1fea25720SGraeme Russ #ifndef _I386_BITOPS_H
2fea25720SGraeme Russ #define _I386_BITOPS_H
3fea25720SGraeme Russ
4fea25720SGraeme Russ /*
5fea25720SGraeme Russ * Copyright 1992, Linus Torvalds.
6fea25720SGraeme Russ */
7fea25720SGraeme Russ
8fea25720SGraeme Russ
9fea25720SGraeme Russ /*
10fea25720SGraeme Russ * These have to be done with inline assembly: that way the bit-setting
11fea25720SGraeme Russ * is guaranteed to be atomic. All bit operations return 0 if the bit
12fea25720SGraeme Russ * was cleared before the operation and != 0 if it was not.
13fea25720SGraeme Russ *
14fea25720SGraeme Russ * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15fea25720SGraeme Russ */
16fea25720SGraeme Russ
17*6c2f758cSFabio Estevam #include <asm-generic/bitops/fls.h>
18*6c2f758cSFabio Estevam #include <asm-generic/bitops/__fls.h>
19*6c2f758cSFabio Estevam #include <asm-generic/bitops/fls64.h>
20*6c2f758cSFabio Estevam
21fea25720SGraeme Russ #ifdef CONFIG_SMP
22fea25720SGraeme Russ #define LOCK_PREFIX "lock ; "
23fea25720SGraeme Russ #else
24fea25720SGraeme Russ #define LOCK_PREFIX ""
25fea25720SGraeme Russ #endif
26fea25720SGraeme Russ
27fea25720SGraeme Russ #define ADDR (*(volatile long *) addr)
28fea25720SGraeme Russ
29fea25720SGraeme Russ /**
30fea25720SGraeme Russ * set_bit - Atomically set a bit in memory
31fea25720SGraeme Russ * @nr: the bit to set
32fea25720SGraeme Russ * @addr: the address to start counting from
33fea25720SGraeme Russ *
34fea25720SGraeme Russ * This function is atomic and may not be reordered. See __set_bit()
35fea25720SGraeme Russ * if you do not require the atomic guarantees.
36fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not
37fea25720SGraeme Russ * restricted to acting on a single-word quantity.
38fea25720SGraeme Russ */
set_bit(int nr,volatile void * addr)39fea25720SGraeme Russ static __inline__ void set_bit(int nr, volatile void * addr)
40fea25720SGraeme Russ {
41fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
42fea25720SGraeme Russ "btsl %1,%0"
43fea25720SGraeme Russ :"=m" (ADDR)
44fea25720SGraeme Russ :"Ir" (nr));
45fea25720SGraeme Russ }
46fea25720SGraeme Russ
47fea25720SGraeme Russ /**
48fea25720SGraeme Russ * __set_bit - Set a bit in memory
49fea25720SGraeme Russ * @nr: the bit to set
50fea25720SGraeme Russ * @addr: the address to start counting from
51fea25720SGraeme Russ *
52fea25720SGraeme Russ * Unlike set_bit(), this function is non-atomic and may be reordered.
53fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect
54fea25720SGraeme Russ * may be that only one operation succeeds.
55fea25720SGraeme Russ */
__set_bit(int nr,volatile void * addr)56fea25720SGraeme Russ static __inline__ void __set_bit(int nr, volatile void * addr)
57fea25720SGraeme Russ {
58fea25720SGraeme Russ __asm__(
59fea25720SGraeme Russ "btsl %1,%0"
60fea25720SGraeme Russ :"=m" (ADDR)
61fea25720SGraeme Russ :"Ir" (nr));
62fea25720SGraeme Russ }
63fea25720SGraeme Russ
64fea25720SGraeme Russ /**
65fea25720SGraeme Russ * clear_bit - Clears a bit in memory
66fea25720SGraeme Russ * @nr: Bit to clear
67fea25720SGraeme Russ * @addr: Address to start counting from
68fea25720SGraeme Russ *
69fea25720SGraeme Russ * clear_bit() is atomic and may not be reordered. However, it does
70fea25720SGraeme Russ * not contain a memory barrier, so if it is used for locking purposes,
71fea25720SGraeme Russ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
72fea25720SGraeme Russ * in order to ensure changes are visible on other processors.
