits_per_colourp)
1968 {
1969 	struct edid1_info *edid = (struct edid1_info *)buf;
1970 	bool timing_done;
1971 	int i;
1972 
1973 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1974 		debug("%s: Invalid buffer\n", __func__);
1975 		return -EINVAL;
1976 	}
1977 
1978 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1979 		debug("%s: No preferred timing\n", __func__);
1980 		return -ENOENT;
1981 	}
1982 
1983 	/* Look for detailed timing */
1984 	timing_done = false;
1985 	for (i = 0; i < 4; i++) {
1986 		struct edid_monitor_descriptor *desc;
1987 
1988 		desc = &edid->monitor_details.descriptor[i];
1989 		if (desc->zero_flag_1 != 0) {
1990 			decode_mode((u8 *)desc, mode);
1991 			timing_done = true;
1992 			break;
1993 		}
1994 	}
1995 	if (!timing_done)
1996 		return -EINVAL;
1997 
1998 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1999 		debug("%s: Not a digital display\n", __func__);
2000 		return -ENOSYS;
2001 	}
2002 	if (edid->version != 1 || edid->revision < 4) {
2003 		debug("%s: EDID version %d.%d does not have required info\n",
2004 		      __func__, edid->version, edid->revision);
2005 		*panel_bits_per_colourp = -1;
2006 	} else  {
2007 		*panel_bits_per_colourp =
2008 			((edid->video_input_definition & 0x70) >> 3) + 4;
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
2015 		    int *panel_bits_per_colourp)
2016 {
2017 	struct edid1_info *edid = (struct edid1_info *)buf;
2018 	bool timing_done;
2019 	int i;
2020 
2021 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
2022 		debug("%s: Invalid buffer\n", __func__);
2023 		return -EINVAL;
2024 	}
2025 
2026 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
2027 		debug("%s: No preferred timing\n", __func__);
2028 		return -ENOENT;
2029 	}
2030 
2031 	/* Look for detailed timing */
2032 	timing_done = false;
2033 	for (i = 0; i < 4; i++) {
2034 		struct edid_monitor_descriptor *desc;
2035 
2036 		desc = &edid->monitor_details.descriptor[i];
2037 		if (desc->zero_flag_1 != 0) {
2038 			decode_timing((u8 *)desc, timing);
2039 			timing_done = true;
2040 			break;
2041 		}
2042 	}
2043 	if (!timing_done)
2044 		return -EINVAL;
2045 
2046 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2047 		debug("%s: Not a digital display\n", __func__);
2048 		return -ENOSYS;
2049 	}
2050 	if (edid->version != 1 || edid->revision < 4) {
2051 		debug("%s: EDID version %d.%d does not have required info\n",
2052 		      __func__, edid->version, edid->revision);
2053 		*panel_bits_per_colourp = -1;
2054 	} else  {
2055 		*panel_bits_per_colourp =
2056 			((edid->video_input_definition & 0x70) >> 3) + 4;
2057 	}
2058 
2059 	timing->hdmi_monitor = false;
2060 	if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
2061 		struct edid_cea861_info *info =
2062 			(struct edid_cea861_info *)(buf + sizeof(*edid));
2063 
2064 		if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
2065 			timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 /**
2072  * Snip the tailing whitespace/return of a string.
2073  *
2074  * @param string	The string to be snipped
2075  * @return the snipped string
2076  */
2077 static char *snip(char *string)
2078 {
2079 	char *s;
2080 
2081 	/*
2082 	 * This is always a 13 character buffer
2083 	 * and it's not always terminated.
2084 	 */
2085 	string[12] = '\0';
2086 	s = &string[strlen(string) - 1];
2087 
2088 	while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
2089 	       *s == '\0'))
2090 		*(s--) = '\0';
2091 
2092 	return string;
2093 }
2094 
2095 /**
2096  * Print an EDID monitor descriptor block
2097  *
2098  * @param monitor	The EDID monitor descriptor block
2099  * @have_timing		Modifies to 1 if the desciptor contains timing info
2100  */
2101 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
2102 			   unsigned int *have_timing)
2103 {
2104 	unsigned char *bytes = (unsigned char *)monitor;
2105 	struct edid_detailed_timing *timing =
2106 			(struct edid_detailed_timing *)monitor;
2107 
2108 	if (bytes[0] == 0 && bytes[1] == 0) {
2109 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
2110 			printf("Monitor serial number: %s\n",
2111 			       snip(monitor->data.string));
2112 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
2113 			printf("Monitor ID: %s\n",
2114 			       snip(monitor->data.string));
2115 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
2116 			printf("Monitor name: %s\n",
2117 			       snip(monitor->data.string));
2118 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
2119 			printf("Monitor range limits, horizontal sync: "
2120 			       "%d-%d kHz, vertical refresh: "
2121 			       "%d-%d Hz, max pixel clock: "
2122 			       "%d MHz\n",
2123 			       monitor->data.range_data.horizontal_min,
2124 			       monitor->data.range_data.horizontal_max,
2125 			       monitor->data.range_data.vertical_min,
2126 			       monitor->data.range_data.vertical_max,
2127 			       monitor->data.range_data.pixel_clock_max * 10);
2128 	} else {
2129 		u32 pixclock, h_active, h_blanking, v_active, v_blanking;
2130 		u32 h_total, v_total, vfreq;
2131 
2132 		pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
2133 		h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
2134 		h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
2135 		v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
2136 		v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
2137 
2138 		h_total = h_active + h_blanking;
2139 		v_total = v_active + v_blanking;
2140 		if (v_total > 0 && h_total > 0)
2141 			vfreq = pixclock / (v_total * h_total);
2142 		else
2143 			vfreq = 1; /* Error case */
2144 		printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
2145 		       v_active, h_active > 1000 ? ' ' : '\t', vfreq);
2146 		*have_timing = 1;
2147 	}
2148 }
2149 
2150 /**
2151  * Get the manufacturer name from an EDID info.
2152  *
2153  * @param edid_info     The EDID info to be printed
2154  * @param name		Returns the string of the manufacturer name
2155  */
2156 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
2157 {
2158 	name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
2159 	name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
2160 	name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
2161 	name[3] = '\0';
2162 }
2163 
2164 void edid_print_info(struct edid1_info *edid_info)
2165 {
2166 	int i;
2167 	char manufacturer[4];
2168 	unsigned int have_timing = 0;
2169 	u32 serial_number;
2170 
2171 	if (edid_check_info(edid_info)) {
2172 		printf("Not a valid EDID\n");
2173 		return;
2174 	}
2175 
2176 	printf("EDID version: %d.%d\n",
2177 	       edid_info->version, edid_info->revision);
2178 
2179 	printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
2180 
2181 	edid_get_manufacturer_name(edid_info, manufacturer);
2182 	printf("Manufacturer: %s\n", manufacturer);
2183 
2184 	serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
2185 	if (serial_number != 0xffffffff) {
2186 		if (strcmp(manufacturer, "MAG") == 0)
2187 			serial_number -= 0x7000000;
2188 		if (strcmp(manufacturer, "OQI") == 0)
2189 			serial_number -= 456150000;
2190 		if (strcmp(manufacturer, "VSC") == 0)
2191 			serial_number -= 640000000;
2192 	}
2193 	printf("Serial number: %08x\n", serial_number);
2194 	printf("Manufactured in week: %d year: %d\n",
2195 	       edid_info->week, edid_info->year + 1990);
2196 
2197 	printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
2198 	       EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
2199 	       "digital signal, " : "analog signal, ",
2200 	       EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
2201 	       EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
2202 	       ", blank to black" : "",
2203 	       EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
2204 	       ", separate sync" : "",
2205 	       EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
2206 	       ", composite sync" : "",
2207 	       EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
2208 	       ", sync on green" : "",
2209 	       EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
2210 	       ", serration v" : "");
2211 
2212 	printf("Monitor is %s\n",
2213 	       EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
2214 
2215 	printf("Maximum visible display size: %d cm x %d cm\n",
2216 	       edid_info->max_size_horizontal,
2217 	       edid_info->max_size_vertical);
2218 
2219 	printf("Power management features: %s%s, %s%s, %s%s\n",
2220 	       EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
2221 	       "" : "no ", "active off",
2222 	       EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
2223 	       EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
2224 
2225 	printf("Estabilished timings:\n");
2226 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
2227 		printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
2228 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
2229 		printf("\t720x400\t\t88 Hz (XGA2)\n");
2230 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
2231 		printf("\t640x480\t\t60 Hz (VGA)\n");
2232 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
2233 		printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
2234 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
2235 		printf("\t640x480\t\t72 Hz (VESA)\n");
2236 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
2237 		printf("\t640x480\t\t75 Hz (VESA)\n");
2238 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
2239 		printf("\t800x600\t\t56 Hz (VESA)\n");
2240 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
2241 		printf("\t800x600\t\t60 Hz (VESA)\n");
2242 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
2243 		printf("\t800x600\t\t72 Hz (VESA)\n");
2244 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
2245 		printf("\t800x600\t\t75 Hz (VESA)\n");
2246 	if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
2247 		printf("\t832x624\t\t75 Hz (Mac II)\n");
2248 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
2249 		printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
2250 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
2251 		printf("\t1024x768\t60 Hz (VESA)\n");
2252 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
2253 		printf("\t1024x768\t70 Hz (VESA)\n");
2254 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
2255 		printf("\t1024x768\t75 Hz (VESA)\n");
2256 	if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
2257 		printf("\t1280x1024\t75 (VESA)\n");
2258 	if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
2259 		printf("\t1152x870\t75 (Mac II)\n");
2260 
2261 	/* Standard timings. */
2262 	printf("Standard timings:\n");
2263 	for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
2264 		unsigned int aspect = 10000;
2265 		unsigned int x, y;
2266 		unsigned char xres, vfreq;
2267 
2268 		xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
2269 		vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
2270 		if ((xres != vfreq) ||
2271 		    ((xres != 0) && (xres != 1)) ||
2272 		    ((vfreq != 0) && (vfreq != 1))) {
2273 			switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
2274 				i)) {
2275 			case ASPECT_625:
2276 				aspect = 6250;
2277 				break;
2278 			case ASPECT_75:
2279 				aspect = 7500;
2280 				break;
2281 			case ASPECT_8:
2282 				aspect = 8000;
2283 				break;
2284 			case ASPECT_5625:
2285 				aspect = 5625;
2286 				break;
2287 			}
2288 			x = (xres + 31) * 8;
2289 			y = x * aspect / 10000;
2290 			printf("\t%dx%d%c\t%d Hz\n", x, y,
2291 			       x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
2292 			have_timing = 1;
2293 		}
2294 	}
2295 
2296 	/* Detailed timing information. */
2297 	for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
2298 			i++) {
2299 		edid_print_dtd(&edid_info->monitor_details.descriptor[i],
2300 			       &have_timing);
2301 	}
2302 
2303 	if (!have_timing)
2304 		printf("\tNone\n");
2305 }
2306 
2307 /**
2308  * drm_mode_create - create a new display mode
2309  *
2310  * Create a new, cleared drm_display_mode.
2311  *
2312  * Returns:
2313  * Pointer to new mode on success, NULL on error.
2314  */
2315 static struct drm_display_mode *drm_mode_create(void)
2316 {
2317 	struct drm_display_mode *nmode;
2318 
2319 	nmode = malloc(sizeof(struct drm_display_mode));
2320 	memset(nmode, 0, sizeof(struct drm_display_mode));
2321 	if (!nmode)
2322 		return NULL;
2323 
2324 	return nmode;
2325 }
2326 
2327 /**
2328  * drm_mode_destroy - remove a mode
2329  * @mode: mode to remove
2330  *
2331  */
2332 static void drm_mode_destroy(struct drm_display_mode *mode)
2333 {
2334 	if (!mode)
2335 		return;
2336 
2337 	kfree(mode);
2338 }
2339 
2340 /**
2341  * drm_cvt_mode -create a modeline based on the CVT algorithm
2342  * @hdisplay: hdisplay size
2343  * @vdisplay: vdisplay size
2344  * @vrefresh: vrefresh rate
2345  * @reduced: whether to use reduced blanking
2346  * @interlaced: whether to compute an interlaced mode
2347  * @margins: whether to add margins (borders)
2348  *
2349  * This function is called to generate the modeline based on CVT algorithm
2350  * according to the hdisplay, vdisplay, vrefresh.
2351  * It is based from the VESA(TM) Coordinated Video Timing Generator by
2352  * Graham Loveridge April 9, 2003 available at
2353  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
2354  *
2355  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
2356  * What I have done is to translate it by using integer calculation.
2357  *
2358  * Returns:
2359  * The modeline based on the CVT algorithm stored in a drm_display_mode object.
2360  * The display mode object is allocated with drm_mode_create(). Returns NULL
2361  * when no mode could be allocated.
2362  */
2363 static
2364 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
2365 				      bool reduced, bool interlaced,
2366 				      bool margins)
2367 {
2368 #define HV_FACTOR			1000
2369 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
2370 #define	CVT_MARGIN_PERCENTAGE		18
2371 	/* 2) character cell horizontal granularity (pixels) - default 8 */
2372 #define	CVT_H_GRANULARITY		8
2373 	/* 3) Minimum vertical porch (lines) - default 3 */
2374 #define	CVT_MIN_V_PORCH			3
2375 	/* 4) Minimum number of vertical back porch lines - default 6 */
2376 #define	CVT_MIN_V_BPORCH		6
2377 	/* Pixel Clock step (kHz) */
2378 #define CVT_CLOCK_STEP			250
2379 	struct drm_display_mode *drm_mode;
2380 	unsigned int vfieldrate, hperiod;
2381 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
2382 	int interlace;
2383 
2384 	/* allocate the drm_display_mode structure. If failure, we will
2385 	 * return directly
2386 	 */
2387 	drm_mode = drm_mode_create();
2388 	if (!drm_mode)
2389 		return NULL;
2390 
2391 	/* the CVT default refresh rate is 60Hz */
2392 	if (!vrefresh)
2393 		vrefresh = 60;
2394 
2395 	/* the required field fresh rate */
2396 	if (interlaced)
2397 		vfieldrate = vrefresh * 2;
2398 	else
2399 		vfieldrate = vrefresh;
2400 
2401 	/* horizontal pixels */
2402 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
2403 
2404 	/* determine the left&right borders */
2405 	hmargin = 0;
2406 	if (margins) {
2407 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2408 		hmargin -= hmargin % CVT_H_GRANULARITY;
2409 	}
2410 	/* find the total active pixels */
2411 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
2412 
2413 	/* find the number of lines per field */
2414 	if (interlaced)
2415 		vdisplay_rnd = vdisplay / 2;
2416 	else
2417 		vdisplay_rnd = vdisplay;
2418 
2419 	/* find the top & bottom borders */
2420 	vmargin = 0;
2421 	if (margins)
2422 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2423 
2424 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
2425 
2426 	/* Interlaced */
2427 	if (interlaced)
2428 		interlace = 1;
2429 	else
2430 		interlace = 0;
2431 
2432 	/* Determine VSync Width from aspect ratio */
2433 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
2434 		vsync = 4;
2435 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
2436 		vsync = 5;
2437 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
2438 		vsync = 6;
2439 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
2440 		vsync = 7;
2441 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
2442 		vsync = 7;
2443 	else /* custom */
2444 		vsync = 10;
2445 
2446 	if (!reduced) {
2447 		/* simplify the GTF calculation */
2448 		/* 4) Minimum time of vertical sync + back porch interval
2449 		 * default 550.0
2450 		 */
2451 		int tmp1, tmp2;
2452 #define CVT_MIN_VSYNC_BP	550
2453 		/* 3) Nominal HSync width (% of line period) - default 8 */
2454 #define CVT_HSYNC_PERCENTAGE	8
2455 		unsigned int hblank_percentage;
2456 		int vsyncandback_porch, hblank;
2457 
2458 		/* estimated the horizontal period */
2459 		tmp1 = HV_FACTOR * 1000000  -
2460 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2461 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2462 				interlace;
2463 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2464 
2465 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2466 		/* 9. Find number of lines in sync + backporch */
2467 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2468 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2469 		else
2470 			vsyncandback_porch = tmp1;
2471 		/* 10. Find number of lines in back porch
2472 		 *		vback_porch = vsyncandback_porch - vsync;
2473 		 */
2474 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2475 				vsyncandback_porch + CVT_MIN_V_PORCH;
2476 		/* 5) Definition of Horizontal blanking time limitation */
2477 		/* Gradient (%/kHz) - default 600 */
2478 #define CVT_M_FACTOR	600
2479 		/* Offset (%) - default 40 */
2480 #define CVT_C_FACTOR	40
2481 		/* Blanking time scaling factor - default 128 */
2482 #define CVT_K_FACTOR	128
2483 		/* Scaling factor weighting - default 20 */
2484 #define CVT_J_FACTOR	20
2485 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
2486 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2487 			 CVT_J_FACTOR)
2488 		/* 12. Find ideal blanking duty cycle from formula */
2489 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2490 					hperiod / 1000;
2491 		/* 13. Blanking time */
2492 		if (hblank_percentage < 20 * HV_FACTOR)
2493 			hblank_percentage = 20 * HV_FACTOR;
2494 		hblank = drm_mode->hdisplay * hblank_percentage /
2495 			 (100 * HV_FACTOR - hblank_percentage);
2496 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
2497 		/* 14. find the total pixels per line */
2498 		drm_mode->htotal = drm_mode->hdisplay + hblank;
2499 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2500 		drm_mode->hsync_start = drm_mode->hsync_end -
2501 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2502 		drm_mode->hsync_start += CVT_H_GRANULARITY -
2503 			drm_mode->hsync_start % CVT_H_GRANULARITY;
2504 		/* fill the Vsync values */
2505 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2506 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2507 	} else {
2508 		/* Reduced blanking */
2509 		/* Minimum vertical blanking interval time - default 460 */
2510 #define CVT_RB_MIN_VBLANK	460
2511 		/* Fixed number of clocks for horizontal sync */
2512 #define CVT_RB_H_SYNC		32
2513 		/* Fixed number of clocks for horizontal blanking */
2514 #define CVT_RB_H_BLANK		160
2515 		/* Fixed number of lines for vertical front porch - default 3*/
2516 #define CVT_RB_VFPORCH		3
2517 		int vbilines;
2518 		int tmp1, tmp2;
2519 		/* 8. Estimate Horizontal period. */
2520 		tmp1 = HV_FACTOR * 1000000 -
2521 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2522 		tmp2 = vdisplay_rnd + 2 * vmargin;
2523 		hperiod = tmp1 / (tmp2 * vfieldrate);
2524 		/* 9. Find number of lines in vertical blanking */
2525 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2526 		/* 10. Check if vertical blanking is sufficient */
2527 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2528 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2529 		/* 11. Find total number of lines in vertical field */
2530 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2531 		/* 12. Find total number of pixels in a line */
2532 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2533 		/* Fill in HSync values */
2534 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2535 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2536 		/* Fill in VSync values */
2537 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2538 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2539 	}
2540 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
2541 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2542 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2543 	/* 18/16. Find actual vertical frame frequency */
2544 	/* ignore - just set the mode flag for interlaced */
2545 	if (interlaced) {
2546 		drm_mode->vtotal *= 2;
2547 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2548 	}
2549 
2550 	if (reduced)
2551 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2552 					DRM_MODE_FLAG_NVSYNC);
2553 	else
2554 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2555 					DRM_MODE_FLAG_NHSYNC);
2556 
2557 	return drm_mode;
2558 }
2559 
2560 static int
2561 cea_db_payload_len(const u8 *db)
2562 {
2563 	return db[0] & 0x1f;
2564 }
2565 
2566 static int
2567 cea_db_extended_tag(const u8 *db)
2568 {
2569 	return db[1];
2570 }
2571 
2572 static int
2573 cea_db_tag(const u8 *db)
2574 {
2575 	return db[0] >> 5;
2576 }
2577 
2578 #define for_each_cea_db(cea, i, start, end) \
2579 	for ((i) = (start); (i) < (end) && (i) + \
2580 	cea_db_payload_len(&(cea)[(i)]) < \
2581 	(end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2582 
2583 static int
2584 cea_revision(const u8 *cea)
2585 {
2586 	return cea[1];
2587 }
2588 
2589 static int
2590 cea_db_offsets(const u8 *cea, int *start, int *end)
2591 {
2592 	/* Data block offset in CEA extension block */
2593 	*start = 4;
2594 	*end = cea[2];
2595 	if (*end == 0)
2596 		*end = 127;
2597 	if (*end < 4 || *end > 127)
2598 		return -ERANGE;
2599 
2600 	/*
2601 	 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2602 	 */
2603 	if (*end != 4) {
2604 		int i;
2605 
2606 		i = *start;
2607 		while (i < (*end) &&
2608 		       i + cea_db_payload_len(&(cea)[i]) < (*end))
2609 			i += cea_db_payload_len(&(cea)[i]) + 1;
2610 
2611 		if (cea_db_payload_len(&(cea)[i]) &&
2612 		    i + cea_db_payload_len(&(cea)[i]) == (*end))
2613 			(*end)++;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2620 {
2621 	int hdmi_id;
2622 
2623 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2624 		return false;
2625 
2626 	if (cea_db_payload_len(db) < 5)
2627 		return false;
2628 
2629 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2630 
2631 	return hdmi_id == HDMI_IEEE_OUI;
2632 }
2633 
2634 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2635 {
2636 	unsigned int oui;
2637 
2638 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2639 		return false;
2640 
2641 	if (cea_db_payload_len(db) < 7)
2642 		return false;
2643 
2644 	oui = db[3] << 16 | db[2] << 8 | db[1];
2645 
2646 	return oui == HDMI_FORUM_IEEE_OUI;
2647 }
2648 
2649 static bool cea_db_is_y420cmdb(const u8 *db)
2650 {
2651 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2652 		return false;
2653 
2654 	if (!cea_db_payload_len(db))
2655 		return false;
2656 
2657 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2658 		return false;
2659 
2660 	return true;
2661 }
2662 
2663 static bool cea_db_is_y420vdb(const u8 *db)
2664 {
2665 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2666 		return false;
2667 
2668 	if (!cea_db_payload_len(db))
2669 		return false;
2670 
2671 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2672 		return false;
2673 
2674 	return true;
2675 }
2676 
2677 static bool drm_valid_hdmi_vic(u8 vic)
2678 {
2679 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2680 }
2681 
2682 static void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2683 			       const struct drm_display_mode *mode)
2684 {
2685 	struct drm_display_mode *mode_buf = data->mode_buf;
2686 
2687 	if (data->modes >= MODE_LEN)
2688 		return;
2689 	mode_buf[(data->modes)++] = *mode;
2690 }
2691 
2692 static bool drm_valid_cea_vic(u8 vic)
2693 {
2694 	return cea_mode_for_vic(vic) ? true : false;
2695 }
2696 
2697 static u8 svd_to_vic(u8 svd)
2698 {
2699 	/* 0-6 bit vic, 7th bit native mode indicator */
2700 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
2701 		return svd & 127;
2702 
2703 	return svd;
2704 }
2705 
2706 static struct drm_display_mode *
2707 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2708 				u8 video_index)
2709 {
2710 	struct drm_display_mode *newmode;
2711 	u8 vic;
2712 
2713 	if (!video_db || video_index >= video_len)
2714 		return NULL;
2715 
2716 	/* CEA modes are numbered 1..127 */
2717 	vic = svd_to_vic(video_db[video_index]);
2718 	if (!drm_valid_cea_vic(vic))
2719 		return NULL;
2720 
2721 	newmode = drm_mode_create();
2722 	if (!newmode)
2723 		return NULL;
2724 
2725 	*newmode = *cea_mode_for_vic(vic);
2726 	newmode->vrefresh = 0;
2727 
2728 	return newmode;
2729 }
2730 
2731 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2732 {
2733 	unsigned long *p = map + BIT_WORD(start);
2734 	const unsigned int size = start + len;
2735 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2736 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2737 
2738 	while (len - bits_to_set >= 0) {
2739 		*p |= mask_to_set;
2740 		len -= bits_to_set;
2741 		bits_to_set = BITS_PER_LONG;
2742 		mask_to_set = ~0UL;
2743 		p++;
2744 	}
2745 	if (len) {
2746 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2747 		*p |= mask_to_set;
2748 	}
2749 }
2750 
2751 static void
2752 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2753 {
2754 	u8 vic = svd_to_vic(svd);
2755 
2756 	if (!drm_valid_cea_vic(vic))
2757 		return;
2758 
2759 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2760 }
2761 
2762 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2763 {
2764 	int i, modes = 0;
2765 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2766 
2767 	for (i = 0; i < len; i++) {
2768 		struct drm_display_mode *mode;
2769 
2770 		mode = drm_display_mode_from_vic_index(db, len, i);
2771 		if (mode) {
2772 			/*
2773 			 * YCBCR420 capability block contains a bitmap which
2774 			 * gives the index of CEA modes from CEA VDB, which
2775 			 * can support YCBCR 420 sampling output also (apart
2776 			 * from RGB/YCBCR444 etc).
