xref: /rk3399_ARM-atf/services/std_svc/spmd/spmd_main.c (revision 3b06438dd1e038a7453d3b812ca6ef2da54f6ba8)
1 /*
2  * Copyright (c) 2020-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch/aarch64/arch_features.h>
15 #include <bl31/bl31.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/debug.h>
18 #include <common/runtime_svc.h>
19 #include <common/tbbr/tbbr_img_def.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/fconf/fconf.h>
22 #include <lib/fconf/fconf_dyn_cfg_getter.h>
23 #include <lib/smccc.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils.h>
26 #include <lib/xlat_tables/xlat_tables_v2.h>
27 #include <plat/common/common_def.h>
28 #include <plat/common/platform.h>
29 #include <platform_def.h>
30 #include <services/el3_spmd_logical_sp.h>
31 #include <services/ffa_svc.h>
32 #include <services/spmc_svc.h>
33 #include <services/spmd_svc.h>
34 #include <smccc_helpers.h>
35 #include "spmd_private.h"
36 
37 /*******************************************************************************
38  * SPM Core context information.
39  ******************************************************************************/
40 static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT];
41 
42 /*******************************************************************************
43  * SPM Core attribute information is read from its manifest if the SPMC is not
44  * at EL3. Else, it is populated from the SPMC directly.
45  ******************************************************************************/
46 static spmc_manifest_attribute_t spmc_attrs;
47 
48 /*******************************************************************************
49  * SPM Core entry point information. Discovered on the primary core and reused
50  * on secondary cores.
51  ******************************************************************************/
52 static entry_point_info_t *spmc_ep_info;
53 
54 /*******************************************************************************
55  * SPM Core context on current CPU get helper.
56  ******************************************************************************/
57 spmd_spm_core_context_t *spmd_get_context(void)
58 {
59 	return &spm_core_context[plat_my_core_pos()];
60 }
61 
62 /*******************************************************************************
63  * SPM Core ID getter.
64  ******************************************************************************/
65 uint16_t spmd_spmc_id_get(void)
66 {
67 	return spmc_attrs.spmc_id;
68 }
69 
70 /*******************************************************************************
71  * Static function declaration.
72  ******************************************************************************/
73 static int32_t spmd_init(void);
74 static int spmd_spmc_init(void *pm_addr);
75 
76 static uint64_t spmd_smc_forward(uint32_t smc_fid,
77 				 bool secure_origin,
78 				 uint64_t x1,
79 				 uint64_t x2,
80 				 uint64_t x3,
81 				 uint64_t x4,
82 				 void *cookie,
83 				 void *handle,
84 				 uint64_t flags);
85 
86 /******************************************************************************
87  * Builds an SPMD to SPMC direct message request.
88  *****************************************************************************/
89 void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func,
90 			     unsigned long long message)
91 {
92 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
93 	write_ctx_reg(gpregs, CTX_GPREG_X1,
94 		(SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) |
95 		 spmd_spmc_id_get());
96 	write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func);
97 	write_ctx_reg(gpregs, CTX_GPREG_X3, message);
98 
99 	/* Zero out x4-x7 for the direct request emitted towards the SPMC. */
100 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
101 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
102 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
103 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
104 }
105 
106 
107 /*******************************************************************************
108  * This function takes an SPMC context pointer and performs a synchronous
109  * SPMC entry.
110  ******************************************************************************/
111 uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx)
112 {
113 	uint64_t rc;
114 
115 	assert(spmc_ctx != NULL);
116 
117 	cm_set_context(&(spmc_ctx->cpu_ctx), SECURE);
118 
119 	/* Restore the context assigned above */
120 #if SPMD_SPM_AT_SEL2
121 	cm_el2_sysregs_context_restore(SECURE);
122 #else
123 	cm_el1_sysregs_context_restore(SECURE);
124 #endif
125 	cm_set_next_eret_context(SECURE);
126 
127 	/* Enter SPMC */
128 	rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx);
129 
130 	/* Save secure state */
131 #if SPMD_SPM_AT_SEL2
132 	cm_el2_sysregs_context_save(SECURE);
133 #else
134 	cm_el1_sysregs_context_save(SECURE);
135 #endif
136 
137 	return rc;
138 }
139 
140 /*******************************************************************************
141  * This function returns to the place where spmd_spm_core_sync_entry() was
142  * called originally.
143  ******************************************************************************/
144 __dead2 void spmd_spm_core_sync_exit(uint64_t rc)
145 {
146 	spmd_spm_core_context_t *ctx = spmd_get_context();
147 
148 	/* Get current CPU context from SPMC context */
149 	assert(cm_get_context(SECURE) == &(ctx->cpu_ctx));
150 
151 	/*
152 	 * The SPMD must have initiated the original request through a
153 	 * synchronous entry into SPMC. Jump back to the original C runtime
154 	 * context with the value of rc in x0;
155 	 */
156 	spmd_spm_core_exit(ctx->c_rt_ctx, rc);
157 
158 	panic();
159 }
160 
161 /*******************************************************************************
162  * Jump to the SPM Core for the first time.
163  ******************************************************************************/
164 static int32_t spmd_init(void)
165 {
166 	spmd_spm_core_context_t *ctx = spmd_get_context();
167 	uint64_t rc;
168 
169 	VERBOSE("SPM Core init start.\n");
170 
171 	/* Primary boot core enters the SPMC for initialization. */
172 	ctx->state = SPMC_STATE_ON_PENDING;
173 
174 	rc = spmd_spm_core_sync_entry(ctx);
175 	if (rc != 0ULL) {
176 		ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc);
177 		return 0;
178 	}
179 
180 	ctx->state = SPMC_STATE_ON;
181 
182 	VERBOSE("SPM Core init end.\n");
183 
184 	spmd_logical_sp_set_spmc_initialized();
185 	rc = spmd_logical_sp_init();
186 	if (rc != 0) {
187 		WARN("SPMD Logical partitions failed init.\n");
188 	}
189 
190 	return 1;
191 }
192 
193 /*******************************************************************************
194  * spmd_secure_interrupt_handler
195  * Enter the SPMC for further handling of the secure interrupt by the SPMC
196  * itself or a Secure Partition.
