xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision f90fe02f061b8a203391e566682221396b656c6f)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 
9 #include <common/debug.h>
10 #include <common/runtime_svc.h>
11 #include <lib/object_pool.h>
12 #include <lib/spinlock.h>
13 #include <lib/xlat_tables/xlat_tables_v2.h>
14 #include <services/ffa_svc.h>
15 #include "spmc.h"
16 #include "spmc_shared_mem.h"
17 
18 #include <platform_def.h>
19 
20 /**
21  * struct spmc_shmem_obj - Shared memory object.
22  * @desc_size:      Size of @desc.
23  * @desc_filled:    Size of @desc already received.
24  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
25  *                  without a matching ffa_mem_relinquish call.
26  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
27  */
28 struct spmc_shmem_obj {
29 	size_t desc_size;
30 	size_t desc_filled;
31 	size_t in_use;
32 	struct ffa_mtd desc;
33 };
34 
35 /*
36  * Declare our data structure to store the metadata of memory share requests.
37  * The main datastore is allocated on a per platform basis to ensure enough
38  * storage can be made available.
39  * The address of the data store will be populated by the SPMC during its
40  * initialization.
41  */
42 
43 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
44 	/* Set start value for handle so top 32 bits are needed quickly. */
45 	.next_handle = 0xffffffc0U,
46 };
47 
48 /**
49  * spmc_shmem_obj_size - Convert from descriptor size to object size.
50  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
51  *
52  * Return: Size of struct spmc_shmem_obj object.
53  */
54 static size_t spmc_shmem_obj_size(size_t desc_size)
55 {
56 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
57 }
58 
59 /**
60  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
61  * @state:      Global state.
62  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
63  *              allocated object will hold.
64  *
65  * Return: Pointer to newly allocated object, or %NULL if there not enough space
66  *         left. The returned pointer is only valid while @state is locked, to
67  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
68  *         called.
69  */
70 static struct spmc_shmem_obj *
71 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
72 {
73 	struct spmc_shmem_obj *obj;
74 	size_t free = state->data_size - state->allocated;
75 	size_t obj_size;
76 
77 	if (state->data == NULL) {
78 		ERROR("Missing shmem datastore!\n");
79 		return NULL;
80 	}
81 
82 	obj_size = spmc_shmem_obj_size(desc_size);
83 
84 	/* Ensure the obj size has not overflowed. */
85 	if (obj_size < desc_size) {
86 		WARN("%s(0x%zx) desc_size overflow\n",
87 		     __func__, desc_size);
88 		return NULL;
89 	}
90 
91 	if (obj_size > free) {
92 		WARN("%s(0x%zx) failed, free 0x%zx\n",
93 		     __func__, desc_size, free);
94 		return NULL;
95 	}
96 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
97 	obj->desc = (struct ffa_mtd) {0};
98 	obj->desc_size = desc_size;
99 	obj->desc_filled = 0;
100 	obj->in_use = 0;
101 	state->allocated += obj_size;
102 	return obj;
103 }
104 
105 /**
106  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
107  * @state:      Global state.
108  * @obj:        Object to free.
109  *
110  * Release memory used by @obj. Other objects may move, so on return all
111  * pointers to struct spmc_shmem_obj object should be considered invalid, not
112  * just @obj.
113  *
114  * The current implementation always compacts the remaining objects to simplify
115  * the allocator and to avoid fragmentation.
116  */
117 
118 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
119 				  struct spmc_shmem_obj *obj)
120 {
121 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
122 	uint8_t *shift_dest = (uint8_t *)obj;
123 	uint8_t *shift_src = shift_dest + free_size;
124 	size_t shift_size = state->allocated - (shift_src - state->data);
125 
126 	if (shift_size != 0U) {
127 		memmove(shift_dest, shift_src, shift_size);
128 	}
129 	state->allocated -= free_size;
130 }
131 
132 /**
133  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
134  * @state:      Global state.
135  * @handle:     Unique handle of object to return.
136  *
137  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
138  *         %NULL, if not object in @state->data has a matching handle.
139  */
140 static struct spmc_shmem_obj *
141 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
142 {
143 	uint8_t *curr = state->data;
144 
145 	while (curr - state->data < state->allocated) {
146 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
147 
148 		if (obj->desc.handle == handle) {
149 			return obj;
150 		}
151 		curr += spmc_shmem_obj_size(obj->desc_size);
152 	}
153 	return NULL;
154 }
155 
156 /**
157  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
158  * @offset:     Offset used to track which objects have previously been
159  *              returned.
160  *
161  * Return: the next struct spmc_shmem_obj_state object from the provided
162  *	   offset.