2777 			 * For example, if the bit 0 in bitmap is set,
2778 			 * first mode in VDB can support YCBCR420 output too.
2779 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2780 			 */
2781 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2782 				drm_add_cmdb_modes(db[i], hdmi);
2783 			drm_add_hdmi_modes(data, mode);
2784 			drm_mode_destroy(mode);
2785 			modes++;
2786 		}
2787 	}
2788 
2789 	return modes;
2790 }
2791 
2792 /*
2793  * do_y420vdb_modes - Parse YCBCR 420 only modes
2794  * @data: the structure that save parsed hdmi edid data
2795  * @svds: start of the data block of CEA YCBCR 420 VDB
2796  * @svds_len: length of the CEA YCBCR 420 VDB
2797  * @hdmi: runtime information about the connected HDMI sink
2798  *
2799  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2800  * which contains modes which can be supported in YCBCR 420
2801  * output format only.
2802  */
2803 static int
2804 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2805 {
2806 	int modes = 0, i;
2807 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2808 
2809 	for (i = 0; i < svds_len; i++) {
2810 		u8 vic = svd_to_vic(svds[i]);
2811 
2812 		if (!drm_valid_cea_vic(vic))
2813 			continue;
2814 
2815 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2816 		drm_add_hdmi_modes(data, cea_mode_for_vic(vic));
2817 		modes++;
2818 	}
2819 
2820 	return modes;
2821 }
2822 
2823 struct stereo_mandatory_mode {
2824 	int width, height, vrefresh;
2825 	unsigned int flags;
2826 };
2827 
2828 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2829 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2830 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2831 	{ 1920, 1080, 50,
2832 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2833 	{ 1920, 1080, 60,
2834 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2835 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2836 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2837 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2838 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2839 };
2840 
2841 static bool
2842 stereo_match_mandatory(const struct drm_display_mode *mode,
2843 		       const struct stereo_mandatory_mode *stereo_mode)
2844 {
2845 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2846 
2847 	return mode->hdisplay == stereo_mode->width &&
2848 	       mode->vdisplay == stereo_mode->height &&
2849 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2850 	       drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2851 }
2852 
2853 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2854 {
2855 	const struct drm_display_mode *mode;
2856 	int num = data->modes, modes = 0, i, k;
2857 
2858 	for (k = 0; k < num; k++) {
2859 		mode = &data->mode_buf[k];
2860 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2861 			const struct stereo_mandatory_mode *mandatory;
2862 			struct drm_display_mode *new_mode;
2863 
2864 			if (!stereo_match_mandatory(mode,
2865 						    &stereo_mandatory_modes[i]))
2866 				continue;
2867 
2868 			mandatory = &stereo_mandatory_modes[i];
2869 			new_mode = drm_mode_create();
2870 			if (!new_mode)
2871 				continue;
2872 
2873 			*new_mode = *mode;
2874 			new_mode->flags |= mandatory->flags;
2875 			drm_add_hdmi_modes(data, new_mode);
2876 			drm_mode_destroy(new_mode);
2877 			modes++;
2878 		}
2879 	}
2880 
2881 	return modes;
2882 }
2883 
2884 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2885 			       const u8 *video_db, u8 video_len, u8 video_index)
2886 {
2887 	struct drm_display_mode *newmode;
2888 	int modes = 0;
2889 
2890 	if (structure & (1 << 0)) {
2891 		newmode = drm_display_mode_from_vic_index(video_db,
2892 							  video_len,
2893 							  video_index);
2894 		if (newmode) {
2895 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2896 			drm_add_hdmi_modes(data, newmode);
2897 			modes++;
2898 			drm_mode_destroy(newmode);
2899 		}
2900 	}
2901 	if (structure & (1 << 6)) {
2902 		newmode = drm_display_mode_from_vic_index(video_db,
2903 							  video_len,
2904 							  video_index);
2905 		if (newmode) {
2906 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2907 			drm_add_hdmi_modes(data, newmode);
2908 			modes++;
2909 			drm_mode_destroy(newmode);
2910 		}
2911 	}
2912 	if (structure & (1 << 8)) {
2913 		newmode = drm_display_mode_from_vic_index(video_db,
2914 							  video_len,
2915 							  video_index);
2916 		if (newmode) {
2917 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2918 			drm_add_hdmi_modes(data, newmode);
2919 			modes++;
2920 			drm_mode_destroy(newmode);
2921 		}
2922 	}
2923 
2924 	return modes;
2925 }
2926 
2927 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2928 {
2929 	if (!drm_valid_hdmi_vic(vic)) {
2930 		debug("Unknown HDMI VIC: %d\n", vic);
2931 		return 0;
2932 	}
2933 
2934 	drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2935 
2936 	return 1;
2937 }
2938 
2939 /*
2940  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2941  * @db: start of the CEA vendor specific block
2942  * @len: length of the CEA block payload, ie. one can access up to db[len]
2943  *
2944  * Parses the HDMI VSDB looking for modes to add to @data. This function
2945  * also adds the stereo 3d modes when applicable.
2946  */
2947 static int
2948 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2949 		   struct hdmi_edid_data *data)
2950 {
2951 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2952 	u8 vic_len, hdmi_3d_len = 0;
2953 	u16 mask;
2954 	u16 structure_all;
2955 
2956 	if (len < 8)
2957 		goto out;
2958 
2959 	/* no HDMI_Video_Present */
2960 	if (!(db[8] & (1 << 5)))
2961 		goto out;
2962 
2963 	/* Latency_Fields_Present */
2964 	if (db[8] & (1 << 7))
2965 		offset += 2;
2966 
2967 	/* I_Latency_Fields_Present */
2968 	if (db[8] & (1 << 6))
2969 		offset += 2;
2970 
2971 	/* the declared length is not long enough for the 2 first bytes
2972 	 * of additional video format capabilities
2973 	 */
2974 	if (len < (8 + offset + 2))
2975 		goto out;
2976 
2977 	/* 3D_Present */
2978 	offset++;
2979 	if (db[8 + offset] & (1 << 7)) {
2980 		modes += add_hdmi_mandatory_stereo_modes(data);
2981 
2982 		/* 3D_Multi_present */
2983 		multi_present = (db[8 + offset] & 0x60) >> 5;
2984 	}
2985 
2986 	offset++;
2987 	vic_len = db[8 + offset] >> 5;
2988 	hdmi_3d_len = db[8 + offset] & 0x1f;
2989 
2990 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2991 		u8 vic;
2992 
2993 		vic = db[9 + offset + i];
2994 		modes += add_hdmi_mode(data, vic);
2995 	}
2996 
2997 	offset += 1 + vic_len;
2998 
2999 	if (multi_present == 1)
3000 		multi_len = 2;
3001 	else if (multi_present == 2)
3002 		multi_len = 4;
3003 	else
3004 		multi_len = 0;
3005 
3006 	if (len < (8 + offset + hdmi_3d_len - 1))
3007 		goto out;
3008 
3009 	if (hdmi_3d_len < multi_len)
3010 		goto out;
3011 
3012 	if (multi_present == 1 || multi_present == 2) {
3013 		/* 3D_Structure_ALL */
3014 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3015 
3016 		/* check if 3D_MASK is present */
3017 		if (multi_present == 2)
3018 			mask = (db[10 + offset] << 8) | db[11 + offset];
3019 		else
3020 			mask = 0xffff;
3021 
3022 		for (i = 0; i < 16; i++) {
3023 			if (mask & (1 << i))
3024 				modes += add_3d_struct_modes(data,
3025 						structure_all,
3026 						video_db,
3027 						video_len, i);
3028 		}
3029 	}
3030 
3031 	offset += multi_len;
3032 
3033 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3034 		int vic_index;
3035 		struct drm_display_mode *newmode = NULL;
3036 		unsigned int newflag = 0;
3037 		bool detail_present;
3038 
3039 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3040 
3041 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3042 			break;
3043 
3044 		/* 2D_VIC_order_X */
3045 		vic_index = db[8 + offset + i] >> 4;
3046 
3047 		/* 3D_Structure_X */
3048 		switch (db[8 + offset + i] & 0x0f) {
3049 		case 0:
3050 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3051 			break;
3052 		case 6:
3053 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3054 			break;
3055 		case 8:
3056 			/* 3D_Detail_X */
3057 			if ((db[9 + offset + i] >> 4) == 1)
3058 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3059 			break;
3060 		}
3061 
3062 		if (newflag != 0) {
3063 			newmode = drm_display_mode_from_vic_index(
3064 								  video_db,
3065 								  video_len,
3066 								  vic_index);
3067 
3068 			if (newmode) {
3069 				newmode->flags |= newflag;
3070 				drm_add_hdmi_modes(data, newmode);
3071 				modes++;
3072 				drm_mode_destroy(newmode);
3073 			}
3074 		}
3075 
3076 		if (detail_present)
3077 			i++;
3078 	}
3079 
3080 out:
3081 	return modes;
3082 }
3083 
3084 /**
3085  * edid_get_quirks - return quirk flags for a given EDID
3086  * @edid: EDID to process
3087  *
3088  * This tells subsequent routines what fixes they need to apply.
3089  */
3090 static u32 edid_get_quirks(struct edid *edid)
3091 {
3092 	struct edid_quirk *quirk;
3093 	int i;
3094 
3095 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
3096 		quirk = &edid_quirk_list[i];
3097 
3098 		if (edid_vendor(edid, quirk->vendor) &&
3099 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
3100 			return quirk->quirks;
3101 	}
3102 
3103 	return 0;
3104 }
3105 
3106 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
3107 				      const u8 *db)
3108 {
3109 	struct drm_display_info *info = &data->display_info;
3110 	struct drm_hdmi_info *hdmi = &info->hdmi;
3111 	u8 map_len = cea_db_payload_len(db) - 1;
3112 	u8 count;
3113 	u64 map = 0;
3114 
3115 	if (map_len == 0) {
3116 		/* All CEA modes support ycbcr420 sampling also.*/
3117 		hdmi->y420_cmdb_map = U64_MAX;
3118 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3119 		return;
3120 	}
3121 
3122 	/*
3123 	 * This map indicates which of the existing CEA block modes
3124 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3125 	 * set, first mode from VDB can support YCBCR420 output too.
3126 	 * We will parse and keep this map, before parsing VDB itself
3127 	 * to avoid going through the same block again and again.
3128 	 *
3129 	 * Spec is not clear about max possible size of this block.
3130 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3131 	 * address 8 CEA modes, in this way this map can address
3132 	 * 8*8 = first 64 SVDs.
3133 	 */
3134 	if (map_len > 8)
3135 		map_len = 8;
3136 
3137 	for (count = 0; count < map_len; count++)
3138 		map |= (u64)db[2 + count] << (8 * count);
3139 
3140 	if (map)
3141 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3142 
3143 	hdmi->y420_cmdb_map = map;
3144 }
3145 
3146 static
3147 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
3148 {
3149 	switch (max_frl_rate) {
3150 	case 1:
3151 		*max_lanes = 3;
3152 		*max_rate_per_lane = 3;
3153 		break;
3154 	case 2:
3155 		*max_lanes = 3;
3156 		*max_rate_per_lane = 6;
3157 		break;
3158 	case 3:
3159 		*max_lanes = 4;
3160 		*max_rate_per_lane = 6;
3161 		break;
3162 	case 4:
3163 		*max_lanes = 4;
3164 		*max_rate_per_lane = 8;
3165 		break;
3166 	case 5:
3167 		*max_lanes = 4;
3168 		*max_rate_per_lane = 10;
3169 		break;
3170 	case 6:
3171 		*max_lanes = 4;
3172 		*max_rate_per_lane = 12;
3173 		break;
3174 	case 0:
3175 	default:
3176 		*max_lanes = 0;
3177 		*max_rate_per_lane = 0;
3178 	}
3179 }
3180 
3181 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
3182 					       const u8 *db)
3183 {
3184 	u8 dc_mask;
3185 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
3186 
3187 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
3188 	hdmi->y420_dc_modes |= dc_mask;
3189 }
3190 
3191 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
3192 				      const u8 *hf_vsdb)
3193 {
3194 	struct drm_display_info *display = &data->display_info;
3195 	struct drm_hdmi_info *hdmi = &display->hdmi;
3196 
3197 	if (hf_vsdb[6] & 0x80) {
3198 		hdmi->scdc.supported = true;
3199 		if (hf_vsdb[6] & 0x40)
3200 			hdmi->scdc.read_request = true;
3201 	}
3202 
3203 	/*
3204 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3205 	 * And as per the spec, three factors confirm this:
3206 	 * * Availability of a HF-VSDB block in EDID (check)
3207 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3208 	 * * SCDC support available (let's check)
3209 	 * Lets check it out.
3210 	 */
3211 
3212 	if (hf_vsdb[5]) {
3213 		/* max clock is 5000 KHz times block value */
3214 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
3215 		struct drm_scdc *scdc = &hdmi->scdc;
3216 
3217 		if (max_tmds_clock > 340000) {
3218 			display->max_tmds_clock = max_tmds_clock;
3219 			debug("HF-VSDB: max TMDS clock %d kHz\n",
3220 			      display->max_tmds_clock);
3221 		}
3222 
3223 		if (scdc->supported) {
3224 			scdc->scrambling.supported = true;
3225 
3226 			/* Few sinks support scrambling for cloks < 340M */
3227 			if ((hf_vsdb[6] & 0x8))
3228 				scdc->scrambling.low_rates = true;
3229 		}
3230 	}
3231 
3232 	if (hf_vsdb[7]) {
3233 		u8 max_frl_rate;
3234 		u8 dsc_max_frl_rate;
3235 		u8 dsc_max_slices;
3236 		struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
3237 
3238 		debug("hdmi_21 sink detected. parsing edid\n");
3239 		max_frl_rate = (hf_vsdb[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
3240 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
3241 				     &hdmi->max_frl_rate_per_lane);
3242 		hdmi_dsc->v_1p2 = hf_vsdb[11] & DRM_EDID_DSC_1P2;
3243 
3244 		if (hdmi_dsc->v_1p2) {
3245 			hdmi_dsc->native_420 = hf_vsdb[11] & DRM_EDID_DSC_NATIVE_420;
3246 			hdmi_dsc->all_bpp = hf_vsdb[11] & DRM_EDID_DSC_ALL_BPP;
3247 
3248 			if (hf_vsdb[11] & DRM_EDID_DSC_16BPC)
3249 				hdmi_dsc->bpc_supported = 16;
3250 			else if (hf_vsdb[11] & DRM_EDID_DSC_12BPC)
3251 				hdmi_dsc->bpc_supported = 12;
3252 			else if (hf_vsdb[11] & DRM_EDID_DSC_10BPC)
3253 				hdmi_dsc->bpc_supported = 10;
3254 			else
3255 				hdmi_dsc->bpc_supported = 0;
3256 
3257 			dsc_max_frl_rate = (hf_vsdb[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
3258 			drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
3259 					     &hdmi_dsc->max_frl_rate_per_lane);
3260 			hdmi_dsc->total_chunk_kbytes =
3261 				hf_vsdb[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
3262 
3263 			dsc_max_slices = hf_vsdb[12] & DRM_EDID_DSC_MAX_SLICES;
3264 			switch (dsc_max_slices) {
3265 			case 1:
3266 				hdmi_dsc->max_slices = 1;
3267 				hdmi_dsc->clk_per_slice = 340;
3268 				break;
3269 			case 2:
3270 				hdmi_dsc->max_slices = 2;
3271 				hdmi_dsc->clk_per_slice = 340;
3272 				break;
3273 			case 3:
3274 				hdmi_dsc->max_slices = 4;
3275 				hdmi_dsc->clk_per_slice = 340;
3276 				break;
3277 			case 4:
3278 				hdmi_dsc->max_slices = 8;
3279 				hdmi_dsc->clk_per_slice = 340;
3280 				break;
3281 			case 5:
3282 				hdmi_dsc->max_slices = 8;
3283 				hdmi_dsc->clk_per_slice = 400;
3284 				break;
3285 			case 6:
3286 				hdmi_dsc->max_slices = 12;
3287 				hdmi_dsc->clk_per_slice = 400;
3288 				break;
3289 			case 7:
3290 				hdmi_dsc->max_slices = 16;
3291 				hdmi_dsc->clk_per_slice = 400;
3292 				break;
3293 			case 0:
3294 			default:
3295 				hdmi_dsc->max_slices = 0;
3296 				hdmi_dsc->clk_per_slice = 0;
3297 			}
3298 		}
3299 	}
3300 
3301 	drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
3302 }
3303 
3304 /**
3305  * drm_default_rgb_quant_range - default RGB quantization range
3306  * @mode: display mode
3307  *
3308  * Determine the default RGB quantization range for the mode,
3309  * as specified in CEA-861.
