xref: /rk3399_rockchip-uboot/arch/x86/cpu/cpu.c (revision 87f4cd3a308b0bcffd8f9b5e7121fdb086c080f5)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <errno.h>
25 #include <malloc.h>
26 #include <asm/control_regs.h>
27 #include <asm/cpu.h>
28 #include <asm/post.h>
29 #include <asm/processor.h>
30 #include <asm/processor-flags.h>
31 #include <asm/interrupt.h>
32 #include <asm/tables.h>
33 #include <linux/compiler.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 /*
38  * Constructor for a conventional segment GDT (or LDT) entry
39  * This is a macro so it can be used in initialisers
40  */
41 #define GDT_ENTRY(flags, base, limit)			\
42 	((((base)  & 0xff000000ULL) << (56-24)) |	\
43 	 (((flags) & 0x0000f0ffULL) << 40) |		\
44 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
45 	 (((base)  & 0x00ffffffULL) << 16) |		\
46 	 (((limit) & 0x0000ffffULL)))
47 
48 struct gdt_ptr {
49 	u16 len;
50 	u32 ptr;
51 } __packed;
52 
53 struct cpu_device_id {
54 	unsigned vendor;
55 	unsigned device;
56 };
57 
58 struct cpuinfo_x86 {
59 	uint8_t x86;            /* CPU family */
60 	uint8_t x86_vendor;     /* CPU vendor */
61 	uint8_t x86_model;
62 	uint8_t x86_mask;
63 };
64 
65 /*
66  * List of cpu vendor strings along with their normalized
67  * id values.
68  */
69 static struct {
70 	int vendor;
71 	const char *name;
72 } x86_vendors[] = {
73 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
74 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
75 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
76 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
77 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
78 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
79 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
80 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
81 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
82 	{ X86_VENDOR_NSC,       "Geode by NSC", },
83 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
84 };
85 
86 static const char *const x86_vendor_name[] = {
87 	[X86_VENDOR_INTEL]     = "Intel",
88 	[X86_VENDOR_CYRIX]     = "Cyrix",
89 	[X86_VENDOR_AMD]       = "AMD",
90 	[X86_VENDOR_UMC]       = "UMC",
91 	[X86_VENDOR_NEXGEN]    = "NexGen",
92 	[X86_VENDOR_CENTAUR]   = "Centaur",
93 	[X86_VENDOR_RISE]      = "Rise",
94 	[X86_VENDOR_TRANSMETA] = "Transmeta",
95 	[X86_VENDOR_NSC]       = "NSC",
96 	[X86_VENDOR_SIS]       = "SiS",
97 };
98 
99 static void load_ds(u32 segment)
100 {
101 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
102 }
103 
104 static void load_es(u32 segment)
105 {
106 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108 
109 static void load_fs(u32 segment)
110 {
111 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113 
114 static void load_gs(u32 segment)
115 {
116 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118 
119 static void load_ss(u32 segment)
120 {
121 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123 
124 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
125 {
126 	struct gdt_ptr gdt;
127 
128 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
129 	gdt.ptr = (u32)boot_gdt;
130 
131 	asm volatile("lgdtl %0\n" : : "m" (gdt));
132 }
133 
134 void setup_gdt(gd_t *id, u64 *gdt_addr)
135 {
136 	/* CS: code, read/execute, 4 GB, base 0 */
137 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
138 
139 	/* DS: data, read/write, 4 GB, base 0 */
140 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
141 
142 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
143 	id->arch.gd_addr = id;
144 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
145 		     (ulong)&id->arch.gd_addr, 0xfffff);
146 
147 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
148 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
149 
150 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
151 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
152 
153 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
154 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
155 
156 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
157 	load_ds(X86_GDT_ENTRY_32BIT_DS);
158 	load_es(X86_GDT_ENTRY_32BIT_DS);
159 	load_gs(X86_GDT_ENTRY_32BIT_DS);
160 	load_ss(X86_GDT_ENTRY_32BIT_DS);
161 	load_fs(X86_GDT_ENTRY_32BIT_FS);
162 }
163 
164 int __weak x86_cleanup_before_linux(void)
165 {
166 #ifdef CONFIG_BOOTSTAGE_STASH
167 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
168 			CONFIG_BOOTSTAGE_STASH_SIZE);
169 #endif
170 
171 	return 0;
172 }
173 
174 /*
175  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
176  * by the fact that they preserve the flags across the division of 5/2.