163  *	   %NULL, if there are no more objects.
164  */
165 static struct spmc_shmem_obj *
166 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
167 {
168 	uint8_t *curr = state->data + *offset;
169 
170 	if (curr - state->data < state->allocated) {
171 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
172 
173 		*offset += spmc_shmem_obj_size(obj->desc_size);
174 
175 		return obj;
176 	}
177 	return NULL;
178 }
179 
180 /*******************************************************************************
181  * FF-A memory descriptor helper functions.
182  ******************************************************************************/
183 /**
184  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
185  *                           clients FF-A version.
186  * @desc:         The memory transaction descriptor.
187  * @index:        The index of the emad element to be accessed.
188  * @ffa_version:  FF-A version of the provided structure.
189  * @emad_size:    Will be populated with the size of the returned emad
190  *                descriptor.
191  * Return: A pointer to the requested emad structure.
192  */
193 static void *
194 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
195 			uint32_t ffa_version, size_t *emad_size)
196 {
197 	uint8_t *emad;
198 	/*
199 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
200 	 * format, otherwise assume it is a v1.1 format.
201 	 */
202 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
203 		/* Cast our descriptor to the v1.0 format. */
204 		struct ffa_mtd_v1_0 *mtd_v1_0 =
205 					(struct ffa_mtd_v1_0 *) desc;
206 		emad = (uint8_t *)  &(mtd_v1_0->emad);
207 		*emad_size = sizeof(struct ffa_emad_v1_0);
208 	} else {
209 		if (!is_aligned(desc->emad_offset, 16)) {
210 			WARN("Emad offset is not aligned.\n");
211 			return NULL;
212 		}
213 		emad = ((uint8_t *) desc + desc->emad_offset);
214 		*emad_size = desc->emad_size;
215 	}
216 	return (emad + (*emad_size * index));
217 }
218 
219 /**
220  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
221  *				 FF-A version of the descriptor.
222  * @obj:    Object containing ffa_memory_region_descriptor.
223  *
224  * Return: struct ffa_comp_mrd object corresponding to the composite memory
225  *	   region descriptor.
226  */
227 static struct ffa_comp_mrd *
228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
229 {
230 	size_t emad_size;
231 	/*
232 	 * The comp_mrd_offset field of the emad descriptor remains consistent
233 	 * between FF-A versions therefore we can use the v1.0 descriptor here
234 	 * in all cases.
235 	 */
236 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
237 							     ffa_version,
238 							     &emad_size);
239 	/* Ensure the emad array was found. */
240 	if (emad == NULL) {
241 		return NULL;
242 	}
243 
244 	/* Ensure the composite descriptor offset is aligned. */
245 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
246 		WARN("Unaligned composite memory region descriptor offset.\n");
247 		return NULL;
248 	}
249 
250 	return (struct ffa_comp_mrd *)
251 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
252 }
253 
254 /**
255  * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
256  * @obj:    Object containing ffa_memory_region_descriptor.
257  *
258  * Return: Size of ffa_constituent_memory_region_descriptors in @obj.
259  */
260 static size_t
261 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
262 				    uint32_t ffa_version)
263 {
264 	struct ffa_comp_mrd *comp_mrd;
265 
266 	comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
267 	if (comp_mrd == NULL) {
268 		return 0;
269 	}
270 	return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
271 }
272 
273 /**
274  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
275  *				a given memory transaction.
276  * @sp_id:      Partition ID to validate.
277  * @obj:        The shared memory object containing the descriptor
278  *              of the memory transaction.
279  * Return: true if ID is valid, else false.
280  */
281 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
282 {
283 	bool found = false;
284 	struct ffa_mtd *desc = &obj->desc;
285 	size_t desc_size = obj->desc_size;
286 
287 	/* Validate the partition is a valid participant. */
288 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
289 		size_t emad_size;
290 		struct ffa_emad_v1_0 *emad;
291 
292 		emad = spmc_shmem_obj_get_emad(desc, i,
293 					       MAKE_FFA_VERSION(1, 1),
294 					       &emad_size);
295 		/*
296 		 * Validate the calculated emad address resides within the
297 		 * descriptor.
298 		 */
299 		if ((emad == NULL) || (uintptr_t) emad >=
300 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
301 			VERBOSE("Invalid emad.\n");
302 			break;
303 		}
304 		if (sp_id == emad->mapd.endpoint_id) {
305 			found = true;
306 			break;
307 		}
308 	}
309 	return found;
310 }
311 
312 /*
313  * Compare two memory regions to determine if any range overlaps with another
314  * ongoing memory transaction.
