xref: /rk3399_ARM-atf/services/std_svc/spmd/spmd_main.c (revision 5e0be8c0241e5075b34bd5b14df2df9f048715d3)
1 /*
2  * Copyright (c) 2020-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch/aarch64/arch_features.h>
15 #include <bl31/bl31.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/debug.h>
18 #include <common/runtime_svc.h>
19 #include <common/tbbr/tbbr_img_def.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/fconf/fconf.h>
22 #include <lib/fconf/fconf_dyn_cfg_getter.h>
23 #include <lib/smccc.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils.h>
26 #include <lib/xlat_tables/xlat_tables_v2.h>
27 #include <plat/common/common_def.h>
28 #include <plat/common/platform.h>
29 #include <platform_def.h>
30 #include <services/el3_spmd_logical_sp.h>
31 #include <services/ffa_svc.h>
32 #include <services/spmc_svc.h>
33 #include <services/spmd_svc.h>
34 #include <smccc_helpers.h>
35 #include "spmd_private.h"
36 
37 /*******************************************************************************
38  * SPM Core context information.
39  ******************************************************************************/
40 static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT];
41 
42 /*******************************************************************************
43  * SPM Core attribute information is read from its manifest if the SPMC is not
44  * at EL3. Else, it is populated from the SPMC directly.
45  ******************************************************************************/
46 static spmc_manifest_attribute_t spmc_attrs;
47 
48 /*******************************************************************************
49  * SPM Core entry point information. Discovered on the primary core and reused
50  * on secondary cores.
51  ******************************************************************************/
52 static entry_point_info_t *spmc_ep_info;
53 
54 /*******************************************************************************
55  * SPM Core context on current CPU get helper.
56  ******************************************************************************/
57 spmd_spm_core_context_t *spmd_get_context(void)
58 {
59 	return &spm_core_context[plat_my_core_pos()];
60 }
61 
62 /*******************************************************************************
63  * SPM Core ID getter.
64  ******************************************************************************/
65 uint16_t spmd_spmc_id_get(void)
66 {
67 	return spmc_attrs.spmc_id;
68 }
69 
70 /*******************************************************************************
71  * Static function declaration.
72  ******************************************************************************/
73 static int32_t spmd_init(void);
74 static int spmd_spmc_init(void *pm_addr);
75 
76 static uint64_t spmd_smc_forward(uint32_t smc_fid,
77 				 bool secure_origin,
78 				 uint64_t x1,
79 				 uint64_t x2,
80 				 uint64_t x3,
81 				 uint64_t x4,
82 				 void *cookie,
83 				 void *handle,
84 				 uint64_t flags);
85 
86 /******************************************************************************
87  * Builds an SPMD to SPMC direct message request.
88  *****************************************************************************/
89 void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func,
90 			     unsigned long long message)
91 {
92 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
93 	write_ctx_reg(gpregs, CTX_GPREG_X1,
94 		(SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) |
95 		 spmd_spmc_id_get());
96 	write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func);
97 	write_ctx_reg(gpregs, CTX_GPREG_X3, message);
98 
99 	/* Zero out x4-x7 for the direct request emitted towards the SPMC. */
100 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
101 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
102 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
103 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
104 }
105 
106 
107 /*******************************************************************************
108  * This function takes an SPMC context pointer and performs a synchronous
109  * SPMC entry.
110  ******************************************************************************/
111 uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx)
112 {
113 	uint64_t rc;
114 
115 	assert(spmc_ctx != NULL);
116 
117 	cm_set_context(&(spmc_ctx->cpu_ctx), SECURE);
118 
119 	/* Restore the context assigned above */
120 #if SPMD_SPM_AT_SEL2
121 	cm_el2_sysregs_context_restore(SECURE);
122 #else
123 	cm_el1_sysregs_context_restore(SECURE);
124 #endif
125 	cm_set_next_eret_context(SECURE);
126 
127 	/* Enter SPMC */
128 	rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx);
129 
130 	/* Save secure state */
131 #if SPMD_SPM_AT_SEL2
132 	cm_el2_sysregs_context_save(SECURE);
133 #else
134 	cm_el1_sysregs_context_save(SECURE);
135 #endif
136 
137 	return rc;
138 }
139 
140 /*******************************************************************************
141  * This function returns to the place where spmd_spm_core_sync_entry() was
142  * called originally.
143  ******************************************************************************/
144 __dead2 void spmd_spm_core_sync_exit(uint64_t rc)
145 {
146 	spmd_spm_core_context_t *ctx = spmd_get_context();
147 
148 	/* Get current CPU context from SPMC context */
149 	assert(cm_get_context(SECURE) == &(ctx->cpu_ctx));
150 
151 	/*
152 	 * The SPMD must have initiated the original request through a
153 	 * synchronous entry into SPMC. Jump back to the original C runtime
154 	 * context with the value of rc in x0;
155 	 */
156 	spmd_spm_core_exit(ctx->c_rt_ctx, rc);
157 
158 	panic();
159 }
160 
161 /*******************************************************************************
162  * Jump to the SPM Core for the first time.
163  ******************************************************************************/
164 static int32_t spmd_init(void)
165 {
166 	spmd_spm_core_context_t *ctx = spmd_get_context();
167 	uint64_t rc;
168 
169 	VERBOSE("SPM Core init start.\n");
170 
171 	/* Primary boot core enters the SPMC for initialization. */
172 	ctx->state = SPMC_STATE_ON_PENDING;
173 
174 	rc = spmd_spm_core_sync_entry(ctx);
175 	if (rc != 0ULL) {
176 		ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc);
177 		return 0;
178 	}
179 
180 	ctx->state = SPMC_STATE_ON;
181 
182 	VERBOSE("SPM Core init end.\n");
183 
184 	spmd_logical_sp_set_spmc_initialized();
185 	rc = spmd_logical_sp_init();
186 	if (rc != 0) {
187 		WARN("SPMD Logical partitions failed init.\n");
188 	}
189 
190 	return 1;
191 }
192 
193 /*******************************************************************************
194  * spmd_secure_interrupt_handler
195  * Enter the SPMC for further handling of the secure interrupt by the SPMC
196  * itself or a Secure Partition.
