xref: /rk3399_ARM-atf/services/std_svc/spmd/spmd_main.c (revision 7623e085cb5396054b72f1ea3f02e8c7a34568b5)
1 /*
2  * Copyright (c) 2020-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch/aarch64/arch_features.h>
15 #include <bl31/bl31.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/debug.h>
18 #include <common/runtime_svc.h>
19 #include <common/tbbr/tbbr_img_def.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/fconf/fconf.h>
22 #include <lib/fconf/fconf_dyn_cfg_getter.h>
23 #include <lib/smccc.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils.h>
26 #include <lib/xlat_tables/xlat_tables_v2.h>
27 #include <plat/common/common_def.h>
28 #include <plat/common/platform.h>
29 #include <platform_def.h>
30 #include <services/el3_spmd_logical_sp.h>
31 #include <services/ffa_svc.h>
32 #include <services/spmc_svc.h>
33 #include <services/spmd_svc.h>
34 #include <smccc_helpers.h>
35 #include "spmd_private.h"
36 
37 /*******************************************************************************
38  * SPM Core context information.
39  ******************************************************************************/
40 static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT];
41 
42 /*******************************************************************************
43  * SPM Core attribute information is read from its manifest if the SPMC is not
44  * at EL3. Else, it is populated from the SPMC directly.
45  ******************************************************************************/
46 static spmc_manifest_attribute_t spmc_attrs;
47 
48 /*******************************************************************************
49  * SPM Core entry point information. Discovered on the primary core and reused
50  * on secondary cores.
51  ******************************************************************************/
52 static entry_point_info_t *spmc_ep_info;
53 
54 /*******************************************************************************
55  * SPM Core context on current CPU get helper.
56  ******************************************************************************/
57 spmd_spm_core_context_t *spmd_get_context(void)
58 {
59 	return &spm_core_context[plat_my_core_pos()];
60 }
61 
62 /*******************************************************************************
63  * SPM Core ID getter.
64  ******************************************************************************/
65 uint16_t spmd_spmc_id_get(void)
66 {
67 	return spmc_attrs.spmc_id;
68 }
69 
70 /*******************************************************************************
71  * Static function declaration.
72  ******************************************************************************/
73 static int32_t spmd_init(void);
74 static int spmd_spmc_init(void *pm_addr);
75 
76 static uint64_t spmd_smc_forward(uint32_t smc_fid,
77 				 bool secure_origin,
78 				 uint64_t x1,
79 				 uint64_t x2,
80 				 uint64_t x3,
81 				 uint64_t x4,
82 				 void *cookie,
83 				 void *handle,
84 				 uint64_t flags);
85 
86 /******************************************************************************
87  * Builds an SPMD to SPMC direct message request.
88  *****************************************************************************/
89 void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func,
90 			     unsigned long long message)
91 {
92 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
93 	write_ctx_reg(gpregs, CTX_GPREG_X1,
94 		(SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) |
95 		 spmd_spmc_id_get());
96 	write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func);
97 	write_ctx_reg(gpregs, CTX_GPREG_X3, message);
98 
99 	/* Zero out x4-x7 for the direct request emitted towards the SPMC. */
100 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
101 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
102 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
103 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
104 }
105 
106 
107 /*******************************************************************************
108  * This function takes an SPMC context pointer and performs a synchronous
109  * SPMC entry.
110  ******************************************************************************/
111 uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx)
112 {
113 	uint64_t rc;
114 
115 	assert(spmc_ctx != NULL);
116 
117 	cm_set_context(&(spmc_ctx->cpu_ctx), SECURE);
118 
119 	/* Restore the context assigned above */
120 #if SPMD_SPM_AT_SEL2
121 	cm_el2_sysregs_context_restore(SECURE);
122 #else
123 	cm_el1_sysregs_context_restore(SECURE);
124 #endif
125 	cm_set_next_eret_context(SECURE);
126 
127 	/* Enter SPMC */
128 	rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx);
129 
130 	/* Save secure state */
131 #if SPMD_SPM_AT_SEL2
132 	cm_el2_sysregs_context_save(SECURE);
133 #else
134 	cm_el1_sysregs_context_save(SECURE);
135 #endif
136 
137 	return rc;
138 }
139 
140 /*******************************************************************************
141  * This function returns to the place where spmd_spm_core_sync_entry() was
142  * called originally.
143  ******************************************************************************/
144 __dead2 void spmd_spm_core_sync_exit(uint64_t rc)
145 {
146 	spmd_spm_core_context_t *ctx = spmd_get_context();
147 
148 	/* Get current CPU context from SPMC context */
149 	assert(cm_get_context(SECURE) == &(ctx->cpu_ctx));
150 
151 	/*
152 	 * The SPMD must have initiated the original request through a
153 	 * synchronous entry into SPMC. Jump back to the original C runtime
154 	 * context with the value of rc in x0;
155 	 */
156 	spmd_spm_core_exit(ctx->c_rt_ctx, rc);
157 
158 	panic();
159 }
160 
161 /*******************************************************************************
162  * Jump to the SPM Core for the first time.
163  ******************************************************************************/
164 static int32_t spmd_init(void)
165 {
166 	spmd_spm_core_context_t *ctx = spmd_get_context();
167 	uint64_t rc;
168 
169 	VERBOSE("SPM Core init start.\n");
170 
171 	/* Primary boot core enters the SPMC for initialization. */
172 	ctx->state = SPMC_STATE_ON_PENDING;
173 
174 	rc = spmd_spm_core_sync_entry(ctx);
175 	if (rc != 0ULL) {
176 		ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc);
177 		return 0;
178 	}
179 
180 	ctx->state = SPMC_STATE_ON;
181 
182 	VERBOSE("SPM Core init end.\n");
183 
184 	spmd_logical_sp_set_spmc_initialized();
185 	rc = spmd_logical_sp_init();
186 	if (rc != 0) {
187 		WARN("SPMD Logical partitions failed init.\n");
188 	}
189 
190 	return 1;
191 }
192 
193 /*******************************************************************************
194  * spmd_secure_interrupt_handler
195  * Enter the SPMC for further handling of the secure interrupt by the SPMC
196  * itself or a Secure Partition.
