xref: /rk3399_ARM-atf/services/std_svc/spmd/spmd_main.c (revision 107e3cc0cb8723f41d680b3e569de9e2d7ca2bf9)
1 /*
2  * Copyright (c) 2020-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch/aarch64/arch_features.h>
15 #include <bl31/bl31.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/debug.h>
18 #include <common/runtime_svc.h>
19 #include <common/tbbr/tbbr_img_def.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/fconf/fconf.h>
22 #include <lib/fconf/fconf_dyn_cfg_getter.h>
23 #include <lib/smccc.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils.h>
26 #include <lib/xlat_tables/xlat_tables_v2.h>
27 #include <plat/common/common_def.h>
28 #include <plat/common/platform.h>
29 #include <platform_def.h>
30 #include <services/el3_spmd_logical_sp.h>
31 #include <services/ffa_svc.h>
32 #include <services/spmc_svc.h>
33 #include <services/spmd_svc.h>
34 #include <smccc_helpers.h>
35 #include "spmd_private.h"
36 
37 /*******************************************************************************
38  * SPM Core context information.
39  ******************************************************************************/
40 static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT];
41 
42 /*******************************************************************************
43  * SPM Core attribute information is read from its manifest if the SPMC is not
44  * at EL3. Else, it is populated from the SPMC directly.
45  ******************************************************************************/
46 static spmc_manifest_attribute_t spmc_attrs;
47 
48 /*******************************************************************************
49  * SPM Core entry point information. Discovered on the primary core and reused
50  * on secondary cores.
51  ******************************************************************************/
52 static entry_point_info_t *spmc_ep_info;
53 
54 /*******************************************************************************
55  * SPM Core context on current CPU get helper.
56  ******************************************************************************/
57 spmd_spm_core_context_t *spmd_get_context(void)
58 {
59 	return &spm_core_context[plat_my_core_pos()];
60 }
61 
62 /*******************************************************************************
63  * SPM Core ID getter.
64  ******************************************************************************/
65 uint16_t spmd_spmc_id_get(void)
66 {
67 	return spmc_attrs.spmc_id;
68 }
69 
70 /*******************************************************************************
71  * Static function declaration.
72  ******************************************************************************/
73 static int32_t spmd_init(void);
74 static int spmd_spmc_init(void *pm_addr);
75 
76 static uint64_t spmd_smc_forward(uint32_t smc_fid,
77 				 bool secure_origin,
78 				 uint64_t x1,
79 				 uint64_t x2,
80 				 uint64_t x3,
81 				 uint64_t x4,
82 				 void *cookie,
83 				 void *handle,
84 				 uint64_t flags);
85 
86 /******************************************************************************
87  * Builds an SPMD to SPMC direct message request.
88  *****************************************************************************/
89 void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func,
90 			     unsigned long long message)
91 {
92 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
93 	write_ctx_reg(gpregs, CTX_GPREG_X1,
94 		(SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) |
95 		 spmd_spmc_id_get());
96 	write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func);
97 	write_ctx_reg(gpregs, CTX_GPREG_X3, message);
98 
99 	/* Zero out x4-x7 for the direct request emitted towards the SPMC. */
100 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
101 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
102 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
103 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
104 }
105 
106 
107 /*******************************************************************************
108  * This function takes an SPMC context pointer and performs a synchronous
109  * SPMC entry.
110  ******************************************************************************/
111 uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx)
112 {
113 	uint64_t rc;
114 
115 	assert(spmc_ctx != NULL);
116 
117 	cm_set_context(&(spmc_ctx->cpu_ctx), SECURE);
118 
119 	/* Restore the context assigned above */
120 #if SPMD_SPM_AT_SEL2
121 	cm_el2_sysregs_context_restore(SECURE);
122 #else
123 	cm_el1_sysregs_context_restore(SECURE);
124 #endif
125 	cm_set_next_eret_context(SECURE);
126 
127 	/* Enter SPMC */
128 	rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx);
129 
130 	/* Save secure state */
131 #if SPMD_SPM_AT_SEL2
132 	cm_el2_sysregs_context_save(SECURE);
133 #else
134 	cm_el1_sysregs_context_save(SECURE);
135 #endif
136 
137 	return rc;
138 }
139 
140 /*******************************************************************************
141  * This function returns to the place where spmd_spm_core_sync_entry() was
142  * called originally.
143  ******************************************************************************/
144 __dead2 void spmd_spm_core_sync_exit(uint64_t rc)
145 {
146 	spmd_spm_core_context_t *ctx = spmd_get_context();
147 
148 	/* Get current CPU context from SPMC context */
149 	assert(cm_get_context(SECURE) == &(ctx->cpu_ctx));
150 
151 	/*
152 	 * The SPMD must have initiated the original request through a
153 	 * synchronous entry into SPMC. Jump back to the original C runtime
154 	 * context with the value of rc in x0;
155 	 */
156 	spmd_spm_core_exit(ctx->c_rt_ctx, rc);
157 
158 	panic();
159 }
160 
161 /*******************************************************************************
162  * Jump to the SPM Core for the first time.
163  ******************************************************************************/
164 static int32_t spmd_init(void)
165 {
166 	spmd_spm_core_context_t *ctx = spmd_get_context();
167 	uint64_t rc;
168 
169 	VERBOSE("SPM Core init start.\n");
170 
171 	/* Primary boot core enters the SPMC for initialization. */
172 	ctx->state = SPMC_STATE_ON_PENDING;
173 
174 	rc = spmd_spm_core_sync_entry(ctx);
175 	if (rc != 0ULL) {
176 		ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc);
177 		return 0;
178 	}
179 
180 	ctx->state = SPMC_STATE_ON;
181 
182 	VERBOSE("SPM Core init end.\n");
183 
184 	spmd_logical_sp_set_spmc_initialized();
185 	rc = spmd_logical_sp_init();
186 	if (rc != 0) {
187 		WARN("SPMD Logical partitions failed init.\n");
188 	}
189 
190 	return 1;
191 }
192 
193 /*******************************************************************************
194  * spmd_secure_interrupt_handler
195  * Enter the SPMC for further handling of the secure interrupt by the SPMC
196  * itself or a Secure Partition.