197  ******************************************************************************/
198 static uint64_t spmd_secure_interrupt_handler(uint32_t id,
199 					      uint32_t flags,
200 					      void *handle,
201 					      void *cookie)
202 {
203 	spmd_spm_core_context_t *ctx = spmd_get_context();
204 	gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
205 	int64_t rc;
206 
207 	/* Sanity check the security state when the exception was generated */
208 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
209 
210 	/* Sanity check the pointer to this cpu's context */
211 	assert(handle == cm_get_context(NON_SECURE));
212 
213 	/* Save the non-secure context before entering SPMC */
214 #if SPMD_SPM_AT_SEL2
215 	cm_el2_sysregs_context_save(NON_SECURE);
216 #else
217 	cm_el1_sysregs_context_save(NON_SECURE);
218 #endif
219 
220 	/* Convey the event to the SPMC through the FFA_INTERRUPT interface. */
221 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT);
222 	write_ctx_reg(gpregs, CTX_GPREG_X1, 0);
223 	write_ctx_reg(gpregs, CTX_GPREG_X2, 0);
224 	write_ctx_reg(gpregs, CTX_GPREG_X3, 0);
225 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
226 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
227 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
228 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
229 
230 	/* Mark current core as handling a secure interrupt. */
231 	ctx->secure_interrupt_ongoing = true;
232 
233 	rc = spmd_spm_core_sync_entry(ctx);
234 	if (rc != 0ULL) {
235 		ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, plat_my_core_pos());
236 	}
237 
238 	ctx->secure_interrupt_ongoing = false;
239 
240 #if SPMD_SPM_AT_SEL2
241 	cm_el2_sysregs_context_restore(NON_SECURE);
242 #else
243 	cm_el1_sysregs_context_restore(NON_SECURE);
244 #endif
245 	cm_set_next_eret_context(NON_SECURE);
246 
247 	SMC_RET0(&ctx->cpu_ctx);
248 }
249 
250 #if (EL3_EXCEPTION_HANDLING == 0)
251 /*******************************************************************************
252  * spmd_group0_interrupt_handler_nwd
253  * Group0 secure interrupt in the normal world are trapped to EL3. Delegate the
254  * handling of the interrupt to the platform handler, and return only upon
255  * successfully handling the Group0 interrupt.
256  ******************************************************************************/
257 static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id,
258 						  uint32_t flags,
259 						  void *handle,
260 						  void *cookie)
261 {
262 	uint32_t intid;
263 
264 	/* Sanity check the security state when the exception was generated. */
265 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
266 
267 	/* Sanity check the pointer to this cpu's context. */
268 	assert(handle == cm_get_context(NON_SECURE));
269 
270 	assert(id == INTR_ID_UNAVAILABLE);
271 
272 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
273 
274 	intid = plat_ic_acknowledge_interrupt();
275 
276 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
277 		ERROR("Group0 interrupt %u not handled\n", intid);
278 		panic();
279 	}
280 
281 	/* Deactivate the corresponding Group0 interrupt. */
282 	plat_ic_end_of_interrupt(intid);
283 
284 	return 0U;
285 }
286 #endif
287 
288 /*******************************************************************************
289  * spmd_handle_group0_intr_swd
290  * SPMC delegates handling of Group0 secure interrupt to EL3 firmware using
291  * FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the
292  * interrupt to the platform handler, and returns only upon successfully
293  * handling the Group0 interrupt.
294  ******************************************************************************/
295 static uint64_t spmd_handle_group0_intr_swd(void *handle)
296 {
297 	uint32_t intid;
298 
299 	/* Sanity check the pointer to this cpu's context */
300 	assert(handle == cm_get_context(SECURE));
301 
302 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
303 
304 	intid = plat_ic_acknowledge_interrupt();
305 
306 	/*
307 	 * TODO: Currently due to a limitation in SPMD implementation, the
308 	 * platform handler is expected to not delegate handling to NWd while
309 	 * processing Group0 secure interrupt.
310 	 */
311 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
312 		/* Group0 interrupt was not handled by the platform. */
313 		ERROR("Group0 interrupt %u not handled\n", intid);
314 		panic();
315 	}
316 
317 	/* Deactivate the corresponding Group0 interrupt. */
318 	plat_ic_end_of_interrupt(intid);
319 
320 	/* Return success. */
321 	SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
322 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
323 		 FFA_PARAM_MBZ);
324 }
325 
326 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
327 static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size,
328 				 unsigned int attr, uintptr_t *align_addr,
329 				 size_t *align_size)
330 {
331 	uintptr_t base_addr_align;
332 	size_t mapped_size_align;
333 	int rc;
334 
335 	/* Page aligned address and size if necessary */
336 	base_addr_align = page_align(base_addr, DOWN);
337 	mapped_size_align = page_align(size, UP);
338 
339 	if ((base_addr != base_addr_align) &&
340 	    (size == mapped_size_align)) {
341 		mapped_size_align += PAGE_SIZE;
342 	}
343 
344 	/*
345 	 * Map dynamically given region with its aligned base address and
346 	 * size
347 	 */
348 	rc = mmap_add_dynamic_region((unsigned long long)base_addr_align,
349 				     base_addr_align,
350 				     mapped_size_align,
351 				     attr);
352 	if (rc == 0) {
353 		*align_addr = base_addr_align;
354 		*align_size = mapped_size_align;
355 	}
356 
357 	return rc;
358 }
359 
360 static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr,
361 			    size_t size)
362 {
363 	uintptr_t root_base_addr_align, sec_base_addr_align;
364 	size_t root_mapped_size_align, sec_mapped_size_align;
365 	int rc;
366 
367 	assert(root_base_addr != 0UL);
368 	assert(sec_base_addr != 0UL);
369 	assert(size != 0UL);
370 
371 	/* Map the memory with required attributes */
372 	rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT,
373 				  &root_base_addr_align,
374 				  &root_mapped_size_align);
375 	if (rc != 0) {
376 		ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region",
377 		      root_base_addr, rc);
378 		panic();
379 	}
380 
381 	rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE,
382 				  &sec_base_addr_align, &sec_mapped_size_align);
383 	if (rc != 0) {
384 		ERROR("%s %s %lu (%d)\n", "Error while mapping",
385 		      "secure region", sec_base_addr, rc);
386 		panic();
387 	}
388 
389 	/* Do copy operation */
390 	(void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size);
391 
392 	/* Unmap root memory region */
393 	rc = mmap_remove_dynamic_region(root_base_addr_align,
394 					root_mapped_size_align);
395 	if (rc != 0) {
396 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
397 		      "root region", root_base_addr_align, rc);
398 		panic();
399 	}
400 
401 	/* Unmap secure memory region */
402 	rc = mmap_remove_dynamic_region(sec_base_addr_align,
403 					sec_mapped_size_align);
404 	if (rc != 0) {
405 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
406 		      "secure region", sec_base_addr_align, rc);
407 		panic();
408 	}
409 }
410 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
411 
412 /*******************************************************************************
413  * Loads SPMC manifest and inits SPMC.
