xref: /rk3399_ARM-atf/services/std_svc/spm/spm_mm/spm_mm_setup.c (revision 06f3c7058c42a9f1a9f7df75ea2de71a000855e8)
1 /*
2  * Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <string.h>
10 
11 #include <arch.h>
12 #include <arch_helpers.h>
13 #include <context.h>
14 #include <common/debug.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #if HOB_LIST
17 #include <lib/hob/hob.h>
18 #include <lib/hob/hob_guid.h>
19 #include <lib/hob/mmram.h>
20 #include <lib/hob/mpinfo.h>
21 #endif
22 #if TRANSFER_LIST
23 #include <lib/transfer_list.h>
24 #endif
25 #include <lib/xlat_tables/xlat_tables_v2.h>
26 #include <platform_def.h>
27 #include <plat/common/common_def.h>
28 #include <plat/common/platform.h>
29 #include <services/spm_mm_partition.h>
30 
31 #include "spm_common.h"
32 #include "spm_mm_private.h"
33 #include "spm_shim_private.h"
34 
35 #if HOB_LIST && TRANSFER_LIST
36 static struct efi_hob_handoff_info_table *build_sp_boot_hob_list(
37 		const spm_mm_boot_info_t *sp_boot_info, uint16_t *hob_table_size)
38 {
39 	int ret;
40 	struct efi_hob_handoff_info_table *hob_table;
41 	struct efi_guid ns_buf_guid = MM_NS_BUFFER_GUID;
42 	struct efi_guid mmram_resv_guid = MM_PEI_MMRAM_MEMORY_RESERVE_GUID;
43 	struct efi_mmram_descriptor *mmram_desc_data;
44 	uint16_t mmram_resv_data_size;
45 	struct efi_mmram_hob_descriptor_block *mmram_hob_desc_data;
46 	uint64_t hob_table_offset;
47 
48 	hob_table_offset = sizeof(struct transfer_list_header) +
49 		sizeof(struct transfer_list_entry);
50 
51 	*hob_table_size = 0U;
52 
53 	hob_table = create_hob_list(sp_boot_info->sp_mem_base,
54 			sp_boot_info->sp_mem_limit - sp_boot_info->sp_mem_base,
55 			sp_boot_info->sp_shared_buf_base + hob_table_offset,
56 			sp_boot_info->sp_shared_buf_size);
57 	if (hob_table == NULL) {
58 		return NULL;
59 	}
60 
61 	ret = create_fv_hob(hob_table, sp_boot_info->sp_image_base,
62 			sp_boot_info->sp_image_size);
63 	if (ret) {
64 		return NULL;
65 	}
66 
67 	ret = create_guid_hob(hob_table, &ns_buf_guid,
68 			sizeof(struct efi_mmram_descriptor), (void **) &mmram_desc_data);
69 	if (ret) {
70 		return NULL;
71 	}
72 
73 	mmram_desc_data->physical_start = sp_boot_info->sp_ns_comm_buf_base;
74 	mmram_desc_data->physical_size = sp_boot_info->sp_ns_comm_buf_size;
75 	mmram_desc_data->cpu_start = sp_boot_info->sp_ns_comm_buf_base;
76 	mmram_desc_data->region_state = EFI_CACHEABLE | EFI_ALLOCATED;
77 
78 	mmram_resv_data_size = sizeof(struct efi_mmram_hob_descriptor_block) +
79 		sizeof(struct efi_mmram_descriptor) * sp_boot_info->num_sp_mem_regions;
80 
81 	ret = create_guid_hob(hob_table, &mmram_resv_guid,
82 			mmram_resv_data_size, (void **) &mmram_hob_desc_data);
83 	if (ret) {
84 		return NULL;
85 	}
86 
87 	*hob_table_size = hob_table->efi_free_memory_bottom -
88 		(efi_physical_address_t) hob_table;
89 
90 	mmram_hob_desc_data->number_of_mm_reserved_regions = 4U;
91 	mmram_desc_data = &mmram_hob_desc_data->descriptor[0];
92 
93 	/* First, should be image mm range. */
94 	mmram_desc_data[0].physical_start = sp_boot_info->sp_image_base;
95 	mmram_desc_data[0].physical_size = sp_boot_info->sp_image_size;