197  ******************************************************************************/
198 static uint64_t spmd_secure_interrupt_handler(uint32_t id,
199 					      uint32_t flags,
200 					      void *handle,
201 					      void *cookie)
202 {
203 	spmd_spm_core_context_t *ctx = spmd_get_context();
204 	gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
205 	int64_t rc;
206 
207 	/* Sanity check the security state when the exception was generated */
208 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
209 
210 	/* Sanity check the pointer to this cpu's context */
211 	assert(handle == cm_get_context(NON_SECURE));
212 
213 	/* Save the non-secure context before entering SPMC */
214 #if SPMD_SPM_AT_SEL2
215 	cm_el2_sysregs_context_save(NON_SECURE);
216 #else
217 	cm_el1_sysregs_context_save(NON_SECURE);
218 
219 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
220 	/*
221 	 * The hint bit denoting absence of SVE live state is effectively false
222 	 * in this scenario where execution was trapped to EL3 due to FIQ.
223 	 */
224 	simd_ctx_save(NON_SECURE, false);
225 	simd_ctx_restore(SECURE);
226 #endif
227 #endif
228 
229 	/* Convey the event to the SPMC through the FFA_INTERRUPT interface. */
230 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT);
231 	write_ctx_reg(gpregs, CTX_GPREG_X1, 0);
232 	write_ctx_reg(gpregs, CTX_GPREG_X2, 0);
233 	write_ctx_reg(gpregs, CTX_GPREG_X3, 0);
234 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
235 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
236 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
237 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
238 
239 	/* Mark current core as handling a secure interrupt. */
240 	ctx->secure_interrupt_ongoing = true;
241 
242 	rc = spmd_spm_core_sync_entry(ctx);
243 
244 	if (rc != 0ULL) {
245 		ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, plat_my_core_pos());
246 	}
247 
248 	ctx->secure_interrupt_ongoing = false;
249 
250 #if SPMD_SPM_AT_SEL2
251 	cm_el2_sysregs_context_restore(NON_SECURE);
252 #else
253 	cm_el1_sysregs_context_restore(NON_SECURE);
254 
255 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
256 	simd_ctx_save(SECURE, false);
257 	simd_ctx_restore(NON_SECURE);
258 #endif
259 #endif
260 	cm_set_next_eret_context(NON_SECURE);
261 
262 	SMC_RET0(&ctx->cpu_ctx);
263 }
264 
265 #if (EL3_EXCEPTION_HANDLING == 0)
266 /*******************************************************************************
267  * spmd_group0_interrupt_handler_nwd
268  * Group0 secure interrupt in the normal world are trapped to EL3. Delegate the
269  * handling of the interrupt to the platform handler, and return only upon
270  * successfully handling the Group0 interrupt.
271  ******************************************************************************/
272 static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id,
273 						  uint32_t flags,
274 						  void *handle,
275 						  void *cookie)
276 {
277 	uint32_t intid;
278 
279 	/* Sanity check the security state when the exception was generated. */
280 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
281 
282 	/* Sanity check the pointer to this cpu's context. */
283 	assert(handle == cm_get_context(NON_SECURE));
284 
285 	assert(id == INTR_ID_UNAVAILABLE);
286 
287 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
288 
289 	intid = plat_ic_acknowledge_interrupt();
290 
291 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
292 		ERROR("Group0 interrupt %u not handled\n", intid);
293 		panic();
294 	}
295 
296 	/* Deactivate the corresponding Group0 interrupt. */
297 	plat_ic_end_of_interrupt(intid);
298 
299 	return 0U;
300 }
301 #endif
302 
303 /*******************************************************************************
304  * spmd_handle_group0_intr_swd
305  * SPMC delegates handling of Group0 secure interrupt to EL3 firmware using
306  * FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the
307  * interrupt to the platform handler, and returns only upon successfully
308  * handling the Group0 interrupt.
309  ******************************************************************************/
310 static uint64_t spmd_handle_group0_intr_swd(void *handle)
311 {
312 	uint32_t intid;
313 
314 	/* Sanity check the pointer to this cpu's context */
315 	assert(handle == cm_get_context(SECURE));
316 
317 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
318 
319 	intid = plat_ic_acknowledge_interrupt();
320 
321 	/*
322 	 * TODO: Currently due to a limitation in SPMD implementation, the
323 	 * platform handler is expected to not delegate handling to NWd while
324 	 * processing Group0 secure interrupt.