197  ******************************************************************************/
198 static uint64_t spmd_secure_interrupt_handler(uint32_t id,
199 					      uint32_t flags,
200 					      void *handle,
201 					      void *cookie)
202 {
203 	spmd_spm_core_context_t *ctx = spmd_get_context();
204 	gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
205 	unsigned int linear_id = plat_my_core_pos();
206 	int64_t rc;
207 
208 	/* Sanity check the security state when the exception was generated */
209 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
210 
211 	/* Sanity check the pointer to this cpu's context */
212 	assert(handle == cm_get_context(NON_SECURE));
213 
214 	/* Save the non-secure context before entering SPMC */
215 #if SPMD_SPM_AT_SEL2
216 	cm_el2_sysregs_context_save(NON_SECURE);
217 #else
218 	cm_el1_sysregs_context_save(NON_SECURE);
219 #endif
220 
221 	/* Convey the event to the SPMC through the FFA_INTERRUPT interface. */
222 	write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT);
223 	write_ctx_reg(gpregs, CTX_GPREG_X1, 0);
224 	write_ctx_reg(gpregs, CTX_GPREG_X2, 0);
225 	write_ctx_reg(gpregs, CTX_GPREG_X3, 0);
226 	write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
227 	write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
228 	write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
229 	write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
230 
231 	/* Mark current core as handling a secure interrupt. */
232 	ctx->secure_interrupt_ongoing = true;
233 
234 	rc = spmd_spm_core_sync_entry(ctx);
235 	if (rc != 0ULL) {
236 		ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, linear_id);
237 	}
238 
239 	ctx->secure_interrupt_ongoing = false;
240 
241 #if SPMD_SPM_AT_SEL2
242 	cm_el2_sysregs_context_restore(NON_SECURE);
243 #else
244 	cm_el1_sysregs_context_restore(NON_SECURE);
245 #endif
246 	cm_set_next_eret_context(NON_SECURE);
247 
248 	SMC_RET0(&ctx->cpu_ctx);
249 }
250 
251 #if (EL3_EXCEPTION_HANDLING == 0)
252 /*******************************************************************************
253  * spmd_group0_interrupt_handler_nwd
254  * Group0 secure interrupt in the normal world are trapped to EL3. Delegate the
255  * handling of the interrupt to the platform handler, and return only upon
256  * successfully handling the Group0 interrupt.
257  ******************************************************************************/
258 static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id,
259 						  uint32_t flags,
260 						  void *handle,
261 						  void *cookie)
262 {
263 	uint32_t intid;
264 
265 	/* Sanity check the security state when the exception was generated. */
266 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
267 
268 	/* Sanity check the pointer to this cpu's context. */
269 	assert(handle == cm_get_context(NON_SECURE));
270 
271 	assert(id == INTR_ID_UNAVAILABLE);
272 
273 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
274 
275 	intid = plat_ic_acknowledge_interrupt();
276 
277 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
278 		ERROR("Group0 interrupt %u not handled\n", intid);
279 		panic();
280 	}
281 
282 	/* Deactivate the corresponding Group0 interrupt. */
283 	plat_ic_end_of_interrupt(intid);
284 
285 	return 0U;
286 }
287 #endif
288 
289 /*******************************************************************************
290  * spmd_handle_group0_intr_swd
291  * SPMC delegates handling of Group0 secure interrupt to EL3 firmware using
292  * FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the
293  * interrupt to the platform handler, and returns only upon successfully
294  * handling the Group0 interrupt.
295  ******************************************************************************/
296 static uint64_t spmd_handle_group0_intr_swd(void *handle)
297 {
298 	uint32_t intid;
299 
300 	/* Sanity check the pointer to this cpu's context */
301 	assert(handle == cm_get_context(SECURE));
302 
303 	assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
304 
305 	intid = plat_ic_acknowledge_interrupt();
306 
307 	/*
308 	 * TODO: Currently due to a limitation in SPMD implementation, the
309 	 * platform handler is expected to not delegate handling to NWd while
310 	 * processing Group0 secure interrupt.
311 	 */
312 	if (plat_spmd_handle_group0_interrupt(intid) < 0) {
313 		/* Group0 interrupt was not handled by the platform. */
314 		ERROR("Group0 interrupt %u not handled\n", intid);
315 		panic();
316 	}
317 
318 	/* Deactivate the corresponding Group0 interrupt. */
319 	plat_ic_end_of_interrupt(intid);
320 
321 	/* Return success. */
322 	SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
323 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
324 		 FFA_PARAM_MBZ);
325 }
326 
327 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
328 static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size,
329 				 unsigned int attr, uintptr_t *align_addr,
330 				 size_t *align_size)
331 {
332 	uintptr_t base_addr_align;
333 	size_t mapped_size_align;
334 	int rc;
335 
336 	/* Page aligned address and size if necessary */
337 	base_addr_align = page_align(base_addr, DOWN);
338 	mapped_size_align = page_align(size, UP);
339 
340 	if ((base_addr != base_addr_align) &&
341 	    (size == mapped_size_align)) {
342 		mapped_size_align += PAGE_SIZE;
343 	}
344 
345 	/*
346 	 * Map dynamically given region with its aligned base address and
347 	 * size
348 	 */
349 	rc = mmap_add_dynamic_region((unsigned long long)base_addr_align,
350 				     base_addr_align,
351 				     mapped_size_align,
352 				     attr);
353 	if (rc == 0) {
354 		*align_addr = base_addr_align;
355 		*align_size = mapped_size_align;
356 	}
357 
358 	return rc;
359 }
360 
361 static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr,
362 			    size_t size)
363 {
364 	uintptr_t root_base_addr_align, sec_base_addr_align;
365 	size_t root_mapped_size_align, sec_mapped_size_align;
366 	int rc;
367 
368 	assert(root_base_addr != 0UL);
369 	assert(sec_base_addr != 0UL);
370 	assert(size != 0UL);
371 
372 	/* Map the memory with required attributes */
373 	rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT,
374 				  &root_base_addr_align,
375 				  &root_mapped_size_align);
376 	if (rc != 0) {
377 		ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region",
378 		      root_base_addr, rc);
379 		panic();
380 	}
381 
382 	rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE,
383 				  &sec_base_addr_align, &sec_mapped_size_align);
384 	if (rc != 0) {
385 		ERROR("%s %s %lu (%d)\n", "Error while mapping",
386 		      "secure region", sec_base_addr, rc);
387 		panic();
388 	}
389 
390 	/* Do copy operation */
391 	(void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size);
392 
393 	/* Unmap root memory region */
394 	rc = mmap_remove_dynamic_region(root_base_addr_align,
395 					root_mapped_size_align);
396 	if (rc != 0) {
397 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
398 		      "root region", root_base_addr_align, rc);
399 		panic();
400 	}
401 
402 	/* Unmap secure memory region */
403 	rc = mmap_remove_dynamic_region(sec_base_addr_align,
404 					sec_mapped_size_align);
405 	if (rc != 0) {
406 		ERROR("%s %s %lu (%d)\n", "Error while unmapping",
407 		      "secure region", sec_base_addr_align, rc);
408 		panic();
409 	}
410 }
411 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
412 
413 /*******************************************************************************
414  * Loads SPMC manifest and inits SPMC.