197  ******************************************************************************/
198 static uint64_t spmd_secure_interrupt_handler(uint32_t id,
199 					      uint32_t flags,
200 					      void *handle,
201 					      void *cookie)
202 {
203 	spmd_spm_core_context_t *ctx = spmd_get_context();
204 	gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
205 	int64_t rc;
206 
207 	/* Sanity check the security state when the exception was generated */
208 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
209 
210 	/* Sanity check the pointer to this cpu's context */
211 	assert(handle == cm_get_context(NON_SECURE));
212 
213 	/* Save the non-secure context before entering SPMC */
214 #if SPMD_SPM_AT_SEL2
215 	cm_el2_sysregs_context_save(NON_SECURE);
216 #else
217 	cm_el1_sysregs_context_save(NON_SECURE);
218 
219 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
220 	/*
221 	 * The hint bit denoting absence of SVE live state is effectively false
222 	 * in this scenario where execution was trapped to EL3 due to FIQ.
223 	 */
224 	simd_ctx_save(NON_SECURE, false);
225 #endif
226 #endif
227 
228 	/* Convey the event to the SPMC through the FFA_INTERRUPT interface. */
229 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT);
230 	write_ctx_reg(gpregs, CTX_GPREG_X1, 0);
231 	write_ctx_reg(gpregs, CTX_GPREG_X2, 0);
232 	write_ctx_reg(gpregs, CTX_GPREG_X3, 0);
233 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
234 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
235 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
236 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
237 
238 	/* Mark current core as handling a secure interrupt. */
239 	ctx->secure_interrupt_ongoing = true;
240 
241 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
242 	simd_ctx_restore(SECURE);
243 #endif
244 	rc = spmd_spm_core_sync_entry(ctx);
245 
246 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
247 	simd_ctx_save(SECURE, false);
248 #endif
249 	if (rc != 0ULL) {
250 		ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, plat_my_core_pos());
251 	}
252 
253 	ctx->secure_interrupt_ongoing = false;
254 
255 #if SPMD_SPM_AT_SEL2
256 	cm_el2_sysregs_context_restore(NON_SECURE);
257 #else
258 	cm_el1_sysregs_context_restore(NON_SECURE);
259 
260 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
261 	simd_ctx_restore(NON_SECURE);
262 #endif
263 #endif
264 	cm_set_next_eret_context(NON_SECURE);
265 
266 	SMC_RET0(&ctx->cpu_ctx);
267 }
268 
269 #if (EL3_EXCEPTION_HANDLING == 0)
270 /*******************************************************************************
271  * spmd_group0_interrupt_handler_nwd
272  * Group0 secure interrupt in the normal world are trapped to EL3. Delegate the
273  * handling of the interrupt to the platform handler, and return only upon
274  * successfully handling the Group0 interrupt.
275  ******************************************************************************/
276 static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id,
277 						  uint32_t flags,
278 						  void *handle,
279 						  void *cookie)
280 {
281 	uint32_t intid;
282 
283 	/* Sanity check the security state when the exception was generated. */
284 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
285 
286 	/* Sanity check the pointer to this cpu's context. */
287 	assert(handle == cm_get_context(NON_SECURE));
288 
289 	assert(id == INTR_ID_UNAVAILABLE);
290 
291 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
292 
293 	intid = plat_ic_acknowledge_interrupt();
294 
295 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
296 		ERROR("Group0 interrupt %u not handled\n", intid);
297 		panic();
298 	}
299 
300 	/* Deactivate the corresponding Group0 interrupt. */
301 	plat_ic_end_of_interrupt(intid);
302 
303 	return 0U;
304 }
305 #endif
306 
307 /*******************************************************************************
308  * spmd_handle_group0_intr_swd
309  * SPMC delegates handling of Group0 secure interrupt to EL3 firmware using
310  * FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the
311  * interrupt to the platform handler, and returns only upon successfully
312  * handling the Group0 interrupt.
313  ******************************************************************************/
314 static uint64_t spmd_handle_group0_intr_swd(void *handle)
315 {
316 	uint32_t intid;
317 
318 	/* Sanity check the pointer to this cpu's context */
319 	assert(handle == cm_get_context(SECURE));
320 
321 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
322 
323 	intid = plat_ic_acknowledge_interrupt();
324 
325 	/*
326 	 * TODO: Currently due to a limitation in SPMD implementation, the
327 	 * platform handler is expected to not delegate handling to NWd while
328 	 * processing Group0 secure interrupt.