325 	 */
326 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
327 		/* Group0 interrupt was not handled by the platform. */
328 		ERROR("Group0 interrupt %u not handled\n", intid);
329 		panic();
330 	}
331 
332 	/* Deactivate the corresponding Group0 interrupt. */
333 	plat_ic_end_of_interrupt(intid);
334 
335 	/* Return success. */
336 	SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
337 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
338 		 FFA_PARAM_MBZ);
339 }
340 
341 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
342 static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size,
343 				 unsigned int attr, uintptr_t *align_addr,
344 				 size_t *align_size)
345 {
346 	uintptr_t base_addr_align;
347 	size_t mapped_size_align;
348 	int rc;
349 
350 	/* Page aligned address and size if necessary */
351 	base_addr_align = page_align(base_addr, DOWN);
352 	mapped_size_align = page_align(size, UP);
353 
354 	if ((base_addr != base_addr_align) &&
355 	    (size == mapped_size_align)) {
356 		mapped_size_align += PAGE_SIZE;
357 	}
358 
359 	/*
360 	 * Map dynamically given region with its aligned base address and
361 	 * size
362 	 */
363 	rc = mmap_add_dynamic_region((unsigned long long)base_addr_align,
364 				     base_addr_align,
365 				     mapped_size_align,
366 				     attr);
367 	if (rc == 0) {
368 		*align_addr = base_addr_align;
369 		*align_size = mapped_size_align;
370 	}
371 
372 	return rc;
373 }
374 
375 static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr,
376 			    size_t size)
377 {
378 	uintptr_t root_base_addr_align, sec_base_addr_align;
379 	size_t root_mapped_size_align, sec_mapped_size_align;
380 	int rc;
381 
382 	assert(root_base_addr != 0UL);
383 	assert(sec_base_addr != 0UL);
384 	assert(size != 0UL);
385 
386 	/* Map the memory with required attributes */
387 	rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT,
388 				  &root_base_addr_align,
389 				  &root_mapped_size_align);
390 	if (rc != 0) {
391 		ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region",
392 		      root_base_addr, rc);
393 		panic();
394 	}
395 
396 	rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE,
397 				  &sec_base_addr_align, &sec_mapped_size_align);
398 	if (rc != 0) {
399 		ERROR("%s %s %lu (%d)\n", "Error while mapping",
400 		      "secure region", sec_base_addr, rc);
401 		panic();
402 	}
403 
404 	/* Do copy operation */
405 	(void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size);
406 
407 	/* Unmap root memory region */
408 	rc = mmap_remove_dynamic_region(root_base_addr_align,
409 					root_mapped_size_align);
410 	if (rc != 0) {
411 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
412 		      "root region", root_base_addr_align, rc);
413 		panic();
414 	}
415 
416 	/* Unmap secure memory region */
417 	rc = mmap_remove_dynamic_region(sec_base_addr_align,
418 					sec_mapped_size_align);
419 	if (rc != 0) {
420 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
421 		      "secure region", sec_base_addr_align, rc);
422 		panic();
423 	}
424 }
425 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
426 
427 /*******************************************************************************
428  * Loads SPMC manifest and inits SPMC.
429  ******************************************************************************/
430 static int spmd_spmc_init(void *pm_addr)
431 {
432 	cpu_context_t *cpu_ctx;
433 	unsigned int core_id;
434 	uint32_t ep_attr, flags;
435 	int rc;
436 	const struct dyn_cfg_dtb_info_t *image_info __unused;
437 
438 	/* Load the SPM Core manifest */
439 	rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr);
440 	if (rc != 0) {
441 		WARN("No or invalid SPM Core manifest image provided by BL2\n");
442 		return rc;
443 	}
444 
445 	/*
446 	 * Ensure that the SPM Core version is compatible with the SPM
447 	 * Dispatcher version.
448 	 */
449 	if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) ||
450 	    (spmc_attrs.minor_version > FFA_VERSION_MINOR)) {
451 		WARN("Unsupported FFA version (%u.%u)\n",
452 		     spmc_attrs.major_version, spmc_attrs.minor_version);
453 		return -EINVAL;
454 	}
455 
456 	VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version,
457 	     spmc_attrs.minor_version);
458 
459 	VERBOSE("SPM Core run time EL%x.\n",
460 	     SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1);
461 
462 	/* Validate the SPMC ID, Ensure high bit is set */
463 	if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) &
464 			SPMC_SECURE_ID_MASK) == 0U) {
465 		WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id);
466 		return -EINVAL;
467 	}
468 
469 	/* Validate the SPM Core execution state */
470 	if ((spmc_attrs.exec_state != MODE_RW_64) &&
471 	    (spmc_attrs.exec_state != MODE_RW_32)) {
472 		WARN("Unsupported %s%x.\n", "SPM Core execution state 0x",
473 		     spmc_attrs.exec_state);
474 		return -EINVAL;
475 	}
476 
477 	VERBOSE("%s%x.\n", "SPM Core execution state 0x",
478 		spmc_attrs.exec_state);
479 
480 #if SPMD_SPM_AT_SEL2
481 	/* Ensure manifest has not requested AArch32 state in S-EL2 */
482 	if (spmc_attrs.exec_state == MODE_RW_32) {
483 		WARN("AArch32 state at S-EL2 is not supported.\n");
484 		return -EINVAL;
485 	}
486 
487 	/*
488 	 * Check if S-EL2 is supported on this system if S-EL2
489 	 * is required for SPM
490 	 */
491 	if (!is_feat_sel2_supported()) {
492 		WARN("SPM Core run time S-EL2 is not supported.\n");
493 		return -EINVAL;
494 	}
495 #endif /* SPMD_SPM_AT_SEL2 */
496 
497 	/* Initialise an entrypoint to set up the CPU context */
498 	ep_attr = SECURE | EP_ST_ENABLE;
499 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) {
500 		ep_attr |= EP_EE_BIG;
501 	}
502 
503 	SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr);
504 
505 	/*
506 	 * Populate SPSR for SPM Core based upon validated parameters from the
507 	 * manifest.
508 	 */
509 	if (spmc_attrs.exec_state == MODE_RW_32) {
510 		spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
511 						 SPSR_E_LITTLE,
512 						 DAIF_FIQ_BIT |
513 						 DAIF_IRQ_BIT |
514 						 DAIF_ABT_BIT);
515 	} else {
516 
517 #if SPMD_SPM_AT_SEL2
518 		static const uint32_t runtime_el = MODE_EL2;
519 #else
520 		static const uint32_t runtime_el = MODE_EL1;
521 #endif
522 		spmc_ep_info->spsr = SPSR_64(runtime_el,
523 					     MODE_SP_ELX,
524 					     DISABLE_ALL_EXCEPTIONS);
525 	}
526 
527 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
528 	image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID);
529 	assert(image_info != NULL);
530 
531 	if ((image_info->config_addr == 0UL) ||
532 	    (image_info->secondary_config_addr == 0UL) ||
533 	    (image_info->config_max_size == 0UL)) {
534 		return -EINVAL;
535 	}
536 
537 	/* Copy manifest from root->secure region */
538 	spmd_do_sec_cpy(image_info->config_addr,
539 			image_info->secondary_config_addr,
540 			image_info->config_max_size);
541 
542 	/* Update ep info of BL32 */
543 	assert(spmc_ep_info != NULL);
544 	spmc_ep_info->args.arg0 = image_info->secondary_config_addr;
545 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
546 
547 	/* Set an initial SPMC context state for all cores. */
548 	for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) {
549 		spm_core_context[core_id].state = SPMC_STATE_OFF;
550 
551 		/* Setup an initial cpu context for the SPMC. */
552 		cpu_ctx = &spm_core_context[core_id].cpu_ctx;
553 		cm_setup_context(cpu_ctx, spmc_ep_info);
554 
555 		/*
556 		 * Pass the core linear ID to the SPMC through x4.