414  ******************************************************************************/
415 static int spmd_spmc_init(void *pm_addr)
416 {
417 	cpu_context_t *cpu_ctx;
418 	unsigned int core_id;
419 	uint32_t ep_attr, flags;
420 	int rc;
421 	const struct dyn_cfg_dtb_info_t *image_info __unused;
422 
423 	/* Load the SPM Core manifest */
424 	rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr);
425 	if (rc != 0) {
426 		WARN("No or invalid SPM Core manifest image provided by BL2\n");
427 		return rc;
428 	}
429 
430 	/*
431 	 * Ensure that the SPM Core version is compatible with the SPM
432 	 * Dispatcher version.
433 	 */
434 	if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) ||
435 	    (spmc_attrs.minor_version > FFA_VERSION_MINOR)) {
436 		WARN("Unsupported FFA version (%u.%u)\n",
437 		     spmc_attrs.major_version, spmc_attrs.minor_version);
438 		return -EINVAL;
439 	}
440 
441 	VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version,
442 	     spmc_attrs.minor_version);
443 
444 	VERBOSE("SPM Core run time EL%x.\n",
445 	     SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1);
446 
447 	/* Validate the SPMC ID, Ensure high bit is set */
448 	if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) &
449 			SPMC_SECURE_ID_MASK) == 0U) {
450 		WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id);
451 		return -EINVAL;
452 	}
453 
454 	/* Validate the SPM Core execution state */
455 	if ((spmc_attrs.exec_state != MODE_RW_64) &&
456 	    (spmc_attrs.exec_state != MODE_RW_32)) {
457 		WARN("Unsupported %s%x.\n", "SPM Core execution state 0x",
458 		     spmc_attrs.exec_state);
459 		return -EINVAL;
460 	}
461 
462 	VERBOSE("%s%x.\n", "SPM Core execution state 0x",
463 		spmc_attrs.exec_state);
464 
465 #if SPMD_SPM_AT_SEL2
466 	/* Ensure manifest has not requested AArch32 state in S-EL2 */
467 	if (spmc_attrs.exec_state == MODE_RW_32) {
468 		WARN("AArch32 state at S-EL2 is not supported.\n");
469 		return -EINVAL;
470 	}
471 
472 	/*
473 	 * Check if S-EL2 is supported on this system if S-EL2
474 	 * is required for SPM
475 	 */
476 	if (!is_feat_sel2_supported()) {
477 		WARN("SPM Core run time S-EL2 is not supported.\n");
478 		return -EINVAL;
479 	}
480 #endif /* SPMD_SPM_AT_SEL2 */
481 
482 	/* Initialise an entrypoint to set up the CPU context */
483 	ep_attr = SECURE | EP_ST_ENABLE;
484 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) {
485 		ep_attr |= EP_EE_BIG;
486 	}
487 
488 	SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr);
489 
490 	/*
491 	 * Populate SPSR for SPM Core based upon validated parameters from the
492 	 * manifest.
493 	 */
494 	if (spmc_attrs.exec_state == MODE_RW_32) {
495 		spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
496 						 SPSR_E_LITTLE,
497 						 DAIF_FIQ_BIT |
498 						 DAIF_IRQ_BIT |
499 						 DAIF_ABT_BIT);
500 	} else {
501 
502 #if SPMD_SPM_AT_SEL2
503 		static const uint32_t runtime_el = MODE_EL2;
504 #else
505 		static const uint32_t runtime_el = MODE_EL1;
506 #endif
507 		spmc_ep_info->spsr = SPSR_64(runtime_el,
508 					     MODE_SP_ELX,
509 					     DISABLE_ALL_EXCEPTIONS);
510 	}
511 
512 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
513 	image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID);
514 	assert(image_info != NULL);
515 
516 	if ((image_info->config_addr == 0UL) ||
517 	    (image_info->secondary_config_addr == 0UL) ||
518 	    (image_info->config_max_size == 0UL)) {
519 		return -EINVAL;
520 	}
521 
522 	/* Copy manifest from root->secure region */
523 	spmd_do_sec_cpy(image_info->config_addr,
524 			image_info->secondary_config_addr,
525 			image_info->config_max_size);
526 
527 	/* Update ep info of BL32 */
528 	assert(spmc_ep_info != NULL);
529 	spmc_ep_info->args.arg0 = image_info->secondary_config_addr;
530 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
531 
532 	/* Set an initial SPMC context state for all cores. */
533 	for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) {
534 		spm_core_context[core_id].state = SPMC_STATE_OFF;
535 
536 		/* Setup an initial cpu context for the SPMC. */
537 		cpu_ctx = &spm_core_context[core_id].cpu_ctx;
538 		cm_setup_context(cpu_ctx, spmc_ep_info);
539 
540 		/*
541 		 * Pass the core linear ID to the SPMC through x4.