315  */
316 static bool
317 overlapping_memory_regions(struct ffa_comp_mrd *region1,
318 			   struct ffa_comp_mrd *region2)
319 {
320 	uint64_t region1_start;
321 	uint64_t region1_size;
322 	uint64_t region1_end;
323 	uint64_t region2_start;
324 	uint64_t region2_size;
325 	uint64_t region2_end;
326 
327 	assert(region1 != NULL);
328 	assert(region2 != NULL);
329 
330 	if (region1 == region2) {
331 		return true;
332 	}
333 
334 	/*
335 	 * Check each memory region in the request against existing
336 	 * transactions.
337 	 */
338 	for (size_t i = 0; i < region1->address_range_count; i++) {
339 
340 		region1_start = region1->address_range_array[i].address;
341 		region1_size =
342 			region1->address_range_array[i].page_count *
343 			PAGE_SIZE_4KB;
344 		region1_end = region1_start + region1_size;
345 
346 		for (size_t j = 0; j < region2->address_range_count; j++) {
347 
348 			region2_start = region2->address_range_array[j].address;
349 			region2_size =
350 				region2->address_range_array[j].page_count *
351 				PAGE_SIZE_4KB;
352 			region2_end = region2_start + region2_size;
353 
354 			/* Check if regions are not overlapping. */
355 			if (!((region2_end <= region1_start) ||
356 			      (region1_end <= region2_start))) {
357 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
358 				     region1_start, region1_end,
359 				     region2_start, region2_end);
360 				return true;
361 			}
362 		}
363 	}
364 	return false;
365 }
366 
367 /*******************************************************************************
368  * FF-A v1.0 Memory Descriptor Conversion Helpers.
369  ******************************************************************************/
370 /**
371  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
372  *                                     converted descriptor.
373  * @orig:       The original v1.0 memory transaction descriptor.
374  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
375  *
376  * Return: the size required to store the descriptor store in the v1.1 format.
377  */
378 static size_t
379 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
380 {
381 	size_t size = 0;
382 	struct ffa_comp_mrd *mrd;
383 	struct ffa_emad_v1_0 *emad_array = orig->emad;
384 
385 	/* Get the size of the v1.1 descriptor. */
386 	size += sizeof(struct ffa_mtd);
387 
388 	/* Add the size of the emad descriptors. */
389 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
390 
391 	/* Add the size of the composite mrds. */
392 	size += sizeof(struct ffa_comp_mrd);
393 
394 	/* Add the size of the constituent mrds. */
395 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
396 	      emad_array[0].comp_mrd_offset);
397 
398 	/* Check the calculated address is within the memory descriptor. */
399 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
400 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
401 		return 0;
402 	}
403 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
404 
405 	return size;
406 }
407 
408 /**
409  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
410  *                                     converted descriptor.
411  * @orig:       The original v1.1 memory transaction descriptor.
412  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
413  *
414  * Return: the size required to store the descriptor store in the v1.0 format.
415  */
416 static size_t
417 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
418 {
419 	size_t size = 0;
420 	struct ffa_comp_mrd *mrd;
421 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
422 					   ((uint8_t *) orig +
423 					    orig->emad_offset);
424 
425 	/* Get the size of the v1.0 descriptor. */
426 	size += sizeof(struct ffa_mtd_v1_0);
427 
428 	/* Add the size of the v1.0 emad descriptors. */
429 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
430 
431 	/* Add the size of the composite mrds. */
432 	size += sizeof(struct ffa_comp_mrd);
433 
434 	/* Add the size of the constituent mrds. */
435 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
436 	      emad_array[0].comp_mrd_offset);
437 
438 	/* Check the calculated address is within the memory descriptor. */
439 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
440 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
441 		return 0;
442 	}
443 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
444 
445 	return size;
446 }
447 
448 /**
449  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
450  * @out_obj:	The shared memory object to populate the converted descriptor.
451  * @orig:	The shared memory object containing the v1.0 descriptor.
452  *
453  * Return: true if the conversion is successful else false.
454  */
455 static bool
456 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
457 				     struct spmc_shmem_obj *orig)
458 {
459 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
460 	struct ffa_mtd *out = &out_obj->desc;
461 	struct ffa_emad_v1_0 *emad_array_in;
462 	struct ffa_emad_v1_0 *emad_array_out;
463 	struct ffa_comp_mrd *mrd_in;
464 	struct ffa_comp_mrd *mrd_out;
465 
466 	size_t mrd_in_offset;
467 	size_t mrd_out_offset;
468 	size_t mrd_size = 0;
469 
470 	/* Populate the new descriptor format from the v1.0 struct. */
471 	out->sender_id = mtd_orig->sender_id;
472 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
473 	out->flags = mtd_orig->flags;
474 	out->handle = mtd_orig->handle;
475 	out->tag = mtd_orig->tag;
476 	out->emad_count = mtd_orig->emad_count;
477 	out->emad_size = sizeof(struct ffa_emad_v1_0);
478 
479 	/*
480 	 * We will locate the emad descriptors directly after the ffa_mtd
481 	 * struct. This will be 8-byte aligned.