557 		 * (TF-A implementation defined behavior helping
558 		 * a legacy TOS migration to adopt FF-A).
559 		 */
560 		write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id);
561 	}
562 
563 	/* Register power management hooks with PSCI */
564 	psci_register_spd_pm_hook(&spmd_pm);
565 
566 	/* Register init function for deferred init. */
567 	bl31_register_bl32_init(&spmd_init);
568 
569 	INFO("SPM Core setup done.\n");
570 
571 	/*
572 	 * Register an interrupt handler routing secure interrupts to SPMD
573 	 * while the NWd is running.
574 	 */
575 	flags = 0;
576 	set_interrupt_rm_flag(flags, NON_SECURE);
577 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
578 					     spmd_secure_interrupt_handler,
579 					     flags);
580 	if (rc != 0) {
581 		panic();
582 	}
583 
584 	/*
585 	 * Permit configurations where the SPM resides at S-EL1/2 and upon a
586 	 * Group0 interrupt triggering while the normal world runs, the
587 	 * interrupt is routed either through the EHF or directly to the SPMD:
588 	 *
589 	 * EL3_EXCEPTION_HANDLING=0: the Group0 interrupt is routed to the SPMD
590 	 *                   for handling by spmd_group0_interrupt_handler_nwd.
591 	 *
592 	 * EL3_EXCEPTION_HANDLING=1: the Group0 interrupt is routed to the EHF.
593 	 *
594 	 */
595 #if (EL3_EXCEPTION_HANDLING == 0)
596 	/*
597 	 * If EL3 interrupts are supported by the platform, register an
598 	 * interrupt handler routing Group0 interrupts to SPMD while the NWd is
599 	 * running.
600 	 */
601 	if (plat_ic_has_interrupt_type(INTR_TYPE_EL3)) {
602 		rc = register_interrupt_type_handler(INTR_TYPE_EL3,
603 						     spmd_group0_interrupt_handler_nwd,
604 						     flags);
605 		if (rc != 0) {
606 			panic();
607 		}
608 	}
609 #endif
610 
611 	return 0;
612 }
613 
614 /*******************************************************************************
615  * Initialize context of SPM Core.
616  ******************************************************************************/
617 int spmd_setup(void)
618 {
619 	int rc;
620 	void *spmc_manifest;
621 
622 	/*
623 	 * If the SPMC is at EL3, then just initialise it directly. The
624 	 * shenanigans of when it is at a lower EL are not needed.
625 	 */
626 	if (is_spmc_at_el3()) {
627 		/* Allow the SPMC to populate its attributes directly. */
628 		spmc_populate_attrs(&spmc_attrs);
629 
630 		rc = spmc_setup();
631 		if (rc != 0) {
632 			WARN("SPMC initialisation failed 0x%x.\n", rc);
633 		}
634 		return 0;
635 	}
636 
637 	spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
638 	if (spmc_ep_info == NULL) {
639 		WARN("No SPM Core image provided by BL2 boot loader.\n");
640 		return 0;
641 	}
642 
643 	/* Under no circumstances will this parameter be 0 */
644 	assert(spmc_ep_info->pc != 0ULL);
645 
646 	/*
647 	 * Check if BL32 ep_info has a reference to 'tos_fw_config'. This will
648 	 * be used as a manifest for the SPM Core at the next lower EL/mode.
649 	 */
650 	spmc_manifest = (void *)spmc_ep_info->args.arg0;
651 	if (spmc_manifest == NULL) {
652 		WARN("Invalid or absent SPM Core manifest.\n");
653 		return 0;
654 	}
655 
656 	/* Load manifest, init SPMC */
657 	rc = spmd_spmc_init(spmc_manifest);
658 	if (rc != 0) {
659 		WARN("Booting device without SPM initialization.\n");
660 	}
661 
662 	return 0;
663 }
664 
665 /*******************************************************************************
666  * Forward FF-A SMCs to the other security state.
667  ******************************************************************************/
668 uint64_t spmd_smc_switch_state(uint32_t smc_fid,
669 			       bool secure_origin,
670 			       uint64_t x1,
671 			       uint64_t x2,
672 			       uint64_t x3,
673 			       uint64_t x4,
674 			       void *handle,
675 			       uint64_t flags)
676 {
677 	unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE;
678 	unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE;
679 	void *ctx_out;
680 
681 #if SPMD_SPM_AT_SEL2
682 	if ((secure_state_out == SECURE) && (is_sve_hint_set(flags) == true)) {
683 		/*
684 		 * Set the SVE hint bit in x0 and pass to the lower secure EL,
685 		 * if it was set by the caller.