542 		 * (TF-A implementation defined behavior helping
543 		 * a legacy TOS migration to adopt FF-A).
544 		 */
545 		write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id);
546 	}
547 
548 	/* Register power management hooks with PSCI */
549 	psci_register_spd_pm_hook(&spmd_pm);
550 
551 	/* Register init function for deferred init. */
552 	bl31_register_bl32_init(&spmd_init);
553 
554 	INFO("SPM Core setup done.\n");
555 
556 	/*
557 	 * Register an interrupt handler routing secure interrupts to SPMD
558 	 * while the NWd is running.
559 	 */
560 	flags = 0;
561 	set_interrupt_rm_flag(flags, NON_SECURE);
562 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
563 					     spmd_secure_interrupt_handler,
564 					     flags);
565 	if (rc != 0) {
566 		panic();
567 	}
568 
569 	/*
570 	 * Permit configurations where the SPM resides at S-EL1/2 and upon a
571 	 * Group0 interrupt triggering while the normal world runs, the
572 	 * interrupt is routed either through the EHF or directly to the SPMD:
573 	 *
574 	 * EL3_EXCEPTION_HANDLING=0: the Group0 interrupt is routed to the SPMD
575 	 *                   for handling by spmd_group0_interrupt_handler_nwd.
576 	 *
577 	 * EL3_EXCEPTION_HANDLING=1: the Group0 interrupt is routed to the EHF.
578 	 *
579 	 */
580 #if (EL3_EXCEPTION_HANDLING == 0)
581 	/*
582 	 * If EL3 interrupts are supported by the platform, register an
583 	 * interrupt handler routing Group0 interrupts to SPMD while the NWd is
584 	 * running.
585 	 */
586 	if (plat_ic_has_interrupt_type(INTR_TYPE_EL3)) {
587 		rc = register_interrupt_type_handler(INTR_TYPE_EL3,
588 						     spmd_group0_interrupt_handler_nwd,
589 						     flags);
590 		if (rc != 0) {
591 			panic();
592 		}
593 	}
594 #endif
595 
596 	return 0;
597 }
598 
599 /*******************************************************************************
600  * Initialize context of SPM Core.
601  ******************************************************************************/
602 int spmd_setup(void)
603 {
604 	int rc;
605 	void *spmc_manifest;
606 
607 	/*
608 	 * If the SPMC is at EL3, then just initialise it directly. The
609 	 * shenanigans of when it is at a lower EL are not needed.
610 	 */
611 	if (is_spmc_at_el3()) {
612 		/* Allow the SPMC to populate its attributes directly. */
613 		spmc_populate_attrs(&spmc_attrs);
614 
615 		rc = spmc_setup();
616 		if (rc != 0) {
617 			WARN("SPMC initialisation failed 0x%x.\n", rc);
618 		}
619 		return 0;
620 	}
621 
622 	spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
623 	if (spmc_ep_info == NULL) {
624 		WARN("No SPM Core image provided by BL2 boot loader.\n");
625 		return 0;
626 	}
627 
628 	/* Under no circumstances will this parameter be 0 */
629 	assert(spmc_ep_info->pc != 0ULL);
630 
631 	/*
632 	 * Check if BL32 ep_info has a reference to 'tos_fw_config'. This will
633 	 * be used as a manifest for the SPM Core at the next lower EL/mode.
634 	 */
635 	spmc_manifest = (void *)spmc_ep_info->args.arg0;
636 	if (spmc_manifest == NULL) {
637 		WARN("Invalid or absent SPM Core manifest.\n");
638 		return 0;
639 	}
640 
641 	/* Load manifest, init SPMC */
642 	rc = spmd_spmc_init(spmc_manifest);
643 	if (rc != 0) {
644 		WARN("Booting device without SPM initialization.\n");
645 	}
646 
647 	return 0;
648 }
649 
650 /*******************************************************************************
651  * Forward FF-A SMCs to the other security state.
652  ******************************************************************************/
653 uint64_t spmd_smc_switch_state(uint32_t smc_fid,
654 			       bool secure_origin,
655 			       uint64_t x1,
656 			       uint64_t x2,
657 			       uint64_t x3,
658 			       uint64_t x4,
659 			       void *handle,
660 			       uint64_t flags)
661 {
662 	unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE;
663 	unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE;
664 	void *ctx_out;
665 
666 #if SPMD_SPM_AT_SEL2
667 	if ((secure_state_out == SECURE) && (is_sve_hint_set(flags) == true)) {
668 		/*
669 		 * Set the SVE hint bit in x0 and pass to the lower secure EL,
670 		 * if it was set by the caller.
671 		 */
672 		smc_fid |= (FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT);
673 	}
674 #endif
675 
676 	/* Save incoming security state */
677 #if SPMD_SPM_AT_SEL2
678 	cm_el2_sysregs_context_save(secure_state_in);
679 #else
680 	cm_el1_sysregs_context_save(secure_state_in);
681 #endif
682 
683 	/* Restore outgoing security state */
684 #if SPMD_SPM_AT_SEL2
685 	cm_el2_sysregs_context_restore(secure_state_out);
686 #else
687 	cm_el1_sysregs_context_restore(secure_state_out);
688 #endif
689 	cm_set_next_eret_context(secure_state_out);
690 
691 	ctx_out = cm_get_context(secure_state_out);
692 #if SPMD_SPM_AT_SEL2
693 	/*
694 	 * If SPMC is at SEL2, save additional registers x8-x17, which may
695 	 * be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS.
696 	 * Note that technically, all SPMCs can support this, but this code is
697 	 * under ifdef to minimize breakage in case other SPMCs do not save
698 	 * and restore x8-x17.
699 	 * We also need to pass through these registers since not all FF-A ABIs
700 	 * modify x8-x17, in which case, SMCCC requires that these registers be
701 	 * preserved, so the SPMD passes through these registers and expects the
702 	 * SPMC to save and restore (potentially also modify) them.