3310  *
3311  * Return: The default RGB quantization range for the mode
3312  */
3313 enum hdmi_quantization_range
3314 drm_default_rgb_quant_range(struct drm_display_mode *mode)
3315 {
3316 	/* All CEA modes other than VIC 1 use limited quantization range. */
3317 	return drm_match_cea_mode(mode) > 1 ?
3318 		HDMI_QUANTIZATION_RANGE_LIMITED :
3319 		HDMI_QUANTIZATION_RANGE_FULL;
3320 }
3321 
3322 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
3323 					   const u8 *hdmi)
3324 {
3325 	struct drm_display_info *info = &data->display_info;
3326 	unsigned int dc_bpc = 0;
3327 
3328 	/* HDMI supports at least 8 bpc */
3329 	info->bpc = 8;
3330 
3331 	if (cea_db_payload_len(hdmi) < 6)
3332 		return;
3333 
3334 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3335 		dc_bpc = 10;
3336 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3337 		debug("HDMI sink does deep color 30.\n");
3338 	}
3339 
3340 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3341 		dc_bpc = 12;
3342 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3343 		debug("HDMI sink does deep color 36.\n");
3344 	}
3345 
3346 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3347 		dc_bpc = 16;
3348 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3349 		debug("HDMI sink does deep color 48.\n");
3350 	}
3351 
3352 	if (dc_bpc == 0) {
3353 		debug("No deep color support on this HDMI sink.\n");
3354 		return;
3355 	}
3356 
3357 	debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
3358 	info->bpc = dc_bpc;
3359 
3360 	/* YCRCB444 is optional according to spec. */
3361 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3362 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
3363 		debug("HDMI sink does YCRCB444 in deep color.\n");
3364 	}
3365 
3366 	/*
3367 	 * Spec says that if any deep color mode is supported at all,
3368 	 * then deep color 36 bit must be supported.
3369 	 */
3370 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
3371 		debug("HDMI sink should do DC_36, but does not!\n");
3372 }
3373 
3374 /*
3375  * Search EDID for CEA extension block.
3376  */
3377 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
3378 {
3379 	u8 *edid_ext = NULL;
3380 	int i;
3381 
3382 	/* No EDID or EDID extensions */
3383 	if (!edid || !edid->extensions)
3384 		return NULL;
3385 
3386 	/* Find CEA extension */
3387 	for (i = 0; i < edid->extensions; i++) {
3388 		edid_ext = (u8 *)edid + EDID_SIZE * (i + 1);
3389 		if (edid_ext[0] == ext_id)
3390 			break;
3391 	}
3392 
3393 	if (i == edid->extensions)
3394 		return NULL;
3395 
3396 	return edid_ext;
3397 }
3398 
3399 static u8 *drm_find_cea_extension(struct edid *edid)
3400 {
3401 	return drm_find_edid_extension(edid, 0x02);
3402 }
3403 
3404 #define AUDIO_BLOCK	0x01
3405 #define VIDEO_BLOCK     0x02
3406 #define VENDOR_BLOCK    0x03
3407 #define SPEAKER_BLOCK	0x04
3408 #define EDID_BASIC_AUDIO BIT(6)
3409 
3410 /**
3411  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3412  * @edid: monitor EDID information
3413  *
3414  * Parse the CEA extension according to CEA-861-B.
3415  *
3416  * Return: True if the monitor is HDMI, false if not or unknown.
3417  */
3418 bool drm_detect_hdmi_monitor(struct edid *edid)
3419 {
3420 	u8 *edid_ext;
3421 	int i;
3422 	int start_offset, end_offset;
3423 
3424 	edid_ext = drm_find_cea_extension(edid);
3425 	if (!edid_ext)
3426 		return false;
3427 
3428 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3429 		return false;
3430 
3431 	/*
3432 	 * Because HDMI identifier is in Vendor Specific Block,
3433 	 * search it from all data blocks of CEA extension.
3434 	 */
3435 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3436 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3437 			return true;
3438 	}
3439 
3440 	return false;
3441 }
3442 
3443 /**
3444  * drm_detect_monitor_audio - check monitor audio capability
3445  * @edid: EDID block to scan
3446  *
3447  * Monitor should have CEA extension block.
3448  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3449  * audio' only. If there is any audio extension block and supported
3450  * audio format, assume at least 'basic audio' support, even if 'basic
3451  * audio' is not defined in EDID.
3452  *
3453  * Return: True if the monitor supports audio, false otherwise.
3454  */
3455 bool drm_detect_monitor_audio(struct edid *edid)
3456 {
3457 	u8 *edid_ext;
3458 	int i, j;
3459 	bool has_audio = false;
3460 	int start_offset, end_offset;
3461 
3462 	edid_ext = drm_find_cea_extension(edid);
3463 	if (!edid_ext)
3464 		goto end;
3465 
3466 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3467 
3468 	if (has_audio) {
3469 		printf("Monitor has basic audio support\n");
3470 		goto end;
3471 	}
3472 
3473 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3474 		goto end;
3475 
3476 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3477 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3478 			has_audio = true;
3479 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
3480 			     j += 3)
3481 				debug("CEA audio format %d\n",
3482 				      (edid_ext[i + j] >> 3) & 0xf);
3483 			goto end;
3484 		}
3485 	}
3486 end:
3487 	return has_audio;
3488 }
3489 
3490 static void
3491 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
3492 {
3493 	struct drm_display_info *info = &data->display_info;
3494 	u8 len = cea_db_payload_len(db);
3495 
3496 	if (len >= 6)
3497 		info->dvi_dual = db[6] & 1;
3498 	if (len >= 7)
3499 		info->max_tmds_clock = db[7] * 5000;
3500 
3501 	drm_parse_hdmi_deep_color_info(data, db);
3502 }
3503 
3504 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
3505 			      struct edid *edid)
3506 {
3507 	struct drm_display_info *info = &data->display_info;
3508 	const u8 *edid_ext;
3509 	int i, start, end;
3510 
3511 	edid_ext = drm_find_cea_extension(edid);
3512 	if (!edid_ext)
3513 		return;
3514 
3515 	info->cea_rev = edid_ext[1];
3516 
3517 	/* The existence of a CEA block should imply RGB support */
3518 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3519 	if (edid_ext[3] & EDID_CEA_YCRCB444)
3520 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3521 	if (edid_ext[3] & EDID_CEA_YCRCB422)
3522 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3523 
3524 	if (cea_db_offsets(edid_ext, &start, &end))
3525 		return;
3526 
3527 	for_each_cea_db(edid_ext, i, start, end) {
3528 		const u8 *db = &edid_ext[i];
3529 
3530 		if (cea_db_is_hdmi_vsdb(db))
3531 			drm_parse_hdmi_vsdb_video(data, db);
3532 		if (cea_db_is_hdmi_forum_vsdb(db))
3533 			drm_parse_hdmi_forum_vsdb(data, db);
3534 		if (cea_db_is_y420cmdb(db))
3535 			drm_parse_y420cmdb_bitmap(data, db);
3536 	}
3537 }
3538 
3539 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
3540 {
3541 	struct drm_display_info *info = &data->display_info;
3542 
3543 	info->width_mm = edid->width_cm * 10;
3544 	info->height_mm = edid->height_cm * 10;
3545 
3546 	/* driver figures it out in this case */
3547 	info->bpc = 0;
3548 	info->color_formats = 0;
3549 	info->cea_rev = 0;
3550 	info->max_tmds_clock = 0;
3551 	info->dvi_dual = false;
3552 	info->edid_hdmi_dc_modes = 0;
3553 
3554 	memset(&info->hdmi, 0, sizeof(info->hdmi));
3555 
3556 	if (edid->revision < 3)
3557 		return;
3558 
3559 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3560 		return;
3561 
3562 	drm_parse_cea_ext(data, edid);
3563 
3564 	/*
3565 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3566 	 *
3567 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3568 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
3569 	 * extensions which tell otherwise.
3570 	 */
3571 	if ((info->bpc == 0) && (edid->revision < 4) &&
3572 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3573 		info->bpc = 8;
3574 		debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3575 	}
3576 
3577 	/* Only defined for 1.4 with digital displays */
3578 	if (edid->revision < 4)
3579 		return;
3580 
3581 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3582 	case DRM_EDID_DIGITAL_DEPTH_6:
3583 		info->bpc = 6;
3584 		break;
3585 	case DRM_EDID_DIGITAL_DEPTH_8:
3586 		info->bpc = 8;
3587 		break;
3588 	case DRM_EDID_DIGITAL_DEPTH_10:
3589 		info->bpc = 10;
3590 		break;
3591 	case DRM_EDID_DIGITAL_DEPTH_12:
3592 		info->bpc = 12;
3593 		break;
3594 	case DRM_EDID_DIGITAL_DEPTH_14:
3595 		info->bpc = 14;
3596 		break;
3597 	case DRM_EDID_DIGITAL_DEPTH_16:
3598 		info->bpc = 16;
3599 		break;
3600 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3601 	default:
3602 		info->bpc = 0;
3603 		break;
3604 	}
3605 
3606 	debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3607 	      info->bpc);
3608 
3609 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3610 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3611 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3612 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3613 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3614 }
3615 
3616 static
3617 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3618 {
3619 	const u8 *cea = drm_find_cea_extension(edid);
3620 	const u8 *db, *hdmi = NULL, *video = NULL;
3621 	u8 dbl, hdmi_len, video_len = 0;
3622 	int modes = 0;
3623 
3624 	if (cea && cea_revision(cea) >= 3) {
3625 		int i, start, end;
3626 
3627 		if (cea_db_offsets(cea, &start, &end))
3628 			return 0;
3629 
3630 		for_each_cea_db(cea, i, start, end) {
3631 			db = &cea[i];
3632 			dbl = cea_db_payload_len(db);
3633 
3634 			if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3635 				video = db + 1;
3636 				video_len = dbl;
3637 				modes += do_cea_modes(data, video, dbl);
3638 			} else if (cea_db_is_hdmi_vsdb(db)) {
3639 				hdmi = db;
3640 				hdmi_len = dbl;
3641 			} else if (cea_db_is_y420vdb(db)) {
3642 				const u8 *vdb420 = &db[2];
3643 
3644 				/* Add 4:2:0(only) modes present in EDID */
3645 				modes += do_y420vdb_modes(data, vdb420,
3646 							  dbl - 1);
3647 			}
3648 		}
3649 	}
3650 
3651 	/*
3652 	 * We parse the HDMI VSDB after having added the cea modes as we will
3653 	 * be patching their flags when the sink supports stereo 3D.
3654 	 */
3655 	if (hdmi)
3656 		modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3657 					    video_len, data);
3658 
3659 	return modes;
3660 }
3661 
3662 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3663 
3664 static void
3665 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3666 {
3667 	int i, n = 0;
3668 	u8 d = ext[0x02];
3669 	u8 *det_base = ext + d;
3670 
3671 	if (d < 4 || d > 127)
3672 		return;
3673 
3674 	n = (127 - d) / 18;
3675 	for (i = 0; i < n; i++)
3676 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3677 }
3678 
3679 static void
3680 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3681 {
3682 	unsigned int i, n = min((int)ext[0x02], 6);
3683 	u8 *det_base = ext + 5;
3684 
3685 	if (ext[0x01] != 1)
3686 		return; /* unknown version */
3687 
3688 	for (i = 0; i < n; i++)
3689 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3690 }
3691 
3692 static void
3693 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3694 {
3695 	int i;
3696 	struct edid *edid = (struct edid *)raw_edid;
3697 
3698 	if (!edid)
3699 		return;
3700 
3701 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3702 		cb(&edid->detailed_timings[i], closure);
3703 
3704 	for (i = 1; i <= raw_edid[0x7e]; i++) {
3705 		u8 *ext = raw_edid + (i * EDID_SIZE);
3706 
3707 		switch (*ext) {
3708 		case CEA_EXT:
3709 			cea_for_each_detailed_block(ext, cb, closure);
3710 			break;
3711 		case VTB_EXT:
3712 			vtb_for_each_detailed_block(ext, cb, closure);
3713 			break;
3714 		default:
3715 			break;
3716 		}
3717 	}
3718 }
3719 
3720 /*
3721  * EDID is delightfully ambiguous about how interlaced modes are to be
3722  * encoded.  Our internal representation is of frame height, but some
3723  * HDTV detailed timings are encoded as field height.
3724  *
3725  * The format list here is from CEA, in frame size.  Technically we
3726  * should be checking refresh rate too.  Whatever.
3727  */
3728 static void
3729 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3730 			    struct detailed_pixel_timing *pt)
3731 {
3732 	int i;
3733 
3734 	static const struct {
3735 		int w, h;
3736 	} cea_interlaced[] = {
3737 		{ 1920, 1080 },
3738 		{  720,  480 },
3739 		{ 1440,  480 },
3740 		{ 2880,  480 },
3741 		{  720,  576 },
3742 		{ 1440,  576 },
3743 		{ 2880,  576 },
3744 	};
3745 
3746 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3747 		return;
3748 
3749 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3750 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3751 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3752 			mode->vdisplay *= 2;
3753 			mode->vsync_start *= 2;
3754 			mode->vsync_end *= 2;
3755 			mode->vtotal *= 2;
3756 			mode->vtotal |= 1;
3757 		}
3758 	}
3759 
3760 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3761 }
3762 
3763 /**
3764  * drm_mode_detailed - create a new mode from an EDID detailed timing section
3765  * @edid: EDID block
3766  * @timing: EDID detailed timing info
3767  * @quirks: quirks to apply
3768  *
3769  * An EDID detailed timing block contains enough info for us to create and
3770  * return a new struct drm_display_mode.
3771  */
3772 static
3773 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3774 					   struct detailed_timing *timing,
3775 					   u32 quirks)
3776 {
3777 	struct drm_display_mode *mode;
3778 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3779 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3780 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3781 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3782 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3783 	unsigned hsync_offset =
3784 		(pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3785 		pt->hsync_offset_lo;
3786 	unsigned hsync_pulse_width =
3787 		(pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3788 		pt->hsync_pulse_width_lo;
3789 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3790 		2 | pt->vsync_offset_pulse_width_lo >> 4;
3791 	unsigned vsync_pulse_width =
3792 		(pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3793 		(pt->vsync_offset_pulse_width_lo & 0xf);
3794 
3795 	/* ignore tiny modes */
3796 	if (hactive < 64 || vactive < 64)
3797 		return NULL;
3798 
3799 	if (pt->misc & DRM_EDID_PT_STEREO) {
3800 		debug("stereo mode not supported\n");
3801 		return NULL;
3802 	}
3803 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3804 		debug("composite sync not supported\n");
3805 
3806 	/* it is incorrect if hsync/vsync width is zero */
3807 	if (!hsync_pulse_width || !vsync_pulse_width) {
3808 		debug("Incorrect Detailed timing. ");
3809 		debug("Wrong Hsync/Vsync pulse width\n");
3810 		return NULL;
3811 	}
3812 
3813 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3814 		mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3815 		if (!mode)
3816 			return NULL;
3817 
3818 		goto set_refresh;
3819 	}
3820 
3821 	mode = drm_mode_create();
3822 	if (!mode)
3823 		return NULL;
3824 
3825 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3826 		timing->pixel_clock = cpu_to_le16(1088);
3827 
3828 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3829 
3830 	mode->hdisplay = hactive;
3831 	mode->hsync_start = mode->hdisplay + hsync_offset;
3832 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3833 	mode->htotal = mode->hdisplay + hblank;
3834 
3835 	mode->vdisplay = vactive;
3836 	mode->vsync_start = mode->vdisplay + vsync_offset;
3837 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3838 	mode->vtotal = mode->vdisplay + vblank;
3839 
3840 	/* Some EDIDs have bogus h/vtotal values */
3841 	if (mode->hsync_end > mode->htotal)
3842 		mode->htotal = mode->hsync_end + 1;
3843 	if (mode->vsync_end > mode->vtotal)
3844 		mode->vtotal = mode->vsync_end + 1;
3845 
3846 	drm_mode_do_interlace_quirk(mode, pt);
3847 
3848 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3849 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3850 			DRM_EDID_PT_VSYNC_POSITIVE;
3851 
3852 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3853 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3854 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3855 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3856 
3857 set_refresh:
3858 
3859 	mode->type = DRM_MODE_TYPE_DRIVER;
3860 	mode->vrefresh = drm_get_vrefresh(mode);
3861 
3862 	return mode;
3863 }
3864 
3865 /*
3866  * Calculate the alternate clock for the CEA mode
3867  * (60Hz vs. 59.94Hz etc.)
3868  */
3869 static unsigned int
3870 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3871 {
3872 	unsigned int clock = cea_mode->clock;
3873 
3874 	if (cea_mode->vrefresh % 6 != 0)
3875 		return clock;
3876 
3877 	/*
3878 	 * edid_cea_modes contains the 59.94Hz
3879 	 * variant for 240 and 480 line modes,
3880 	 * and the 60Hz variant otherwise.
3881 	 */
3882 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3883 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3884 	else
3885 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3886 
3887 	return clock;
3888 }
3889 
3890 /**
3891  * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3892  * @mode1: first mode
3893  * @mode2: second mode
3894  *
3895  * Check to see if @mode1 and @mode2 are equivalent, but
3896  * don't check the pixel clocks nor the stereo layout.
3897  *
3898  * Returns:
3899  * True if the modes are equal, false otherwise.
3900  */
3901 
3902 static
3903 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
3904 					const struct drm_display_mode *mode2)
3905 {
3906 	unsigned int flags_mask =
3907 		~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
3908 
3909 	if (mode1->hdisplay == mode2->hdisplay &&
3910 	    mode1->hsync_start == mode2->hsync_start &&
3911 	    mode1->hsync_end == mode2->hsync_end &&
3912 	    mode1->htotal == mode2->htotal &&
3913 	    mode1->vdisplay == mode2->vdisplay &&
3914 	    mode1->vsync_start == mode2->vsync_start &&
3915 	    mode1->vsync_end == mode2->vsync_end &&
3916 	    mode1->vtotal == mode2->vtotal &&
3917 	    mode1->vscan == mode2->vscan &&
3918 	    (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
3919 		return true;
3920 
3921 	return false;
3922 }
3923 
3924 /**
3925  * drm_mode_equal_no_clocks - test modes for equality
3926  * @mode1: first mode
3927  * @mode2: second mode
3928  *
3929  * Check to see if @mode1 and @mode2 are equivalent, but
3930  * don't check the pixel clocks.