177  * PII and PPro exhibit this behavior too, but they have cpuid available.
178  */
179 
180 /*
181  * Perform the Cyrix 5/2 test. A Cyrix won't change
182  * the flags, while other 486 chips will.
183  */
184 static inline int test_cyrix_52div(void)
185 {
186 	unsigned int test;
187 
188 	__asm__ __volatile__(
189 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
190 	     "div %b2\n\t"	/* divide 5 by 2 */
191 	     "lahf"		/* store flags into %ah */
192 	     : "=a" (test)
193 	     : "0" (5), "q" (2)
194 	     : "cc");
195 
196 	/* AH is 0x02 on Cyrix after the divide.. */
197 	return (unsigned char) (test >> 8) == 0x02;
198 }
199 
200 /*
201  *	Detect a NexGen CPU running without BIOS hypercode new enough
202  *	to have CPUID. (Thanks to Herbert Oppmann)
203  */
204 
205 static int deep_magic_nexgen_probe(void)
206 {
207 	int ret;
208 
209 	__asm__ __volatile__ (
210 		"	movw	$0x5555, %%ax\n"
211 		"	xorw	%%dx,%%dx\n"
212 		"	movw	$2, %%cx\n"
213 		"	divw	%%cx\n"
214 		"	movl	$0, %%eax\n"
215 		"	jnz	1f\n"
216 		"	movl	$1, %%eax\n"
217 		"1:\n"
218 		: "=a" (ret) : : "cx", "dx");
219 	return  ret;
220 }
221 
222 static bool has_cpuid(void)
223 {
224 	return flag_is_changeable_p(X86_EFLAGS_ID);
225 }
226 
227 static bool has_mtrr(void)
228 {
229 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
230 }
231 
232 static int build_vendor_name(char *vendor_name)
233 {
234 	struct cpuid_result result;
235 	result = cpuid(0x00000000);
236 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
237 
238 	name_as_ints[0] = result.ebx;
239 	name_as_ints[1] = result.edx;
240 	name_as_ints[2] = result.ecx;
241 
242 	return result.eax;
243 }
244 
245 static void identify_cpu(struct cpu_device_id *cpu)
246 {
247 	char vendor_name[16];
248 	int i;
249 
250 	vendor_name[0] = '\0'; /* Unset */
251 	cpu->device = 0; /* fix gcc 4.4.4 warning */
252 
253 	/* Find the id and vendor_name */
254 	if (!has_cpuid()) {
255 		/* Its a 486 if we can modify the AC flag */
256 		if (flag_is_changeable_p(X86_EFLAGS_AC))
257 			cpu->device = 0x00000400; /* 486 */
258 		else
259 			cpu->device = 0x00000300; /* 386 */
260 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
261 			memcpy(vendor_name, "CyrixInstead", 13);
262 			/* If we ever care we can enable cpuid here */
263 		}
264 		/* Detect NexGen with old hypercode */
265 		else if (deep_magic_nexgen_probe())
266 			memcpy(vendor_name, "NexGenDriven", 13);
267 	}
268 	if (has_cpuid()) {
269 		int  cpuid_level;
270 
271 		cpuid_level = build_vendor_name(vendor_name);
272 		vendor_name[12] = '\0';
273 
274 		/* Intel-defined flags: level 0x00000001 */
275 		if (cpuid_level >= 0x00000001) {
276 			cpu->device = cpuid_eax(0x00000001);
277 		} else {
278 			/* Have CPUID level 0 only unheard of */
279 			cpu->device = 0x00000400;
280 		}
281 	}
282 	cpu->vendor = X86_VENDOR_UNKNOWN;
283 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
284 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
285 			cpu->vendor = x86_vendors[i].vendor;
286 			break;
287 		}
288 	}
289 }
290 
291 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
292 {
293 	c->x86 = (tfms >> 8) & 0xf;
294 	c->x86_model = (tfms >> 4) & 0xf;
295 	c->x86_mask = tfms & 0xf;
296 	if (c->x86 == 0xf)
297 		c->x86 += (tfms >> 20) & 0xff;
298 	if (c->x86 >= 0x6)
299 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
300 }
301 
302 int x86_cpu_init_f(void)
303 {
304 	const u32 em_rst = ~X86_CR0_EM;
305 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
306 