703 	 */
704 	SMC_RET18(ctx_out, smc_fid, x1, x2, x3, x4,
705 			SMC_GET_GP(handle, CTX_GPREG_X5),
706 			SMC_GET_GP(handle, CTX_GPREG_X6),
707 			SMC_GET_GP(handle, CTX_GPREG_X7),
708 			SMC_GET_GP(handle, CTX_GPREG_X8),
709 			SMC_GET_GP(handle, CTX_GPREG_X9),
710 			SMC_GET_GP(handle, CTX_GPREG_X10),
711 			SMC_GET_GP(handle, CTX_GPREG_X11),
712 			SMC_GET_GP(handle, CTX_GPREG_X12),
713 			SMC_GET_GP(handle, CTX_GPREG_X13),
714 			SMC_GET_GP(handle, CTX_GPREG_X14),
715 			SMC_GET_GP(handle, CTX_GPREG_X15),
716 			SMC_GET_GP(handle, CTX_GPREG_X16),
717 			SMC_GET_GP(handle, CTX_GPREG_X17)
718 			);
719 
720 #else
721 	SMC_RET8(ctx_out, smc_fid, x1, x2, x3, x4,
722 			SMC_GET_GP(handle, CTX_GPREG_X5),
723 			SMC_GET_GP(handle, CTX_GPREG_X6),
724 			SMC_GET_GP(handle, CTX_GPREG_X7));
725 #endif
726 }
727 
728 /*******************************************************************************
729  * Forward SMCs to the other security state.
730  ******************************************************************************/
731 static uint64_t spmd_smc_forward(uint32_t smc_fid,
732 				 bool secure_origin,
733 				 uint64_t x1,
734 				 uint64_t x2,
735 				 uint64_t x3,
736 				 uint64_t x4,
737 				 void *cookie,
738 				 void *handle,
739 				 uint64_t flags)
740 {
741 	if (is_spmc_at_el3() && !secure_origin) {
742 		return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4,
743 					cookie, handle, flags);
744 	}
745 
746 	return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4,
747 				     handle, flags);
748 
749 }
750 
751 /*******************************************************************************
752  * Return FFA_ERROR with specified error code
753  ******************************************************************************/
754 uint64_t spmd_ffa_error_return(void *handle, int error_code)
755 {
756 	SMC_RET8(handle, (uint32_t) FFA_ERROR,
757 		 FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
758 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
759 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
760 }
761 
762 /*******************************************************************************
763  * spmd_check_address_in_binary_image
764  ******************************************************************************/
765 bool spmd_check_address_in_binary_image(uint64_t address)
766 {
767 	assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size));
768 
769 	return ((address >= spmc_attrs.load_address) &&
770 		(address < (spmc_attrs.load_address + spmc_attrs.binary_size)));
771 }
772 
773 /******************************************************************************
774  * spmd_is_spmc_message
775  *****************************************************************************/
776 static bool spmd_is_spmc_message(unsigned int ep)
777 {
778 	if (is_spmc_at_el3()) {
779 		return false;
780 	}
781 
782 	return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID)
783 		&& (ffa_endpoint_source(ep) == spmc_attrs.spmc_id));
784 }
785 
786 /******************************************************************************
787  * spmd_handle_spmc_message
788  *****************************************************************************/
789 static int spmd_handle_spmc_message(unsigned long long msg,
790 		unsigned long long parm1, unsigned long long parm2,
791 		unsigned long long parm3, unsigned long long parm4)
792 {
793 	VERBOSE("%s %llx %llx %llx %llx %llx\n", __func__,
794 		msg, parm1, parm2, parm3, parm4);
795 
796 	return -EINVAL;
797 }
798 
799 /*******************************************************************************
800  * This function forwards FF-A SMCs to either the main SPMD handler or the
801  * SPMC at EL3, depending on the origin security state, if enabled.
802  ******************************************************************************/
803 uint64_t spmd_ffa_smc_handler(uint32_t smc_fid,
804 			      uint64_t x1,
805 			      uint64_t x2,
806 			      uint64_t x3,
807 			      uint64_t x4,
808 			      void *cookie,
809 			      void *handle,
810 			      uint64_t flags)
811 {
812 	if (is_spmc_at_el3()) {
813 		/*
814 		 * If we have an SPMC at EL3 allow handling of the SMC first.
815 		 * The SPMC will call back through to SPMD handler if required.
816 		 */
817 		if (is_caller_secure(flags)) {
818 			return spmc_smc_handler(smc_fid,
819 						is_caller_secure(flags),
820 						x1, x2, x3, x4, cookie,
821 						handle, flags);
822 		}
823 	}
824 	return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
825 				handle, flags);
826 }
827 
828 /*******************************************************************************
829  * This function handles all SMCs in the range reserved for FFA. Each call is
830  * either forwarded to the other security state or handled by the SPM dispatcher
831  ******************************************************************************/
832 uint64_t spmd_smc_handler(uint32_t smc_fid,
833 			  uint64_t x1,
834 			  uint64_t x2,
835 			  uint64_t x3,
836 			  uint64_t x4,
837 			  void *cookie,
838 			  void *handle,
839 			  uint64_t flags)
840 {
841 	spmd_spm_core_context_t *ctx = spmd_get_context();
842 	bool secure_origin;
843 	int ret;
844 	uint32_t input_version;
845 
846 	/* Determine which security state this SMC originated from */
847 	secure_origin = is_caller_secure(flags);
848 
849 	VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64
850 		" 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n",
851 		    plat_my_core_pos(), smc_fid, x1, x2, x3, x4,
852 		    SMC_GET_GP(handle, CTX_GPREG_X5),
853 		    SMC_GET_GP(handle, CTX_GPREG_X6),
854 		    SMC_GET_GP(handle, CTX_GPREG_X7));
855 
856 	/*
857 	 * If there is an on-going info regs from EL3 SPMD LP, unconditionally
858 	 * return, we don't expect any other FF-A ABIs to be called between
859 	 * calls to FFA_PARTITION_INFO_GET_REGS.