329 	 */
330 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
331 		/* Group0 interrupt was not handled by the platform. */
332 		ERROR("Group0 interrupt %u not handled\n", intid);
333 		panic();
334 	}
335 
336 	/* Deactivate the corresponding Group0 interrupt. */
337 	plat_ic_end_of_interrupt(intid);
338 
339 	/* Return success. */
340 	SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
341 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
342 		 FFA_PARAM_MBZ);
343 }
344 
345 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
346 static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size,
347 				 unsigned int attr, uintptr_t *align_addr,
348 				 size_t *align_size)
349 {
350 	uintptr_t base_addr_align;
351 	size_t mapped_size_align;
352 	int rc;
353 
354 	/* Page aligned address and size if necessary */
355 	base_addr_align = page_align(base_addr, DOWN);
356 	mapped_size_align = page_align(size, UP);
357 
358 	if ((base_addr != base_addr_align) &&
359 	    (size == mapped_size_align)) {
360 		mapped_size_align += PAGE_SIZE;
361 	}
362 
363 	/*
364 	 * Map dynamically given region with its aligned base address and
365 	 * size
366 	 */
367 	rc = mmap_add_dynamic_region((unsigned long long)base_addr_align,
368 				     base_addr_align,
369 				     mapped_size_align,
370 				     attr);
371 	if (rc == 0) {
372 		*align_addr = base_addr_align;
373 		*align_size = mapped_size_align;
374 	}
375 
376 	return rc;
377 }
378 
379 static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr,
380 			    size_t size)
381 {
382 	uintptr_t root_base_addr_align, sec_base_addr_align;
383 	size_t root_mapped_size_align, sec_mapped_size_align;
384 	int rc;
385 
386 	assert(root_base_addr != 0UL);
387 	assert(sec_base_addr != 0UL);
388 	assert(size != 0UL);
389 
390 	/* Map the memory with required attributes */
391 	rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT,
392 				  &root_base_addr_align,
393 				  &root_mapped_size_align);
394 	if (rc != 0) {
395 		ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region",
396 		      root_base_addr, rc);
397 		panic();
398 	}
399 
400 	rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE,
401 				  &sec_base_addr_align, &sec_mapped_size_align);
402 	if (rc != 0) {
403 		ERROR("%s %s %lu (%d)\n", "Error while mapping",
404 		      "secure region", sec_base_addr, rc);
405 		panic();
406 	}
407 
408 	/* Do copy operation */
409 	(void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size);
410 
411 	/* Unmap root memory region */
412 	rc = mmap_remove_dynamic_region(root_base_addr_align,
413 					root_mapped_size_align);
414 	if (rc != 0) {
415 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
416 		      "root region", root_base_addr_align, rc);
417 		panic();
418 	}
419 
420 	/* Unmap secure memory region */
421 	rc = mmap_remove_dynamic_region(sec_base_addr_align,
422 					sec_mapped_size_align);
423 	if (rc != 0) {
424 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
425 		      "secure region", sec_base_addr_align, rc);
426 		panic();
427 	}
428 }
429 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
430 
431 /*******************************************************************************
432  * Loads SPMC manifest and inits SPMC.
433  ******************************************************************************/
434 static int spmd_spmc_init(void *pm_addr)
435 {
436 	cpu_context_t *cpu_ctx;
437 	unsigned int core_id;
438 	uint32_t ep_attr, flags;
439 	int rc;
440 	const struct dyn_cfg_dtb_info_t *image_info __unused;
441 
442 	/* Load the SPM Core manifest */
443 	rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr);
444 	if (rc != 0) {
445 		WARN("No or invalid SPM Core manifest image provided by BL2\n");
446 		return rc;
447 	}
448 
449 	/*
450 	 * Ensure that the SPM Core version is compatible with the SPM
451 	 * Dispatcher version.
452 	 */
453 	if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) ||
454 	    (spmc_attrs.minor_version > FFA_VERSION_MINOR)) {
455 		WARN("Unsupported FFA version (%u.%u)\n",
456 		     spmc_attrs.major_version, spmc_attrs.minor_version);
457 		return -EINVAL;
458 	}
459 
460 	VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version,
461 	     spmc_attrs.minor_version);
462 
463 	VERBOSE("SPM Core run time EL%x.\n",
464 	     SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1);
465 
466 	/* Validate the SPMC ID, Ensure high bit is set */
467 	if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) &
468 			SPMC_SECURE_ID_MASK) == 0U) {
469 		WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id);
470 		return -EINVAL;
471 	}
472 
473 	/* Validate the SPM Core execution state */
474 	if ((spmc_attrs.exec_state != MODE_RW_64) &&
475 	    (spmc_attrs.exec_state != MODE_RW_32)) {
476 		WARN("Unsupported %s%x.\n", "SPM Core execution state 0x",
477 		     spmc_attrs.exec_state);
478 		return -EINVAL;
479 	}
480 
481 	VERBOSE("%s%x.\n", "SPM Core execution state 0x",
482 		spmc_attrs.exec_state);
483 
484 #if SPMD_SPM_AT_SEL2
485 	/* Ensure manifest has not requested AArch32 state in S-EL2 */
486 	if (spmc_attrs.exec_state == MODE_RW_32) {
487 		WARN("AArch32 state at S-EL2 is not supported.\n");
488 		return -EINVAL;
489 	}
490 
491 	/*
492 	 * Check if S-EL2 is supported on this system if S-EL2
493 	 * is required for SPM
494 	 */
495 	if (!is_feat_sel2_supported()) {
496 		WARN("SPM Core run time S-EL2 is not supported.\n");
497 		return -EINVAL;
498 	}
499 #endif /* SPMD_SPM_AT_SEL2 */
500 
501 	/* Initialise an entrypoint to set up the CPU context */
502 	ep_attr = SECURE | EP_ST_ENABLE;
503 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) {
504 		ep_attr |= EP_EE_BIG;
505 	}
506 
507 	SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr);
508 
509 	/*
510 	 * Populate SPSR for SPM Core based upon validated parameters from the
511 	 * manifest.
512 	 */
513 	if (spmc_attrs.exec_state == MODE_RW_32) {
514 		spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
515 						 SPSR_E_LITTLE,
516 						 DAIF_FIQ_BIT |
517 						 DAIF_IRQ_BIT |
518 						 DAIF_ABT_BIT);
519 	} else {
520 
521 #if SPMD_SPM_AT_SEL2
522 		static const uint32_t runtime_el = MODE_EL2;
523 #else
524 		static const uint32_t runtime_el = MODE_EL1;
525 #endif
526 		spmc_ep_info->spsr = SPSR_64(runtime_el,
527 					     MODE_SP_ELX,
528 					     DISABLE_ALL_EXCEPTIONS);
529 	}
530 
531 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
532 	image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID);
533 	assert(image_info != NULL);
534 
535 	if ((image_info->config_addr == 0UL) ||
536 	    (image_info->secondary_config_addr == 0UL) ||
537 	    (image_info->config_max_size == 0UL)) {
538 		return -EINVAL;
539 	}
540 
541 	/* Copy manifest from root->secure region */
542 	spmd_do_sec_cpy(image_info->config_addr,
543 			image_info->secondary_config_addr,
544 			image_info->config_max_size);
545 
546 	/* Update ep info of BL32 */
547 	assert(spmc_ep_info != NULL);
548 	spmc_ep_info->args.arg0 = image_info->secondary_config_addr;
549 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
550 
551 	/* Set an initial SPMC context state for all cores. */
552 	for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) {
553 		spm_core_context[core_id].state = SPMC_STATE_OFF;
554 
555 		/* Setup an initial cpu context for the SPMC. */
556 		cpu_ctx = &spm_core_context[core_id].cpu_ctx;
557 		cm_setup_context(cpu_ctx, spmc_ep_info);
558 
559 		/*
560 		 * Pass the core linear ID to the SPMC through x4.