3931  *
3932  * Returns:
3933  * True if the modes are equal, false otherwise.
3934  */
3935 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
3936 				     const struct drm_display_mode *mode2)
3937 {
3938 	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
3939 	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
3940 		return false;
3941 
3942 	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3943 }
3944 
3945 static
3946 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3947 				      unsigned int clock_tolerance)
3948 {
3949 	u8 vic;
3950 
3951 	if (!to_match->clock)
3952 		return 0;
3953 
3954 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3955 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
3956 		unsigned int clock1, clock2;
3957 
3958 		/* Check both 60Hz and 59.94Hz */
3959 		clock1 = cea_mode->clock;
3960 		clock2 = cea_mode_alternate_clock(cea_mode);
3961 
3962 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3963 		    abs(to_match->clock - clock2) > clock_tolerance)
3964 			continue;
3965 
3966 		if (drm_mode_equal_no_clocks(to_match, cea_mode))
3967 			return vic;
3968 	}
3969 
3970 	return 0;
3971 }
3972 
3973 static unsigned int
3974 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3975 {
3976 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3977 		return hdmi_mode->clock;
3978 
3979 	return cea_mode_alternate_clock(hdmi_mode);
3980 }
3981 
3982 static
3983 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3984 				       unsigned int clock_tolerance)
3985 {
3986 	u8 vic;
3987 
3988 	if (!to_match->clock)
3989 		return 0;
3990 
3991 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3992 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3993 		unsigned int clock1, clock2;
3994 
3995 		/* Make sure to also match alternate clocks */
3996 		clock1 = hdmi_mode->clock;
3997 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3998 
3999 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4000 		    abs(to_match->clock - clock2) > clock_tolerance)
4001 			continue;
4002 
4003 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
4004 			return vic;
4005 	}
4006 
4007 	return 0;
4008 }
4009 
4010 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
4011 {
4012 	const struct drm_display_mode *cea_mode;
4013 	int clock1, clock2, clock;
4014 	u8 vic;
4015 	const char *type;
4016 
4017 	/*
4018 	 * allow 5kHz clock difference either way to account for
4019 	 * the 10kHz clock resolution limit of detailed timings.
4020 	 */
4021 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4022 	if (drm_valid_cea_vic(vic)) {
4023 		type = "CEA";
4024 		cea_mode = cea_mode_for_vic(vic);
4025 		clock1 = cea_mode->clock;
4026 		clock2 = cea_mode_alternate_clock(cea_mode);
4027 	} else {
4028 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4029 		if (drm_valid_hdmi_vic(vic)) {
4030 			type = "HDMI";
4031 			cea_mode = &edid_4k_modes[vic];
4032 			clock1 = cea_mode->clock;
4033 			clock2 = hdmi_mode_alternate_clock(cea_mode);
4034 		} else {
4035 			return;
4036 		}
4037 	}
4038 
4039 	/* pick whichever is closest */
4040 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4041 		clock = clock1;
4042 	else
4043 		clock = clock2;
4044 
4045 	if (mode->clock == clock)
4046 		return;
4047 
4048 	debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4049 	      type, vic, mode->clock, clock);
4050 	mode->clock = clock;
4051 }
4052 
4053 static void
4054 do_detailed_mode(struct detailed_timing *timing, void *c)
4055 {
4056 	struct detailed_mode_closure *closure = c;
4057 	struct drm_display_mode *newmode;
4058 
4059 	if (timing->pixel_clock) {
4060 		newmode = drm_mode_detailed(
4061 					    closure->edid, timing,
4062 					    closure->quirks);
4063 		if (!newmode)
4064 			return;
4065 
4066 		if (closure->preferred)
4067 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
4068 
4069 		/*
4070 		 * Detailed modes are limited to 10kHz pixel clock resolution,
4071 		 * so fix up anything that looks like CEA/HDMI mode,
4072 		 * but the clock is just slightly off.
4073 		 */
4074 		fixup_detailed_cea_mode_clock(newmode);
4075 		drm_add_hdmi_modes(closure->data, newmode);
4076 		drm_mode_destroy(newmode);
4077 		closure->modes++;
4078 		closure->preferred = 0;
4079 	}
4080 }
4081 
4082 /*
4083  * add_detailed_modes - Add modes from detailed timings
4084  * @data: attached data
4085  * @edid: EDID block to scan
4086  * @quirks: quirks to apply
4087  */
4088 static int
4089 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
4090 		   u32 quirks)
4091 {
4092 	struct detailed_mode_closure closure = {
4093 		.data = data,
4094 		.edid = edid,
4095 		.preferred = 1,
4096 		.quirks = quirks,
4097 	};
4098 
4099 	if (closure.preferred && !version_greater(edid, 1, 3))
4100 		closure.preferred =
4101 			(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
4102 
4103 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
4104 
4105 	return closure.modes;
4106 }
4107 
4108 static int drm_cvt_modes(struct hdmi_edid_data *data,
4109 			 struct detailed_timing *timing)
4110 {
4111 	int i, j, modes = 0;
4112 	struct drm_display_mode *newmode;
4113 	struct cvt_timing *cvt;
4114 	const int rates[] = { 60, 85, 75, 60, 50 };
4115 	const u8 empty[3] = { 0, 0, 0 };
4116 
4117 	for (i = 0; i < 4; i++) {
4118 		int uninitialized_var(width), height;
4119 
4120 		cvt = &timing->data.other_data.data.cvt[i];
4121 
4122 		if (!memcmp(cvt->code, empty, 3))
4123 			continue;
4124 
4125 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4126 		switch (cvt->code[1] & 0x0c) {
4127 		case 0x00:
4128 			width = height * 4 / 3;
4129 			break;
4130 		case 0x04:
4131 			width = height * 16 / 9;
4132 			break;
4133 		case 0x08:
4134 			width = height * 16 / 10;
4135 			break;
4136 		case 0x0c:
4137 			width = height * 15 / 9;
4138 			break;
4139 		}
4140 
4141 		for (j = 1; j < 5; j++) {
4142 			if (cvt->code[2] & (1 << j)) {
4143 				newmode = drm_cvt_mode(width, height,
4144 						       rates[j], j == 0,
4145 						       false, false);
4146 				if (newmode) {
4147 					drm_add_hdmi_modes(data, newmode);
4148 					modes++;
4149 					drm_mode_destroy(newmode);
4150 				}
4151 			}
4152 		}
4153 	}
4154 
4155 	return modes;
4156 }
4157 
4158 static void
4159 do_cvt_mode(struct detailed_timing *timing, void *c)
4160 {
4161 	struct detailed_mode_closure *closure = c;
4162 	struct detailed_non_pixel *data = &timing->data.other_data;
4163 
4164 	if (data->type == EDID_DETAIL_CVT_3BYTE)
4165 		closure->modes += drm_cvt_modes(closure->data, timing);
4166 }
4167 
4168 static int
4169 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
4170 {
4171 	struct detailed_mode_closure closure = {
4172 		.data = data,
4173 		.edid = edid,
4174 	};
4175 
4176 	if (version_greater(edid, 1, 2))
4177 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
4178 
4179 	/* XXX should also look for CVT codes in VTB blocks */
4180 
4181 	return closure.modes;
4182 }
4183 
4184 static void
4185 find_gtf2(struct detailed_timing *t, void *data)
4186 {
4187 	u8 *r = (u8 *)t;
4188 
4189 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
4190 		*(u8 **)data = r;
4191 }
4192 
4193 /* Secondary GTF curve kicks in above some break frequency */
4194 static int
4195 drm_gtf2_hbreak(struct edid *edid)
4196 {
4197 	u8 *r = NULL;
4198 
4199 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4200 	return r ? (r[12] * 2) : 0;
4201 }
4202 
4203 static int
4204 drm_gtf2_2c(struct edid *edid)
4205 {
4206 	u8 *r = NULL;
4207 
4208 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4209 	return r ? r[13] : 0;
4210 }
4211 
4212 static int
4213 drm_gtf2_m(struct edid *edid)
4214 {
4215 	u8 *r = NULL;
4216 
4217 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4218 	return r ? (r[15] << 8) + r[14] : 0;
4219 }
4220 
4221 static int
4222 drm_gtf2_k(struct edid *edid)
4223 {
4224 	u8 *r = NULL;
4225 
4226 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4227 	return r ? r[16] : 0;
4228 }
4229 
4230 static int
4231 drm_gtf2_2j(struct edid *edid)
4232 {
4233 	u8 *r = NULL;
4234 
4235 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4236 	return r ? r[17] : 0;
4237 }
4238 
4239 /**
4240  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
4241  * @edid: EDID block to scan
4242  */
4243 static int standard_timing_level(struct edid *edid)
4244 {
4245 	if (edid->revision >= 2) {
4246 		if (edid->revision >= 4 &&
4247 		    (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
4248 			return LEVEL_CVT;
4249 		if (drm_gtf2_hbreak(edid))
4250 			return LEVEL_GTF2;
4251 		return LEVEL_GTF;
4252 	}
4253 	return LEVEL_DMT;
4254 }
4255 
4256 /*
4257  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
4258  * monitors fill with ascii space (0x20) instead.
4259  */
4260 static int
4261 bad_std_timing(u8 a, u8 b)
4262 {
4263 	return (a == 0x00 && b == 0x00) ||
4264 	       (a == 0x01 && b == 0x01) ||
4265 	       (a == 0x20 && b == 0x20);
4266 }
4267 
4268 static void
4269 is_rb(struct detailed_timing *t, void *data)
4270 {
4271 	u8 *r = (u8 *)t;
4272 
4273 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
4274 		if (r[15] & 0x10)
4275 			*(bool *)data = true;
4276 }
4277 
4278 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
4279 static bool
4280 drm_monitor_supports_rb(struct edid *edid)
4281 {
4282 	if (edid->revision >= 4) {
4283 		bool ret = false;
4284 
4285 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
4286 		return ret;
4287 	}
4288 
4289 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
4290 }
4291 
4292 static bool
4293 mode_is_rb(const struct drm_display_mode *mode)
4294 {
4295 	return (mode->htotal - mode->hdisplay == 160) &&
4296 	       (mode->hsync_end - mode->hdisplay == 80) &&
4297 	       (mode->hsync_end - mode->hsync_start == 32) &&
4298 	       (mode->vsync_start - mode->vdisplay == 3);
4299 }
4300 
4301 /*
4302  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
4303  * @hsize: Mode width
4304  * @vsize: Mode height
4305  * @fresh: Mode refresh rate
4306  * @rb: Mode reduced-blanking-ness
4307  *
4308  * Walk the DMT mode list looking for a match for the given parameters.
4309  *
4310  * Return: A newly allocated copy of the mode, or NULL if not found.
4311  */
4312 static struct drm_display_mode *drm_mode_find_dmt(
4313 					   int hsize, int vsize, int fresh,
4314 					   bool rb)
4315 {
4316 	int i;
4317 	struct drm_display_mode *newmode;
4318 
4319 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4320 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4321 
4322 		if (hsize != ptr->hdisplay)
4323 			continue;
4324 		if (vsize != ptr->vdisplay)
4325 			continue;
4326 		if (fresh != drm_get_vrefresh(ptr))
4327 			continue;
4328 		if (rb != mode_is_rb(ptr))
4329 			continue;
4330 
4331 		newmode = drm_mode_create();
4332 		*newmode = *ptr;
4333 		return newmode;
4334 	}
4335 
4336 	return NULL;
4337 }
4338 
4339 static struct drm_display_mode *
4340 drm_gtf_mode_complex(int hdisplay, int vdisplay,
4341 		     int vrefresh, bool interlaced, int margins,
4342 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
4343 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
4344 #define	GTF_MARGIN_PERCENTAGE		18
4345 	/* 2) character cell horizontal granularity (pixels) - default 8 */
4346 #define	GTF_CELL_GRAN			8
4347 	/* 3) Minimum vertical porch (lines) - default 3 */
4348 #define	GTF_MIN_V_PORCH			1
4349 	/* width of vsync in lines */
4350 #define V_SYNC_RQD			3
4351 	/* width of hsync as % of total line */
4352 #define H_SYNC_PERCENT			8
4353 	/* min time of vsync + back porch (microsec) */
4354 #define MIN_VSYNC_PLUS_BP		550
4355 	/* C' and M' are part of the Blanking Duty Cycle computation */
4356 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
4357 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
4358 	struct drm_display_mode *drm_mode;
4359 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
4360 	int top_margin, bottom_margin;
4361 	int interlace;
4362 	unsigned int hfreq_est;
4363 	int vsync_plus_bp;
4364 	unsigned int vtotal_lines;
4365 	int left_margin, right_margin;
4366 	unsigned int total_active_pixels, ideal_duty_cycle;
4367 	unsigned int hblank, total_pixels, pixel_freq;
4368 	int hsync, hfront_porch, vodd_front_porch_lines;
4369 	unsigned int tmp1, tmp2;
4370 
4371 	drm_mode = drm_mode_create();
4372 	if (!drm_mode)
4373 		return NULL;
4374 
4375 	/* 1. In order to give correct results, the number of horizontal
4376 	 * pixels requested is first processed to ensure that it is divisible
4377 	 * by the character size, by rounding it to the nearest character
4378 	 * cell boundary:
4379 	 */
4380 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4381 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
4382 
4383 	/* 2. If interlace is requested, the number of vertical lines assumed
4384 	 * by the calculation must be halved, as the computation calculates
4385 	 * the number of vertical lines per field.
4386 	 */
4387 	if (interlaced)
4388 		vdisplay_rnd = vdisplay / 2;
4389 	else
4390 		vdisplay_rnd = vdisplay;
4391 
4392 	/* 3. Find the frame rate required: */
4393 	if (interlaced)
4394 		vfieldrate_rqd = vrefresh * 2;
4395 	else
4396 		vfieldrate_rqd = vrefresh;
4397 
4398 	/* 4. Find number of lines in Top margin: */
4399 	top_margin = 0;
4400 	if (margins)
4401 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4402 				1000;
4403 	/* 5. Find number of lines in bottom margin: */
4404 	bottom_margin = top_margin;
4405 
4406 	/* 6. If interlace is required, then set variable interlace: */
4407 	if (interlaced)
4408 		interlace = 1;
4409 	else
4410 		interlace = 0;
4411 
4412 	/* 7. Estimate the Horizontal frequency */
4413 	{
4414 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
4415 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
4416 				2 + interlace;
4417 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
4418 	}
4419 
4420 	/* 8. Find the number of lines in V sync + back porch */
4421 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
4422 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
4423 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
4424 	/*  9. Find the number of lines in V back porch alone:
4425 	 *	vback_porch = vsync_plus_bp - V_SYNC_RQD;
4426 	 */
4427 	/*  10. Find the total number of lines in Vertical field period: */
4428 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
4429 			vsync_plus_bp + GTF_MIN_V_PORCH;
4430 	/*  11. Estimate the Vertical field frequency:
4431 	 *  vfieldrate_est = hfreq_est / vtotal_lines;
4432 	 */
4433 
4434 	/*  12. Find the actual horizontal period:
4435 	 *	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
4436 	 */
4437 	/*  13. Find the actual Vertical field frequency:
4438 	 *	vfield_rate = hfreq_est / vtotal_lines;
4439 	 */
4440 	/*  14. Find the Vertical frame frequency:
4441 	 *	if (interlaced)
4442 	 *		vframe_rate = vfield_rate / 2;
4443 	 *	else
4444 	 *		vframe_rate = vfield_rate;
4445 	 */
4446 	/*  15. Find number of pixels in left margin: */
4447 	if (margins)
4448 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4449 				1000;
4450 	else
4451 		left_margin = 0;
4452 
4453 	/* 16.Find number of pixels in right margin: */
4454 	right_margin = left_margin;
4455 	/* 17.Find total number of active pixels in image and left and right */
4456 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
4457 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
4458 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
4459 				(GTF_M_PRIME * 1000000 / hfreq_est);
4460 	/* 19.Find the number of pixels in the blanking time to the nearest
4461 	 * double character cell:
4462 	 */
4463 	hblank = total_active_pixels * ideal_duty_cycle /
4464 			(100000 - ideal_duty_cycle);
4465 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
4466 	hblank = hblank * 2 * GTF_CELL_GRAN;
4467 	/* 20.Find total number of pixels: */
4468 	total_pixels = total_active_pixels + hblank;
4469 	/* 21.Find pixel clock frequency: */
4470 	pixel_freq = total_pixels * hfreq_est / 1000;
4471 	/* Stage 1 computations are now complete; I should really pass
4472 	 * the results to another function and do the Stage 2 computations,
4473 	 * but I only need a few more values so I'll just append the
4474 	 * computations here for now
4475 	 */
4476 
4477 	/* 17. Find the number of pixels in the horizontal sync period: */
4478 	hsync = H_SYNC_PERCENT * total_pixels / 100;
4479 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4480 	hsync = hsync * GTF_CELL_GRAN;
4481 	/* 18. Find the number of pixels in horizontal front porch period */
4482 	hfront_porch = hblank / 2 - hsync;
4483 	/*  36. Find the number of lines in the odd front porch period: */
4484 	vodd_front_porch_lines = GTF_MIN_V_PORCH;
4485 
4486 	/* finally, pack the results in the mode struct */
4487 	drm_mode->hdisplay = hdisplay_rnd;
4488 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
4489 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
4490 	drm_mode->htotal = total_pixels;
4491 	drm_mode->vdisplay = vdisplay_rnd;
4492 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
4493 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
4494 	drm_mode->vtotal = vtotal_lines;
4495 
4496 	drm_mode->clock = pixel_freq;
4497 
4498 	if (interlaced) {
4499 		drm_mode->vtotal *= 2;
4500 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
4501 	}
4502 
4503 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
4504 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
4505 	else
4506 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
4507 
4508 	return drm_mode;
4509 }
4510 
4511 /**
4512  * drm_gtf_mode - create the mode based on the GTF algorithm
4513  * @hdisplay: hdisplay size
4514  * @vdisplay: vdisplay size
4515  * @vrefresh: vrefresh rate.
4516  * @interlaced: whether to compute an interlaced mode
4517  * @margins: desired margin (borders) size
4518  *
4519  * return the mode based on GTF algorithm
4520  *
4521  * This function is to create the mode based on the GTF algorithm.
4522  * Generalized Timing Formula is derived from:
4523  *	GTF Spreadsheet by Andy Morrish (1/5/97)
4524  *	available at http://www.vesa.org
4525  *
4526  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
4527  * What I have done is to translate it by using integer calculation.
4528  * I also refer to the function of fb_get_mode in the file of
4529  * drivers/video/fbmon.c
4530  *
4531  * Standard GTF parameters:
4532  * M = 600
4533  * C = 40
4534  * K = 128
4535  * J = 20
4536  *
4537  * Returns:
4538  * The modeline based on the GTF algorithm stored in a drm_display_mode object.
4539  * The display mode object is allocated with drm_mode_create(). Returns NULL
4540  * when no mode could be allocated.
4541  */
4542 static struct drm_display_mode *
4543 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
4544 	     bool interlaced, int margins)
4545 {
4546 	return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
4547 				    interlaced, margins,
4548 				    600, 40 * 2, 128, 20 * 2);
4549 }
4550 
4551 /** drm_mode_hsync - get the hsync of a mode
4552  * @mode: mode
4553  *
4554  * Returns:
4555  * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
4556  * value first if it is not yet set.
4557  */
4558 static int drm_mode_hsync(const struct drm_display_mode *mode)
4559 {
4560 	unsigned int calc_val;
4561 
4562 	if (mode->htotal < 0)
4563 		return 0;
4564 
4565 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
4566 	calc_val += 500;				/* round to 1000Hz */
4567 	calc_val /= 1000;				/* truncate to kHz */
4568 
4569 	return calc_val;
4570 }
4571 
4572 /**
4573  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4574  * @data: the structure that save parsed hdmi edid data
4575  * @edid: EDID block to scan
4576  * @t: standard timing params
4577  *
4578  * Take the standard timing params (in this case width, aspect, and refresh)
4579  * and convert them into a real mode using CVT/GTF/DMT.