860 	 */
861 	if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) {
862 		assert(secure_origin);
863 		spmd_spm_core_sync_exit(0ULL);
864 	}
865 
866 	switch (smc_fid) {
867 	case FFA_ERROR:
868 		/*
869 		 * Check if this is the first invocation of this interface on
870 		 * this CPU. If so, then indicate that the SPM Core initialised
871 		 * unsuccessfully.
872 		 */
873 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
874 			spmd_spm_core_sync_exit(x2);
875 		}
876 
877 		/*
878 		 * If there was an SPMD logical partition direct request on-going,
879 		 * return back to the SPMD logical partition so the error can be
880 		 * consumed.
881 		 */
882 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
883 			assert(secure_origin);
884 			spmd_spm_core_sync_exit(0ULL);
885 		}
886 
887 		return spmd_smc_forward(smc_fid, secure_origin,
888 					x1, x2, x3, x4, cookie,
889 					handle, flags);
890 		break; /* not reached */
891 
892 	case FFA_VERSION:
893 		input_version = (uint32_t)(0xFFFFFFFF & x1);
894 		/*
895 		 * If caller is secure and SPMC was initialized,
896 		 * return FFA_VERSION of SPMD.
897 		 * If caller is non secure and SPMC was initialized,
898 		 * forward to the EL3 SPMC if enabled, otherwise return
899 		 * the SPMC version if implemented at a lower EL.
900 		 * Sanity check to "input_version".
901 		 * If the EL3 SPMC is enabled, ignore the SPMC state as
902 		 * this is not used.
903 		 */
904 		if ((input_version & FFA_VERSION_BIT31_MASK) ||
905 		    (!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) {
906 			ret = FFA_ERROR_NOT_SUPPORTED;
907 		} else if (!secure_origin) {
908 			if (is_spmc_at_el3()) {
909 				/*
910 				 * Forward the call directly to the EL3 SPMC, if
911 				 * enabled, as we don't need to wrap the call in
912 				 * a direct request.
913 				 */
914 				return spmd_smc_forward(smc_fid, secure_origin,
915 							x1, x2, x3, x4, cookie,
916 							handle, flags);
917 			}
918 
919 			gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
920 			uint64_t rc;
921 
922 			if (spmc_attrs.major_version == 1 &&
923 			    spmc_attrs.minor_version == 0) {
924 				ret = MAKE_FFA_VERSION(spmc_attrs.major_version,
925 						       spmc_attrs.minor_version);
926 				SMC_RET8(handle, (uint32_t)ret,
927 					 FFA_TARGET_INFO_MBZ,
928 					 FFA_TARGET_INFO_MBZ,
929 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
930 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
931 					 FFA_PARAM_MBZ);
932 				break;
933 			}
934 			/* Save non-secure system registers context */
935 #if SPMD_SPM_AT_SEL2
936 			cm_el2_sysregs_context_save(NON_SECURE);
937 #else
938 			cm_el1_sysregs_context_save(NON_SECURE);
939 #endif
940 
941 			/*
942 			 * The incoming request has FFA_VERSION as X0 smc_fid
943 			 * and requested version in x1. Prepare a direct request
944 			 * from SPMD to SPMC with FFA_VERSION framework function
945 			 * identifier in X2 and requested version in X3.
946 			 */
947 			spmd_build_spmc_message(gpregs,
948 						SPMD_FWK_MSG_FFA_VERSION_REQ,
949 						input_version);
950 
951 			/*
952 			 * Ensure x8-x17 NS GP register values are untouched when returning
953 			 * from the SPMC.
954 			 */
955 			write_ctx_reg(gpregs, CTX_GPREG_X8, SMC_GET_GP(handle, CTX_GPREG_X8));
956 			write_ctx_reg(gpregs, CTX_GPREG_X9, SMC_GET_GP(handle, CTX_GPREG_X9));
957 			write_ctx_reg(gpregs, CTX_GPREG_X10, SMC_GET_GP(handle, CTX_GPREG_X10));
958 			write_ctx_reg(gpregs, CTX_GPREG_X11, SMC_GET_GP(handle, CTX_GPREG_X11));
959 			write_ctx_reg(gpregs, CTX_GPREG_X12, SMC_GET_GP(handle, CTX_GPREG_X12));
960 			write_ctx_reg(gpregs, CTX_GPREG_X13, SMC_GET_GP(handle, CTX_GPREG_X13));
961 			write_ctx_reg(gpregs, CTX_GPREG_X14, SMC_GET_GP(handle, CTX_GPREG_X14));
962 			write_ctx_reg(gpregs, CTX_GPREG_X15, SMC_GET_GP(handle, CTX_GPREG_X15));
963 			write_ctx_reg(gpregs, CTX_GPREG_X16, SMC_GET_GP(handle, CTX_GPREG_X16));
964 			write_ctx_reg(gpregs, CTX_GPREG_X17, SMC_GET_GP(handle, CTX_GPREG_X17));
965 
966 			rc = spmd_spm_core_sync_entry(ctx);
967 
968 			if ((rc != 0ULL) ||
969 			    (SMC_GET_GP(gpregs, CTX_GPREG_X0) !=
970 				FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
971 			    (SMC_GET_GP(gpregs, CTX_GPREG_X2) !=
972 				(FFA_FWK_MSG_BIT |
973 				 SPMD_FWK_MSG_FFA_VERSION_RESP))) {
974 				ERROR("Failed to forward FFA_VERSION\n");
975 				ret = FFA_ERROR_NOT_SUPPORTED;
976 			} else {
977 				ret = SMC_GET_GP(gpregs, CTX_GPREG_X3);
978 			}
979 
980 			/*
981 			 * x0-x4 are updated by spmd_smc_forward below.
982 			 * Zero out x5-x7 in the FFA_VERSION response.
983 			 */
984 			write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
985 			write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
986 			write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
987 
988 			/*
989 			 * Return here after SPMC has handled FFA_VERSION.
990 			 * The returned SPMC version is held in X3.
991 			 * Forward this version in X0 to the non-secure caller.