561 		 * (TF-A implementation defined behavior helping
562 		 * a legacy TOS migration to adopt FF-A).
563 		 */
564 		write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id);
565 	}
566 
567 	/* Register power management hooks with PSCI */
568 	psci_register_spd_pm_hook(&spmd_pm);
569 
570 	/* Register init function for deferred init. */
571 	bl31_register_bl32_init(&spmd_init);
572 
573 	INFO("SPM Core setup done.\n");
574 
575 	/*
576 	 * Register an interrupt handler routing secure interrupts to SPMD
577 	 * while the NWd is running.
578 	 */
579 	flags = 0;
580 	set_interrupt_rm_flag(flags, NON_SECURE);
581 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
582 					     spmd_secure_interrupt_handler,
583 					     flags);
584 	if (rc != 0) {
585 		panic();
586 	}
587 
588 	/*
589 	 * Permit configurations where the SPM resides at S-EL1/2 and upon a
590 	 * Group0 interrupt triggering while the normal world runs, the
591 	 * interrupt is routed either through the EHF or directly to the SPMD:
592 	 *
593 	 * EL3_EXCEPTION_HANDLING=0: the Group0 interrupt is routed to the SPMD
594 	 *                   for handling by spmd_group0_interrupt_handler_nwd.
595 	 *
596 	 * EL3_EXCEPTION_HANDLING=1: the Group0 interrupt is routed to the EHF.
597 	 *
598 	 */
599 #if (EL3_EXCEPTION_HANDLING == 0)
600 	/*
601 	 * If EL3 interrupts are supported by the platform, register an
602 	 * interrupt handler routing Group0 interrupts to SPMD while the NWd is
603 	 * running.
604 	 */
605 	if (plat_ic_has_interrupt_type(INTR_TYPE_EL3)) {
606 		rc = register_interrupt_type_handler(INTR_TYPE_EL3,
607 						     spmd_group0_interrupt_handler_nwd,
608 						     flags);
609 		if (rc != 0) {
610 			panic();
611 		}
612 	}
613 #endif
614 
615 	return 0;
616 }
617 
618 /*******************************************************************************
619  * Initialize context of SPM Core.
620  ******************************************************************************/
621 int spmd_setup(void)
622 {
623 	int rc;
624 	void *spmc_manifest;
625 
626 	/*
627 	 * If the SPMC is at EL3, then just initialise it directly. The
628 	 * shenanigans of when it is at a lower EL are not needed.
629 	 */
630 	if (is_spmc_at_el3()) {
631 		/* Allow the SPMC to populate its attributes directly. */
632 		spmc_populate_attrs(&spmc_attrs);
633 
634 		rc = spmc_setup();
635 		if (rc != 0) {
636 			WARN("SPMC initialisation failed 0x%x.\n", rc);
637 		}
638 		return 0;
639 	}
640 
641 	spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
642 	if (spmc_ep_info == NULL) {
643 		WARN("No SPM Core image provided by BL2 boot loader.\n");
644 		return 0;
645 	}
646 
647 	/* Under no circumstances will this parameter be 0 */
648 	assert(spmc_ep_info->pc != 0ULL);
649 
650 	/*
651 	 * Check if BL32 ep_info has a reference to 'tos_fw_config'. This will
652 	 * be used as a manifest for the SPM Core at the next lower EL/mode.
653 	 */
654 	spmc_manifest = (void *)spmc_ep_info->args.arg0;
655 	if (spmc_manifest == NULL) {
656 		WARN("Invalid or absent SPM Core manifest.\n");
657 		return 0;
658 	}
659 
660 	/* Load manifest, init SPMC */
661 	rc = spmd_spmc_init(spmc_manifest);
662 	if (rc != 0) {
663 		WARN("Booting device without SPM initialization.\n");
664 	}
665 
666 	return 0;
667 }
668 
669 /*******************************************************************************
670  * Forward FF-A SMCs to the other security state.
671  ******************************************************************************/
672 uint64_t spmd_smc_switch_state(uint32_t smc_fid,
673 			       bool secure_origin,
674 			       uint64_t x1,
675 			       uint64_t x2,
676 			       uint64_t x3,
677 			       uint64_t x4,
678 			       void *handle,
679 			       uint64_t flags)
680 {
681 	unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE;
682 	unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE;
683 	void *ctx_out;
684 
685 #if SPMD_SPM_AT_SEL2
686 	if ((secure_state_out == SECURE) && (is_sve_hint_set(flags) == true)) {
687 		/*
688 		 * Set the SVE hint bit in x0 and pass to the lower secure EL,
689 		 * if it was set by the caller.