686 		 */
687 		smc_fid |= (FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT);
688 	}
689 #endif
690 
691 	/* Save incoming security state */
692 #if SPMD_SPM_AT_SEL2
693 	cm_el2_sysregs_context_save(secure_state_in);
694 #else
695 	cm_el1_sysregs_context_save(secure_state_in);
696 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
697 	/* Forward the hint bit denoting the absence of SVE live state. */
698 	simd_ctx_save(secure_state_in, (!secure_origin && (is_sve_hint_set(flags) == true)));
699 #endif
700 #endif
701 
702 	/* Restore outgoing security state */
703 #if SPMD_SPM_AT_SEL2
704 	cm_el2_sysregs_context_restore(secure_state_out);
705 #else
706 	cm_el1_sysregs_context_restore(secure_state_out);
707 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
708 	simd_ctx_restore(secure_state_out);
709 #endif
710 #endif
711 	cm_set_next_eret_context(secure_state_out);
712 
713 	ctx_out = cm_get_context(secure_state_out);
714 	if (smc_fid == FFA_NORMAL_WORLD_RESUME) {
715 		SMC_RET0(ctx_out);
716 	}
717 
718 #if SPMD_SPM_AT_SEL2
719 	/*
720 	 * If SPMC is at SEL2, save additional registers x8-x17, which may
721 	 * be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS.
722 	 * Note that technically, all SPMCs can support this, but this code is
723 	 * under ifdef to minimize breakage in case other SPMCs do not save
724 	 * and restore x8-x17.
725 	 * We also need to pass through these registers since not all FF-A ABIs
726 	 * modify x8-x17, in which case, SMCCC requires that these registers be
727 	 * preserved, so the SPMD passes through these registers and expects the
728 	 * SPMC to save and restore (potentially also modify) them.
729 	 */
730 	SMC_RET18(ctx_out, smc_fid, x1, x2, x3, x4,
731 			SMC_GET_GP(handle, CTX_GPREG_X5),
732 			SMC_GET_GP(handle, CTX_GPREG_X6),
733 			SMC_GET_GP(handle, CTX_GPREG_X7),
734 			SMC_GET_GP(handle, CTX_GPREG_X8),
735 			SMC_GET_GP(handle, CTX_GPREG_X9),
736 			SMC_GET_GP(handle, CTX_GPREG_X10),
737 			SMC_GET_GP(handle, CTX_GPREG_X11),
738 			SMC_GET_GP(handle, CTX_GPREG_X12),
739 			SMC_GET_GP(handle, CTX_GPREG_X13),
740 			SMC_GET_GP(handle, CTX_GPREG_X14),
741 			SMC_GET_GP(handle, CTX_GPREG_X15),
742 			SMC_GET_GP(handle, CTX_GPREG_X16),
743 			SMC_GET_GP(handle, CTX_GPREG_X17)
744 			);
745 
746 #else
747 	SMC_RET8(ctx_out, smc_fid, x1, x2, x3, x4,
748 			SMC_GET_GP(handle, CTX_GPREG_X5),
749 			SMC_GET_GP(handle, CTX_GPREG_X6),
750 			SMC_GET_GP(handle, CTX_GPREG_X7));
751 #endif
752 }
753 
754 /*******************************************************************************
755  * Forward SMCs to the other security state.
756  ******************************************************************************/
757 static uint64_t spmd_smc_forward(uint32_t smc_fid,
758 				 bool secure_origin,
759 				 uint64_t x1,
760 				 uint64_t x2,
761 				 uint64_t x3,
762 				 uint64_t x4,
763 				 void *cookie,
764 				 void *handle,
765 				 uint64_t flags)
766 {
767 	if (is_spmc_at_el3() && !secure_origin) {
768 		return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4,
769 					cookie, handle, flags);
770 	}
771 
772 	return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4,
773 				     handle, flags);
774 
775 }
776 
777 /*******************************************************************************
778  * Return FFA_ERROR with specified error code
779  ******************************************************************************/
780 uint64_t spmd_ffa_error_return(void *handle, int error_code)
781 {
782 	SMC_RET8(handle, (uint32_t) FFA_ERROR,
783 		 FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
784 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
785 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
786 }
787 
788 /*******************************************************************************
789  * spmd_check_address_in_binary_image
790  ******************************************************************************/
791 bool spmd_check_address_in_binary_image(uint64_t address)
792 {
793 	assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size));
794 
795 	return ((address >= spmc_attrs.load_address) &&
796 		(address < (spmc_attrs.load_address + spmc_attrs.binary_size)));
797 }
798 
799 /******************************************************************************
800  * spmd_is_spmc_message
801  *****************************************************************************/
802 static bool spmd_is_spmc_message(unsigned int ep)
803 {
804 	if (is_spmc_at_el3()) {
805 		return false;
806 	}
807 
808 	return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID)
809 		&& (ffa_endpoint_source(ep) == spmc_attrs.spmc_id));
810 }
811 
812 /*******************************************************************************
813  * This function forwards FF-A SMCs to either the main SPMD handler or the
814  * SPMC at EL3, depending on the origin security state, if enabled.
815  ******************************************************************************/
816 uint64_t spmd_ffa_smc_handler(uint32_t smc_fid,
817 			      uint64_t x1,
818 			      uint64_t x2,
819 			      uint64_t x3,
820 			      uint64_t x4,
821 			      void *cookie,
822 			      void *handle,
823 			      uint64_t flags)
824 {
825 	if (is_spmc_at_el3()) {
826 		/*
827 		 * If we have an SPMC at EL3 allow handling of the SMC first.
828 		 * The SPMC will call back through to SPMD handler if required.
829 		 */
830 		if (is_caller_secure(flags)) {
831 			return spmc_smc_handler(smc_fid,
832 						is_caller_secure(flags),
833 						x1, x2, x3, x4, cookie,
834 						handle, flags);
835 		}
836 	}
837 	return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
838 				handle, flags);
839 }
840 
841 /*******************************************************************************
842  * This function handles all SMCs in the range reserved for FFA. Each call is
843  * either forwarded to the other security state or handled by the SPM dispatcher
844  ******************************************************************************/
845 uint64_t spmd_smc_handler(uint32_t smc_fid,
846 			  uint64_t x1,
847 			  uint64_t x2,
848 			  uint64_t x3,
849 			  uint64_t x4,
850 			  void *cookie,
851 			  void *handle,
852 			  uint64_t flags)
853 {
854 	spmd_spm_core_context_t *ctx = spmd_get_context();
855 	bool secure_origin;
856 	int ret;
857 	uint32_t input_version;
858 
859 	/* Determine which security state this SMC originated from */
860 	secure_origin = is_caller_secure(flags);
861 
862 	VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64
863 		" 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n",
864 		    plat_my_core_pos(), smc_fid, x1, x2, x3, x4,
865 		    SMC_GET_GP(handle, CTX_GPREG_X5),
866 		    SMC_GET_GP(handle, CTX_GPREG_X6),
867 		    SMC_GET_GP(handle, CTX_GPREG_X7));
868 
869 	/*
870 	 * If there is an on-going info regs from EL3 SPMD LP, unconditionally
871 	 * return, we don't expect any other FF-A ABIs to be called between
872 	 * calls to FFA_PARTITION_INFO_GET_REGS.