307 	/* initialize FPU, reset EM, set MP and NE */
308 	asm ("fninit\n" \
309 	     "movl %%cr0, %%eax\n" \
310 	     "andl %0, %%eax\n" \
311 	     "orl  %1, %%eax\n" \
312 	     "movl %%eax, %%cr0\n" \
313 	     : : "i" (em_rst), "i" (mp_ne_set) : "eax");
314 
315 	/* identify CPU via cpuid and store the decoded info into gd->arch */
316 	if (has_cpuid()) {
317 		struct cpu_device_id cpu;
318 		struct cpuinfo_x86 c;
319 
320 		identify_cpu(&cpu);
321 		get_fms(&c, cpu.device);
322 		gd->arch.x86 = c.x86;
323 		gd->arch.x86_vendor = cpu.vendor;
324 		gd->arch.x86_model = c.x86_model;
325 		gd->arch.x86_mask = c.x86_mask;
326 		gd->arch.x86_device = cpu.device;
327 
328 		gd->arch.has_mtrr = has_mtrr();
329 	}
330 
331 	return 0;
332 }
333 
334 void x86_enable_caches(void)
335 {
336 	unsigned long cr0;
337 
338 	cr0 = read_cr0();
339 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
340 	write_cr0(cr0);
341 	wbinvd();
342 }
343 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
344 
345 void x86_disable_caches(void)
346 {
347 	unsigned long cr0;
348 
349 	cr0 = read_cr0();
350 	cr0 |= X86_CR0_NW | X86_CR0_CD;
351 	wbinvd();
352 	write_cr0(cr0);
353 	wbinvd();
354 }
355 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
356 
357 int x86_init_cache(void)
358 {
359 	enable_caches();
360 
361 	return 0;
362 }
363 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
364 
365 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
366 {
367 	printf("resetting ...\n");
368 
369 	/* wait 50 ms */
370 	udelay(50000);
371 	disable_interrupts();
372 	reset_cpu(0);
373 
374 	/*NOTREACHED*/
375 	return 0;
376 }
377 
378 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
379 {
380 	asm("wbinvd\n");
381 }
382 
383 void __attribute__ ((regparm(0))) generate_gpf(void);
384 
385 /* segment 0x70 is an arbitrary segment which does not exist */
386 asm(".globl generate_gpf\n"
387 	".hidden generate_gpf\n"
388 	".type generate_gpf, @function\n"
389 	"generate_gpf:\n"
390 	"ljmp   $0x70, $0x47114711\n");
391 
392 __weak void reset_cpu(ulong addr)
393 {
394 	printf("Resetting using x86 Triple Fault\n");
395 	set_vector(13, generate_gpf);	/* general protection fault handler */
396 	set_vector(8, generate_gpf);	/* double fault handler */
397 	generate_gpf();			/* start the show */
398 }
399 
400 int dcache_status(void)
401 {
402 	return !(read_cr0() & 0x40000000);
403 }
404 
405 /* Define these functions to allow ehch-hcd to function */
406 void flush_dcache_range(unsigned long start, unsigned long stop)
407 {
408 }
409 
410 void invalidate_dcache_range(unsigned long start, unsigned long stop)
411 {
412 }
413 
414 void dcache_enable(void)
415 {
416 	enable_caches();
417 }
418 
419 void dcache_disable(void)
420 {
421 	disable_caches();
422 }
423 
424 void icache_enable(void)
425 {
426 }
427 
428 void icache_disable(void)
429 {
430 }
431 
432 int icache_status(void)
433 {
434 	return 1;
435 }
436 
437 void cpu_enable_paging_pae(ulong cr3)
438 {
439 	__asm__ __volatile__(
440 		/* Load the page table address */
441 		"movl	%0, %%cr3\n"
442 		/* Enable pae */
443 		"movl	%%cr4, %%eax\n"
444 		"orl	$0x00000020, %%eax\n"
445 		"movl	%%eax, %%cr4\n"
446 		/* Enable paging */
447 		"movl	%%cr0, %%eax\n"
448 		"orl	$0x80000000, %%eax\n"
449 		"movl	%%eax, %%cr0\n"
450 		:
451 		: "r" (cr3)
452 		: "eax");
453 }
454 
455 void cpu_disable_paging_pae(void)
456 {
457 	/* Turn off paging */
458 	__asm__ __volatile__ (
459 		/* Disable paging */
460 		"movl	%%cr0, %%eax\n"