73fea25720SGraeme Russ */
clear_bit(int nr,volatile void * addr)74fea25720SGraeme Russ static __inline__ void clear_bit(int nr, volatile void * addr)
75fea25720SGraeme Russ {
76fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
77fea25720SGraeme Russ "btrl %1,%0"
78fea25720SGraeme Russ :"=m" (ADDR)
79fea25720SGraeme Russ :"Ir" (nr));
80fea25720SGraeme Russ }
81fea25720SGraeme Russ #define smp_mb__before_clear_bit() barrier()
82fea25720SGraeme Russ #define smp_mb__after_clear_bit() barrier()
83fea25720SGraeme Russ
84fea25720SGraeme Russ /**
85fea25720SGraeme Russ * __change_bit - Toggle a bit in memory
86fea25720SGraeme Russ * @nr: the bit to set
87fea25720SGraeme Russ * @addr: the address to start counting from
88fea25720SGraeme Russ *
89fea25720SGraeme Russ * Unlike change_bit(), this function is non-atomic and may be reordered.
90fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect
91fea25720SGraeme Russ * may be that only one operation succeeds.
92fea25720SGraeme Russ */
__change_bit(int nr,volatile void * addr)93fea25720SGraeme Russ static __inline__ void __change_bit(int nr, volatile void * addr)
94fea25720SGraeme Russ {
95fea25720SGraeme Russ __asm__ __volatile__(
96fea25720SGraeme Russ "btcl %1,%0"
97fea25720SGraeme Russ :"=m" (ADDR)
98fea25720SGraeme Russ :"Ir" (nr));
99fea25720SGraeme Russ }
100fea25720SGraeme Russ
101fea25720SGraeme Russ /**
102fea25720SGraeme Russ * change_bit - Toggle a bit in memory
103fea25720SGraeme Russ * @nr: Bit to clear
104fea25720SGraeme Russ * @addr: Address to start counting from
105fea25720SGraeme Russ *
106fea25720SGraeme Russ * change_bit() is atomic and may not be reordered.
107fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not
108fea25720SGraeme Russ * restricted to acting on a single-word quantity.
109fea25720SGraeme Russ */
change_bit(int nr,volatile void * addr)110fea25720SGraeme Russ static __inline__ void change_bit(int nr, volatile void * addr)
111fea25720SGraeme Russ {
112fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
113fea25720SGraeme Russ "btcl %1,%0"
114fea25720SGraeme Russ :"=m" (ADDR)
115fea25720SGraeme Russ :"Ir" (nr));
116fea25720SGraeme Russ }
117fea25720SGraeme Russ
118fea25720SGraeme Russ /**
119fea25720SGraeme Russ * test_and_set_bit - Set a bit and return its old value
120fea25720SGraeme Russ * @nr: Bit to set
121fea25720SGraeme Russ * @addr: Address to count from
122fea25720SGraeme Russ *
123fea25720SGraeme Russ * This operation is atomic and cannot be reordered.
124fea25720SGraeme Russ * It also implies a memory barrier.
125fea25720SGraeme Russ */
test_and_set_bit(int nr,volatile void * addr)126fea25720SGraeme Russ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
127fea25720SGraeme Russ {
128fea25720SGraeme Russ int oldbit;
129fea25720SGraeme Russ
130fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
131fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0"
132fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
133fea25720SGraeme Russ :"Ir" (nr) : "memory");
134fea25720SGraeme Russ return oldbit;
135fea25720SGraeme Russ }
136fea25720SGraeme Russ
137fea25720SGraeme Russ /**
138fea25720SGraeme Russ * __test_and_set_bit - Set a bit and return its old value
139fea25720SGraeme Russ * @nr: Bit to set
140fea25720SGraeme Russ * @addr: Address to count from
141fea25720SGraeme Russ *
142fea25720SGraeme Russ * This operation is non-atomic and can be reordered.
143fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed
144fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock.
145fea25720SGraeme Russ */
__test_and_set_bit(int nr,volatile void * addr)146fea25720SGraeme Russ static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
147fea25720SGraeme Russ {
148fea25720SGraeme Russ int oldbit;
149fea25720SGraeme Russ
150fea25720SGraeme Russ __asm__(
151fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0"
152fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
153fea25720SGraeme Russ :"Ir" (nr));
154fea25720SGraeme Russ return oldbit;
155fea25720SGraeme Russ }
156fea25720SGraeme Russ
157fea25720SGraeme Russ /**
158fea25720SGraeme Russ * test_and_clear_bit - Clear a bit and return its old value
159fea25720SGraeme Russ * @nr: Bit to set
160fea25720SGraeme Russ * @addr: Address to count from
161fea25720SGraeme Russ *
162fea25720SGraeme Russ * This operation is atomic and cannot be reordered.
163fea25720SGraeme Russ * It also implies a memory barrier.