415  ******************************************************************************/
416 static int spmd_spmc_init(void *pm_addr)
417 {
418 	cpu_context_t *cpu_ctx;
419 	unsigned int core_id;
420 	uint32_t ep_attr, flags;
421 	int rc;
422 	const struct dyn_cfg_dtb_info_t *image_info __unused;
423 
424 	/* Load the SPM Core manifest */
425 	rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr);
426 	if (rc != 0) {
427 		WARN("No or invalid SPM Core manifest image provided by BL2\n");
428 		return rc;
429 	}
430 
431 	/*
432 	 * Ensure that the SPM Core version is compatible with the SPM
433 	 * Dispatcher version.
434 	 */
435 	if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) ||
436 	    (spmc_attrs.minor_version > FFA_VERSION_MINOR)) {
437 		WARN("Unsupported FFA version (%u.%u)\n",
438 		     spmc_attrs.major_version, spmc_attrs.minor_version);
439 		return -EINVAL;
440 	}
441 
442 	VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version,
443 	     spmc_attrs.minor_version);
444 
445 	VERBOSE("SPM Core run time EL%x.\n",
446 	     SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1);
447 
448 	/* Validate the SPMC ID, Ensure high bit is set */
449 	if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) &
450 			SPMC_SECURE_ID_MASK) == 0U) {
451 		WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id);
452 		return -EINVAL;
453 	}
454 
455 	/* Validate the SPM Core execution state */
456 	if ((spmc_attrs.exec_state != MODE_RW_64) &&
457 	    (spmc_attrs.exec_state != MODE_RW_32)) {
458 		WARN("Unsupported %s%x.\n", "SPM Core execution state 0x",
459 		     spmc_attrs.exec_state);
460 		return -EINVAL;
461 	}
462 
463 	VERBOSE("%s%x.\n", "SPM Core execution state 0x",
464 		spmc_attrs.exec_state);
465 
466 #if SPMD_SPM_AT_SEL2
467 	/* Ensure manifest has not requested AArch32 state in S-EL2 */
468 	if (spmc_attrs.exec_state == MODE_RW_32) {
469 		WARN("AArch32 state at S-EL2 is not supported.\n");
470 		return -EINVAL;
471 	}
472 
473 	/*
474 	 * Check if S-EL2 is supported on this system if S-EL2
475 	 * is required for SPM
476 	 */
477 	if (!is_feat_sel2_supported()) {
478 		WARN("SPM Core run time S-EL2 is not supported.\n");
479 		return -EINVAL;
480 	}
481 #endif /* SPMD_SPM_AT_SEL2 */
482 
483 	/* Initialise an entrypoint to set up the CPU context */
484 	ep_attr = SECURE | EP_ST_ENABLE;
485 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) {
486 		ep_attr |= EP_EE_BIG;
487 	}
488 
489 	SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr);
490 
491 	/*
492 	 * Populate SPSR for SPM Core based upon validated parameters from the
493 	 * manifest.
494 	 */
495 	if (spmc_attrs.exec_state == MODE_RW_32) {
496 		spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
497 						 SPSR_E_LITTLE,
498 						 DAIF_FIQ_BIT |
499 						 DAIF_IRQ_BIT |
500 						 DAIF_ABT_BIT);
501 	} else {
502 
503 #if SPMD_SPM_AT_SEL2
504 		static const uint32_t runtime_el = MODE_EL2;
505 #else
506 		static const uint32_t runtime_el = MODE_EL1;
507 #endif
508 		spmc_ep_info->spsr = SPSR_64(runtime_el,
509 					     MODE_SP_ELX,
510 					     DISABLE_ALL_EXCEPTIONS);
511 	}
512 
513 #if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
514 	image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID);
515 	assert(image_info != NULL);
516 
517 	if ((image_info->config_addr == 0UL) ||
518 	    (image_info->secondary_config_addr == 0UL) ||
519 	    (image_info->config_max_size == 0UL)) {
520 		return -EINVAL;
521 	}
522 
523 	/* Copy manifest from root->secure region */
524 	spmd_do_sec_cpy(image_info->config_addr,
525 			image_info->secondary_config_addr,
526 			image_info->config_max_size);
527 
528 	/* Update ep info of BL32 */
529 	assert(spmc_ep_info != NULL);
530 	spmc_ep_info->args.arg0 = image_info->secondary_config_addr;
531 #endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
532 
533 	/* Set an initial SPMC context state for all cores. */
534 	for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) {
535 		spm_core_context[core_id].state = SPMC_STATE_OFF;
536 
537 		/* Setup an initial cpu context for the SPMC. */
538 		cpu_ctx = &spm_core_context[core_id].cpu_ctx;
539 		cm_setup_context(cpu_ctx, spmc_ep_info);
540 
541 		/*
542 		 * Pass the core linear ID to the SPMC through x4.