873 	 */
874 	if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) {
875 		assert(secure_origin);
876 		spmd_spm_core_sync_exit(0ULL);
877 	}
878 
879 	switch (smc_fid) {
880 	case FFA_ERROR:
881 		/*
882 		 * Check if this is the first invocation of this interface on
883 		 * this CPU. If so, then indicate that the SPM Core initialised
884 		 * unsuccessfully.
885 		 */
886 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
887 			spmd_spm_core_sync_exit(x2);
888 		}
889 
890 		/*
891 		 * Perform a synchronous exit:
892 		 * 1. If there was an SPMD logical partition direct request on-going,
893 		 * return back to the SPMD logical partition so the error can be
894 		 * consumed.
895 		 * 2. SPMC sent FFA_ERROR in response to a power management
896 		 * operation sent through direct request.
897 		 */
898 		if (is_spmd_logical_sp_dir_req_in_progress(ctx) ||
899 		    ctx->psci_operation_ongoing) {
900 			assert(secure_origin);
901 			spmd_spm_core_sync_exit(0ULL);
902 		}
903 
904 		return spmd_smc_forward(smc_fid, secure_origin,
905 					x1, x2, x3, x4, cookie,
906 					handle, flags);
907 		break; /* not reached */
908 
909 	case FFA_VERSION:
910 		input_version = (uint32_t)(0xFFFFFFFF & x1);
911 		/*
912 		 * If caller is secure and SPMC was initialized,
913 		 * return FFA_VERSION of SPMD.
914 		 * If caller is non secure and SPMC was initialized,
915 		 * forward to the EL3 SPMC if enabled, otherwise return
916 		 * the SPMC version if implemented at a lower EL.
917 		 * Sanity check to "input_version".
918 		 * If the EL3 SPMC is enabled, ignore the SPMC state as
919 		 * this is not used.
920 		 */
921 		if ((input_version & FFA_VERSION_BIT31_MASK) ||
922 		    (!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) {
923 			ret = FFA_ERROR_NOT_SUPPORTED;
924 		} else if (!secure_origin) {
925 			if (is_spmc_at_el3()) {
926 				/*
927 				 * Forward the call directly to the EL3 SPMC, if
928 				 * enabled, as we don't need to wrap the call in
929 				 * a direct request.
930 				 */
931 				return spmd_smc_forward(smc_fid, secure_origin,
932 							x1, x2, x3, x4, cookie,
933 							handle, flags);
934 			}
935 
936 			gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
937 			uint64_t rc;
938 
939 			if (spmc_attrs.major_version == 1 &&
940 			    spmc_attrs.minor_version == 0) {
941 				ret = MAKE_FFA_VERSION(spmc_attrs.major_version,
942 						       spmc_attrs.minor_version);
943 				SMC_RET8(handle, (uint32_t)ret,
944 					 FFA_TARGET_INFO_MBZ,
945 					 FFA_TARGET_INFO_MBZ,
946 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
947 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
948 					 FFA_PARAM_MBZ);
949 				break;
950 			}
951 			/* Save non-secure system registers context */
952 #if SPMD_SPM_AT_SEL2
953 			cm_el2_sysregs_context_save(NON_SECURE);
954 #else
955 			cm_el1_sysregs_context_save(NON_SECURE);
956 #endif
957 
958 			/*
959 			 * The incoming request has FFA_VERSION as X0 smc_fid
960 			 * and requested version in x1. Prepare a direct request
961 			 * from SPMD to SPMC with FFA_VERSION framework function
962 			 * identifier in X2 and requested version in X3.
963 			 */
964 			spmd_build_spmc_message(gpregs,
965 						SPMD_FWK_MSG_FFA_VERSION_REQ,
966 						input_version);
967 
968 			/*
969 			 * Ensure x8-x17 NS GP register values are untouched when returning
970 			 * from the SPMC.
971 			 */
972 			write_ctx_reg(gpregs, CTX_GPREG_X8, SMC_GET_GP(handle, CTX_GPREG_X8));
973 			write_ctx_reg(gpregs, CTX_GPREG_X9, SMC_GET_GP(handle, CTX_GPREG_X9));
974 			write_ctx_reg(gpregs, CTX_GPREG_X10, SMC_GET_GP(handle, CTX_GPREG_X10));
975 			write_ctx_reg(gpregs, CTX_GPREG_X11, SMC_GET_GP(handle, CTX_GPREG_X11));
976 			write_ctx_reg(gpregs, CTX_GPREG_X12, SMC_GET_GP(handle, CTX_GPREG_X12));
977 			write_ctx_reg(gpregs, CTX_GPREG_X13, SMC_GET_GP(handle, CTX_GPREG_X13));
978 			write_ctx_reg(gpregs, CTX_GPREG_X14, SMC_GET_GP(handle, CTX_GPREG_X14));
979 			write_ctx_reg(gpregs, CTX_GPREG_X15, SMC_GET_GP(handle, CTX_GPREG_X15));
980 			write_ctx_reg(gpregs, CTX_GPREG_X16, SMC_GET_GP(handle, CTX_GPREG_X16));
981 			write_ctx_reg(gpregs, CTX_GPREG_X17, SMC_GET_GP(handle, CTX_GPREG_X17));
982 
983 			rc = spmd_spm_core_sync_entry(ctx);
984 
985 			if ((rc != 0ULL) ||
986 			    (SMC_GET_GP(gpregs, CTX_GPREG_X0) !=
987 				FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
988 			    (SMC_GET_GP(gpregs, CTX_GPREG_X2) !=
989 				(FFA_FWK_MSG_BIT |
990 				 SPMD_FWK_MSG_FFA_VERSION_RESP))) {
991 				ERROR("Failed to forward FFA_VERSION\n");
992 				ret = FFA_ERROR_NOT_SUPPORTED;
993 			} else {
994 				ret = SMC_GET_GP(gpregs, CTX_GPREG_X3);
995 			}
996 
997 			/*
998 			 * x0-x4 are updated by spmd_smc_forward below.