164fea25720SGraeme Russ */
test_and_clear_bit(int nr,volatile void * addr)165fea25720SGraeme Russ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
166fea25720SGraeme Russ {
167fea25720SGraeme Russ int oldbit;
168fea25720SGraeme Russ
169fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
170fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0"
171fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
172fea25720SGraeme Russ :"Ir" (nr) : "memory");
173fea25720SGraeme Russ return oldbit;
174fea25720SGraeme Russ }
175fea25720SGraeme Russ
176fea25720SGraeme Russ /**
177fea25720SGraeme Russ * __test_and_clear_bit - Clear a bit and return its old value
178fea25720SGraeme Russ * @nr: Bit to set
179fea25720SGraeme Russ * @addr: Address to count from
180fea25720SGraeme Russ *
181fea25720SGraeme Russ * This operation is non-atomic and can be reordered.
182fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed
183fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock.
184fea25720SGraeme Russ */
__test_and_clear_bit(int nr,volatile void * addr)185fea25720SGraeme Russ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
186fea25720SGraeme Russ {
187fea25720SGraeme Russ int oldbit;
188fea25720SGraeme Russ
189fea25720SGraeme Russ __asm__(
190fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0"
191fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
192fea25720SGraeme Russ :"Ir" (nr));
193fea25720SGraeme Russ return oldbit;
194fea25720SGraeme Russ }
195fea25720SGraeme Russ
196fea25720SGraeme Russ /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile void * addr)197fea25720SGraeme Russ static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
198fea25720SGraeme Russ {
199fea25720SGraeme Russ int oldbit;
200fea25720SGraeme Russ
201fea25720SGraeme Russ __asm__ __volatile__(
202fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0"
203fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
204fea25720SGraeme Russ :"Ir" (nr) : "memory");
205fea25720SGraeme Russ return oldbit;
206fea25720SGraeme Russ }
207fea25720SGraeme Russ
208fea25720SGraeme Russ /**
209fea25720SGraeme Russ * test_and_change_bit - Change a bit and return its new value
210fea25720SGraeme Russ * @nr: Bit to set
211fea25720SGraeme Russ * @addr: Address to count from
212fea25720SGraeme Russ *
213fea25720SGraeme Russ * This operation is atomic and cannot be reordered.
214fea25720SGraeme Russ * It also implies a memory barrier.
215fea25720SGraeme Russ */
test_and_change_bit(int nr,volatile void * addr)216fea25720SGraeme Russ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
217fea25720SGraeme Russ {
218fea25720SGraeme Russ int oldbit;
219fea25720SGraeme Russ
220fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX
221fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0"
222fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR)
223fea25720SGraeme Russ :"Ir" (nr) : "memory");
224fea25720SGraeme Russ return oldbit;
225fea25720SGraeme Russ }
226fea25720SGraeme Russ
227fea25720SGraeme Russ #if 0 /* Fool kernel-doc since it doesn't do macros yet */
228fea25720SGraeme Russ /**
229fea25720SGraeme Russ * test_bit - Determine whether a bit is set
230fea25720SGraeme Russ * @nr: bit number to test
231fea25720SGraeme Russ * @addr: Address to start counting from
232fea25720SGraeme Russ */
233fea25720SGraeme Russ static int test_bit(int nr, const volatile void * addr);
234fea25720SGraeme Russ #endif
235fea25720SGraeme Russ
constant_test_bit(int nr,const volatile void * addr)236fea25720SGraeme Russ static __inline__ int constant_test_bit(int nr, const volatile void * addr)
237fea25720SGraeme Russ {
238fea25720SGraeme Russ return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
239fea25720SGraeme Russ }
240fea25720SGraeme Russ
variable_test_bit(int nr,volatile void * addr)241fea25720SGraeme Russ static __inline__ int variable_test_bit(int nr, volatile void * addr)
242fea25720SGraeme Russ {
243fea25720SGraeme Russ int oldbit;
244fea25720SGraeme Russ
245fea25720SGraeme Russ __asm__ __volatile__(
246fea25720SGraeme Russ "btl %2,%1\n\tsbbl %0,%0"
247fea25720SGraeme Russ :"=r" (oldbit)
248fea25720SGraeme Russ :"m" (ADDR),"Ir" (nr));
249fea25720SGraeme Russ return oldbit;
250fea25720SGraeme Russ }
251fea25720SGraeme Russ
252fea25720SGraeme Russ #define test_bit(nr,addr) \
253fea25720SGraeme Russ (__builtin_constant_p(nr) ? \
254fea25720SGraeme Russ constant_test_bit((nr),(addr)) : \
255fea25720SGraeme Russ variable_test_bit((nr),(addr)))
256fea25720SGraeme Russ
257fea25720SGraeme Russ /**
258fea25720SGraeme Russ * find_first_zero_bit - find the first zero bit in a memory region
259fea25720SGraeme Russ * @addr: The address to start the search at
260fea25720SGraeme Russ * @size: The maximum size to search
261fea25720SGraeme Russ *
262fea25720SGraeme Russ * Returns the bit-number of the first zero bit, not the number of the byte
263fea25720SGraeme Russ * containing a bit.