543 		 * (TF-A implementation defined behavior helping
544 		 * a legacy TOS migration to adopt FF-A).
545 		 */
546 		write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id);
547 	}
548 
549 	/* Register power management hooks with PSCI */
550 	psci_register_spd_pm_hook(&spmd_pm);
551 
552 	/* Register init function for deferred init. */
553 	bl31_register_bl32_init(&spmd_init);
554 
555 	INFO("SPM Core setup done.\n");
556 
557 	/*
558 	 * Register an interrupt handler routing secure interrupts to SPMD
559 	 * while the NWd is running.
560 	 */
561 	flags = 0;
562 	set_interrupt_rm_flag(flags, NON_SECURE);
563 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
564 					     spmd_secure_interrupt_handler,
565 					     flags);
566 	if (rc != 0) {
567 		panic();
568 	}
569 
570 	/*
571 	 * Permit configurations where the SPM resides at S-EL1/2 and upon a
572 	 * Group0 interrupt triggering while the normal world runs, the
573 	 * interrupt is routed either through the EHF or directly to the SPMD:
574 	 *
575 	 * EL3_EXCEPTION_HANDLING=0: the Group0 interrupt is routed to the SPMD
576 	 *                   for handling by spmd_group0_interrupt_handler_nwd.
577 	 *
578 	 * EL3_EXCEPTION_HANDLING=1: the Group0 interrupt is routed to the EHF.
579 	 *
580 	 */
581 #if (EL3_EXCEPTION_HANDLING == 0)
582 	/*
583 	 * If EL3 interrupts are supported by the platform, register an
584 	 * interrupt handler routing Group0 interrupts to SPMD while the NWd is
585 	 * running.
586 	 */
587 	if (plat_ic_has_interrupt_type(INTR_TYPE_EL3)) {
588 		rc = register_interrupt_type_handler(INTR_TYPE_EL3,
589 						     spmd_group0_interrupt_handler_nwd,
590 						     flags);
591 		if (rc != 0) {
592 			panic();
593 		}
594 	}
595 #endif
596 
597 	return 0;
598 }
599 
600 /*******************************************************************************
601  * Initialize context of SPM Core.
602  ******************************************************************************/
603 int spmd_setup(void)
604 {
605 	int rc;
606 	void *spmc_manifest;
607 
608 	/*
609 	 * If the SPMC is at EL3, then just initialise it directly. The
610 	 * shenanigans of when it is at a lower EL are not needed.
611 	 */
612 	if (is_spmc_at_el3()) {
613 		/* Allow the SPMC to populate its attributes directly. */
614 		spmc_populate_attrs(&spmc_attrs);
615 
616 		rc = spmc_setup();
617 		if (rc != 0) {
618 			WARN("SPMC initialisation failed 0x%x.\n", rc);
619 		}
620 		return 0;
621 	}
622 
623 	spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
624 	if (spmc_ep_info == NULL) {
625 		WARN("No SPM Core image provided by BL2 boot loader.\n");
626 		return 0;
627 	}
628 
629 	/* Under no circumstances will this parameter be 0 */
630 	assert(spmc_ep_info->pc != 0ULL);
631 
632 	/*
633 	 * Check if BL32 ep_info has a reference to 'tos_fw_config'. This will
634 	 * be used as a manifest for the SPM Core at the next lower EL/mode.
635 	 */
636 	spmc_manifest = (void *)spmc_ep_info->args.arg0;
637 	if (spmc_manifest == NULL) {
638 		WARN("Invalid or absent SPM Core manifest.\n");
639 		return 0;
640 	}
641 
642 	/* Load manifest, init SPMC */
643 	rc = spmd_spmc_init(spmc_manifest);
644 	if (rc != 0) {
645 		WARN("Booting device without SPM initialization.\n");
646 	}
647 
648 	return 0;
649 }
650 
651 /*******************************************************************************
652  * Forward FF-A SMCs to the other security state.
653  ******************************************************************************/
654 uint64_t spmd_smc_switch_state(uint32_t smc_fid,
655 			       bool secure_origin,
656 			       uint64_t x1,
657 			       uint64_t x2,
658 			       uint64_t x3,
659 			       uint64_t x4,
660 			       void *handle,
661 			       uint64_t flags)
662 {
663 	unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE;
664 	unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE;
665 	void *ctx_out;
666 
667 #if SPMD_SPM_AT_SEL2
668 	if ((secure_state_out == SECURE) && (is_sve_hint_set(flags) == true)) {
669 		/*
670 		 * Set the SVE hint bit in x0 and pass to the lower secure EL,
671 		 * if it was set by the caller.
672 		 */
673 		smc_fid |= (FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT);
674 	}
675 #endif
676 
677 	/* Save incoming security state */
678 #if SPMD_SPM_AT_SEL2
679 	cm_el2_sysregs_context_save(secure_state_in);
680 #else
681 	cm_el1_sysregs_context_save(secure_state_in);
682 #endif
683 
684 	/* Restore outgoing security state */
685 #if SPMD_SPM_AT_SEL2
686 	cm_el2_sysregs_context_restore(secure_state_out);
687 #else
688 	cm_el1_sysregs_context_restore(secure_state_out);
689 #endif
690 	cm_set_next_eret_context(secure_state_out);
691 
692 	ctx_out = cm_get_context(secure_state_out);
693 #if SPMD_SPM_AT_SEL2
694 	/*
695 	 * If SPMC is at SEL2, save additional registers x8-x17, which may
696 	 * be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS.
697 	 * Note that technically, all SPMCs can support this, but this code is
698 	 * under ifdef to minimize breakage in case other SPMCs do not save
699 	 * and restore x8-x17.
700 	 * We also need to pass through these registers since not all FF-A ABIs
701 	 * modify x8-x17, in which case, SMCCC requires that these registers be
702 	 * preserved, so the SPMD passes through these registers and expects the
703 	 * SPMC to save and restore (potentially also modify) them.