992 			 */
993 			return spmd_smc_forward(ret, true, FFA_PARAM_MBZ,
994 						FFA_PARAM_MBZ, FFA_PARAM_MBZ,
995 						FFA_PARAM_MBZ, cookie, gpregs,
996 						flags);
997 		} else {
998 			ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
999 					       FFA_VERSION_MINOR);
1000 		}
1001 
1002 		SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ,
1003 			 FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1004 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1005 		break; /* not reached */
1006 
1007 	case FFA_FEATURES:
1008 		/*
1009 		 * This is an optional interface. Do the minimal checks and
1010 		 * forward to SPM Core which will handle it if implemented.
1011 		 */
1012 
1013 		/* Forward SMC from Normal world to the SPM Core */
1014 		if (!secure_origin) {
1015 			return spmd_smc_forward(smc_fid, secure_origin,
1016 						x1, x2, x3, x4, cookie,
1017 						handle, flags);
1018 		}
1019 
1020 		/*
1021 		 * Return success if call was from secure world i.e. all
1022 		 * FFA functions are supported. This is essentially a
1023 		 * nop.
1024 		 */
1025 		SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4,
1026 			 SMC_GET_GP(handle, CTX_GPREG_X5),
1027 			 SMC_GET_GP(handle, CTX_GPREG_X6),
1028 			 SMC_GET_GP(handle, CTX_GPREG_X7));
1029 
1030 		break; /* not reached */
1031 
1032 	case FFA_ID_GET:
1033 		/*
1034 		 * Returns the ID of the calling FFA component.
1035 		 */
1036 		if (!secure_origin) {
1037 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1038 				 FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID,
1039 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1040 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1041 				 FFA_PARAM_MBZ);
1042 		}
1043 
1044 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1045 			 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1046 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1047 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1048 			 FFA_PARAM_MBZ);
1049 
1050 		break; /* not reached */
1051 
1052 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1053 		if (secure_origin) {
1054 			ret = spmd_pm_secondary_ep_register(x1);
1055 
1056 			if (ret < 0) {
1057 				SMC_RET8(handle, FFA_ERROR_SMC64,
1058 					FFA_TARGET_INFO_MBZ, ret,
1059 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1060 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1061 					FFA_PARAM_MBZ);
1062 			} else {
1063 				SMC_RET8(handle, FFA_SUCCESS_SMC64,
1064 					FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ,
1065 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1066 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1067 					FFA_PARAM_MBZ);
1068 			}
1069 		}
1070 
1071 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1072 		break; /* Not reached */
1073 
1074 	case FFA_SPM_ID_GET:
1075 		if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) {
1076 			return spmd_ffa_error_return(handle,
1077 						     FFA_ERROR_NOT_SUPPORTED);
1078 		}
1079 		/*
1080 		 * Returns the ID of the SPMC or SPMD depending on the FF-A
1081 		 * instance where this function is invoked
1082 		 */
1083 		if (!secure_origin) {
1084 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1085 				 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1086 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1087 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1088 				 FFA_PARAM_MBZ);
1089 		}
1090 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1091 			 FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID,
1092 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1093 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1094 			 FFA_PARAM_MBZ);
1095 
1096 		break; /* not reached */
1097 
1098 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1099 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1100 		/*
1101 		 * Regardless of secure_origin, SPMD logical partitions cannot
1102 		 * handle direct messages. They can only initiate direct
1103 		 * messages and consume direct responses or errors.
1104 		 */
1105 		if (is_spmd_lp_id(ffa_endpoint_source(x1)) ||
1106 				  is_spmd_lp_id(ffa_endpoint_destination(x1))) {
1107 			return spmd_ffa_error_return(handle,
1108 						     FFA_ERROR_INVALID_PARAMETER
1109 						     );
1110 		}
1111 
1112 		/*
1113 		 * When there is an ongoing SPMD logical partition direct
1114 		 * request, there cannot be another direct request. Return
1115 		 * error in this case. Panic'ing is an option but that does
1116 		 * not provide the opportunity for caller to abort based on
1117 		 * error codes.
1118 		 */
1119 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1120 			assert(secure_origin);
1121 			return spmd_ffa_error_return(handle,
1122 						     FFA_ERROR_DENIED);
1123 		}
1124 
1125 		if (!secure_origin) {
1126 			/* Validate source endpoint is non-secure for non-secure caller. */
1127 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1128 				return spmd_ffa_error_return(handle,
1129 						FFA_ERROR_INVALID_PARAMETER);
1130 			}
1131 		}
1132 		if (secure_origin && spmd_is_spmc_message(x1)) {
1133 			ret = spmd_handle_spmc_message(x3, x4,
1134 				SMC_GET_GP(handle, CTX_GPREG_X5),
1135 				SMC_GET_GP(handle, CTX_GPREG_X6),
1136 				SMC_GET_GP(handle, CTX_GPREG_X7));
1137 
1138 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1139 				FFA_TARGET_INFO_MBZ, ret,
1140 				FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1141 				FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1142 				FFA_PARAM_MBZ);
1143 		} else {
1144 			/* Forward direct message to the other world */
1145 			return spmd_smc_forward(smc_fid, secure_origin,
1146 						x1, x2, x3, x4, cookie,
1147 						handle, flags);
1148 		}
1149 		break; /* Not reached */
1150 
1151 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1152 		if (!secure_origin) {