264fea25720SGraeme Russ */
find_first_zero_bit(void * addr,unsigned size)265fea25720SGraeme Russ static __inline__ int find_first_zero_bit(void * addr, unsigned size)
266fea25720SGraeme Russ {
267fea25720SGraeme Russ int d0, d1, d2;
268fea25720SGraeme Russ int res;
269fea25720SGraeme Russ
270fea25720SGraeme Russ if (!size)
271fea25720SGraeme Russ return 0;
272fea25720SGraeme Russ /* This looks at memory. Mark it volatile to tell gcc not to move it around */
273fea25720SGraeme Russ __asm__ __volatile__(
274fea25720SGraeme Russ "movl $-1,%%eax\n\t"
275fea25720SGraeme Russ "xorl %%edx,%%edx\n\t"
276fea25720SGraeme Russ "repe; scasl\n\t"
277fea25720SGraeme Russ "je 1f\n\t"
278fea25720SGraeme Russ "xorl -4(%%edi),%%eax\n\t"
279fea25720SGraeme Russ "subl $4,%%edi\n\t"
280fea25720SGraeme Russ "bsfl %%eax,%%edx\n"
281fea25720SGraeme Russ "1:\tsubl %%ebx,%%edi\n\t"
282fea25720SGraeme Russ "shll $3,%%edi\n\t"
283fea25720SGraeme Russ "addl %%edi,%%edx"
284fea25720SGraeme Russ :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
285fea25720SGraeme Russ :"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
286fea25720SGraeme Russ return res;
287fea25720SGraeme Russ }
288fea25720SGraeme Russ
289fea25720SGraeme Russ /**
290fea25720SGraeme Russ * find_next_zero_bit - find the first zero bit in a memory region
291fea25720SGraeme Russ * @addr: The address to base the search on
292fea25720SGraeme Russ * @offset: The bitnumber to start searching at
293fea25720SGraeme Russ * @size: The maximum size to search
294fea25720SGraeme Russ */
find_next_zero_bit(void * addr,int size,int offset)295fea25720SGraeme Russ static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
296fea25720SGraeme Russ {
297fea25720SGraeme Russ unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
298fea25720SGraeme Russ int set = 0, bit = offset & 31, res;
299fea25720SGraeme Russ
300fea25720SGraeme Russ if (bit) {
301fea25720SGraeme Russ /*
302fea25720SGraeme Russ * Look for zero in first byte
303fea25720SGraeme Russ */
304fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t"
305fea25720SGraeme Russ "jne 1f\n\t"
306fea25720SGraeme Russ "movl $32, %0\n"
307fea25720SGraeme Russ "1:"
308fea25720SGraeme Russ : "=r" (set)
309fea25720SGraeme Russ : "r" (~(*p >> bit)));
310fea25720SGraeme Russ if (set < (32 - bit))
311fea25720SGraeme Russ return set + offset;
312fea25720SGraeme Russ set = 32 - bit;
313fea25720SGraeme Russ p++;
314fea25720SGraeme Russ }
315fea25720SGraeme Russ /*
316fea25720SGraeme Russ * No zero yet, search remaining full bytes for a zero
317fea25720SGraeme Russ */
318fea25720SGraeme Russ res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
319fea25720SGraeme Russ return (offset + set + res);
320fea25720SGraeme Russ }
321fea25720SGraeme Russ
322fea25720SGraeme Russ /**
323fea25720SGraeme Russ * ffz - find first zero in word.
324fea25720SGraeme Russ * @word: The word to search
325fea25720SGraeme Russ *
326fea25720SGraeme Russ * Undefined if no zero exists, so code should check against ~0UL first.