704 	 */
705 	SMC_RET18(ctx_out, smc_fid, x1, x2, x3, x4,
706 			SMC_GET_GP(handle, CTX_GPREG_X5),
707 			SMC_GET_GP(handle, CTX_GPREG_X6),
708 			SMC_GET_GP(handle, CTX_GPREG_X7),
709 			SMC_GET_GP(handle, CTX_GPREG_X8),
710 			SMC_GET_GP(handle, CTX_GPREG_X9),
711 			SMC_GET_GP(handle, CTX_GPREG_X10),
712 			SMC_GET_GP(handle, CTX_GPREG_X11),
713 			SMC_GET_GP(handle, CTX_GPREG_X12),
714 			SMC_GET_GP(handle, CTX_GPREG_X13),
715 			SMC_GET_GP(handle, CTX_GPREG_X14),
716 			SMC_GET_GP(handle, CTX_GPREG_X15),
717 			SMC_GET_GP(handle, CTX_GPREG_X16),
718 			SMC_GET_GP(handle, CTX_GPREG_X17)
719 			);
720 
721 #else
722 	SMC_RET8(ctx_out, smc_fid, x1, x2, x3, x4,
723 			SMC_GET_GP(handle, CTX_GPREG_X5),
724 			SMC_GET_GP(handle, CTX_GPREG_X6),
725 			SMC_GET_GP(handle, CTX_GPREG_X7));
726 #endif
727 }
728 
729 /*******************************************************************************
730  * Forward SMCs to the other security state.
731  ******************************************************************************/
732 static uint64_t spmd_smc_forward(uint32_t smc_fid,
733 				 bool secure_origin,
734 				 uint64_t x1,
735 				 uint64_t x2,
736 				 uint64_t x3,
737 				 uint64_t x4,
738 				 void *cookie,
739 				 void *handle,
740 				 uint64_t flags)
741 {
742 	if (is_spmc_at_el3() && !secure_origin) {
743 		return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4,
744 					cookie, handle, flags);
745 	}
746 
747 	return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4,
748 				     handle, flags);
749 
750 }
751 
752 /*******************************************************************************
753  * Return FFA_ERROR with specified error code
754  ******************************************************************************/
755 uint64_t spmd_ffa_error_return(void *handle, int error_code)
756 {
757 	SMC_RET8(handle, (uint32_t) FFA_ERROR,
758 		 FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
759 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
760 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
761 }
762 
763 /*******************************************************************************
764  * spmd_check_address_in_binary_image
765  ******************************************************************************/
766 bool spmd_check_address_in_binary_image(uint64_t address)
767 {
768 	assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size));
769 
770 	return ((address >= spmc_attrs.load_address) &&
771 		(address < (spmc_attrs.load_address + spmc_attrs.binary_size)));
772 }
773 
774 /******************************************************************************
775  * spmd_is_spmc_message
776  *****************************************************************************/
777 static bool spmd_is_spmc_message(unsigned int ep)
778 {
779 	if (is_spmc_at_el3()) {
780 		return false;
781 	}
782 
783 	return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID)
784 		&& (ffa_endpoint_source(ep) == spmc_attrs.spmc_id));
785 }
786 
787 /******************************************************************************
788  * spmd_handle_spmc_message
789  *****************************************************************************/
790 static int spmd_handle_spmc_message(unsigned long long msg,
791 		unsigned long long parm1, unsigned long long parm2,
792 		unsigned long long parm3, unsigned long long parm4)
793 {
794 	VERBOSE("%s %llx %llx %llx %llx %llx\n", __func__,
795 		msg, parm1, parm2, parm3, parm4);
796 
797 	return -EINVAL;
798 }
799 
800 /*******************************************************************************
801  * This function forwards FF-A SMCs to either the main SPMD handler or the
802  * SPMC at EL3, depending on the origin security state, if enabled.
803  ******************************************************************************/
804 uint64_t spmd_ffa_smc_handler(uint32_t smc_fid,
805 			      uint64_t x1,
806 			      uint64_t x2,
807 			      uint64_t x3,
808 			      uint64_t x4,
809 			      void *cookie,
810 			      void *handle,
811 			      uint64_t flags)
812 {
813 	if (is_spmc_at_el3()) {
814 		/*
815 		 * If we have an SPMC at EL3 allow handling of the SMC first.
816 		 * The SPMC will call back through to SPMD handler if required.
817 		 */
818 		if (is_caller_secure(flags)) {
819 			return spmc_smc_handler(smc_fid,
820 						is_caller_secure(flags),
821 						x1, x2, x3, x4, cookie,
822 						handle, flags);
823 		}
824 	}
825 	return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
826 				handle, flags);
827 }
828 
829 /*******************************************************************************
830  * This function handles all SMCs in the range reserved for FFA. Each call is
831  * either forwarded to the other security state or handled by the SPM dispatcher
832  ******************************************************************************/
833 uint64_t spmd_smc_handler(uint32_t smc_fid,
834 			  uint64_t x1,
835 			  uint64_t x2,
836 			  uint64_t x3,
837 			  uint64_t x4,
838 			  void *cookie,
839 			  void *handle,
840 			  uint64_t flags)
841 {
842 	unsigned int linear_id = plat_my_core_pos();
843 	spmd_spm_core_context_t *ctx = spmd_get_context();
844 	bool secure_origin;
845 	int ret;
846 	uint32_t input_version;
847 
848 	/* Determine which security state this SMC originated from */
849 	secure_origin = is_caller_secure(flags);
850 
851 	VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64
852 		" 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n",
853 		    linear_id, smc_fid, x1, x2, x3, x4,
854 		    SMC_GET_GP(handle, CTX_GPREG_X5),
855 		    SMC_GET_GP(handle, CTX_GPREG_X6),
856 		    SMC_GET_GP(handle, CTX_GPREG_X7));
857 
858 	/*
859 	 * If there is an on-going info regs from EL3 SPMD LP, unconditionally
860 	 * return, we don't expect any other FF-A ABIs to be called between
861 	 * calls to FFA_PARTITION_INFO_GET_REGS.