1153 			/* Validate source endpoint is non-secure for non-secure caller. */
1154 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1155 				return spmd_ffa_error_return(handle,
1156 						FFA_ERROR_INVALID_PARAMETER);
1157 			}
1158 		}
1159 		/* FFA_MSG_SEND_DIRECT_REQ2 not used for framework messages. */
1160 		if (secure_origin && spmd_is_spmc_message(x1)) {
1161 			return spmd_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1162 		} else {
1163 			/* Forward direct message to the other world */
1164 			return spmd_smc_forward(smc_fid, secure_origin,
1165 						x1, x2, x3, x4, cookie,
1166 						handle, flags);
1167 		}
1168 		break; /* Not reached */
1169 
1170 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1171 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1172 		if (secure_origin && (spmd_is_spmc_message(x1) ||
1173 		    is_spmd_logical_sp_dir_req_in_progress(ctx))) {
1174 			spmd_spm_core_sync_exit(0ULL);
1175 		} else {
1176 			/* Forward direct message to the other world */
1177 			return spmd_smc_forward(smc_fid, secure_origin,
1178 						x1, x2, x3, x4, cookie,
1179 						handle, flags);
1180 		}
1181 		break; /* Not reached */
1182 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1183 		/* Forward direct message to the other world */
1184 		return spmd_smc_forward(smc_fid, secure_origin,
1185 					x1, x2, x3, x4, cookie,
1186 					handle, flags);
1187 		break; /* Not reached */
1188 	case FFA_RX_RELEASE:
1189 	case FFA_RXTX_MAP_SMC32:
1190 	case FFA_RXTX_MAP_SMC64:
1191 	case FFA_RXTX_UNMAP:
1192 	case FFA_PARTITION_INFO_GET:
1193 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1194 	case FFA_NOTIFICATION_BITMAP_CREATE:
1195 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1196 	case FFA_NOTIFICATION_BIND:
1197 	case FFA_NOTIFICATION_UNBIND:
1198 	case FFA_NOTIFICATION_SET:
1199 	case FFA_NOTIFICATION_GET:
1200 	case FFA_NOTIFICATION_INFO_GET:
1201 	case FFA_NOTIFICATION_INFO_GET_SMC64:
1202 	case FFA_MSG_SEND2:
1203 	case FFA_RX_ACQUIRE:
1204 #endif
1205 	case FFA_MSG_RUN:
1206 		/*
1207 		 * Above calls should be invoked only by the Normal world and
1208 		 * must not be forwarded from Secure world to Normal world.
1209 		 */
1210 		if (secure_origin) {
1211 			return spmd_ffa_error_return(handle,
1212 						     FFA_ERROR_NOT_SUPPORTED);
1213 		}
1214 
1215 		/* Forward the call to the other world */
1216 		/* fallthrough */
1217 	case FFA_MSG_SEND:
1218 	case FFA_MEM_DONATE_SMC32:
1219 	case FFA_MEM_DONATE_SMC64:
1220 	case FFA_MEM_LEND_SMC32:
1221 	case FFA_MEM_LEND_SMC64:
1222 	case FFA_MEM_SHARE_SMC32:
1223 	case FFA_MEM_SHARE_SMC64:
1224 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1225 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1226 	case FFA_MEM_RETRIEVE_RESP:
1227 	case FFA_MEM_RELINQUISH:
1228 	case FFA_MEM_RECLAIM:
1229 	case FFA_MEM_FRAG_TX:
1230 	case FFA_MEM_FRAG_RX:
1231 	case FFA_SUCCESS_SMC32:
1232 	case FFA_SUCCESS_SMC64:
1233 		/*
1234 		 * If there is an ongoing direct request from an SPMD logical
1235 		 * partition, return an error.
1236 		 */
1237 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1238 			assert(secure_origin);
1239 			return spmd_ffa_error_return(handle,
1240 					FFA_ERROR_DENIED);
1241 		}
1242 
1243 		return spmd_smc_forward(smc_fid, secure_origin,
1244 					x1, x2, x3, x4, cookie,
1245 					handle, flags);
1246 		break; /* not reached */
1247 
1248 	case FFA_MSG_WAIT:
1249 		/*
1250 		 * Check if this is the first invocation of this interface on
1251 		 * this CPU from the Secure world. If so, then indicate that the
1252 		 * SPM Core initialised successfully.
1253 		 */
1254 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
1255 			spmd_spm_core_sync_exit(0ULL);
1256 		}
1257 
1258 		/* Forward the call to the other world */
1259 		/* fallthrough */
1260 	case FFA_INTERRUPT:
1261 	case FFA_MSG_YIELD:
1262 		/* This interface must be invoked only by the Secure world */
1263 		if (!secure_origin) {
1264 			return spmd_ffa_error_return(handle,
1265 						      FFA_ERROR_NOT_SUPPORTED);
1266 		}
1267 
1268 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1269 			assert(secure_origin);
1270 			return spmd_ffa_error_return(handle,
1271 					FFA_ERROR_DENIED);
1272 		}
1273 
1274 		return spmd_smc_forward(smc_fid, secure_origin,
1275 					x1, x2, x3, x4, cookie,
1276 					handle, flags);
1277 		break; /* not reached */
1278 
1279 	case FFA_NORMAL_WORLD_RESUME:
1280 		if (secure_origin && ctx->secure_interrupt_ongoing) {
1281 			spmd_spm_core_sync_exit(0ULL);
1282 		} else {
1283 			return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
1284 		}
1285 		break; /* Not reached */
1286 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1287 	case FFA_PARTITION_INFO_GET_REGS_SMC64:
1288 		if (secure_origin) {
1289 			return spmd_el3_populate_logical_partition_info(handle, x1,
1290 								   x2, x3);
1291 		}
1292 
1293 		/* Call only supported with SMCCC 1.2+ */
1294 		if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) {
1295 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1296 		}
1297 
1298 		return spmd_smc_forward(smc_fid, secure_origin,
1299 					x1, x2, x3, x4, cookie,
1300 					handle, flags);
1301 		break; /* Not reached */
1302 #endif
1303 	case FFA_CONSOLE_LOG_SMC32:
1304 	case FFA_CONSOLE_LOG_SMC64:
1305 		/* This interface must not be forwarded to other worlds. */
1306 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1307 		break; /* not reached */
1308 
1309 	case FFA_EL3_INTR_HANDLE:
1310 		if (secure_origin) {
1311 			return spmd_handle_group0_intr_swd(handle);
1312 		} else {
1313 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1314 		}
1315 	default:
1316 		WARN("SPM: Unsupported call 0x%08x\n", smc_fid);
1317 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1318 	}
1319 }
1320