690 		 */
691 		smc_fid |= (FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT);
692 	}
693 #endif
694 
695 	/* Save incoming security state */
696 #if SPMD_SPM_AT_SEL2
697 	cm_el2_sysregs_context_save(secure_state_in);
698 #else
699 	cm_el1_sysregs_context_save(secure_state_in);
700 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
701 	/* Forward the hint bit denoting the absence of SVE live state. */
702 	simd_ctx_save(secure_state_in, (!secure_origin && (is_sve_hint_set(flags) == true)));
703 #endif
704 #endif
705 
706 	/* Restore outgoing security state */
707 #if SPMD_SPM_AT_SEL2
708 	cm_el2_sysregs_context_restore(secure_state_out);
709 #else
710 	cm_el1_sysregs_context_restore(secure_state_out);
711 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
712 	simd_ctx_restore(secure_state_out);
713 #endif
714 #endif
715 	cm_set_next_eret_context(secure_state_out);
716 
717 	ctx_out = cm_get_context(secure_state_out);
718 #if SPMD_SPM_AT_SEL2
719 	/*
720 	 * If SPMC is at SEL2, save additional registers x8-x17, which may
721 	 * be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS.
722 	 * Note that technically, all SPMCs can support this, but this code is
723 	 * under ifdef to minimize breakage in case other SPMCs do not save
724 	 * and restore x8-x17.
725 	 * We also need to pass through these registers since not all FF-A ABIs
726 	 * modify x8-x17, in which case, SMCCC requires that these registers be
727 	 * preserved, so the SPMD passes through these registers and expects the
728 	 * SPMC to save and restore (potentially also modify) them.
729 	 */
730 	SMC_RET18(ctx_out, smc_fid, x1, x2, x3, x4,
731 			SMC_GET_GP(handle, CTX_GPREG_X5),
732 			SMC_GET_GP(handle, CTX_GPREG_X6),
733 			SMC_GET_GP(handle, CTX_GPREG_X7),
734 			SMC_GET_GP(handle, CTX_GPREG_X8),
735 			SMC_GET_GP(handle, CTX_GPREG_X9),
736 			SMC_GET_GP(handle, CTX_GPREG_X10),
737 			SMC_GET_GP(handle, CTX_GPREG_X11),
738 			SMC_GET_GP(handle, CTX_GPREG_X12),
739 			SMC_GET_GP(handle, CTX_GPREG_X13),
740 			SMC_GET_GP(handle, CTX_GPREG_X14),
741 			SMC_GET_GP(handle, CTX_GPREG_X15),
742 			SMC_GET_GP(handle, CTX_GPREG_X16),
743 			SMC_GET_GP(handle, CTX_GPREG_X17)
744 			);
745 
746 #else
747 	SMC_RET8(ctx_out, smc_fid, x1, x2, x3, x4,
748 			SMC_GET_GP(handle, CTX_GPREG_X5),
749 			SMC_GET_GP(handle, CTX_GPREG_X6),
750 			SMC_GET_GP(handle, CTX_GPREG_X7));
751 #endif
752 }
753 
754 /*******************************************************************************
755  * Forward SMCs to the other security state.
756  ******************************************************************************/
757 static uint64_t spmd_smc_forward(uint32_t smc_fid,
758 				 bool secure_origin,
759 				 uint64_t x1,
760 				 uint64_t x2,
761 				 uint64_t x3,
762 				 uint64_t x4,
763 				 void *cookie,
764 				 void *handle,
765 				 uint64_t flags)
766 {
767 	if (is_spmc_at_el3() && !secure_origin) {
768 		return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4,
769 					cookie, handle, flags);
770 	}
771 
772 	return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4,
773 				     handle, flags);
774 
775 }
776 
777 /*******************************************************************************
778  * Return FFA_ERROR with specified error code
779  ******************************************************************************/
780 uint64_t spmd_ffa_error_return(void *handle, int error_code)
781 {
782 	SMC_RET8(handle, (uint32_t) FFA_ERROR,
783 		 FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
784 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
785 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
786 }
787 
788 /*******************************************************************************
789  * spmd_check_address_in_binary_image
790  ******************************************************************************/
791 bool spmd_check_address_in_binary_image(uint64_t address)
792 {
793 	assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size));
794 
795 	return ((address >= spmc_attrs.load_address) &&
796 		(address < (spmc_attrs.load_address + spmc_attrs.binary_size)));
797 }
798 
799 /******************************************************************************
800  * spmd_is_spmc_message
801  *****************************************************************************/
802 static bool spmd_is_spmc_message(unsigned int ep)
803 {
804 	if (is_spmc_at_el3()) {
805 		return false;
806 	}
807 
808 	return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID)
809 		&& (ffa_endpoint_source(ep) == spmc_attrs.spmc_id));
810 }
811 
812 /*******************************************************************************
813  * This function forwards FF-A SMCs to either the main SPMD handler or the
814  * SPMC at EL3, depending on the origin security state, if enabled.
815  ******************************************************************************/
816 uint64_t spmd_ffa_smc_handler(uint32_t smc_fid,
817 			      uint64_t x1,
818 			      uint64_t x2,
819 			      uint64_t x3,
820 			      uint64_t x4,
821 			      void *cookie,
822 			      void *handle,
823 			      uint64_t flags)
824 {
825 	if (is_spmc_at_el3()) {
826 		/*
827 		 * If we have an SPMC at EL3 allow handling of the SMC first.
828 		 * The SPMC will call back through to SPMD handler if required.