482 	 */
483 	out->emad_offset = sizeof(struct ffa_mtd);
484 
485 	emad_array_in = mtd_orig->emad;
486 	emad_array_out = (struct ffa_emad_v1_0 *)
487 			 ((uint8_t *) out + out->emad_offset);
488 
489 	/* Copy across the emad structs. */
490 	for (unsigned int i = 0U; i < out->emad_count; i++) {
491 		/* Bound check for emad array. */
492 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
493 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
494 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
495 			return false;
496 		}
497 		memcpy(&emad_array_out[i], &emad_array_in[i],
498 		       sizeof(struct ffa_emad_v1_0));
499 	}
500 
501 	/* Place the mrd descriptors after the end of the emad descriptors.*/
502 	mrd_in_offset = emad_array_in->comp_mrd_offset;
503 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
504 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
505 
506 	/* Add the size of the composite memory region descriptor. */
507 	mrd_size += sizeof(struct ffa_comp_mrd);
508 
509 	/* Find the mrd descriptor. */
510 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
511 
512 	/* Add the size of the constituent memory region descriptors. */
513 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
514 
515 	/*
516 	 * Update the offset in the emads by the delta between the input and
517 	 * output addresses.
518 	 */
519 	for (unsigned int i = 0U; i < out->emad_count; i++) {
520 		emad_array_out[i].comp_mrd_offset =
521 			emad_array_in[i].comp_mrd_offset +
522 			(mrd_out_offset - mrd_in_offset);
523 	}
524 
525 	/* Verify that we stay within bound of the memory descriptors. */
526 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
527 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
528 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
529 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
530 		ERROR("%s: Invalid mrd structure.\n", __func__);
531 		return false;
532 	}
533 
534 	/* Copy the mrd descriptors directly. */
535 	memcpy(mrd_out, mrd_in, mrd_size);
536 
537 	return true;
538 }
539 
540 /**
541  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
542  *                                v1.0 memory object.
543  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
544  * @orig:       The shared memory object containing the v1.1 descriptor.
545  *
546  * Return: true if the conversion is successful else false.
547  */
548 static bool
549 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
550 			     struct spmc_shmem_obj *orig)
551 {
552 	struct ffa_mtd *mtd_orig = &orig->desc;
553 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
554 	struct ffa_emad_v1_0 *emad_in;
555 	struct ffa_emad_v1_0 *emad_array_in;
556 	struct ffa_emad_v1_0 *emad_array_out;
557 	struct ffa_comp_mrd *mrd_in;
558 	struct ffa_comp_mrd *mrd_out;
559 
560 	size_t mrd_in_offset;
561 	size_t mrd_out_offset;
562 	size_t emad_out_array_size;
563 	size_t mrd_size = 0;
564 	size_t orig_desc_size = orig->desc_size;
565 
566 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
567 	out->sender_id = mtd_orig->sender_id;
568 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
569 	out->flags = mtd_orig->flags;
570 	out->handle = mtd_orig->handle;
571 	out->tag = mtd_orig->tag;
572 	out->emad_count = mtd_orig->emad_count;
573 
574 	/* Determine the location of the emad array in both descriptors. */
575 	emad_array_in = (struct ffa_emad_v1_0 *)
576 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
577 	emad_array_out = out->emad;
578 
579 	/* Copy across the emad structs. */
580 	emad_in = emad_array_in;
581 	for (unsigned int i = 0U; i < out->emad_count; i++) {
582 		/* Bound check for emad array. */
583 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
584 				((uint8_t *) mtd_orig + orig_desc_size)) {
585 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
586 			return false;
587 		}
588 		memcpy(&emad_array_out[i], emad_in,
589 		       sizeof(struct ffa_emad_v1_0));
590 
591 		emad_in +=  mtd_orig->emad_size;
592 	}
593 
594 	/* Place the mrd descriptors after the end of the emad descriptors. */
595 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
596 
597 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
598 			  emad_out_array_size;
599 
600 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
601 
602 	mrd_in_offset = mtd_orig->emad_offset +
603 			(mtd_orig->emad_size * mtd_orig->emad_count);
604 
605 	/* Add the size of the composite memory region descriptor. */
606 	mrd_size += sizeof(struct ffa_comp_mrd);
607 
608 	/* Find the mrd descriptor. */
609 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
610 
611 	/* Add the size of the constituent memory region descriptors. */
612 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
613 
614 	/*
615 	 * Update the offset in the emads by the delta between the input and
616 	 * output addresses.