999 			 * Zero out x5-x7 in the FFA_VERSION response.
1000 			 */
1001 			write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
1002 			write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
1003 			write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
1004 
1005 			/*
1006 			 * Return here after SPMC has handled FFA_VERSION.
1007 			 * The returned SPMC version is held in X3.
1008 			 * Forward this version in X0 to the non-secure caller.
1009 			 */
1010 			return spmd_smc_forward(ret, true, FFA_PARAM_MBZ,
1011 						FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1012 						FFA_PARAM_MBZ, cookie, gpregs,
1013 						flags);
1014 		} else {
1015 			ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
1016 					       FFA_VERSION_MINOR);
1017 		}
1018 
1019 		SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ,
1020 			 FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1021 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1022 		break; /* not reached */
1023 
1024 	case FFA_FEATURES:
1025 		/*
1026 		 * This is an optional interface. Do the minimal checks and
1027 		 * forward to SPM Core which will handle it if implemented.
1028 		 */
1029 
1030 		/* Forward SMC from Normal world to the SPM Core */
1031 		if (!secure_origin) {
1032 			return spmd_smc_forward(smc_fid, secure_origin,
1033 						x1, x2, x3, x4, cookie,
1034 						handle, flags);
1035 		}
1036 
1037 		/*
1038 		 * Return success if call was from secure world i.e. all
1039 		 * FFA functions are supported. This is essentially a
1040 		 * nop.
1041 		 */
1042 		SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4,
1043 			 SMC_GET_GP(handle, CTX_GPREG_X5),
1044 			 SMC_GET_GP(handle, CTX_GPREG_X6),
1045 			 SMC_GET_GP(handle, CTX_GPREG_X7));
1046 
1047 		break; /* not reached */
1048 
1049 	case FFA_ID_GET:
1050 		/*
1051 		 * Returns the ID of the calling FFA component.
1052 		 */
1053 		if (!secure_origin) {
1054 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1055 				 FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID,
1056 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1057 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1058 				 FFA_PARAM_MBZ);
1059 		}
1060 
1061 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1062 			 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1063 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1064 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1065 			 FFA_PARAM_MBZ);
1066 
1067 		break; /* not reached */
1068 
1069 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1070 		if (secure_origin) {
1071 			ret = spmd_pm_secondary_ep_register(x1);
1072 
1073 			if (ret < 0) {
1074 				SMC_RET8(handle, FFA_ERROR_SMC64,
1075 					FFA_TARGET_INFO_MBZ, ret,
1076 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1077 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1078 					FFA_PARAM_MBZ);
1079 			} else {
1080 				SMC_RET8(handle, FFA_SUCCESS_SMC64,
1081 					FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ,
1082 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1083 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1084 					FFA_PARAM_MBZ);
1085 			}
1086 		}
1087 
1088 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1089 		break; /* Not reached */
1090 
1091 	case FFA_SPM_ID_GET:
1092 		if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) {
1093 			return spmd_ffa_error_return(handle,
1094 						     FFA_ERROR_NOT_SUPPORTED);
1095 		}
1096 		/*
1097 		 * Returns the ID of the SPMC or SPMD depending on the FF-A
1098 		 * instance where this function is invoked
1099 		 */
1100 		if (!secure_origin) {
1101 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1102 				 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1103 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1104 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1105 				 FFA_PARAM_MBZ);
1106 		}
1107 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1108 			 FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID,
1109 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1110 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1111 			 FFA_PARAM_MBZ);
1112 
1113 		break; /* not reached */
1114 
1115 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1116 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1117 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1118 		/*
1119 		 * Regardless of secure_origin, SPMD logical partitions cannot
1120 		 * handle direct messages. They can only initiate direct
1121 		 * messages and consume direct responses or errors.
1122 		 */
1123 		if (is_spmd_lp_id(ffa_endpoint_source(x1)) ||
1124 				  is_spmd_lp_id(ffa_endpoint_destination(x1))) {
1125 			return spmd_ffa_error_return(handle,
1126 						     FFA_ERROR_INVALID_PARAMETER
1127 						     );
1128 		}
1129 
1130 		/*
1131 		 * When there is an ongoing SPMD logical partition direct
1132 		 * request, there cannot be another direct request. Return
1133 		 * error in this case. Panic'ing is an option but that does
1134 		 * not provide the opportunity for caller to abort based on
1135 		 * error codes.