4580  */
4581 static struct drm_display_mode *
4582 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4583 	     struct std_timing *t)
4584 {
4585 	struct drm_display_mode *mode = NULL;
4586 	int i, hsize, vsize;
4587 	int vrefresh_rate;
4588 	int num = data->modes;
4589 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4590 		>> EDID_TIMING_ASPECT_SHIFT;
4591 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4592 		>> EDID_TIMING_VFREQ_SHIFT;
4593 	int timing_level = standard_timing_level(edid);
4594 
4595 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
4596 		return NULL;
4597 
4598 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4599 	hsize = t->hsize * 8 + 248;
4600 	/* vrefresh_rate = vfreq + 60 */
4601 	vrefresh_rate = vfreq + 60;
4602 	/* the vdisplay is calculated based on the aspect ratio */
4603 	if (aspect_ratio == 0) {
4604 		if (edid->revision < 3)
4605 			vsize = hsize;
4606 		else
4607 			vsize = (hsize * 10) / 16;
4608 	} else if (aspect_ratio == 1) {
4609 		vsize = (hsize * 3) / 4;
4610 	} else if (aspect_ratio == 2) {
4611 		vsize = (hsize * 4) / 5;
4612 	} else {
4613 		vsize = (hsize * 9) / 16;
4614 	}
4615 
4616 	/* HDTV hack, part 1 */
4617 	if (vrefresh_rate == 60 &&
4618 	    ((hsize == 1360 && vsize == 765) ||
4619 	     (hsize == 1368 && vsize == 769))) {
4620 		hsize = 1366;
4621 		vsize = 768;
4622 	}
4623 
4624 	/*
4625 	 * If we already has a mode for this size and refresh
4626 	 * rate (because it came from detailed or CVT info), use that
4627 	 * instead.  This way we don't have to guess at interlace or
4628 	 * reduced blanking.
4629 	 */
4630 	for (i = 0; i < num; i++)
4631 		if (data->mode_buf[i].hdisplay == hsize &&
4632 		    data->mode_buf[i].vdisplay == vsize &&
4633 		    drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4634 			return NULL;
4635 
4636 	/* HDTV hack, part 2 */
4637 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4638 		mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4639 				    false);
4640 		mode->hdisplay = 1366;
4641 		mode->hsync_start = mode->hsync_start - 1;
4642 		mode->hsync_end = mode->hsync_end - 1;
4643 		return mode;
4644 	}
4645 
4646 	/* check whether it can be found in default mode table */
4647 	if (drm_monitor_supports_rb(edid)) {
4648 		mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4649 					 true);
4650 		if (mode)
4651 			return mode;
4652 	}
4653 
4654 	mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4655 	if (mode)
4656 		return mode;
4657 
4658 	/* okay, generate it */
4659 	switch (timing_level) {
4660 	case LEVEL_DMT:
4661 		break;
4662 	case LEVEL_GTF:
4663 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4664 		break;
4665 	case LEVEL_GTF2:
4666 		/*
4667 		 * This is potentially wrong if there's ever a monitor with
4668 		 * more than one ranges section, each claiming a different
4669 		 * secondary GTF curve.  Please don't do that.
4670 		 */
4671 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4672 		if (!mode)
4673 			return NULL;
4674 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4675 			drm_mode_destroy(mode);
4676 			mode = drm_gtf_mode_complex(hsize, vsize,
4677 						    vrefresh_rate, 0, 0,
4678 						    drm_gtf2_m(edid),
4679 						    drm_gtf2_2c(edid),
4680 						    drm_gtf2_k(edid),
4681 						    drm_gtf2_2j(edid));
4682 		}
4683 		break;
4684 	case LEVEL_CVT:
4685 		mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4686 				    false);
4687 		break;
4688 	}
4689 
4690 	return mode;
4691 }
4692 
4693 static void
4694 do_standard_modes(struct detailed_timing *timing, void *c)
4695 {
4696 	struct detailed_mode_closure *closure = c;
4697 	struct detailed_non_pixel *data = &timing->data.other_data;
4698 	struct edid *edid = closure->edid;
4699 
4700 	if (data->type == EDID_DETAIL_STD_MODES) {
4701 		int i;
4702 
4703 		for (i = 0; i < 6; i++) {
4704 			struct std_timing *std;
4705 			struct drm_display_mode *newmode;
4706 
4707 			std = &data->data.timings[i];
4708 			newmode = drm_mode_std(closure->data, edid, std);
4709 			if (newmode) {
4710 				drm_add_hdmi_modes(closure->data, newmode);
4711 				closure->modes++;
4712 				drm_mode_destroy(newmode);
4713 			}
4714 		}
4715 	}
4716 }
4717 
4718 /**
4719  * add_standard_modes - get std. modes from EDID and add them
4720  * @data: data to add mode(s) to
4721  * @edid: EDID block to scan
4722  *
4723  * Standard modes can be calculated using the appropriate standard (DMT,
4724  * GTF or CVT. Grab them from @edid and add them to the list.
4725  */
4726 static int
4727 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4728 {
4729 	int i, modes = 0;
4730 	struct detailed_mode_closure closure = {
4731 		.data = data,
4732 		.edid = edid,
4733 	};
4734 
4735 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4736 		struct drm_display_mode *newmode;
4737 
4738 		newmode = drm_mode_std(data, edid,
4739 				       &edid->standard_timings[i]);
4740 		if (newmode) {
4741 			drm_add_hdmi_modes(data, newmode);
4742 			modes++;
4743 			drm_mode_destroy(newmode);
4744 		}
4745 	}
4746 
4747 	if (version_greater(edid, 1, 0))
4748 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4749 					    &closure);
4750 
4751 	/* XXX should also look for standard codes in VTB blocks */
4752 
4753 	return modes + closure.modes;
4754 }
4755 
4756 static int
4757 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4758 {
4759 	int i, j, m, modes = 0;
4760 	struct drm_display_mode *mode;
4761 	u8 *est = ((u8 *)timing) + 6;
4762 
4763 	for (i = 0; i < 6; i++) {
4764 		for (j = 7; j >= 0; j--) {
4765 			m = (i * 8) + (7 - j);
4766 			if (m >= ARRAY_SIZE(est3_modes))
4767 				break;
4768 			if (est[i] & (1 << j)) {
4769 				mode = drm_mode_find_dmt(
4770 							 est3_modes[m].w,
4771 							 est3_modes[m].h,
4772 							 est3_modes[m].r,
4773 							 est3_modes[m].rb);
4774 				if (mode) {
4775 					drm_add_hdmi_modes(data, mode);
4776 					modes++;
4777 					drm_mode_destroy(mode);
4778 				}
4779 			}
4780 		}
4781 	}
4782 
4783 	return modes;
4784 }
4785 
4786 static void
4787 do_established_modes(struct detailed_timing *timing, void *c)
4788 {
4789 	struct detailed_mode_closure *closure = c;
4790 	struct detailed_non_pixel *data = &timing->data.other_data;
4791 
4792 	if (data->type == EDID_DETAIL_EST_TIMINGS)
4793 		closure->modes += drm_est3_modes(closure->data, timing);
4794 }
4795 
4796 /**
4797  * add_established_modes - get est. modes from EDID and add them
4798  * @data: data to add mode(s) to
4799  * @edid: EDID block to scan
4800  *
4801  * Each EDID block contains a bitmap of the supported "established modes" list
4802  * (defined above).  Tease them out and add them to the modes list.
4803  */
4804 static int
4805 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4806 {
4807 	unsigned long est_bits = edid->established_timings.t1 |
4808 		(edid->established_timings.t2 << 8) |
4809 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
4810 	int i, modes = 0;
4811 	struct detailed_mode_closure closure = {
4812 		.data = data,
4813 		.edid = edid,
4814 	};
4815 
4816 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4817 		if (est_bits & (1 << i)) {
4818 			struct drm_display_mode *newmode = drm_mode_create();
4819 			*newmode = edid_est_modes[i];
4820 			if (newmode) {
4821 				drm_add_hdmi_modes(data, newmode);
4822 				modes++;
4823 				drm_mode_destroy(newmode);
4824 			}
4825 		}
4826 	}
4827 
4828 	if (version_greater(edid, 1, 0))
4829 		drm_for_each_detailed_block((u8 *)edid,
4830 					    do_established_modes, &closure);
4831 
4832 	return modes + closure.modes;
4833 }
4834 
4835 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4836 {
4837 	u8 vic;
4838 
4839 	if (!to_match->clock)
4840 		return 0;
4841 
4842 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4843 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4844 		unsigned int clock1, clock2;
4845 
4846 		/* Make sure to also match alternate clocks */
4847 		clock1 = hdmi_mode->clock;
4848 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4849 
4850 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4851 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4852 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4853 			return vic;
4854 	}
4855 	return 0;
4856 }
4857 
4858 static int
4859 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4860 {
4861 	struct drm_display_mode *mode;
4862 	int i, num, modes = 0;
4863 
4864 	/* Don't add CEA modes if the CEA extension block is missing */
4865 	if (!drm_find_cea_extension(edid))
4866 		return 0;
4867 
4868 	/*
4869 	 * Go through all probed modes and create a new mode
4870 	 * with the alternate clock for certain CEA modes.
4871 	 */
4872 	num = data->modes;
4873 
4874 	for (i = 0; i < num; i++) {
4875 		const struct drm_display_mode *cea_mode = NULL;
4876 		struct drm_display_mode *newmode;
4877 		u8 vic;
4878 		unsigned int clock1, clock2;
4879 
4880 		mode = &data->mode_buf[i];
4881 		vic = drm_match_cea_mode(mode);
4882 
4883 		if (drm_valid_cea_vic(vic)) {
4884 			cea_mode = cea_mode_for_vic(vic);
4885 			clock2 = cea_mode_alternate_clock(cea_mode);
4886 		} else {
4887 			vic = drm_match_hdmi_mode(mode);
4888 			if (drm_valid_hdmi_vic(vic)) {
4889 				cea_mode = &edid_4k_modes[vic];
4890 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4891 			}
4892 		}
4893 
4894 		if (!cea_mode)
4895 			continue;
4896 
4897 		clock1 = cea_mode->clock;
4898 
4899 		if (clock1 == clock2)
4900 			continue;
4901 
4902 		if (mode->clock != clock1 && mode->clock != clock2)
4903 			continue;
4904 
4905 		newmode = drm_mode_create();
4906 		*newmode = *cea_mode;
4907 		if (!newmode)
4908 			continue;
4909 
4910 		/* Carry over the stereo flags */
4911 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4912 
4913 		/*
4914 		 * The current mode could be either variant. Make
4915 		 * sure to pick the "other" clock for the new mode.
4916 		 */
4917 		if (mode->clock != clock1)
4918 			newmode->clock = clock1;
4919 		else
4920 			newmode->clock = clock2;
4921 
4922 		drm_add_hdmi_modes(data, newmode);
4923 		modes++;
4924 		drm_mode_destroy(newmode);
4925 	}
4926 
4927 	return modes;
4928 }
4929 
4930 static u8 *drm_find_displayid_extension(struct edid *edid)
4931 {
4932 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
4933 }
4934 
4935 static int validate_displayid(u8 *displayid, int length, int idx)
4936 {
4937 	int i;
4938 	u8 csum = 0;
4939 	struct displayid_hdr *base;
4940 
4941 	base = (struct displayid_hdr *)&displayid[idx];
4942 
4943 	debug("base revision 0x%x, length %d, %d %d\n",
4944 	      base->rev, base->bytes, base->prod_id, base->ext_count);
4945 
4946 	if (base->bytes + 5 > length - idx)
4947 		return -EINVAL;
4948 	for (i = idx; i <= base->bytes + 5; i++)
4949 		csum += displayid[i];
4950 	if (csum) {
4951 		debug("DisplayID checksum invalid, remainder is %d\n", csum);
4952 		return -EINVAL;
4953 	}
4954 	return 0;
4955 }
4956 
4957 static struct
4958 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
4959 					      *timings)
4960 {
4961 	struct drm_display_mode *mode;
4962 	unsigned pixel_clock = (timings->pixel_clock[0] |
4963 				(timings->pixel_clock[1] << 8) |
4964 				(timings->pixel_clock[2] << 16));
4965 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4966 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4967 	unsigned hsync = (timings->hsync[0] |
4968 		(timings->hsync[1] & 0x7f) << 8) + 1;
4969 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4970 	unsigned vactive = (timings->vactive[0] |
4971 		timings->vactive[1] << 8) + 1;
4972 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4973 	unsigned vsync = (timings->vsync[0] |
4974 		(timings->vsync[1] & 0x7f) << 8) + 1;
4975 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4976 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4977 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4978 
4979 	mode = drm_mode_create();
4980 	if (!mode)
4981 		return NULL;
4982 
4983 	mode->clock = pixel_clock * 10;
4984 	mode->hdisplay = hactive;
4985 	mode->hsync_start = mode->hdisplay + hsync;
4986 	mode->hsync_end = mode->hsync_start + hsync_width;
4987 	mode->htotal = mode->hdisplay + hblank;
4988 
4989 	mode->vdisplay = vactive;
4990 	mode->vsync_start = mode->vdisplay + vsync;
4991 	mode->vsync_end = mode->vsync_start + vsync_width;
4992 	mode->vtotal = mode->vdisplay + vblank;
4993 
4994 	mode->flags = 0;
4995 	mode->flags |=
4996 		hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4997 	mode->flags |=
4998 		vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4999 	mode->type = DRM_MODE_TYPE_DRIVER;
5000 
5001 	if (timings->flags & 0x80)
5002 		mode->type |= DRM_MODE_TYPE_PREFERRED;
5003 	mode->vrefresh = drm_get_vrefresh(mode);
5004 
5005 	return mode;
5006 }
5007 
5008 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
5009 					  struct displayid_block *block)
5010 {
5011 	struct displayid_detailed_timing_block *det;
5012 	int i;
5013 	int num_timings;
5014 	struct drm_display_mode *newmode;
5015 	int num_modes = 0;
5016 
5017 	det = (struct displayid_detailed_timing_block *)block;
5018 	/* blocks must be multiple of 20 bytes length */
5019 	if (block->num_bytes % 20)
5020 		return 0;
5021 
5022 	num_timings = block->num_bytes / 20;
5023 	for (i = 0; i < num_timings; i++) {
5024 		struct displayid_detailed_timings_1 *timings =
5025 			&det->timings[i];
5026 
5027 		newmode = drm_displayid_detailed(timings);
5028 		if (!newmode)
5029 			continue;
5030 
5031 		drm_add_hdmi_modes(data, newmode);
5032 		num_modes++;
5033 		drm_mode_destroy(newmode);
5034 	}
5035 	return num_modes;
5036 }
5037 
5038 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
5039 					struct edid *edid)
5040 {
5041 	u8 *displayid;
5042 	int ret;
5043 	int idx = 1;
5044 	int length = EDID_SIZE;
5045 	struct displayid_block *block;
5046 	int num_modes = 0;
5047 
5048 	displayid = drm_find_displayid_extension(edid);
5049 	if (!displayid)
5050 		return 0;
5051 
5052 	ret = validate_displayid(displayid, length, idx);
5053 	if (ret)
5054 		return 0;
5055 
5056 	idx += sizeof(struct displayid_hdr);
5057 	while (block = (struct displayid_block *)&displayid[idx],
5058 	       idx + sizeof(struct displayid_block) <= length &&
5059 	       idx + sizeof(struct displayid_block) + block->num_bytes <=
5060 	       length && block->num_bytes > 0) {
5061 		idx += block->num_bytes + sizeof(struct displayid_block);
5062 		switch (block->tag) {
5063 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5064 			num_modes +=
5065 				add_displayid_detailed_1_modes(data, block);
5066 			break;
5067 		}
5068 	}
5069 	return num_modes;
5070 }
5071 
5072 static bool
5073 mode_in_hsync_range(const struct drm_display_mode *mode,
5074 		    struct edid *edid, u8 *t)
5075 {
5076 	int hsync, hmin, hmax;
5077 
5078 	hmin = t[7];
5079 	if (edid->revision >= 4)
5080 		hmin += ((t[4] & 0x04) ? 255 : 0);
5081 	hmax = t[8];
5082 	if (edid->revision >= 4)
5083 		hmax += ((t[4] & 0x08) ? 255 : 0);
5084 	hsync = drm_mode_hsync(mode);
5085 
5086 	return (hsync <= hmax && hsync >= hmin);
5087 }
5088 
5089 static bool
5090 mode_in_vsync_range(const struct drm_display_mode *mode,
5091 		    struct edid *edid, u8 *t)
5092 {
5093 	int vsync, vmin, vmax;
5094 
5095 	vmin = t[5];
5096 	if (edid->revision >= 4)
5097 		vmin += ((t[4] & 0x01) ? 255 : 0);
5098 	vmax = t[6];
5099 	if (edid->revision >= 4)
5100 		vmax += ((t[4] & 0x02) ? 255 : 0);
5101 	vsync = drm_get_vrefresh(mode);
5102 
5103 	return (vsync <= vmax && vsync >= vmin);
5104 }
5105 
5106 static u32
5107 range_pixel_clock(struct edid *edid, u8 *t)
5108 {
5109 	/* unspecified */
5110 	if (t[9] == 0 || t[9] == 255)
5111 		return 0;
5112 
5113 	/* 1.4 with CVT support gives us real precision, yay */
5114 	if (edid->revision >= 4 && t[10] == 0x04)
5115 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
5116 
5117 	/* 1.3 is pathetic, so fuzz up a bit */
5118 	return t[9] * 10000 + 5001;
5119 }
5120 
5121 static bool
5122 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
5123 	      struct detailed_timing *timing)
5124 {
5125 	u32 max_clock;
5126 	u8 *t = (u8 *)timing;
5127 
5128 	if (!mode_in_hsync_range(mode, edid, t))
5129 		return false;
5130 
5131 	if (!mode_in_vsync_range(mode, edid, t))
5132 		return false;
5133 
5134 	max_clock = range_pixel_clock(edid, t);
5135 	if (max_clock)
5136 		if (mode->clock > max_clock)
5137 			return false;
5138 
5139 	/* 1.4 max horizontal check */
5140 	if (edid->revision >= 4 && t[10] == 0x04)
5141 		if (t[13] && mode->hdisplay > 8 *
5142 		    (t[13] + (256 * (t[12] & 0x3))))
5143 			return false;
5144 
5145 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
5146 		return false;
5147 
5148 	return true;
5149 }
5150 
5151 static bool valid_inferred_mode(struct hdmi_edid_data *data,
5152 				const struct drm_display_mode *mode)
5153 {
5154 	const struct drm_display_mode *m;
5155 	bool ok = false;
5156 	int i;
5157 
5158 	for (i = 0; i < data->modes; i++) {
5159 		m = &data->mode_buf[i];
5160 		if (mode->hdisplay == m->hdisplay &&
5161 		    mode->vdisplay == m->vdisplay &&
5162 		    drm_get_vrefresh(mode) == drm_get_vrefresh(m))
5163 			return false; /* duplicated */
5164 		if (mode->hdisplay <= m->hdisplay &&
5165 		    mode->vdisplay <= m->vdisplay)
5166 			ok = true;
5167 	}
5168 	return ok;
5169 }
5170 
5171 static int
5172 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5173 			struct detailed_timing *timing)
5174 {
5175 	int i, modes = 0;
5176 
5177 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
5178 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
5179 		    valid_inferred_mode(data, drm_dmt_modes + i)) {
5180 			drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
5181 			modes++;
5182 		}
5183 	}
5184 
5185 	return modes;
5186 }
5187 
5188 /* fix up 1366x768 mode from 1368x768;
5189  * GFT/CVT can't express 1366 width which isn't dividable by 8
5190  */
5191 static void fixup_mode_1366x768(struct drm_display_mode *mode)
5192 {
5193 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
5194 		mode->hdisplay = 1366;
5195 		mode->hsync_start--;
5196 		mode->hsync_end--;
5197 	}
5198 }
5199 
5200 static int
5201 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5202 			struct detailed_timing *timing)
5203 {
5204 	int i, modes = 0;
5205 	struct drm_display_mode *newmode;
5206 
5207 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5208 		const struct minimode *m = &extra_modes[i];
5209 
5210 		newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
5211 		if (!newmode)
5212 			return modes;
5213 
5214 		fixup_mode_1366x768(newmode);
5215 		if (!mode_in_range(newmode, edid, timing) ||
5216 		    !valid_inferred_mode(data, newmode)) {
5217 			drm_mode_destroy(newmode);
5218 			continue;
5219 		}
5220 
5221 		drm_add_hdmi_modes(data, newmode);
5222 		modes++;
5223 		drm_mode_destroy(newmode);
5224 	}
5225 
5226 	return modes;
5227 }
5228 
5229 static int
5230 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5231 			struct detailed_timing *timing)
5232 {
5233 	int i, modes = 0;
5234 	struct drm_display_mode *newmode;
5235 	bool rb = drm_monitor_supports_rb(edid);
5236 
5237 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5238 		const struct minimode *m = &extra_modes[i];
5239 
5240 		newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
5241 		if (!newmode)
5242 			return modes;
5243 
5244 		fixup_mode_1366x768(newmode);
5245 		if (!mode_in_range(newmode, edid, timing) ||
5246 		    !valid_inferred_mode(data, newmode)) {
5247 			drm_mode_destroy(newmode);
5248 			continue;
5249 		}
5250 
5251 		drm_add_hdmi_modes(data, newmode);
5252 		modes++;
5253 		drm_mode_destroy(newmode);
5254 	}
5255 
5256 	return modes;
5257 }
5258 
5259 static void
5260 do_inferred_modes(struct detailed_timing *timing, void *c)
5261 {
5262 	struct detailed_mode_closure *closure = c;
5263 	struct detailed_non_pixel *data = &timing->data.other_data;
5264 	struct detailed_data_monitor_range *range = &data->data.range;
5265 
5266 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
5267 		return;
5268 
5269 	closure->modes += drm_dmt_modes_for_range(closure->data,
5270 						  closure->edid,
5271 						  timing);
5272 
5273 	if (!version_greater(closure->edid, 1, 1))
5274 		return; /* GTF not defined yet */
5275 
5276 	switch (range->flags) {
5277 	case 0x02: /* secondary gtf, XXX could do more */
5278 	case 0x00: /* default gtf */
5279 		closure->modes += drm_gtf_modes_for_range(closure->data,
5280 							  closure->edid,
5281 							  timing);
5282 		break;
5283 	case 0x04: /* cvt, only in 1.4+ */
5284 		if (!version_greater(closure->edid, 1, 3))
5285 			break;
5286 
5287 		closure->modes += drm_cvt_modes_for_range(closure->data,
5288 							  closure->edid,
5289 							  timing);
5290 		break;
5291 	case 0x01: /* just the ranges, no formula */
5292 	default:
5293 		break;
5294 	}
5295 }
5296 
5297 static int
5298 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
5299 {
5300 	struct detailed_mode_closure closure = {
5301 		.data = data,
5302 		.edid = edid,
5303 	};
5304 
5305 	if (version_greater(edid, 1, 0))
5306 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
5307 					    &closure);
5308 
5309 	return closure.modes;
5310 }
5311 
5312 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
5313 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
5314 
5315 /**
5316  * edid_fixup_preferred - set preferred modes based on quirk list
5317  * @data: the structure that save parsed hdmi edid data
5318  * @quirks: quirks list
5319  *
5320  * Walk the mode list, clearing the preferred status
5321  * on existing modes and setting it anew for the right mode ala @quirks.