862 	 */
863 	if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) {
864 		assert(secure_origin);
865 		spmd_spm_core_sync_exit(0ULL);
866 	}
867 
868 	switch (smc_fid) {
869 	case FFA_ERROR:
870 		/*
871 		 * Check if this is the first invocation of this interface on
872 		 * this CPU. If so, then indicate that the SPM Core initialised
873 		 * unsuccessfully.
874 		 */
875 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
876 			spmd_spm_core_sync_exit(x2);
877 		}
878 
879 		/*
880 		 * If there was an SPMD logical partition direct request on-going,
881 		 * return back to the SPMD logical partition so the error can be
882 		 * consumed.
883 		 */
884 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
885 			assert(secure_origin);
886 			spmd_spm_core_sync_exit(0ULL);
887 		}
888 
889 		return spmd_smc_forward(smc_fid, secure_origin,
890 					x1, x2, x3, x4, cookie,
891 					handle, flags);
892 		break; /* not reached */
893 
894 	case FFA_VERSION:
895 		input_version = (uint32_t)(0xFFFFFFFF & x1);
896 		/*
897 		 * If caller is secure and SPMC was initialized,
898 		 * return FFA_VERSION of SPMD.
899 		 * If caller is non secure and SPMC was initialized,
900 		 * forward to the EL3 SPMC if enabled, otherwise return
901 		 * the SPMC version if implemented at a lower EL.
902 		 * Sanity check to "input_version".
903 		 * If the EL3 SPMC is enabled, ignore the SPMC state as
904 		 * this is not used.
905 		 */
906 		if ((input_version & FFA_VERSION_BIT31_MASK) ||
907 		    (!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) {
908 			ret = FFA_ERROR_NOT_SUPPORTED;
909 		} else if (!secure_origin) {
910 			if (is_spmc_at_el3()) {
911 				/*
912 				 * Forward the call directly to the EL3 SPMC, if
913 				 * enabled, as we don't need to wrap the call in
914 				 * a direct request.
915 				 */
916 				return spmd_smc_forward(smc_fid, secure_origin,
917 							x1, x2, x3, x4, cookie,
918 							handle, flags);
919 			}
920 
921 			gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
922 			uint64_t rc;
923 
924 			if (spmc_attrs.major_version == 1 &&
925 			    spmc_attrs.minor_version == 0) {
926 				ret = MAKE_FFA_VERSION(spmc_attrs.major_version,
927 						       spmc_attrs.minor_version);
928 				SMC_RET8(handle, (uint32_t)ret,
929 					 FFA_TARGET_INFO_MBZ,
930 					 FFA_TARGET_INFO_MBZ,
931 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
932 					 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
933 					 FFA_PARAM_MBZ);
934 				break;
935 			}
936 			/* Save non-secure system registers context */
937 #if SPMD_SPM_AT_SEL2
938 			cm_el2_sysregs_context_save(NON_SECURE);
939 #else
940 			cm_el1_sysregs_context_save(NON_SECURE);
941 #endif
942 
943 			/*
944 			 * The incoming request has FFA_VERSION as X0 smc_fid
945 			 * and requested version in x1. Prepare a direct request
946 			 * from SPMD to SPMC with FFA_VERSION framework function
947 			 * identifier in X2 and requested version in X3.
948 			 */
949 			spmd_build_spmc_message(gpregs,
950 						SPMD_FWK_MSG_FFA_VERSION_REQ,
951 						input_version);
952 
953 			/*
954 			 * Ensure x8-x17 NS GP register values are untouched when returning
955 			 * from the SPMC.
956 			 */
957 			write_ctx_reg(gpregs, CTX_GPREG_X8, SMC_GET_GP(handle, CTX_GPREG_X8));
958 			write_ctx_reg(gpregs, CTX_GPREG_X9, SMC_GET_GP(handle, CTX_GPREG_X9));
959 			write_ctx_reg(gpregs, CTX_GPREG_X10, SMC_GET_GP(handle, CTX_GPREG_X10));
960 			write_ctx_reg(gpregs, CTX_GPREG_X11, SMC_GET_GP(handle, CTX_GPREG_X11));
961 			write_ctx_reg(gpregs, CTX_GPREG_X12, SMC_GET_GP(handle, CTX_GPREG_X12));
962 			write_ctx_reg(gpregs, CTX_GPREG_X13, SMC_GET_GP(handle, CTX_GPREG_X13));
963 			write_ctx_reg(gpregs, CTX_GPREG_X14, SMC_GET_GP(handle, CTX_GPREG_X14));
964 			write_ctx_reg(gpregs, CTX_GPREG_X15, SMC_GET_GP(handle, CTX_GPREG_X15));
965 			write_ctx_reg(gpregs, CTX_GPREG_X16, SMC_GET_GP(handle, CTX_GPREG_X16));
966 			write_ctx_reg(gpregs, CTX_GPREG_X17, SMC_GET_GP(handle, CTX_GPREG_X17));
967 
968 			rc = spmd_spm_core_sync_entry(ctx);
969 
970 			if ((rc != 0ULL) ||
971 			    (SMC_GET_GP(gpregs, CTX_GPREG_X0) !=
972 				FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
973 			    (SMC_GET_GP(gpregs, CTX_GPREG_X2) !=
974 				(FFA_FWK_MSG_BIT |
975 				 SPMD_FWK_MSG_FFA_VERSION_RESP))) {
976 				ERROR("Failed to forward FFA_VERSION\n");
977 				ret = FFA_ERROR_NOT_SUPPORTED;
978 			} else {
979 				ret = SMC_GET_GP(gpregs, CTX_GPREG_X3);
980 			}
981 
982 			/*
983 			 * x0-x4 are updated by spmd_smc_forward below.
984 			 * Zero out x5-x7 in the FFA_VERSION response.
985 			 */
986 			write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
987 			write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
988 			write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
989 
990 			/*
991 			 * Return here after SPMC has handled FFA_VERSION.
992 			 * The returned SPMC version is held in X3.
993 			 * Forward this version in X0 to the non-secure caller.