96 	mmram_desc_data[0].cpu_start = sp_boot_info->sp_image_base;
97 	mmram_desc_data[0].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
98 
99 	/* Second, should be shared buffer mm range. */
100 	mmram_desc_data[1].physical_start = sp_boot_info->sp_shared_buf_base;
101 	mmram_desc_data[1].physical_size = sp_boot_info->sp_shared_buf_size;
102 	mmram_desc_data[1].cpu_start = sp_boot_info->sp_shared_buf_base;
103 	mmram_desc_data[1].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
104 
105 	/* Ns Buffer mm range */
106 	mmram_desc_data[2].physical_start = sp_boot_info->sp_ns_comm_buf_base;
107 	mmram_desc_data[2].physical_size = sp_boot_info->sp_ns_comm_buf_size;
108 	mmram_desc_data[2].cpu_start = sp_boot_info->sp_ns_comm_buf_base;
109 	mmram_desc_data[2].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
110 
111 	/* Heap mm range */
112 	mmram_desc_data[3].physical_start = sp_boot_info->sp_heap_base;
113 	mmram_desc_data[3].physical_size = sp_boot_info->sp_heap_size;
114 	mmram_desc_data[3].cpu_start = sp_boot_info->sp_heap_base;
115 	mmram_desc_data[3].region_state = EFI_CACHEABLE;
116 
117 	return hob_table;
118 }
119 #endif
120 
121 /* Setup context of the Secure Partition */
122 void spm_sp_setup(sp_context_t *sp_ctx)
123 {
124 	cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
125 	u_register_t sctlr_el1_val;
126 	/* Pointer to the MP information from the platform port. */
127 	const spm_mm_boot_info_t *sp_boot_info =
128 			plat_get_secure_partition_boot_info(NULL);
129 
130 #if HOB_LIST && TRANSFER_LIST
131 	struct efi_hob_handoff_info_table *hob_table;
132 	struct transfer_list_header *sp_boot_tl;
133 	struct transfer_list_entry *sp_boot_te;
134 	uint16_t hob_table_size;
135 #endif
136 
137 	assert(sp_boot_info != NULL);
138 
139 	/*
140 	 * Initialize CPU context
141 	 * ----------------------
142 	 */
143 
144 	entry_point_info_t ep_info = {0};
145 
146 	SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
147 
148 	/* Setup entrypoint and SPSR */
149 	ep_info.pc = sp_boot_info->sp_image_base;
150 	ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
151 
152 	/*
153 	 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
154 	 *     The buffer will be mapped in the Secure EL1 translation regime
155 	 *     with Normal IS WBWA attributes and RO data and Execute Never
156 	 *     instruction access permissions.
157 	 *
158 	 * X1: Size of the buffer in bytes
159 	 *
160 	 * X2: cookie value (Implementation Defined)
161 	 *
162 	 * X3: cookie value (Implementation Defined)
163 	 *
164 	 * X4 to X7 = 0
165 	 */
166 	ep_info.args.arg0 = sp_boot_info->sp_shared_buf_base;
167 	ep_info.args.arg1 = sp_boot_info->sp_shared_buf_size;
168 	ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
169 	ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
170 
171 	cm_setup_context(ctx, &ep_info);
172 
173 	/*
174 	 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
175 	 * initialized the stack pointer for the current CPU through
176 	 * implementation defined means. The value will be 0 otherwise.