5322  */
5323 static void edid_fixup_preferred(struct hdmi_edid_data *data,
5324 				 u32 quirks)
5325 {
5326 	struct drm_display_mode *cur_mode, *preferred_mode;
5327 	int i, target_refresh = 0;
5328 	int num = data->modes;
5329 	int cur_vrefresh, preferred_vrefresh;
5330 
5331 	if (!num)
5332 		return;
5333 
5334 	preferred_mode = data->preferred_mode;
5335 
5336 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
5337 		target_refresh = 60;
5338 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
5339 		target_refresh = 75;
5340 
5341 	for (i = 0; i < num; i++) {
5342 		cur_mode = &data->mode_buf[i];
5343 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
5344 
5345 		if (cur_mode == preferred_mode)
5346 			continue;
5347 
5348 		/* Largest mode is preferred */
5349 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
5350 			preferred_mode = cur_mode;
5351 
5352 		cur_vrefresh = cur_mode->vrefresh ?
5353 		cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
5354 		preferred_vrefresh = preferred_mode->vrefresh ?
5355 		preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
5356 		/* At a given size, try to get closest to target refresh */
5357 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
5358 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
5359 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
5360 			preferred_mode = cur_mode;
5361 		}
5362 	}
5363 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
5364 	data->preferred_mode = preferred_mode;
5365 }
5366 
5367 static const u8 edid_header[] = {
5368 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
5369 };
5370 
5371 /**
5372  * drm_edid_header_is_valid - sanity check the header of the base EDID block
5373  * @raw_edid: pointer to raw base EDID block
5374  *
5375  * Sanity check the header of the base EDID block.
5376  *
5377  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
5378  */
5379 static int drm_edid_header_is_valid(const u8 *raw_edid)
5380 {
5381 	int i, score = 0;
5382 
5383 	for (i = 0; i < sizeof(edid_header); i++)
5384 		if (raw_edid[i] == edid_header[i])
5385 			score++;
5386 
5387 	return score;
5388 }
5389 
5390 static int drm_edid_block_checksum(const u8 *raw_edid)
5391 {
5392 	int i;
5393 	u8 csum = 0;
5394 
5395 	for (i = 0; i < EDID_SIZE; i++)
5396 		csum += raw_edid[i];
5397 
5398 	return csum;
5399 }
5400 
5401 static bool drm_edid_is_zero(const u8 *in_edid, int length)
5402 {
5403 	if (memchr_inv(in_edid, 0, length))
5404 		return false;
5405 
5406 	return true;
5407 }
5408 
5409 /**
5410  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
5411  * @raw_edid: pointer to raw EDID block
5412  * @block: type of block to validate (0 for base, extension otherwise)
5413  * @print_bad_edid: if true, dump bad EDID blocks to the console
5414  * @edid_corrupt: if true, the header or checksum is invalid
5415  *
5416  * Validate a base or extension EDID block and optionally dump bad blocks to
5417  * the console.
5418  *
5419  * Return: True if the block is valid, false otherwise.
5420  */
5421 static
5422 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
5423 			  bool *edid_corrupt)
5424 {
5425 	u8 csum;
5426 	int edid_fixup = 6;
5427 	struct edid *edid = (struct edid *)raw_edid;
5428 
5429 	if ((!raw_edid))
5430 		return false;
5431 
5432 	if (block == 0) {
5433 		int score = drm_edid_header_is_valid(raw_edid);
5434 
5435 		if (score == 8) {
5436 			if (edid_corrupt)
5437 				*edid_corrupt = false;
5438 		} else if (score >= edid_fixup) {
5439 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
5440 			 * The corrupt flag needs to be set here otherwise, the
5441 			 * fix-up code here will correct the problem, the
5442 			 * checksum is correct and the test fails
5443 			 */
5444 			if (edid_corrupt)
5445 				*edid_corrupt = true;
5446 			debug("Fixing header, your hardware may be failing\n");
5447 			memcpy(raw_edid, edid_header, sizeof(edid_header));
5448 		} else {
5449 			if (edid_corrupt)
5450 				*edid_corrupt = true;
5451 			goto bad;
5452 		}
5453 	}
5454 
5455 	csum = drm_edid_block_checksum(raw_edid);
5456 	if (csum) {
5457 		if (print_bad_edid) {
5458 			debug("EDID checksum is invalid, remainder is %d\n",
5459 			      csum);
5460 		}
5461 
5462 		if (edid_corrupt)
5463 			*edid_corrupt = true;
5464 
5465 		/* allow CEA to slide through, switches mangle this */
5466 		if (raw_edid[0] != 0x02)
5467 			goto bad;
5468 	}
5469 
5470 	/* per-block-type checks */
5471 	switch (raw_edid[0]) {
5472 	case 0: /* base */
5473 		if (edid->version != 1) {
5474 			debug("EDID has major version %d, instead of 1\n",
5475 			      edid->version);
5476 			goto bad;
5477 		}
5478 
5479 		if (edid->revision > 4)
5480 			debug("minor > 4, assuming backward compatibility\n");
5481 		break;
5482 
5483 	default:
5484 		break;
5485 	}
5486 
5487 	return true;
5488 
5489 bad:
5490 	if (print_bad_edid) {
5491 		if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
5492 			debug("EDID block is all zeroes\n");
5493 		} else {
5494 			debug("Raw EDID:\n");
5495 			print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
5496 				       raw_edid, EDID_SIZE, false);
5497 		}
5498 	}
5499 	return false;
5500 }
5501 
5502 /**
5503  * drm_edid_is_valid - sanity check EDID data
5504  * @edid: EDID data
5505  *
5506  * Sanity-check an entire EDID record (including extensions)
5507  *
5508  * Return: True if the EDID data is valid, false otherwise.
5509  */
5510 static bool drm_edid_is_valid(struct edid *edid)
5511 {
5512 	int i;
5513 	u8 *raw = (u8 *)edid;
5514 
5515 	if (!edid)
5516 		return false;
5517 
5518 	for (i = 0; i <= edid->extensions; i++)
5519 		if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
5520 			return false;
5521 
5522 	return true;
5523 }
5524 
5525 /**
5526  * drm_add_edid_modes - add modes from EDID data, if available
5527  * @data: data we're probing
5528  * @edid: EDID data
5529  *
5530  * Add the specified modes to the data's mode list.
5531  *
5532  * Return: The number of modes added or 0 if we couldn't find any.
5533  */
5534 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
5535 {
5536 	int num_modes = 0;
5537 	u32 quirks;
5538 	struct edid *edid = (struct edid *)raw_edid;
5539 
5540 	if (!edid) {
5541 		debug("no edid\n");
5542 		return 0;
5543 	}
5544 
5545 	if (!drm_edid_is_valid(edid)) {
5546 		debug("EDID invalid\n");
5547 		return 0;
5548 	}
5549 
5550 	if (!data->mode_buf) {
5551 		debug("mode buff is null\n");
5552 		return 0;
5553 	}
5554 
5555 	quirks = edid_get_quirks(edid);
5556 	/*
5557 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5558 	 * To avoid multiple parsing of same block, lets parse that map
5559 	 * from sink info, before parsing CEA modes.
5560 	 */
5561 	drm_add_display_info(data, edid);
5562 
5563 	/*
5564 	 * EDID spec says modes should be preferred in this order:
5565 	 * - preferred detailed mode
5566 	 * - other detailed modes from base block
5567 	 * - detailed modes from extension blocks
5568 	 * - CVT 3-byte code modes
5569 	 * - standard timing codes
5570 	 * - established timing codes
5571 	 * - modes inferred from GTF or CVT range information
5572 	 *
5573 	 * We get this pretty much right.
5574 	 *
5575 	 * XXX order for additional mode types in extension blocks?
5576 	 */
5577 	num_modes += add_detailed_modes(data, edid, quirks);
5578 	num_modes += add_cvt_modes(data, edid);
5579 	num_modes += add_standard_modes(data, edid);
5580 	num_modes += add_established_modes(data, edid);
5581 	num_modes += add_cea_modes(data, edid);
5582 	num_modes += add_alternate_cea_modes(data, edid);
5583 	num_modes += add_displayid_detailed_modes(data, edid);
5584 
5585 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5586 		num_modes += add_inferred_modes(data, edid);
5587 
5588 	if (num_modes > 0)
5589 		data->preferred_mode = &data->mode_buf[0];
5590 
5591 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5592 		edid_fixup_preferred(data, quirks);
5593 
5594 	if (quirks & EDID_QUIRK_FORCE_6BPC)
5595 		data->display_info.bpc = 6;
5596 
5597 	if (quirks & EDID_QUIRK_FORCE_8BPC)
5598 		data->display_info.bpc = 8;
5599 
5600 	if (quirks & EDID_QUIRK_FORCE_10BPC)
5601 		data->display_info.bpc = 10;
5602 
5603 	if (quirks & EDID_QUIRK_FORCE_12BPC)
5604 		data->display_info.bpc = 12;
5605 
5606 	return num_modes;
5607 }
5608 
5609 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5610 {
5611 	u8 vic;
5612 
5613 	if (!to_match->clock) {
5614 		printf("can't find to match\n");
5615 		return 0;
5616 	}
5617 
5618 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
5619 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
5620 		unsigned int clock1, clock2;
5621 
5622 		/* Check both 60Hz and 59.94Hz */
5623 		clock1 = cea_mode->clock;
5624 		clock2 = cea_mode_alternate_clock(cea_mode);
5625 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5626 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5627 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5628 			return vic;
5629 	}
5630 
5631 	return 0;
5632 }
5633 
5634 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5635 {
5636 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
5637 
5638 	if (mode)
5639 		return mode->picture_aspect_ratio;
5640 
5641 	return HDMI_PICTURE_ASPECT_NONE;
5642 }
5643 
5644 int
5645 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5646 					 struct drm_display_mode *mode,
5647 					 bool is_hdmi2_sink)
5648 {
5649 	int err;
5650 
5651 	if (!frame || !mode)
5652 		return -EINVAL;
5653 
5654 	err = hdmi_avi_infoframe_init(frame);
5655 	if (err < 0)
5656 		return err;
5657 
5658 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5659 		frame->pixel_repeat = 1;
5660 
5661 	frame->video_code = drm_match_cea_mode(mode);
5662 
5663 	/*
5664 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5665 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5666 	 * have to make sure we dont break HDMI 1.4 sinks.
5667 	 */
5668 	if (!is_hdmi2_sink && frame->video_code > 64)
5669 		frame->video_code = 0;
5670 
5671 	/*
5672 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5673 	 * we should send its VIC in vendor infoframes, else send the
5674 	 * VIC in AVI infoframes. Lets check if this mode is present in
5675 	 * HDMI 1.4b 4K modes
5676 	 */
5677 	if (frame->video_code) {
5678 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5679 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5680 
5681 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5682 			frame->video_code = 0;
5683 	}
5684 
5685 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5686 
5687 	/*
5688 	 * Populate picture aspect ratio from either
5689 	 * user input (if specified) or from the CEA mode list.
5690 	 */
5691 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5692 	    mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5693 		frame->picture_aspect = mode->picture_aspect_ratio;
5694 	else if (frame->video_code > 0)
5695 		frame->picture_aspect = drm_get_cea_aspect_ratio(
5696 						frame->video_code);
5697 
5698 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5699 		frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5700 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5701 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5702 
5703 	return 0;
5704 }
5705 
5706 /**
5707  * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5708  * @frame: HDMI vendor infoframe
5709  *
5710  * Returns 0 on success or a negative error code on failure.
5711  */
5712 int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5713 {
5714 	memset(frame, 0, sizeof(*frame));
5715 
5716 	frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5717 	frame->version = 1;
5718 
5719 	frame->oui = HDMI_IEEE_OUI;
5720 
5721 	/*
5722 	 * 0 is a valid value for s3d_struct, so we use a special "not set"
5723 	 * value
5724 	 */
5725 	frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5726 
5727 	return 0;
5728 }
5729 
5730 /**
5731  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5732  *                                        quantization range information
5733  * @frame: HDMI AVI infoframe
5734  * @rgb_quant_range: RGB quantization range (Q)
5735  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
5736  */
5737 void
5738 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5739 				   struct drm_display_mode *mode,
5740 				   enum hdmi_quantization_range rgb_quant_range,
5741 				   bool rgb_quant_range_selectable)
5742 {
5743 	/*
5744 	 * CEA-861:
5745 	 * "A Source shall not send a non-zero Q value that does not correspond
5746 	 *  to the default RGB Quantization Range for the transmitted Picture
5747 	 *  unless the Sink indicates support for the Q bit in a Video
5748 	 *  Capabilities Data Block."
5749 	 *
5750 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5751 	 * default RGB quantization range for the mode, even when QS=0.
5752 	 */
5753 	if (rgb_quant_range_selectable ||
5754 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5755 		frame->quantization_range = rgb_quant_range;
5756 	else
5757 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5758 
5759 	/*
5760 	 * CEA-861-F:
5761 	 * "When transmitting any RGB colorimetry, the Source should set the
5762 	 *  YQ-field to match the RGB Quantization Range being transmitted
5763 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5764 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5765 	 */
5766 	if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5767 		frame->ycc_quantization_range =
5768 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5769 	else
5770 		frame->ycc_quantization_range =
5771 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5772 }
5773 
5774 static enum hdmi_3d_structure
5775 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5776 {
5777 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5778 
5779 	switch (layout) {
5780 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5781 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5782 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5783 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5784 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5785 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5786 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5787 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5788 	case DRM_MODE_FLAG_3D_L_DEPTH:
5789 		return HDMI_3D_STRUCTURE_L_DEPTH;
5790 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5791 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5792 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5793 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5794 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5795 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5796 	default:
5797 		return HDMI_3D_STRUCTURE_INVALID;
5798 	}
5799 }
5800 
5801 int
5802 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5803 					    struct drm_display_mode *mode)
5804 {
5805 	int err;
5806 	u32 s3d_flags;
5807 	u8 vic;
5808 
5809 	if (!frame || !mode)
5810 		return -EINVAL;
5811 
5812 	vic = drm_match_hdmi_mode(mode);
5813 
5814 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5815 
5816 	if (!vic && !s3d_flags)
5817 		return -EINVAL;
5818 
5819 	if (vic && s3d_flags)
5820 		return -EINVAL;
5821 
5822 	err = hdmi_vendor_infoframe_init(frame);
5823 	if (err < 0)
5824 		return err;
5825 
5826 	if (vic)
5827 		frame->vic = vic;
5828 	else
5829 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
5830 
5831 	return 0;
5832 }
5833 
5834 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5835 {
5836 	u8 csum = 0;
5837 	size_t i;
5838 
5839 	/* compute checksum */
5840 	for (i = 0; i < size; i++)
5841 		csum += ptr[i];
5842 
5843 	return 256 - csum;
5844 }
5845 
5846 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5847 {
5848 	u8 *ptr = buffer;
5849 
5850 	ptr[3] = hdmi_infoframe_checksum(buffer, size);
5851 }
5852 
5853 /**
5854  * hdmi_avi_infoframe_init() - initialize an HDMI AVI infoframe
5855  * @frame: HDMI AVI infoframe
5856  *
5857  * Returns 0 on success or a negative error code on failure.
5858  */
5859 int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5860 {
5861 	memset(frame, 0, sizeof(*frame));
5862 
5863 	frame->type = HDMI_INFOFRAME_TYPE_AVI;
5864 	frame->version = 2;
5865 	frame->length = HDMI_AVI_INFOFRAME_SIZE;
5866 
5867 	return 0;
5868 }
5869 EXPORT_SYMBOL(hdmi_avi_infoframe_init);
5870 
5871 /**
5872  * hdmi_avi_infoframe_pack() - write HDMI AVI infoframe to binary buffer
5873  * @frame: HDMI AVI infoframe
5874  * @buffer: destination buffer
5875  * @size: size of buffer
5876  *
5877  * Packs the information contained in the @frame structure into a binary
5878  * representation that can be written into the corresponding controller
5879  * registers. Also computes the checksum as required by section 5.3.5 of
5880  * the HDMI 1.4 specification.
5881  *
5882  * Returns the number of bytes packed into the binary buffer or a negative
5883  * error code on failure.