829 		 */
830 		if (is_caller_secure(flags)) {
831 			return spmc_smc_handler(smc_fid,
832 						is_caller_secure(flags),
833 						x1, x2, x3, x4, cookie,
834 						handle, flags);
835 		}
836 	}
837 	return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
838 				handle, flags);
839 }
840 
841 /*******************************************************************************
842  * This function handles all SMCs in the range reserved for FFA. Each call is
843  * either forwarded to the other security state or handled by the SPM dispatcher
844  ******************************************************************************/
845 uint64_t spmd_smc_handler(uint32_t smc_fid,
846 			  uint64_t x1,
847 			  uint64_t x2,
848 			  uint64_t x3,
849 			  uint64_t x4,
850 			  void *cookie,
851 			  void *handle,
852 			  uint64_t flags)
853 {
854 	spmd_spm_core_context_t *ctx = spmd_get_context();
855 	bool secure_origin;
856 	int ret;
857 	uint32_t input_version;
858 
859 	/* Determine which security state this SMC originated from */
860 	secure_origin = is_caller_secure(flags);
861 
862 	VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64
863 		" 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n",
864 		    plat_my_core_pos(), smc_fid, x1, x2, x3, x4,
865 		    SMC_GET_GP(handle, CTX_GPREG_X5),
866 		    SMC_GET_GP(handle, CTX_GPREG_X6),
867 		    SMC_GET_GP(handle, CTX_GPREG_X7));
868 
869 	/*
870 	 * If there is an on-going info regs from EL3 SPMD LP, unconditionally
871 	 * return, we don't expect any other FF-A ABIs to be called between
872 	 * calls to FFA_PARTITION_INFO_GET_REGS.
873 	 */
874 	if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) {
875 		assert(secure_origin);
876 		spmd_spm_core_sync_exit(0ULL);
877 	}
878 
879 	switch (smc_fid) {
880 	case FFA_ERROR:
881 		/*
882 		 * Check if this is the first invocation of this interface on
883 		 * this CPU. If so, then indicate that the SPM Core initialised
884 		 * unsuccessfully.
885 		 */
886 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
887 			spmd_spm_core_sync_exit(x2);
888 		}
889 
890 		/*
891 		 * If there was an SPMD logical partition direct request on-going,
892 		 * return back to the SPMD logical partition so the error can be
893 		 * consumed.
894 		 */
895 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
896 			assert(secure_origin);
897 			spmd_spm_core_sync_exit(0ULL);
898 		}
899 
900 		return spmd_smc_forward(smc_fid, secure_origin,
901 					x1, x2, x3, x4, cookie,
902 					handle, flags);
903 		break; /* not reached */
904 
905 	case FFA_VERSION:
906 		input_version = (uint32_t)(0xFFFFFFFF & x1);
907 		/*
908 		 * If caller is secure and SPMC was initialized,
909 		 * return FFA_VERSION of SPMD.
910 		 * If caller is non secure and SPMC was initialized,
911 		 * forward to the EL3 SPMC if enabled, otherwise return
912 		 * the SPMC version if implemented at a lower EL.
913 		 * Sanity check to "input_version".
914 		 * If the EL3 SPMC is enabled, ignore the SPMC state as
915 		 * this is not used.
916 		 */
917 		if ((input_version & FFA_VERSION_BIT31_MASK) ||
918 		    (!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) {
919 			ret = FFA_ERROR_NOT_SUPPORTED;
920 		} else if (!secure_origin) {
921 			if (is_spmc_at_el3()) {
922 				/*
923 				 * Forward the call directly to the EL3 SPMC, if
924 				 * enabled, as we don't need to wrap the call in
925 				 * a direct request.
926 				 */
927 				return spmd_smc_forward(smc_fid, secure_origin,
928 							x1, x2, x3, x4, cookie,
929 							handle, flags);
930 			}
931 
932 			gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
933 			uint64_t rc;
934 
935 			if (spmc_attrs.major_version == 1 &&
936 			    spmc_attrs.minor_version == 0) {
937 				ret = MAKE_FFA_VERSION(spmc_attrs.major_version,
938 						       spmc_attrs.minor_version);
939 				SMC_RET8(handle, (uint32_t)ret,
940 					 FFA_TARGET_INFO_MBZ,
941 					 FFA_TARGET_INFO_MBZ,
942 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
943 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
944 					 FFA_PARAM_MBZ);
945 				break;
946 			}
947 			/* Save non-secure system registers context */
948 #if SPMD_SPM_AT_SEL2
949 			cm_el2_sysregs_context_save(NON_SECURE);
950 #else
951 			cm_el1_sysregs_context_save(NON_SECURE);
952 #endif
953 
954 			/*
955 			 * The incoming request has FFA_VERSION as X0 smc_fid
956 			 * and requested version in x1. Prepare a direct request
957 			 * from SPMD to SPMC with FFA_VERSION framework function
958 			 * identifier in X2 and requested version in X3.
959 			 */
960 			spmd_build_spmc_message(gpregs,
961 						SPMD_FWK_MSG_FFA_VERSION_REQ,
962 						input_version);
963 
964 			/*
965 			 * Ensure x8-x17 NS GP register values are untouched when returning
966 			 * from the SPMC.
967 			 */
968 			write_ctx_reg(gpregs, CTX_GPREG_X8, SMC_GET_GP(handle, CTX_GPREG_X8));
969 			write_ctx_reg(gpregs, CTX_GPREG_X9, SMC_GET_GP(handle, CTX_GPREG_X9));
970 			write_ctx_reg(gpregs, CTX_GPREG_X10, SMC_GET_GP(handle, CTX_GPREG_X10));
971 			write_ctx_reg(gpregs, CTX_GPREG_X11, SMC_GET_GP(handle, CTX_GPREG_X11));
972 			write_ctx_reg(gpregs, CTX_GPREG_X12, SMC_GET_GP(handle, CTX_GPREG_X12));
973 			write_ctx_reg(gpregs, CTX_GPREG_X13, SMC_GET_GP(handle, CTX_GPREG_X13));
974 			write_ctx_reg(gpregs, CTX_GPREG_X14, SMC_GET_GP(handle, CTX_GPREG_X14));
975 			write_ctx_reg(gpregs, CTX_GPREG_X15, SMC_GET_GP(handle, CTX_GPREG_X15));
976 			write_ctx_reg(gpregs, CTX_GPREG_X16, SMC_GET_GP(handle, CTX_GPREG_X16));
977 			write_ctx_reg(gpregs, CTX_GPREG_X17, SMC_GET_GP(handle, CTX_GPREG_X17));
978 
979 			rc = spmd_spm_core_sync_entry(ctx);
980 
981 			if ((rc != 0ULL) ||
982 			    (SMC_GET_GP(gpregs, CTX_GPREG_X0) !=
983 				FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
984 			    (SMC_GET_GP(gpregs, CTX_GPREG_X2) !=
985 				(FFA_FWK_MSG_BIT |
986 				 SPMD_FWK_MSG_FFA_VERSION_RESP))) {
987 				ERROR("Failed to forward FFA_VERSION\n");
988 				ret = FFA_ERROR_NOT_SUPPORTED;
989 			} else {
990 				ret = SMC_GET_GP(gpregs, CTX_GPREG_X3);
991 			}
992 
993 			/*
994 			 * x0-x4 are updated by spmd_smc_forward below.