994 			 */
995 			return spmd_smc_forward(ret, true, FFA_PARAM_MBZ,
996 						FFA_PARAM_MBZ, FFA_PARAM_MBZ,
997 						FFA_PARAM_MBZ, cookie, gpregs,
998 						flags);
999 		} else {
1000 			ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
1001 					       FFA_VERSION_MINOR);
1002 		}
1003 
1004 		SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ,
1005 			 FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1006 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1007 		break; /* not reached */
1008 
1009 	case FFA_FEATURES:
1010 		/*
1011 		 * This is an optional interface. Do the minimal checks and
1012 		 * forward to SPM Core which will handle it if implemented.
1013 		 */
1014 
1015 		/* Forward SMC from Normal world to the SPM Core */
1016 		if (!secure_origin) {
1017 			return spmd_smc_forward(smc_fid, secure_origin,
1018 						x1, x2, x3, x4, cookie,
1019 						handle, flags);
1020 		}
1021 
1022 		/*
1023 		 * Return success if call was from secure world i.e. all
1024 		 * FFA functions are supported. This is essentially a
1025 		 * nop.
1026 		 */
1027 		SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4,
1028 			 SMC_GET_GP(handle, CTX_GPREG_X5),
1029 			 SMC_GET_GP(handle, CTX_GPREG_X6),
1030 			 SMC_GET_GP(handle, CTX_GPREG_X7));
1031 
1032 		break; /* not reached */
1033 
1034 	case FFA_ID_GET:
1035 		/*
1036 		 * Returns the ID of the calling FFA component.
1037 		 */
1038 		if (!secure_origin) {
1039 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1040 				 FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID,
1041 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1042 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1043 				 FFA_PARAM_MBZ);
1044 		}
1045 
1046 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1047 			 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1048 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1049 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1050 			 FFA_PARAM_MBZ);
1051 
1052 		break; /* not reached */
1053 
1054 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1055 		if (secure_origin) {
1056 			ret = spmd_pm_secondary_ep_register(x1);
1057 
1058 			if (ret < 0) {
1059 				SMC_RET8(handle, FFA_ERROR_SMC64,
1060 					FFA_TARGET_INFO_MBZ, ret,
1061 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1062 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1063 					FFA_PARAM_MBZ);
1064 			} else {
1065 				SMC_RET8(handle, FFA_SUCCESS_SMC64,
1066 					FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ,
1067 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1068 					FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1069 					FFA_PARAM_MBZ);
1070 			}
1071 		}
1072 
1073 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1074 		break; /* Not reached */
1075 
1076 	case FFA_SPM_ID_GET:
1077 		if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) {
1078 			return spmd_ffa_error_return(handle,
1079 						     FFA_ERROR_NOT_SUPPORTED);
1080 		}
1081 		/*
1082 		 * Returns the ID of the SPMC or SPMD depending on the FF-A
1083 		 * instance where this function is invoked
1084 		 */
1085 		if (!secure_origin) {
1086 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1087 				 FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
1088 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1089 				 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1090 				 FFA_PARAM_MBZ);
1091 		}
1092 		SMC_RET8(handle, FFA_SUCCESS_SMC32,
1093 			 FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID,
1094 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1095 			 FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1096 			 FFA_PARAM_MBZ);
1097 
1098 		break; /* not reached */
1099 
1100 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1101 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1102 		/*
1103 		 * Regardless of secure_origin, SPMD logical partitions cannot
1104 		 * handle direct messages. They can only initiate direct
1105 		 * messages and consume direct responses or errors.
1106 		 */
1107 		if (is_spmd_lp_id(ffa_endpoint_source(x1)) ||
1108 				  is_spmd_lp_id(ffa_endpoint_destination(x1))) {
1109 			return spmd_ffa_error_return(handle,
1110 						     FFA_ERROR_INVALID_PARAMETER
1111 						     );
1112 		}
1113 
1114 		/*
1115 		 * When there is an ongoing SPMD logical partition direct
1116 		 * request, there cannot be another direct request. Return
1117 		 * error in this case. Panic'ing is an option but that does
1118 		 * not provide the opportunity for caller to abort based on
1119 		 * error codes.
1120 		 */
1121 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1122 			assert(secure_origin);
1123 			return spmd_ffa_error_return(handle,
1124 						     FFA_ERROR_DENIED);
1125 		}
1126 
1127 		if (!secure_origin) {
1128 			/* Validate source endpoint is non-secure for non-secure caller. */
1129 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1130 				return spmd_ffa_error_return(handle,
1131 						FFA_ERROR_INVALID_PARAMETER);
1132 			}
1133 		}
1134 		if (secure_origin && spmd_is_spmc_message(x1)) {
1135 			ret = spmd_handle_spmc_message(x3, x4,
1136 				SMC_GET_GP(handle, CTX_GPREG_X5),
1137 				SMC_GET_GP(handle, CTX_GPREG_X6),
1138 				SMC_GET_GP(handle, CTX_GPREG_X7));
1139 
1140 			SMC_RET8(handle, FFA_SUCCESS_SMC32,
1141 				FFA_TARGET_INFO_MBZ, ret,
1142 				FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1143 				FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1144 				FFA_PARAM_MBZ);
1145 		} else {
1146 			/* Forward direct message to the other world */
1147 			return spmd_smc_forward(smc_fid, secure_origin,
1148 						x1, x2, x3, x4, cookie,
1149 						handle, flags);
1150 		}
1151 		break; /* Not reached */
1152 
1153 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1154 		if (!secure_origin) {