5884  */
5885 ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe *frame, void *buffer,
5886 				size_t size)
5887 {
5888 	u8 *ptr = buffer;
5889 	size_t length;
5890 
5891 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5892 
5893 	if (size < length)
5894 		return -ENOSPC;
5895 
5896 	memset(buffer, 0, size);
5897 
5898 	ptr[0] = frame->type;
5899 	ptr[1] = frame->version;
5900 	ptr[2] = frame->length;
5901 	ptr[3] = 0; /* checksum */
5902 
5903 	/* start infoframe payload */
5904 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
5905 
5906 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5907 
5908 	/*
5909 	 * Data byte 1, bit 4 has to be set if we provide the active format
5910 	 * aspect ratio
5911 	 */
5912 	if (frame->active_aspect & 0xf)
5913 		ptr[0] |= BIT(4);
5914 
5915 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5916 	if (frame->top_bar || frame->bottom_bar)
5917 		ptr[0] |= BIT(3);
5918 
5919 	if (frame->left_bar || frame->right_bar)
5920 		ptr[0] |= BIT(2);
5921 
5922 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
5923 		 ((frame->picture_aspect & 0x3) << 4) |
5924 		 (frame->active_aspect & 0xf);
5925 
5926 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
5927 		 ((frame->quantization_range & 0x3) << 2) |
5928 		 (frame->nups & 0x3);
5929 
5930 	if (frame->itc)
5931 		ptr[2] |= BIT(7);
5932 
5933 	ptr[3] = frame->video_code & 0x7f;
5934 
5935 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
5936 		 ((frame->content_type & 0x3) << 4) |
5937 		 (frame->pixel_repeat & 0xf);
5938 
5939 	ptr[5] = frame->top_bar & 0xff;
5940 	ptr[6] = (frame->top_bar >> 8) & 0xff;
5941 	ptr[7] = frame->bottom_bar & 0xff;
5942 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
5943 	ptr[9] = frame->left_bar & 0xff;
5944 	ptr[10] = (frame->left_bar >> 8) & 0xff;
5945 	ptr[11] = frame->right_bar & 0xff;
5946 	ptr[12] = (frame->right_bar >> 8) & 0xff;
5947 
5948 	hdmi_infoframe_set_checksum(buffer, length);
5949 
5950 	return length;
5951 }
5952 EXPORT_SYMBOL(hdmi_avi_infoframe_pack);
5953 
5954 static int hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe *frame)
5955 {
5956 	if (frame->type != HDMI_INFOFRAME_TYPE_AVI ||
5957 	    frame->version != 2 ||
5958 	    frame->length != HDMI_AVI_INFOFRAME_SIZE)
5959 		return -EINVAL;
5960 
5961 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5962 		return -EINVAL;
5963 
5964 	return 0;
5965 }
5966 
5967 /**
5968  * hdmi_avi_infoframe_check() - check a HDMI AVI infoframe
5969  * @frame: HDMI AVI infoframe
5970  *
5971  * Validates that the infoframe is consistent and updates derived fields
5972  * (eg. length) based on other fields.
5973  *
5974  * Returns 0 on success or a negative error code on failure.
5975  */
5976 int hdmi_avi_infoframe_check(struct hdmi_avi_infoframe *frame)
5977 {
5978 	return hdmi_avi_infoframe_check_only(frame);
5979 }
5980 EXPORT_SYMBOL(hdmi_avi_infoframe_check);
5981 
5982 /**
5983  * hdmi_avi_infoframe_pack_only() - write HDMI AVI infoframe to binary buffer
5984  * @frame: HDMI AVI infoframe
5985  * @buffer: destination buffer
5986  * @size: size of buffer
5987  *
5988  * Packs the information contained in the @frame structure into a binary
5989  * representation that can be written into the corresponding controller
5990  * registers. Also computes the checksum as required by section 5.3.5 of
5991  * the HDMI 1.4 specification.
5992  *
5993  * Returns the number of bytes packed into the binary buffer or a negative
5994  * error code on failure.
5995  */
5996 ssize_t hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe *frame,
5997 				     void *buffer, size_t size)
5998 {
5999 	u8 *ptr = buffer;
6000 	size_t length;
6001 	int ret;
6002 
6003 	ret = hdmi_avi_infoframe_check_only(frame);
6004 	if (ret)
6005 		return ret;
6006 
6007 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6008 
6009 	if (size < length)
6010 		return -ENOSPC;
6011 
6012 	memset(buffer, 0, size);
6013 
6014 	ptr[0] = frame->type;
6015 	ptr[1] = frame->version;
6016 	ptr[2] = frame->length;
6017 	ptr[3] = 0; /* checksum */
6018 
6019 	/* start infoframe payload */
6020 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6021 
6022 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
6023 
6024 	/*
6025 	 * Data byte 1, bit 4 has to be set if we provide the active format
6026 	 * aspect ratio
6027 	 */
6028 	if (frame->active_aspect & 0xf)
6029 		ptr[0] |= BIT(4);
6030 
6031 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
6032 	if (frame->top_bar || frame->bottom_bar)
6033 		ptr[0] |= BIT(3);
6034 
6035 	if (frame->left_bar || frame->right_bar)
6036 		ptr[0] |= BIT(2);
6037 
6038 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6039 		 ((frame->picture_aspect & 0x3) << 4) |
6040 		 (frame->active_aspect & 0xf);
6041 
6042 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6043 		 ((frame->quantization_range & 0x3) << 2) |
6044 		 (frame->nups & 0x3);
6045 
6046 	if (frame->itc)
6047 		ptr[2] |= BIT(7);
6048 
6049 	ptr[3] = frame->video_code & 0xff;
6050 
6051 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6052 		 ((frame->content_type & 0x3) << 4) |
6053 		 (frame->pixel_repeat & 0xf);
6054 
6055 	ptr[5] = frame->top_bar & 0xff;
6056 	ptr[6] = (frame->top_bar >> 8) & 0xff;
6057 	ptr[7] = frame->bottom_bar & 0xff;
6058 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6059 	ptr[9] = frame->left_bar & 0xff;
6060 	ptr[10] = (frame->left_bar >> 8) & 0xff;
6061 	ptr[11] = frame->right_bar & 0xff;
6062 	ptr[12] = (frame->right_bar >> 8) & 0xff;
6063 
6064 	hdmi_infoframe_set_checksum(buffer, length);
6065 
6066 	return length;
6067 }
6068 EXPORT_SYMBOL(hdmi_avi_infoframe_pack_only);
6069 
6070 /**
6071  * hdmi_spd_infoframe_init() - initialize an HDMI SPD infoframe
6072  * @frame: HDMI SPD infoframe
6073  * @vendor: vendor string
6074  * @product: product string
6075  *
6076  * Returns 0 on success or a negative error code on failure.
6077  */
6078 int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe *frame,
6079 			    const char *vendor, const char *product)
6080 {
6081 	memset(frame, 0, sizeof(*frame));
6082 
6083 	frame->type = HDMI_INFOFRAME_TYPE_SPD;
6084 	frame->version = 1;
6085 	frame->length = HDMI_SPD_INFOFRAME_SIZE;
6086 
6087 	strncpy(frame->vendor, vendor, sizeof(frame->vendor));
6088 	strncpy(frame->product, product, sizeof(frame->product));
6089 
6090 	return 0;
6091 }
6092 EXPORT_SYMBOL(hdmi_spd_infoframe_init);
6093 
6094 /**
6095  * hdmi_spd_infoframe_pack() - write HDMI SPD infoframe to binary buffer
6096  * @frame: HDMI SPD infoframe
6097  * @buffer: destination buffer
6098  * @size: size of buffer
6099  *
6100  * Packs the information contained in the @frame structure into a binary
6101  * representation that can be written into the corresponding controller
6102  * registers. Also computes the checksum as required by section 5.3.5 of
6103  * the HDMI 1.4 specification.
6104  *
6105  * Returns the number of bytes packed into the binary buffer or a negative
6106  * error code on failure.
6107  */
6108 ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe *frame, void *buffer,
6109 				size_t size)
6110 {
6111 	u8 *ptr = buffer;
6112 	size_t length;
6113 
6114 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6115 
6116 	if (size < length)
6117 		return -ENOSPC;
6118 
6119 	memset(buffer, 0, size);
6120 
6121 	ptr[0] = frame->type;
6122 	ptr[1] = frame->version;
6123 	ptr[2] = frame->length;
6124 	ptr[3] = 0; /* checksum */
6125 
6126 	/* start infoframe payload */
6127 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6128 
6129 	memcpy(ptr, frame->vendor, sizeof(frame->vendor));
6130 	memcpy(ptr + 8, frame->product, sizeof(frame->product));
6131 
6132 	ptr[24] = frame->sdi;
6133 
6134 	hdmi_infoframe_set_checksum(buffer, length);
6135 
6136 	return length;
6137 }
6138 EXPORT_SYMBOL(hdmi_spd_infoframe_pack);
6139 
6140 /**
6141  * hdmi_audio_infoframe_init() - initialize an HDMI audio infoframe
6142  * @frame: HDMI audio infoframe
6143  *
6144  * Returns 0 on success or a negative error code on failure.
6145  */
6146 int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe *frame)
6147 {
6148 	memset(frame, 0, sizeof(*frame));
6149 
6150 	frame->type = HDMI_INFOFRAME_TYPE_AUDIO;
6151 	frame->version = 1;
6152 	frame->length = HDMI_AUDIO_INFOFRAME_SIZE;
6153 
6154 	return 0;
6155 }
6156 
6157 /**
6158  * hdmi_audio_infoframe_pack() - write HDMI audio infoframe to binary buffer
6159  * @frame: HDMI audio infoframe
6160  * @buffer: destination buffer
6161  * @size: size of buffer
6162  *
6163  * Packs the information contained in the @frame structure into a binary
6164  * representation that can be written into the corresponding controller
6165  * registers. Also computes the checksum as required by section 5.3.5 of
6166  * the HDMI 1.4 specification.
6167  *
6168  * Returns the number of bytes packed into the binary buffer or a negative
6169  * error code on failure.
6170  */
6171 ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe *frame,
6172 				  void *buffer, size_t size)
6173 {
6174 	unsigned char channels;
6175 	char *ptr = buffer;
6176 	size_t length;
6177 
6178 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6179 
6180 	if (size < length)
6181 		return -ENOSPC;
6182 
6183 	memset(buffer, 0, size);
6184 
6185 	if (frame->channels >= 2)
6186 		channels = frame->channels - 1;
6187 	else
6188 		channels = 0;
6189 
6190 	ptr[0] = frame->type;
6191 	ptr[1] = frame->version;
6192 	ptr[2] = frame->length;
6193 	ptr[3] = 0; /* checksum */
6194 
6195 	/* start infoframe payload */
6196 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6197 
6198 	ptr[0] = ((frame->coding_type & 0xf) << 4) | (channels & 0x7);
6199 	ptr[1] = ((frame->sample_frequency & 0x7) << 2) |
6200 		 (frame->sample_size & 0x3);
6201 	ptr[2] = frame->coding_type_ext & 0x1f;
6202 	ptr[3] = frame->channel_allocation;
6203 	ptr[4] = (frame->level_shift_value & 0xf) << 3;
6204 
6205 	if (frame->downmix_inhibit)
6206 		ptr[4] |= BIT(7);
6207 
6208 	hdmi_infoframe_set_checksum(buffer, length);
6209 
6210 	return length;
6211 }
6212 
6213 /**
6214  * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
6215  * @frame: HDMI infoframe
6216  * @buffer: destination buffer
6217  * @size: size of buffer
6218  *
6219  * Packs the information contained in the @frame structure into a binary
6220  * representation that can be written into the corresponding controller
6221  * registers. Also computes the checksum as required by section 5.3.5 of
6222  * the HDMI 1.4 specification.
6223  *
6224  * Returns the number of bytes packed into the binary buffer or a negative
6225  * error code on failure.
6226  */
6227 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
6228 				   void *buffer, size_t size)
6229 {
6230 	char *ptr = buffer;
6231 	size_t length;
6232 
6233 	/* empty info frame */
6234 	if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
6235 		return -EINVAL;
6236 
6237 	/* only one of those can be supplied */
6238 	if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
6239 		return -EINVAL;
6240 
6241 	/* for side by side (half) we also need to provide 3D_Ext_Data */
6242 	if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6243 		frame->length = 6;
6244 	else
6245 		frame->length = 5;
6246 
6247 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6248 
6249 	if (size < length)
6250 		return -ENOSPC;
6251 
6252 	memset(buffer, 0, size);
6253 
6254 	ptr[0] = frame->type;
6255 	ptr[1] = frame->version;
6256 	ptr[2] = frame->length;
6257 	ptr[3] = 0; /* checksum */
6258 
6259 	/* HDMI OUI */
6260 	ptr[4] = 0x03;
6261 	ptr[5] = 0x0c;
6262 	ptr[6] = 0x00;
6263 
6264 	if (frame->vic) {
6265 		ptr[7] = 0x1 << 5;	/* video format */
6266 		ptr[8] = frame->vic;
6267 	} else {
6268 		ptr[7] = 0x2 << 5;	/* video format */
6269 		ptr[8] = (frame->s3d_struct & 0xf) << 4;
6270 		if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6271 			ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
6272 	}
6273 
6274 	hdmi_infoframe_set_checksum(buffer, length);
6275 
6276 	return length;
6277 }
6278 
6279 /**
6280  * hdmi_drm_infoframe_init() - initialize an HDMI Dynaminc Range and
6281  * mastering infoframe
6282  * @frame: HDMI DRM infoframe
6283  *
6284  * Returns 0 on success or a negative error code on failure.
6285  */
6286 int hdmi_drm_infoframe_init(struct hdmi_drm_infoframe *frame)
6287 {
6288 	memset(frame, 0, sizeof(*frame));
6289 
6290 	frame->type = HDMI_INFOFRAME_TYPE_DRM;
6291 	frame->version = 1;
6292 
6293 	return 0;
6294 }
6295 
6296 /**
6297  * hdmi_drm_infoframe_pack() - write HDMI DRM infoframe to binary buffer
6298  * @frame: HDMI DRM infoframe
6299  * @buffer: destination buffer
6300  * @size: size of buffer
6301  *
6302  * Packs the information contained in the @frame structure into a binary
6303  * representation that can be written into the corresponding controller
6304  * registers. Also computes the checksum as required by section 5.3.5 of
6305  * the HDMI 1.4 specification.
6306  *
6307  * Returns the number of bytes packed into the binary buffer or a negative
6308  * error code on failure.
6309  */
6310 ssize_t hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe *frame, void *buffer,
6311 				size_t size)
6312 {
6313 	u8 *ptr = buffer;
6314 	size_t length;
6315 
6316 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6317 
6318 	if (size < length)
6319 		return -ENOSPC;
6320 
6321 	memset(buffer, 0, size);
6322 
6323 	ptr[0] = frame->type;
6324 	ptr[1] = frame->version;
6325 	ptr[2] = frame->length;
6326 	ptr[3] = 0; /* checksum */
6327 
6328 	/* start infoframe payload */
6329 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6330 
6331 	ptr[0] = frame->eotf;
6332 	ptr[1] = frame->metadata_type;
6333 
6334 	ptr[2] = frame->display_primaries_x[0] & 0xff;
6335 	ptr[3] = frame->display_primaries_x[0] >> 8;
6336 
6337 	ptr[4] = frame->display_primaries_x[1] & 0xff;
6338 	ptr[5] = frame->display_primaries_x[1] >> 8;
6339 
6340 	ptr[6] = frame->display_primaries_x[2] & 0xff;
6341 	ptr[7] = frame->display_primaries_x[2] >> 8;
6342 
6343 	ptr[9] = frame->display_primaries_y[0] & 0xff;
6344 	ptr[10] = frame->display_primaries_y[0] >> 8;
6345 
6346 	ptr[11] = frame->display_primaries_y[1] & 0xff;
6347 	ptr[12] = frame->display_primaries_y[1] >> 8;
6348 
6349 	ptr[13] = frame->display_primaries_y[2] & 0xff;
6350 	ptr[14] = frame->display_primaries_y[2] >> 8;
6351 
6352 	ptr[15] = frame->white_point_x & 0xff;
6353 	ptr[16] = frame->white_point_x >> 8;
6354 
6355 	ptr[17] = frame->white_point_y & 0xff;
6356 	ptr[18] = frame->white_point_y >> 8;
6357 
6358 	ptr[19] = frame->max_mastering_display_luminance & 0xff;
6359 	ptr[20] = frame->max_mastering_display_luminance >> 8;
6360 
6361 	ptr[21] = frame->min_mastering_display_luminance & 0xff;
6362 	ptr[22] = frame->min_mastering_display_luminance >> 8;
6363 
6364 	ptr[23] = frame->max_cll & 0xff;
6365 	ptr[24] = frame->max_cll >> 8;
6366 
6367 	ptr[25] = frame->max_fall & 0xff;
6368 	ptr[26] = frame->max_fall >> 8;
6369 
6370 	hdmi_infoframe_set_checksum(buffer, length);
6371 
6372 	return length;
6373 }
6374 
6375 /*
6376  * hdmi_vendor_any_infoframe_pack() - write a vendor infoframe to binary buffer
6377  */
6378 static ssize_t
6379 hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe *frame,
6380 			       void *buffer, size_t size)
6381 {
6382 	/* we only know about HDMI vendor infoframes */
6383 	if (frame->any.oui != HDMI_IEEE_OUI)
6384 		return -EINVAL;
6385 
6386 	return hdmi_vendor_infoframe_pack(&frame->hdmi, buffer, size);
6387 }
6388 
6389 /**
6390  * hdmi_infoframe_pack() - write a HDMI infoframe to binary buffer
6391  * @frame: HDMI infoframe
6392  * @buffer: destination buffer
6393  * @size: size of buffer
6394  *
6395  * Packs the information contained in the @frame structure into a binary
6396  * representation that can be written into the corresponding controller
6397  * registers. Also computes the checksum as required by section 5.3.5 of
6398  * the HDMI 1.4 specification.
6399  *
6400  * Returns the number of bytes packed into the binary buffer or a negative
6401  * error code on failure.
6402  */
6403 ssize_t
6404 hdmi_infoframe_pack(union hdmi_infoframe *frame, void *buffer, size_t size)
6405 {
6406 	ssize_t length;
6407 
6408 	switch (frame->any.type) {
6409 	case HDMI_INFOFRAME_TYPE_AVI:
6410 		length = hdmi_avi_infoframe_pack(&frame->avi, buffer, size);
6411 		break;
6412 	case HDMI_INFOFRAME_TYPE_DRM:
6413 		length = hdmi_drm_infoframe_pack(&frame->drm, buffer, size);
6414 		break;
6415 	case HDMI_INFOFRAME_TYPE_SPD:
6416 		length = hdmi_spd_infoframe_pack(&frame->spd, buffer, size);
6417 		break;
6418 	case HDMI_INFOFRAME_TYPE_AUDIO:
6419 		length = hdmi_audio_infoframe_pack(&frame->audio, buffer, size);
6420 		break;
6421 	case HDMI_INFOFRAME_TYPE_VENDOR:
6422 		length = hdmi_vendor_any_infoframe_pack(&frame->vendor,
6423 							buffer, size);
6424 		break;
6425 	default:
6426 		printf("Bad infoframe type %d\n", frame->any.type);
6427 		length = -EINVAL;
6428 	}
6429 
6430 	return length;
6431 }
6432 
6433 /**
6434  * hdmi_avi_infoframe_unpack() - unpack binary buffer to a HDMI AVI infoframe
6435  * @buffer: source buffer
6436  * @frame: HDMI AVI infoframe
6437  *
6438  * Unpacks the information contained in binary @buffer into a structured
6439  * @frame of the HDMI Auxiliary Video (AVI) information frame.
6440  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6441  * specification.
6442  *
6443  * Returns 0 on success or a negative error code on failure.