995 			 * Zero out x5-x7 in the FFA_VERSION response.
996 			 */
997 			write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
998 			write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
999 			write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
1000 
1001 			/*
1002 			 * Return here after SPMC has handled FFA_VERSION.
1003 			 * The returned SPMC version is held in X3.
1004 			 * Forward this version in X0 to the non-secure caller.
1005 			 */
1006 			return spmd_smc_forward(ret, true, FFA_PARAM_MBZ,
1007 						FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1008 						FFA_PARAM_MBZ, cookie, gpregs,
1009 						flags);
1010 		} else {
1011 			ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
1012 					       FFA_VERSION_MINOR);
1013 		}
1014 
1015 		SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ,
1016 			 FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1017 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1018 		break; /* not reached */
1019 
1020 	case FFA_FEATURES:
1021 		/*
1022 		 * This is an optional interface. Do the minimal checks and
1023 		 * forward to SPM Core which will handle it if implemented.
1024 		 */
1025 
1026 		/* Forward SMC from Normal world to the SPM Core */
1027 		if (!secure_origin) {
1028 			return spmd_smc_forward(smc_fid, secure_origin,
1029 						x1, x2, x3, x4, cookie,
1030 						handle, flags);
1031 		}
1032 
1033 		/*
1034 		 * Return success if call was from secure world i.e. all
1035 		 * FFA functions are supported. This is essentially a
1036 		 * nop.
1037 		 */
1038 		SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4,
1039 			 SMC_GET_GP(handle, CTX_GPREG_X5),
1040 			 SMC_GET_GP(handle, CTX_GPREG_X6),
1041 			 SMC_GET_GP(handle, CTX_GPREG_X7));
1042 
1043 		break; /* not reached */
1044 
1045 	case FFA_ID_GET:
1046 		/*
1047 		 * Returns the ID of the calling FFA component.
1048 		 */
1049 		if (!secure_origin) {
1050 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1051 				 FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID,
1052 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1053 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1054 				 FFA_PARAM_MBZ);
1055 		}
1056 
1057 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1058 			 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1059 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1060 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1061 			 FFA_PARAM_MBZ);
1062 
1063 		break; /* not reached */
1064 
1065 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1066 		if (secure_origin) {
1067 			ret = spmd_pm_secondary_ep_register(x1);
1068 
1069 			if (ret < 0) {
1070 				SMC_RET8(handle, FFA_ERROR_SMC64,
1071 					FFA_TARGET_INFO_MBZ, ret,
1072 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1073 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1074 					FFA_PARAM_MBZ);
1075 			} else {
1076 				SMC_RET8(handle, FFA_SUCCESS_SMC64,
1077 					FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ,
1078 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1079 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1080 					FFA_PARAM_MBZ);
1081 			}
1082 		}
1083 
1084 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1085 		break; /* Not reached */
1086 
1087 	case FFA_SPM_ID_GET:
1088 		if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) {
1089 			return spmd_ffa_error_return(handle,
1090 						     FFA_ERROR_NOT_SUPPORTED);
1091 		}
1092 		/*
1093 		 * Returns the ID of the SPMC or SPMD depending on the FF-A
1094 		 * instance where this function is invoked
1095 		 */
1096 		if (!secure_origin) {
1097 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1098 				 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1099 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1100 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1101 				 FFA_PARAM_MBZ);
1102 		}
1103 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1104 			 FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID,
1105 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1106 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1107 			 FFA_PARAM_MBZ);
1108 
1109 		break; /* not reached */
1110 
1111 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1112 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1113 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1114 		/*
1115 		 * Regardless of secure_origin, SPMD logical partitions cannot
1116 		 * handle direct messages. They can only initiate direct
1117 		 * messages and consume direct responses or errors.
1118 		 */
1119 		if (is_spmd_lp_id(ffa_endpoint_source(x1)) ||
1120 				  is_spmd_lp_id(ffa_endpoint_destination(x1))) {
1121 			return spmd_ffa_error_return(handle,
1122 						     FFA_ERROR_INVALID_PARAMETER
1123 						     );
1124 		}
1125 
1126 		/*
1127 		 * When there is an ongoing SPMD logical partition direct
1128 		 * request, there cannot be another direct request. Return
1129 		 * error in this case. Panic'ing is an option but that does
1130 		 * not provide the opportunity for caller to abort based on
1131 		 * error codes.