1155 			/* Validate source endpoint is non-secure for non-secure caller. */
1156 			if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
1157 				return spmd_ffa_error_return(handle,
1158 						FFA_ERROR_INVALID_PARAMETER);
1159 			}
1160 		}
1161 		/* FFA_MSG_SEND_DIRECT_REQ2 not used for framework messages. */
1162 		if (secure_origin && spmd_is_spmc_message(x1)) {
1163 			return spmd_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1164 		} else {
1165 			/* Forward direct message to the other world */
1166 			return spmd_smc_forward(smc_fid, secure_origin,
1167 						x1, x2, x3, x4, cookie,
1168 						handle, flags);
1169 		}
1170 		break; /* Not reached */
1171 
1172 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1173 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1174 		if (secure_origin && (spmd_is_spmc_message(x1) ||
1175 		    is_spmd_logical_sp_dir_req_in_progress(ctx))) {
1176 			spmd_spm_core_sync_exit(0ULL);
1177 		} else {
1178 			/* Forward direct message to the other world */
1179 			return spmd_smc_forward(smc_fid, secure_origin,
1180 						x1, x2, x3, x4, cookie,
1181 						handle, flags);
1182 		}
1183 		break; /* Not reached */
1184 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1185 		/* Forward direct message to the other world */
1186 		return spmd_smc_forward(smc_fid, secure_origin,
1187 					x1, x2, x3, x4, cookie,
1188 					handle, flags);
1189 		break; /* Not reached */
1190 	case FFA_RX_RELEASE:
1191 	case FFA_RXTX_MAP_SMC32:
1192 	case FFA_RXTX_MAP_SMC64:
1193 	case FFA_RXTX_UNMAP:
1194 	case FFA_PARTITION_INFO_GET:
1195 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1196 	case FFA_NOTIFICATION_BITMAP_CREATE:
1197 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1198 	case FFA_NOTIFICATION_BIND:
1199 	case FFA_NOTIFICATION_UNBIND:
1200 	case FFA_NOTIFICATION_SET:
1201 	case FFA_NOTIFICATION_GET:
1202 	case FFA_NOTIFICATION_INFO_GET:
1203 	case FFA_NOTIFICATION_INFO_GET_SMC64:
1204 	case FFA_MSG_SEND2:
1205 	case FFA_RX_ACQUIRE:
1206 #endif
1207 	case FFA_MSG_RUN:
1208 		/*
1209 		 * Above calls should be invoked only by the Normal world and
1210 		 * must not be forwarded from Secure world to Normal world.
1211 		 */
1212 		if (secure_origin) {
1213 			return spmd_ffa_error_return(handle,
1214 						     FFA_ERROR_NOT_SUPPORTED);
1215 		}
1216 
1217 		/* Forward the call to the other world */
1218 		/* fallthrough */
1219 	case FFA_MSG_SEND:
1220 	case FFA_MEM_DONATE_SMC32:
1221 	case FFA_MEM_DONATE_SMC64:
1222 	case FFA_MEM_LEND_SMC32:
1223 	case FFA_MEM_LEND_SMC64:
1224 	case FFA_MEM_SHARE_SMC32:
1225 	case FFA_MEM_SHARE_SMC64:
1226 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1227 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1228 	case FFA_MEM_RETRIEVE_RESP:
1229 	case FFA_MEM_RELINQUISH:
1230 	case FFA_MEM_RECLAIM:
1231 	case FFA_MEM_FRAG_TX:
1232 	case FFA_MEM_FRAG_RX:
1233 	case FFA_SUCCESS_SMC32:
1234 	case FFA_SUCCESS_SMC64:
1235 		/*
1236 		 * If there is an ongoing direct request from an SPMD logical
1237 		 * partition, return an error.
1238 		 */
1239 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1240 			assert(secure_origin);
1241 			return spmd_ffa_error_return(handle,
1242 					FFA_ERROR_DENIED);
1243 		}
1244 
1245 		return spmd_smc_forward(smc_fid, secure_origin,
1246 					x1, x2, x3, x4, cookie,
1247 					handle, flags);
1248 		break; /* not reached */
1249 
1250 	case FFA_MSG_WAIT:
1251 		/*
1252 		 * Check if this is the first invocation of this interface on
1253 		 * this CPU from the Secure world. If so, then indicate that the
1254 		 * SPM Core initialised successfully.
1255 		 */
1256 		if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
1257 			spmd_spm_core_sync_exit(0ULL);
1258 		}
1259 
1260 		/* Forward the call to the other world */
1261 		/* fallthrough */
1262 	case FFA_INTERRUPT:
1263 	case FFA_MSG_YIELD:
1264 		/* This interface must be invoked only by the Secure world */
1265 		if (!secure_origin) {
1266 			return spmd_ffa_error_return(handle,
1267 						      FFA_ERROR_NOT_SUPPORTED);
1268 		}
1269 
1270 		if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
1271 			assert(secure_origin);
1272 			return spmd_ffa_error_return(handle,
1273 					FFA_ERROR_DENIED);
1274 		}
1275 
1276 		return spmd_smc_forward(smc_fid, secure_origin,
1277 					x1, x2, x3, x4, cookie,
1278 					handle, flags);
1279 		break; /* not reached */
1280 
1281 	case FFA_NORMAL_WORLD_RESUME:
1282 		if (secure_origin && ctx->secure_interrupt_ongoing) {
1283 			spmd_spm_core_sync_exit(0ULL);
1284 		} else {
1285 			return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
1286 		}
1287 		break; /* Not reached */
1288 #if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
1289 	case FFA_PARTITION_INFO_GET_REGS_SMC64:
1290 		if (secure_origin) {
1291 			return spmd_el3_populate_logical_partition_info(handle, x1,
1292 								   x2, x3);
1293 		}
1294 
1295 		/* Call only supported with SMCCC 1.2+ */
1296 		if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) {
1297 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1298 		}
1299 
1300 		return spmd_smc_forward(smc_fid, secure_origin,
1301 					x1, x2, x3, x4, cookie,
1302 					handle, flags);
1303 		break; /* Not reached */
1304 #endif
1305 	case FFA_CONSOLE_LOG_SMC32:
1306 	case FFA_CONSOLE_LOG_SMC64:
1307 		/* This interface must not be forwarded to other worlds. */
1308 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1309 		break; /* not reached */
1310 
1311 	case FFA_EL3_INTR_HANDLE:
1312 		if (secure_origin) {
1313 			return spmd_handle_group0_intr_swd(handle);
1314 		} else {
1315 			return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1316 		}
1317 	default:
1318 		WARN("SPM: Unsupported call 0x%08x\n", smc_fid);
1319 		return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1320 	}
1321 }
1322