461 		"andl	$0x7fffffff, %%eax\n"
462 		"movl	%%eax, %%cr0\n"
463 		/* Disable pae */
464 		"movl	%%cr4, %%eax\n"
465 		"andl	$0xffffffdf, %%eax\n"
466 		"movl	%%eax, %%cr4\n"
467 		:
468 		:
469 		: "eax");
470 }
471 
472 static bool can_detect_long_mode(void)
473 {
474 	return cpuid_eax(0x80000000) > 0x80000000UL;
475 }
476 
477 static bool has_long_mode(void)
478 {
479 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
480 }
481 
482 int cpu_has_64bit(void)
483 {
484 	return has_cpuid() && can_detect_long_mode() &&
485 		has_long_mode();
486 }
487 
488 const char *cpu_vendor_name(int vendor)
489 {
490 	const char *name;
491 	name = "<invalid cpu vendor>";
492 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
493 	    (x86_vendor_name[vendor] != 0))
494 		name = x86_vendor_name[vendor];
495 
496 	return name;
497 }
498 
499 char *cpu_get_name(char *name)
500 {
501 	unsigned int *name_as_ints = (unsigned int *)name;
502 	struct cpuid_result regs;
503 	char *ptr;
504 	int i;
505 
506 	/* This bit adds up to 48 bytes */
507 	for (i = 0; i < 3; i++) {
508 		regs = cpuid(0x80000002 + i);
509 		name_as_ints[i * 4 + 0] = regs.eax;
510 		name_as_ints[i * 4 + 1] = regs.ebx;
511 		name_as_ints[i * 4 + 2] = regs.ecx;
512 		name_as_ints[i * 4 + 3] = regs.edx;
513 	}
514 	name[CPU_MAX_NAME_LEN - 1] = '\0';
515 
516 	/* Skip leading spaces. */
517 	ptr = name;
518 	while (*ptr == ' ')
519 		ptr++;
520 
521 	return ptr;
522 }
523 
524 int default_print_cpuinfo(void)
525 {
526 	printf("CPU: %s, vendor %s, device %xh\n",
527 	       cpu_has_64bit() ? "x86_64" : "x86",
528 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
529 
530 	return 0;
531 }
532 
533 #define PAGETABLE_SIZE		(6 * 4096)
534 
535 /**
536  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
537  *
538  * @pgtable: Pointer to a 24iKB block of memory
539  */
540 static void build_pagetable(uint32_t *pgtable)
541 {
542 	uint i;
543 
544 	memset(pgtable, '\0', PAGETABLE_SIZE);
545 
546 	/* Level 4 needs a single entry */
547 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
548 
549 	/* Level 3 has one 64-bit entry for each GiB of memory */
550 	for (i = 0; i < 4; i++) {
551 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
552 							0x1000 * i + 7;
553 	}
554 
555 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
556 	for (i = 0; i < 2048; i++)
557 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
558 }
559 
560 int cpu_jump_to_64bit(ulong setup_base, ulong target)
561 {
562 	uint32_t *pgtable;
563 
564 	pgtable = memalign(4096, PAGETABLE_SIZE);
565 	if (!pgtable)
566 		return -ENOMEM;
567 
568 	build_pagetable(pgtable);
569 	cpu_call64((ulong)pgtable, setup_base, target);
570 	free(pgtable);
571 
572 	return -EFAULT;
573 }
574 
575 void show_boot_progress(int val)
576 {
577 #if MIN_PORT80_KCLOCKS_DELAY
578 	/*
579 	 * Scale the time counter reading to avoid using 64 bit arithmetics.
580 	 * Can't use get_timer() here becuase it could be not yet
581 	 * initialized or even implemented.
582 	 */
583 	if (!gd->arch.tsc_prev) {
584 		gd->arch.tsc_base_kclocks = rdtsc() / 1000;
585 		gd->arch.tsc_prev = 0;
586 	} else {
587 		uint32_t now;
588 
589 		do {
590 			now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
591 		} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
592 		gd->arch.tsc_prev = now;
593 	}
594 #endif
595 	outb(val, POST_PORT);
596 }
597 
598 #ifndef CONFIG_SYS_COREBOOT
599 int last_stage_init(void)
600 {
601 	write_tables();
602 
603 	return 0;
604 }
605 #endif
606