1132 		 */
1133 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1134 			assert(secure_origin);
1135 			return spmd_ffa_error_return(handle,
1136 						     FFA_ERROR_DENIED);
1137 		}
1138 
1139 		if (!secure_origin) {
1140 			/* Validate source endpoint is non-secure for non-secure caller. */
1141 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1142 				return spmd_ffa_error_return(handle,
1143 						FFA_ERROR_INVALID_PARAMETER);
1144 			}
1145 		}
1146 		if (secure_origin && spmd_is_spmc_message(x1)) {
1147 				return spmd_ffa_error_return(handle,
1148 						FFA_ERROR_DENIED);
1149 		} else {
1150 			/* Forward direct message to the other world */
1151 			return spmd_smc_forward(smc_fid, secure_origin,
1152 						x1, x2, x3, x4, cookie,
1153 						handle, flags);
1154 		}
1155 		break; /* Not reached */
1156 
1157 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1158 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1159 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1160 		if (secure_origin && (spmd_is_spmc_message(x1) ||
1161 		    is_spmd_logical_sp_dir_req_in_progress(ctx))) {
1162 			spmd_spm_core_sync_exit(0ULL);
1163 		} else {
1164 			/* Forward direct message to the other world */
1165 			return spmd_smc_forward(smc_fid, secure_origin,
1166 						x1, x2, x3, x4, cookie,
1167 						handle, flags);
1168 		}
1169 		break; /* Not reached */
1170 	case FFA_RX_RELEASE:
1171 	case FFA_RXTX_MAP_SMC32:
1172 	case FFA_RXTX_MAP_SMC64:
1173 	case FFA_RXTX_UNMAP:
1174 	case FFA_PARTITION_INFO_GET:
1175 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1176 	case FFA_NOTIFICATION_BITMAP_CREATE:
1177 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1178 	case FFA_NOTIFICATION_BIND:
1179 	case FFA_NOTIFICATION_UNBIND:
1180 	case FFA_NOTIFICATION_SET:
1181 	case FFA_NOTIFICATION_GET:
1182 	case FFA_NOTIFICATION_INFO_GET:
1183 	case FFA_NOTIFICATION_INFO_GET_SMC64:
1184 	case FFA_MSG_SEND2:
1185 	case FFA_RX_ACQUIRE:
1186 #endif
1187 	case FFA_MSG_RUN:
1188 		/*
1189 		 * Above calls should be invoked only by the Normal world and
1190 		 * must not be forwarded from Secure world to Normal world.
1191 		 */
1192 		if (secure_origin) {
1193 			return spmd_ffa_error_return(handle,
1194 						     FFA_ERROR_NOT_SUPPORTED);
1195 		}
1196 
1197 		/* Forward the call to the other world */
1198 		/* fallthrough */
1199 	case FFA_MSG_SEND:
1200 	case FFA_MEM_DONATE_SMC32:
1201 	case FFA_MEM_DONATE_SMC64:
1202 	case FFA_MEM_LEND_SMC32:
1203 	case FFA_MEM_LEND_SMC64:
1204 	case FFA_MEM_SHARE_SMC32:
1205 	case FFA_MEM_SHARE_SMC64:
1206 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1207 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1208 	case FFA_MEM_RETRIEVE_RESP:
1209 	case FFA_MEM_RELINQUISH:
1210 	case FFA_MEM_RECLAIM:
1211 	case FFA_MEM_FRAG_TX:
1212 	case FFA_MEM_FRAG_RX:
1213 	case FFA_SUCCESS_SMC32:
1214 	case FFA_SUCCESS_SMC64:
1215 		/*
1216 		 * If there is an ongoing direct request from an SPMD logical
1217 		 * partition, return an error.
1218 		 */
1219 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1220 			assert(secure_origin);
1221 			return spmd_ffa_error_return(handle,
1222 					FFA_ERROR_DENIED);
1223 		}
1224 
1225 		return spmd_smc_forward(smc_fid, secure_origin,
1226 					x1, x2, x3, x4, cookie,
1227 					handle, flags);
1228 		break; /* not reached */
1229 
1230 	case FFA_MSG_WAIT:
1231 		/*
1232 		 * Check if this is the first invocation of this interface on
1233 		 * this CPU from the Secure world. If so, then indicate that the
1234 		 * SPM Core initialised successfully.
1235 		 */
1236 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
1237 			spmd_spm_core_sync_exit(0ULL);
1238 		}
1239 
1240 		/* Forward the call to the other world */
1241 		/* fallthrough */
1242 	case FFA_INTERRUPT:
1243 	case FFA_MSG_YIELD:
1244 		/* This interface must be invoked only by the Secure world */
1245 		if (!secure_origin) {
1246 			return spmd_ffa_error_return(handle,
1247 						      FFA_ERROR_NOT_SUPPORTED);
1248 		}
1249 
1250 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1251 			assert(secure_origin);
1252 			return spmd_ffa_error_return(handle,
1253 					FFA_ERROR_DENIED);
1254 		}
1255 
1256 		return spmd_smc_forward(smc_fid, secure_origin,
1257 					x1, x2, x3, x4, cookie,
1258 					handle, flags);
1259 		break; /* not reached */
1260 
1261 	case FFA_NORMAL_WORLD_RESUME:
1262 		if (secure_origin && ctx->secure_interrupt_ongoing) {
1263 			spmd_spm_core_sync_exit(0ULL);
1264 		} else {
1265 			return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
1266 		}
1267 		break; /* Not reached */
1268 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1269 	case FFA_PARTITION_INFO_GET_REGS_SMC64:
1270 		if (secure_origin) {
1271 			return spmd_el3_populate_logical_partition_info(handle, x1,
1272 								   x2, x3);
1273 		}
1274 
1275 		/* Call only supported with SMCCC 1.2+ */
1276 		if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) {
1277 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1278 		}
1279 
1280 		return spmd_smc_forward(smc_fid, secure_origin,
1281 					x1, x2, x3, x4, cookie,
1282 					handle, flags);
1283 		break; /* Not reached */
1284 #endif
1285 	case FFA_CONSOLE_LOG_SMC32:
1286 	case FFA_CONSOLE_LOG_SMC64:
1287 		/* This interface must not be forwarded to other worlds. */
1288 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1289 		break; /* not reached */
1290 
1291 	case FFA_EL3_INTR_HANDLE:
1292 		if (secure_origin) {
1293 			return spmd_handle_group0_intr_swd(handle);
1294 		} else {
1295 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1296 		}
1297 	default:
1298 		WARN("SPM: Unsupported call 0x%08x\n", smc_fid);
1299 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1300 	}
1301 }
1302