177 	 */
178 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
179 			sp_boot_info->sp_stack_base + sp_boot_info->sp_pcpu_stack_size);
180 
181 	/*
182 	 * Setup translation tables
183 	 * ------------------------
184 	 */
185 
186 #if ENABLE_ASSERTIONS
187 
188 	/* Get max granularity supported by the platform. */
189 	unsigned int max_granule = xlat_arch_get_max_supported_granule_size();
190 
191 	VERBOSE("Max translation granule size supported: %u KiB\n",
192 		max_granule / 1024U);
193 
194 	unsigned int max_granule_mask = max_granule - 1U;
195 
196 	/* Base must be aligned to the max granularity */
197 	assert((sp_boot_info->sp_ns_comm_buf_base & max_granule_mask) == 0);
198 
199 	/* Size must be a multiple of the max granularity */
200 	assert((sp_boot_info->sp_ns_comm_buf_size & max_granule_mask) == 0);
201 
202 #endif /* ENABLE_ASSERTIONS */
203 
204 	/* This region contains the exception vectors used at S-EL1. */
205 	const mmap_region_t sel1_exception_vectors =
206 		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
207 				SPM_SHIM_EXCEPTIONS_SIZE,
208 				MT_CODE | MT_SECURE | MT_PRIVILEGED);
209 	mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
210 			    &sel1_exception_vectors);
211 
212 	mmap_add_ctx(sp_ctx->xlat_ctx_handle,
213 		     plat_get_secure_partition_mmap(NULL));
214 
215 	init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
216 
217 	/*
218 	 * MMU-related registers
219 	 * ---------------------
220 	 */
221 	xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
222 
223 	uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
224 
225 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
226 		      xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
227 		      EL1_EL0_REGIME);
228 
229 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), mair_el1,
230 		      mmu_cfg_params[MMU_CFG_MAIR]);
231 	write_ctx_tcr_el1_reg_errata(ctx, mmu_cfg_params[MMU_CFG_TCR]);
232 
233 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), ttbr0_el1,
234 		      mmu_cfg_params[MMU_CFG_TTBR0]);
235 
236 	/* Setup SCTLR_EL1 */
237 	sctlr_el1_val = read_ctx_sctlr_el1_reg_errata(ctx);
238 
239 	sctlr_el1_val |=
240 		/*SCTLR_EL1_RES1 |*/
241 		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
242 		SCTLR_UCI_BIT							|
243 		/* RW regions at xlat regime EL1&0 are forced to be XN. */
244 		SCTLR_WXN_BIT							|
245 		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
246 		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT					|
247 		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
248 		SCTLR_UCT_BIT							|
249 		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
250 		SCTLR_DZE_BIT							|
251 		/* Enable SP Alignment check for EL0 */
252 		SCTLR_SA0_BIT							|
253 		/* Don't change PSTATE.PAN on taking an exception to EL1 */
254 		SCTLR_SPAN_BIT							|
255 		/* Allow cacheable data and instr. accesses to normal memory. */
256 		SCTLR_C_BIT | SCTLR_I_BIT					|
257 		/* Enable MMU. */
258 		SCTLR_M_BIT
259 	;
260 
261 	sctlr_el1_val &= ~(
262 		/* Explicit data accesses at EL0 are little-endian. */
263 		SCTLR_E0E_BIT							|
264 		/*
265 		 * Alignment fault checking disabled when at EL1 and EL0 as
266 		 * the UEFI spec permits unaligned accesses.
267 		 */
268 		SCTLR_A_BIT							|
269 		/* Accesses to DAIF from EL0 are trapped to EL1. */
270 		SCTLR_UMA_BIT
271 	);
272 
273 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
274 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_el1_val);
275 
276 	/*
277 	 * Setup other system registers
278 	 * ----------------------------
279 	 */
280 
281 	/* Shim Exception Vector Base Address */
282 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), vbar_el1,
283 			SPM_SHIM_EXCEPTIONS_PTR);
284 
285 	write_el1_ctx_arch_timer(get_el1_sysregs_ctx(ctx), cntkctl_el1,
286 		      EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
287 
288 	/*
289 	 * FPEN: Allow the Secure Partition to access FP/SIMD registers.