327fea25720SGraeme Russ */
ffz(unsigned long word)328fea25720SGraeme Russ static __inline__ unsigned long ffz(unsigned long word)
329fea25720SGraeme Russ {
330fea25720SGraeme Russ __asm__("bsfl %1,%0"
331fea25720SGraeme Russ :"=r" (word)
332fea25720SGraeme Russ :"r" (~word));
333fea25720SGraeme Russ return word;
334fea25720SGraeme Russ }
335fea25720SGraeme Russ
336fea25720SGraeme Russ #ifdef __KERNEL__
337fea25720SGraeme Russ
338fea25720SGraeme Russ /**
339*6c2f758cSFabio Estevam * __ffs - find first set bit in word
340*6c2f758cSFabio Estevam * @word: The word to search
341*6c2f758cSFabio Estevam *
342*6c2f758cSFabio Estevam * Undefined if no bit exists, so code should check against 0 first.
343*6c2f758cSFabio Estevam */
__ffs(unsigned long word)344*6c2f758cSFabio Estevam static inline unsigned long __ffs(unsigned long word)
345*6c2f758cSFabio Estevam {
346*6c2f758cSFabio Estevam __asm__("rep; bsf %1,%0"
347*6c2f758cSFabio Estevam : "=r" (word)
348*6c2f758cSFabio Estevam : "rm" (word));
349*6c2f758cSFabio Estevam return word;
350*6c2f758cSFabio Estevam }
351*6c2f758cSFabio Estevam
352*6c2f758cSFabio Estevam /**
353fea25720SGraeme Russ * ffs - find first bit set
354fea25720SGraeme Russ * @x: the word to search
355fea25720SGraeme Russ *
356fea25720SGraeme Russ * This is defined the same way as
357fea25720SGraeme Russ * the libc and compiler builtin ffs routines, therefore
358fea25720SGraeme Russ * differs in spirit from the above ffz (man ffs).
359fea25720SGraeme Russ */
ffs(int x)360fea25720SGraeme Russ static __inline__ int ffs(int x)
361fea25720SGraeme Russ {
362fea25720SGraeme Russ int r;
363fea25720SGraeme Russ
364fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t"
365fea25720SGraeme Russ "jnz 1f\n\t"
366fea25720SGraeme Russ "movl $-1,%0\n"
367*6c2f758cSFabio Estevam "1:" : "=r" (r) : "rm" (x));
368*6c2f758cSFabio Estevam
369fea25720SGraeme Russ return r+1;
370fea25720SGraeme Russ }
371fea25720SGraeme Russ #define PLATFORM_FFS
372fea25720SGraeme Russ
__ilog2(unsigned int x)3738abebe3eSGraeme Russ static inline int __ilog2(unsigned int x)
3748abebe3eSGraeme Russ {
3758abebe3eSGraeme Russ return generic_fls(x) - 1;
3768abebe3eSGraeme Russ }
3778abebe3eSGraeme Russ
378fea25720SGraeme Russ /**
379fea25720SGraeme Russ * hweightN - returns the hamming weight of a N-bit word
380fea25720SGraeme Russ * @x: the word to weigh
381fea25720SGraeme Russ *
382fea25720SGraeme Russ * The Hamming Weight of a number is the total number of bits set in it.
383fea25720SGraeme Russ */
384fea25720SGraeme Russ
385fea25720SGraeme Russ #define hweight32(x) generic_hweight32(x)
386fea25720SGraeme Russ #define hweight16(x) generic_hweight16(x)
387fea25720SGraeme Russ #define hweight8(x) generic_hweight8(x)
388fea25720SGraeme Russ
389fea25720SGraeme Russ #endif /* __KERNEL__ */
390fea25720SGraeme Russ
391fea25720SGraeme Russ #ifdef __KERNEL__
392fea25720SGraeme Russ
393fea25720SGraeme Russ #define ext2_set_bit __test_and_set_bit
394fea25720SGraeme Russ #define ext2_clear_bit __test_and_clear_bit
395fea25720SGraeme Russ #define ext2_test_bit test_bit
396fea25720SGraeme Russ #define ext2_find_first_zero_bit find_first_zero_bit
397fea25720SGraeme Russ #define ext2_find_next_zero_bit find_next_zero_bit
398fea25720SGraeme Russ
399fea25720SGraeme Russ /* Bitmap functions for the minix filesystem. */
400fea25720SGraeme Russ #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
401fea25720SGraeme Russ #define minix_set_bit(nr,addr) __set_bit(nr,addr)
402fea25720SGraeme Russ #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
403fea25720SGraeme Russ #define minix_test_bit(nr,addr) test_bit(nr,addr)
404fea25720SGraeme Russ #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
405fea25720SGraeme Russ
406fea25720SGraeme Russ #endif /* __KERNEL__ */
407fea25720SGraeme Russ
408fea25720SGraeme Russ #endif /* _I386_BITOPS_H */
409