6444  */
6445 static int hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe *frame,
6446 				     void *buffer)
6447 {
6448 	u8 *ptr = buffer;
6449 	int ret;
6450 
6451 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AVI ||
6452 	    ptr[1] != 2 ||
6453 	    ptr[2] != HDMI_AVI_INFOFRAME_SIZE)
6454 		return -EINVAL;
6455 
6456 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AVI)) != 0)
6457 		return -EINVAL;
6458 
6459 	ret = hdmi_avi_infoframe_init(frame);
6460 	if (ret)
6461 		return ret;
6462 
6463 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6464 
6465 	frame->colorspace = (ptr[0] >> 5) & 0x3;
6466 	if (ptr[0] & 0x10)
6467 		frame->active_aspect = ptr[1] & 0xf;
6468 	if (ptr[0] & 0x8) {
6469 		frame->top_bar = (ptr[5] << 8) + ptr[6];
6470 		frame->bottom_bar = (ptr[7] << 8) + ptr[8];
6471 	}
6472 	if (ptr[0] & 0x4) {
6473 		frame->left_bar = (ptr[9] << 8) + ptr[10];
6474 		frame->right_bar = (ptr[11] << 8) + ptr[12];
6475 	}
6476 	frame->scan_mode = ptr[0] & 0x3;
6477 
6478 	frame->colorimetry = (ptr[1] >> 6) & 0x3;
6479 	frame->picture_aspect = (ptr[1] >> 4) & 0x3;
6480 	frame->active_aspect = ptr[1] & 0xf;
6481 
6482 	frame->itc = ptr[2] & 0x80 ? true : false;
6483 	frame->extended_colorimetry = (ptr[2] >> 4) & 0x7;
6484 	frame->quantization_range = (ptr[2] >> 2) & 0x3;
6485 	frame->nups = ptr[2] & 0x3;
6486 
6487 	frame->video_code = ptr[3] & 0x7f;
6488 	frame->ycc_quantization_range = (ptr[4] >> 6) & 0x3;
6489 	frame->content_type = (ptr[4] >> 4) & 0x3;
6490 
6491 	frame->pixel_repeat = ptr[4] & 0xf;
6492 
6493 	return 0;
6494 }
6495 
6496 /**
6497  * hdmi_spd_infoframe_unpack() - unpack binary buffer to a HDMI SPD infoframe
6498  * @buffer: source buffer
6499  * @frame: HDMI SPD infoframe
6500  *
6501  * Unpacks the information contained in binary @buffer into a structured
6502  * @frame of the HDMI Source Product Description (SPD) information frame.
6503  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6504  * specification.
6505  *
6506  * Returns 0 on success or a negative error code on failure.
6507  */
6508 static int hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe *frame,
6509 				     void *buffer)
6510 {
6511 	char *ptr = buffer;
6512 	int ret;
6513 
6514 	if (ptr[0] != HDMI_INFOFRAME_TYPE_SPD ||
6515 	    ptr[1] != 1 ||
6516 	    ptr[2] != HDMI_SPD_INFOFRAME_SIZE) {
6517 		return -EINVAL;
6518 	}
6519 
6520 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(SPD)) != 0)
6521 		return -EINVAL;
6522 
6523 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6524 
6525 	ret = hdmi_spd_infoframe_init(frame, ptr, ptr + 8);
6526 	if (ret)
6527 		return ret;
6528 
6529 	frame->sdi = ptr[24];
6530 
6531 	return 0;
6532 }
6533 
6534 /**
6535  * hdmi_audio_infoframe_unpack() - unpack binary buffer to a HDMI AUDIO infoframe
6536  * @buffer: source buffer
6537  * @frame: HDMI Audio infoframe
6538  *
6539  * Unpacks the information contained in binary @buffer into a structured
6540  * @frame of the HDMI Audio information frame.
6541  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6542  * specification.
6543  *
6544  * Returns 0 on success or a negative error code on failure.
6545  */
6546 static int hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe *frame,
6547 				       void *buffer)
6548 {
6549 	u8 *ptr = buffer;
6550 	int ret;
6551 
6552 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AUDIO ||
6553 	    ptr[1] != 1 ||
6554 	    ptr[2] != HDMI_AUDIO_INFOFRAME_SIZE) {
6555 		return -EINVAL;
6556 	}
6557 
6558 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AUDIO)) != 0)
6559 		return -EINVAL;
6560 
6561 	ret = hdmi_audio_infoframe_init(frame);
6562 	if (ret)
6563 		return ret;
6564 
6565 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6566 
6567 	frame->channels = ptr[0] & 0x7;
6568 	frame->coding_type = (ptr[0] >> 4) & 0xf;
6569 	frame->sample_size = ptr[1] & 0x3;
6570 	frame->sample_frequency = (ptr[1] >> 2) & 0x7;
6571 	frame->coding_type_ext = ptr[2] & 0x1f;
6572 	frame->channel_allocation = ptr[3];
6573 	frame->level_shift_value = (ptr[4] >> 3) & 0xf;
6574 	frame->downmix_inhibit = ptr[4] & 0x80 ? true : false;
6575 
6576 	return 0;
6577 }
6578 
6579 /**
6580  * hdmi_vendor_infoframe_unpack() - unpack binary buffer to a HDMI vendor infoframe
6581  * @buffer: source buffer
6582  * @frame: HDMI Vendor infoframe
6583  *
6584  * Unpacks the information contained in binary @buffer into a structured
6585  * @frame of the HDMI Vendor information frame.
6586  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6587  * specification.
6588  *
6589  * Returns 0 on success or a negative error code on failure.
6590  */
6591 static int
6592 hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe *frame,
6593 				 void *buffer)
6594 {
6595 	u8 *ptr = buffer;
6596 	size_t length;
6597 	int ret;
6598 	u8 hdmi_video_format;
6599 	struct hdmi_vendor_infoframe *hvf = &frame->hdmi;
6600 
6601 	if (ptr[0] != HDMI_INFOFRAME_TYPE_VENDOR ||
6602 	    ptr[1] != 1 ||
6603 	    (ptr[2] != 4 && ptr[2] != 5 && ptr[2] != 6))
6604 		return -EINVAL;
6605 
6606 	length = ptr[2];
6607 
6608 	if (hdmi_infoframe_checksum(buffer,
6609 				    HDMI_INFOFRAME_HEADER_SIZE + length) != 0)
6610 		return -EINVAL;
6611 
6612 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6613 
6614 	/* HDMI OUI */
6615 	if (ptr[0] != 0x03 ||
6616 	    ptr[1] != 0x0c ||
6617 	    ptr[2] != 0x00)
6618 		return -EINVAL;
6619 
6620 	hdmi_video_format = ptr[3] >> 5;
6621 
6622 	if (hdmi_video_format > 0x2)
6623 		return -EINVAL;
6624 
6625 	ret = hdmi_vendor_infoframe_init(hvf);
6626 	if (ret)
6627 		return ret;
6628 
6629 	hvf->length = length;
6630 
6631 	if (hdmi_video_format == 0x2) {
6632 		if (length != 5 && length != 6)
6633 			return -EINVAL;
6634 		hvf->s3d_struct = ptr[4] >> 4;
6635 		if (hvf->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) {
6636 			if (length != 6)
6637 				return -EINVAL;
6638 			hvf->s3d_ext_data = ptr[5] >> 4;
6639 		}
6640 	} else if (hdmi_video_format == 0x1) {
6641 		if (length != 5)
6642 			return -EINVAL;
6643 		hvf->vic = ptr[4];
6644 	} else {
6645 		if (length != 4)
6646 			return -EINVAL;
6647 	}
6648 
6649 	return 0;
6650 }
6651 
6652 /**
6653  * hdmi_infoframe_unpack() - unpack binary buffer to a HDMI infoframe
6654  * @buffer: source buffer
6655  * @frame: HDMI infoframe
6656  *
6657  * Unpacks the information contained in binary buffer @buffer into a structured
6658  * @frame of a HDMI infoframe.
6659  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6660  * specification.
6661  *
6662  * Returns 0 on success or a negative error code on failure.
6663  */
6664 int hdmi_infoframe_unpack(union hdmi_infoframe *frame, void *buffer)
6665 {
6666 	int ret;
6667 	u8 *ptr = buffer;
6668 
6669 	switch (ptr[0]) {
6670 	case HDMI_INFOFRAME_TYPE_AVI:
6671 		ret = hdmi_avi_infoframe_unpack(&frame->avi, buffer);
6672 		break;
6673 	case HDMI_INFOFRAME_TYPE_SPD:
6674 		ret = hdmi_spd_infoframe_unpack(&frame->spd, buffer);
6675 		break;
6676 	case HDMI_INFOFRAME_TYPE_AUDIO:
6677 		ret = hdmi_audio_infoframe_unpack(&frame->audio, buffer);
6678 		break;
6679 	case HDMI_INFOFRAME_TYPE_VENDOR:
6680 		ret = hdmi_vendor_any_infoframe_unpack(&frame->vendor, buffer);
6681 		break;
6682 	default:
6683 		ret = -EINVAL;
6684 		break;
6685 	}
6686 
6687 	return ret;
6688 }
6689 
6690 bool drm_mode_equal(const struct base_drm_display_mode *mode1,
6691 		    const struct drm_display_mode *mode2)
6692 {
6693 	if (mode1->clock == mode2->clock &&
6694 	    mode1->hdisplay == mode2->hdisplay &&
6695 	    mode1->hsync_start == mode2->hsync_start &&
6696 	    mode1->hsync_end == mode2->hsync_end &&
6697 	    mode1->htotal == mode2->htotal &&
6698 	    mode1->vdisplay == mode2->vdisplay &&
6699 	    mode1->vsync_start == mode2->vsync_start &&
6700 	    mode1->vsync_end == mode2->vsync_end &&
6701 	    mode1->vtotal == mode2->vtotal &&
6702 	    mode1->flags == mode2->flags)
6703 		return true;
6704 
6705 	return false;
6706 }
6707 
6708 /**
6709  * drm_mode_sort - sort mode list
6710  * @edid_data: modes structures to sort
6711  *
6712  * Sort @edid_data by favorability, moving good modes to the head of the list.
6713  */
6714 void drm_mode_sort(struct hdmi_edid_data *edid_data)
6715 {
6716 	struct drm_display_mode *a, *b;
6717 	struct drm_display_mode c;
6718 	int diff, i, j;
6719 
6720 	for (i = 0; i < (edid_data->modes - 1); i++) {
6721 		a = &edid_data->mode_buf[i];
6722 		for (j = i + 1; j < edid_data->modes; j++) {
6723 			b = &edid_data->mode_buf[j];
6724 			diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
6725 				((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
6726 			if (diff) {
6727 				if (diff > 0) {
6728 					c = *a;
6729 					*a = *b;
6730 					*b = c;
6731 				}
6732 				continue;
6733 			}
6734 
6735 			diff = b->hdisplay * b->vdisplay
6736 				- a->hdisplay * a->vdisplay;
6737 			if (diff) {
6738 				if (diff > 0) {
6739 					c = *a;
6740 					*a = *b;
6741 					*b = c;
6742 				}
6743 				continue;
6744 			}
6745 
6746 			diff = b->vrefresh - a->vrefresh;
6747 			if (diff) {
6748 				if (diff > 0) {
6749 					c = *a;
6750 					*a = *b;
6751 					*b = c;
6752 				}
6753 				continue;
6754 			}
6755 
6756 			diff = b->clock - a->clock;
6757 			if (diff > 0) {
6758 				c = *a;
6759 				*a = *b;
6760 				*b = c;
6761 			}
6762 		}
6763 	}
6764 	edid_data->preferred_mode = &edid_data->mode_buf[0];
6765 }
6766 
6767 /**
6768  * drm_mode_prune_invalid - remove invalid modes from mode list
6769  * @edid_data: structure store mode list
6770  * Returns:
6771  * Number of valid modes.
6772  */
6773 int drm_mode_prune_invalid(struct hdmi_edid_data *edid_data)
6774 {
6775 	int i, j;
6776 	int num = edid_data->modes;
6777 	int len = sizeof(struct drm_display_mode);
6778 	struct drm_display_mode *mode_buf = edid_data->mode_buf;
6779 
6780 	for (i = 0; i < num; i++) {
6781 		if (mode_buf[i].invalid) {
6782 			/* If mode is invalid, delete it. */
6783 			for (j = i; j < num - 1; j++)
6784 				memcpy(&mode_buf[j], &mode_buf[j + 1], len);
6785 
6786 			num--;
6787 			i--;
6788 		}
6789 	}
6790 	/* Clear redundant modes of mode_buf. */
6791 	memset(&mode_buf[num], 0, len * (edid_data->modes - num));
6792 
6793 	edid_data->modes = num;
6794 	return num;
6795 }
6796 
6797 /**
6798  * drm_rk_filter_whitelist - mark modes out of white list from mode list
6799  * @edid_data: structure store mode list
6800  */
6801 void drm_rk_filter_whitelist(struct hdmi_edid_data *edid_data)
6802 {
6803 	int i, j, white_len;
6804 
6805 	if (sizeof(resolution_white)) {
6806 		white_len = sizeof(resolution_white) /
6807 			sizeof(resolution_white[0]);
6808 		for (i = 0; i < edid_data->modes; i++) {
6809 			for (j = 0; j < white_len; j++) {
6810 				if (drm_mode_equal(&resolution_white[j],
6811 						   &edid_data->mode_buf[i]))
6812 					break;
6813 			}
6814 
6815 			if (j == white_len)
6816 				edid_data->mode_buf[i].invalid = true;
6817 		}
6818 	}
6819 }
6820 
6821 void drm_rk_select_mode(struct hdmi_edid_data *edid_data,
6822 			struct base_screen_info *screen_info)
6823 {
6824 	int i;
6825 	const struct base_drm_display_mode *base_mode;
6826 
6827 	if (!screen_info) {
6828 		/* define init resolution here */
6829 	} else {
6830 		base_mode = &screen_info->mode;
6831 		for (i = 0; i < edid_data->modes; i++) {
6832 			if (drm_mode_equal(base_mode,
6833 					   &edid_data->mode_buf[i])) {
6834 				edid_data->preferred_mode =
6835 					&edid_data->mode_buf[i];
6836 
6837 				if (edid_data->mode_buf[i].picture_aspect_ratio)
6838 					break;
6839 			}
6840 		}
6841 	}
6842 }
6843 
6844 /**
6845  * drm_do_probe_ddc_edid() - get EDID information via I2C
6846  * @adap: ddc adapter
6847  * @buf: EDID data buffer to be filled
6848  * @block: 128 byte EDID block to start fetching from
6849  * @len: EDID data buffer length to fetch
6850  *
6851  * Try to fetch EDID information by calling I2C driver functions.
6852  *
6853  * Return: 0 on success or -1 on failure.
6854  */
6855 static int
6856 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
6857 		      size_t len)
6858 {
6859 	unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
6860 	unsigned char segment = block >> 1;
6861 	unsigned char xfers = segment ? 3 : 2;
6862 	int ret, retries = 5;
6863 
6864 	do {
6865 		struct i2c_msg msgs[] = {
6866 			{
6867 				.addr	= DDC_SEGMENT_ADDR,
6868 				.flags	= 0,
6869 				.len	= 1,
6870 				.buf	= &segment,
6871 			}, {
6872 				.addr	= DDC_ADDR,
6873 				.flags	= 0,
6874 				.len	= 1,
6875 				.buf	= &start,
6876 			}, {
6877 				.addr	= DDC_ADDR,
6878 				.flags	= I2C_M_RD,
6879 				.len	= len,
6880 				.buf	= buf,
6881 			}
6882 		};
6883 
6884 		if (adap->ops) {
6885 			ret = adap->ops->xfer(adap->i2c_bus, &msgs[3 - xfers],
6886 					      xfers);
6887 			if (!ret)
6888 				ret = xfers;
6889 		} else {
6890 			ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
6891 		}
6892 	} while (ret != xfers && --retries);
6893 
6894 	/* All msg transfer successfully. */
6895 	return ret == xfers ? 0 : -1;
6896 }
6897 
6898 int drm_do_get_edid(struct ddc_adapter *adap, u8 *edid)
6899 {
6900 	int i, j, block_num, block = 0;
6901 	bool edid_corrupt;
6902 #ifdef DEBUG
6903 	u8 *buff;
6904 #endif
6905 
6906 	/* base block fetch */
6907 	for (i = 0; i < 4; i++) {
6908 		if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
6909 			goto err;
6910 		if (drm_edid_block_valid(edid, 0, true,
6911 					 &edid_corrupt))
6912 			break;
6913 		if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
6914 			printf("edid base block is 0, get edid failed\n");
6915 			goto err;
6916 		}
6917 	}
6918 
6919 	if (i == 4)
6920 		goto err;
6921 
6922 	block++;
6923 	/* get the number of extensions */
6924 	block_num = edid[0x7e];
6925 
6926 	for (j = 1; j <= block_num; j++) {
6927 		for (i = 0; i < 4; i++) {
6928 			if (drm_do_probe_ddc_edid(adap, &edid[0x80 * j], j,
6929 						  HDMI_EDID_BLOCK_SIZE))
6930 				goto err;
6931 			if (drm_edid_block_valid(&edid[0x80 * j], j,
6932 						 true, NULL))
6933 				break;
6934 		}
6935 
6936 		if (i == 4)
6937 			goto err;
6938 		block++;
6939 	}
6940 
6941 #ifdef DEBUG
6942 	printf("RAW EDID:\n");
6943 	for (i = 0; i < block_num + 1; i++) {
6944 		buff = &edid[0x80 * i];
6945 		for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
6946 			if (j % 16 == 0)
6947 				printf("\n");
6948 			printf("0x%02x, ", buff[j]);
6949 		}
6950 		printf("\n");
6951 	}
6952 #endif
6953 
6954 	return 0;
6955 
6956 err:
6957 	printf("can't get edid block:%d\n", block);
6958 	/* clear all read edid block, include invalid block */
6959 	memset(edid, 0, HDMI_EDID_BLOCK_SIZE * (block + 1));
6960 	return -EFAULT;
6961 }
6962 
6963 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
6964 			     void *buffer, size_t size)
6965 {
6966 	struct i2c_msg msgs[2] = {
6967 		{
6968 			.addr = addr,
6969 			.flags = 0,
6970 			.len = 1,
6971 			.buf = &offset,
6972 		}, {
6973 			.addr = addr,
6974 			.flags = I2C_M_RD,
6975 			.len = size,
6976 			.buf = buffer,
6977 		}
6978 	};
6979 
6980 	return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
6981 }
6982 
6983 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
6984 			      const void *buffer, size_t size)
6985 {
6986 	struct i2c_msg msg = {
6987 		.addr = addr,
6988 		.flags = 0,
6989 		.len = 1 + size,
6990 		.buf = NULL,
6991 	};
6992 	void *data;
6993 	int err;
6994 
6995 	data = malloc(1 + size);
6996 	if (!data)
6997 		return -ENOMEM;
6998 
6999 	msg.buf = data;
7000 
7001 	memcpy(data, &offset, sizeof(offset));
7002 	memcpy(data + 1, buffer, size);
7003 
7004 	err = adap->ddc_xfer(adap, &msg, 1);
7005 
7006 	free(data);
7007 
7008 	return err;
7009 }
7010 
7011 /**
7012  * drm_scdc_readb - read a single byte from SCDC
7013  * @adap: ddc adapter
7014  * @offset: offset of register to read
7015  * @value: return location for the register value
7016  *
7017  * Reads a single byte from SCDC. This is a convenience wrapper around the
7018  * drm_scdc_read() function.
7019  *
7020  * Returns:
7021  * 0 on success or a negative error code on failure.
7022  */
7023 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
7024 		  u8 *value)
7025 {
7026 	return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
7027 			     sizeof(*value));
7028 }
7029 
7030 /**
7031  * drm_scdc_writeb - write a single byte to SCDC
7032  * @adap: ddc adapter
7033  * @offset: offset of register to read
7034  * @value: return location for the register value
7035  *
7036  * Writes a single byte to SCDC. This is a convenience wrapper around the
7037  * drm_scdc_write() function.
7038  *
7039  * Returns:
7040  * 0 on success or a negative error code on failure.
7041  */
7042 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
7043 		   u8 value)
7044 {
7045 	return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
7046 			      sizeof(value));
7047 }
7048 
7049