290 	 * Note that SPM will not do any saving/restoring of these registers on
291 	 * behalf of the SP. This falls under the SP's responsibility.
292 	 * TTA: Enable access to trace registers.
293 	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
294 	 */
295 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), cpacr_el1,
296 			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
297 
298 	/*
299 	 * Prepare information in buffer shared between EL3 and S-EL0
300 	 * ----------------------------------------------------------
301 	 */
302 #if HOB_LIST && TRANSFER_LIST
303 	sp_boot_tl = transfer_list_init((void *) sp_boot_info->sp_shared_buf_base,
304 			sp_boot_info->sp_shared_buf_size);
305 	assert(sp_boot_tl != NULL);
306 
307 	hob_table = build_sp_boot_hob_list(sp_boot_info, &hob_table_size);
308 	assert(hob_table != NULL);
309 
310 	transfer_list_update_checksum(sp_boot_tl);
311 
312 	sp_boot_te = transfer_list_add(sp_boot_tl, TL_TAG_HOB_LIST,
313 			hob_table_size, hob_table);
314 	if (sp_boot_te == NULL) {
315 		ERROR("Failed to add HOB list to xfer list\n");
316 	}
317 
318 	transfer_list_set_handoff_args(sp_boot_tl, &ep_info);
319 
320 	transfer_list_dump(sp_boot_tl);
321 
322 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0,
323 			ep_info.args.arg0);
324 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1,
325 			ep_info.args.arg1);
326 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2,
327 			ep_info.args.arg2);
328 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3,
329 			ep_info.args.arg3);
330 #else
331 	void *shared_buf_ptr = (void *) sp_boot_info->sp_shared_buf_base;
332 
333 	/* Copy the boot information into the shared buffer with the SP. */
334 	assert((uintptr_t)shared_buf_ptr + sizeof(spm_mm_boot_info_t)
335 	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size));
336 
337 	assert(sp_boot_info->sp_shared_buf_base <=
338 				(UINTPTR_MAX - sp_boot_info->sp_shared_buf_size + 1));
339 
340 
341 	memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
342 	       sizeof(spm_mm_boot_info_t));
343 
344 	/* Pointer to the MP information from the platform port. */
345 	spm_mm_mp_info_t *sp_mp_info =
346 		((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
347 
348 	assert(sp_mp_info != NULL);
349 
350 	/*
351 	 * Point the shared buffer MP information pointer to where the info will
352 	 * be populated, just after the boot info.
353 	 */
354 	((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info =
355 		(spm_mm_mp_info_t *) ((uintptr_t)shared_buf_ptr
356 				+ sizeof(spm_mm_boot_info_t));
357 
358 	/*
359 	 * Update the shared buffer pointer to where the MP information for the
360 	 * payload will be populated
361 	 */
362 	shared_buf_ptr = ((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
363 
364 	/*
365 	 * Copy the cpu information into the shared buffer area after the boot
366 	 * information.
367 	 */
368 	assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
369 
370 	assert((uintptr_t)shared_buf_ptr
371 	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size -
372 		       (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
373 
374 	memcpy(shared_buf_ptr, (const void *) sp_mp_info,
375 		sp_boot_info->num_cpus * sizeof(*sp_mp_info));
376 
377 	/*
378 	 * Calculate the linear indices of cores in boot information for the
379 	 * secure partition and flag the primary CPU
380 	 */
381 	sp_mp_info = (spm_mm_mp_info_t *) shared_buf_ptr;
382 
383 	for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
384 		u_register_t mpidr = sp_mp_info[index].mpidr;
385 
386 		sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
387 		if (plat_my_core_pos() == sp_mp_info[index].linear_id)
388 			sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
389 	}
390 #endif
391 }
392