1136 		 */
1137 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1138 			assert(secure_origin);
1139 			return spmd_ffa_error_return(handle,
1140 						     FFA_ERROR_DENIED);
1141 		}
1142 
1143 		if (!secure_origin) {
1144 			/* Validate source endpoint is non-secure for non-secure caller. */
1145 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1146 				return spmd_ffa_error_return(handle,
1147 						FFA_ERROR_INVALID_PARAMETER);
1148 			}
1149 		}
1150 		if (secure_origin && spmd_is_spmc_message(x1)) {
1151 				return spmd_ffa_error_return(handle,
1152 						FFA_ERROR_DENIED);
1153 		} else {
1154 			/* Forward direct message to the other world */
1155 			return spmd_smc_forward(smc_fid, secure_origin,
1156 						x1, x2, x3, x4, cookie,
1157 						handle, flags);
1158 		}
1159 		break; /* Not reached */
1160 
1161 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1162 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1163 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1164 		if (secure_origin && (spmd_is_spmc_message(x1) ||
1165 		    is_spmd_logical_sp_dir_req_in_progress(ctx))) {
1166 			spmd_spm_core_sync_exit(0ULL);
1167 		} else {
1168 			/* Forward direct message to the other world */
1169 			return spmd_smc_forward(smc_fid, secure_origin,
1170 						x1, x2, x3, x4, cookie,
1171 						handle, flags);
1172 		}
1173 		break; /* Not reached */
1174 	case FFA_RX_RELEASE:
1175 	case FFA_RXTX_MAP_SMC32:
1176 	case FFA_RXTX_MAP_SMC64:
1177 	case FFA_RXTX_UNMAP:
1178 	case FFA_PARTITION_INFO_GET:
1179 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1180 	case FFA_NOTIFICATION_BITMAP_CREATE:
1181 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1182 	case FFA_NOTIFICATION_BIND:
1183 	case FFA_NOTIFICATION_UNBIND:
1184 	case FFA_NOTIFICATION_SET:
1185 	case FFA_NOTIFICATION_GET:
1186 	case FFA_NOTIFICATION_INFO_GET:
1187 	case FFA_NOTIFICATION_INFO_GET_SMC64:
1188 	case FFA_MSG_SEND2:
1189 	case FFA_RX_ACQUIRE:
1190 #endif
1191 	case FFA_MSG_RUN:
1192 		/*
1193 		 * Above calls should be invoked only by the Normal world and
1194 		 * must not be forwarded from Secure world to Normal world.
1195 		 */
1196 		if (secure_origin) {
1197 			return spmd_ffa_error_return(handle,
1198 						     FFA_ERROR_NOT_SUPPORTED);
1199 		}
1200 
1201 		/* Forward the call to the other world */
1202 		/* fallthrough */
1203 	case FFA_MSG_SEND:
1204 	case FFA_MEM_DONATE_SMC32:
1205 	case FFA_MEM_DONATE_SMC64:
1206 	case FFA_MEM_LEND_SMC32:
1207 	case FFA_MEM_LEND_SMC64:
1208 	case FFA_MEM_SHARE_SMC32:
1209 	case FFA_MEM_SHARE_SMC64:
1210 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1211 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1212 	case FFA_MEM_RETRIEVE_RESP:
1213 	case FFA_MEM_RELINQUISH:
1214 	case FFA_MEM_RECLAIM:
1215 	case FFA_MEM_FRAG_TX:
1216 	case FFA_MEM_FRAG_RX:
1217 	case FFA_SUCCESS_SMC32:
1218 	case FFA_SUCCESS_SMC64:
1219 		/*
1220 		 * If there is an ongoing direct request from an SPMD logical
1221 		 * partition, return an error.
1222 		 */
1223 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1224 			assert(secure_origin);
1225 			return spmd_ffa_error_return(handle,
1226 					FFA_ERROR_DENIED);
1227 		}
1228 
1229 		return spmd_smc_forward(smc_fid, secure_origin,
1230 					x1, x2, x3, x4, cookie,
1231 					handle, flags);
1232 		break; /* not reached */
1233 
1234 	case FFA_MSG_WAIT:
1235 		/*
1236 		 * Check if this is the first invocation of this interface on
1237 		 * this CPU from the Secure world. If so, then indicate that the
1238 		 * SPM Core initialised successfully.
1239 		 */
1240 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
1241 			spmd_spm_core_sync_exit(0ULL);
1242 		}
1243 
1244 		/* Forward the call to the other world */
1245 		/* fallthrough */
1246 	case FFA_INTERRUPT:
1247 	case FFA_MSG_YIELD:
1248 		/* This interface must be invoked only by the Secure world */
1249 		if (!secure_origin) {
1250 			return spmd_ffa_error_return(handle,
1251 						      FFA_ERROR_NOT_SUPPORTED);
1252 		}
1253 
1254 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1255 			assert(secure_origin);
1256 			return spmd_ffa_error_return(handle,
1257 					FFA_ERROR_DENIED);
1258 		}
1259 
1260 		return spmd_smc_forward(smc_fid, secure_origin,
1261 					x1, x2, x3, x4, cookie,
1262 					handle, flags);
1263 		break; /* not reached */
1264 
1265 	case FFA_NORMAL_WORLD_RESUME:
1266 		if (secure_origin && ctx->secure_interrupt_ongoing) {
1267 			spmd_spm_core_sync_exit(0ULL);
1268 		} else {
1269 			return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
1270 		}
1271 		break; /* Not reached */
1272 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1273 	case FFA_PARTITION_INFO_GET_REGS_SMC64:
1274 		if (secure_origin) {
1275 			return spmd_el3_populate_logical_partition_info(handle, x1,
1276 								   x2, x3);
1277 		}
1278 
1279 		/* Call only supported with SMCCC 1.2+ */
1280 		if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) {
1281 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1282 		}
1283 
1284 		return spmd_smc_forward(smc_fid, secure_origin,
1285 					x1, x2, x3, x4, cookie,
1286 					handle, flags);
1287 		break; /* Not reached */
1288 #endif
1289 	case FFA_CONSOLE_LOG_SMC32:
1290 	case FFA_CONSOLE_LOG_SMC64:
1291 		/* This interface must not be forwarded to other worlds. */
1292 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1293 		break; /* not reached */
1294 
1295 	case FFA_EL3_INTR_HANDLE:
1296 		if (secure_origin) {
1297 			return spmd_handle_group0_intr_swd(handle);
1298 		} else {
1299 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1300 		}
1301 	default:
1302 		WARN("SPM: Unsupported call 0x%08x\n", smc_fid);
1303 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1304 	}
1305 }
1306