617 	 */
618 	emad_in = emad_array_in;
619 
620 	for (unsigned int i = 0U; i < out->emad_count; i++) {
621 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
622 						    (mrd_out_offset -
623 						     mrd_in_offset);
624 		emad_in +=  mtd_orig->emad_size;
625 	}
626 
627 	/* Verify that we stay within bound of the memory descriptors. */
628 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
629 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
630 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
631 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
632 		ERROR("%s: Invalid mrd structure.\n", __func__);
633 		return false;
634 	}
635 
636 	/* Copy the mrd descriptors directly. */
637 	memcpy(mrd_out, mrd_in, mrd_size);
638 
639 	return true;
640 }
641 
642 /**
643  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
644  *                                     the v1.0 format and populates the
645  *                                     provided buffer.
646  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
647  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
648  * @buf_size:	    Size of the buffer to populate.
649  * @offset:	    The offset of the converted descriptor to copy.
650  * @copy_size:	    Will be populated with the number of bytes copied.
651  * @out_desc_size:  Will be populated with the total size of the v1.0
652  *                  descriptor.
653  *
654  * Return: 0 if conversion and population succeeded.
655  * Note: This function invalidates the reference to @orig therefore
656  * `spmc_shmem_obj_lookup` must be called if further usage is required.
657  */
658 static uint32_t
659 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
660 				 size_t buf_size, size_t offset,
661 				 size_t *copy_size, size_t *v1_0_desc_size)
662 {
663 		struct spmc_shmem_obj *v1_0_obj;
664 
665 		/* Calculate the size that the v1.0 descriptor will require. */
666 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
667 					&orig_obj->desc, orig_obj->desc_size);
668 
669 		if (*v1_0_desc_size == 0) {
670 			ERROR("%s: cannot determine size of descriptor.\n",
671 			      __func__);
672 			return FFA_ERROR_INVALID_PARAMETER;
673 		}
674 
675 		/* Get a new obj to store the v1.0 descriptor. */
676 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
677 						*v1_0_desc_size);
678 
679 		if (!v1_0_obj) {
680 			return FFA_ERROR_NO_MEMORY;
681 		}
682 
683 		/* Perform the conversion from v1.1 to v1.0. */
684 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
685 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
686 			return FFA_ERROR_INVALID_PARAMETER;
687 		}
688 
689 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
690 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
691 
692 		/*
693 		 * We're finished with the v1.0 descriptor for now so free it.
694 		 * Note that this will invalidate any references to the v1.1
695 		 * descriptor.
696 		 */
697 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
698 
699 		return 0;
700 }
701 
702 /**
703  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
704  * @obj:	  Object containing ffa_memory_region_descriptor.
705  * @ffa_version:  FF-A version of the provided descriptor.
706  *
707  * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
708  * offset or count is invalid.
709  */
710 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
711 				uint32_t ffa_version)
712 {
713 	uint32_t comp_mrd_offset = 0;
714 
715 	if (obj->desc.emad_count == 0U) {
716 		WARN("%s: unsupported attribute desc count %u.\n",
717 		     __func__, obj->desc.emad_count);
718 		return -EINVAL;
719 	}
720 
721 	for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
722 		size_t size;
723 		size_t count;
724 		size_t expected_size;
725 		size_t total_page_count;
726 		size_t emad_size;
727 		size_t desc_size;
728 		size_t header_emad_size;
729 		uint32_t offset;
730 		struct ffa_comp_mrd *comp;
731 		struct ffa_emad_v1_0 *emad;
732 
733 		emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
734 					       ffa_version, &emad_size);
735 		if (emad == NULL) {
736 			WARN("%s: invalid emad structure.\n", __func__);
737 			return -EINVAL;
738 		}
739 
740 		/*
741 		 * Validate the calculated emad address resides within the
742 		 * descriptor.
743 		 */
744 		if ((uintptr_t) emad >=
745 		    (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
746 			WARN("Invalid emad access.\n");
747 			return -EINVAL;
748 		}
749 
750 		offset = emad->comp_mrd_offset;
751 
752 		if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
753 			desc_size =  sizeof(struct ffa_mtd_v1_0);
754 		} else {
755 			desc_size =  sizeof(struct ffa_mtd);
756 		}
757 
758 		header_emad_size = desc_size +
759 			(obj->desc.emad_count * emad_size);
760 
761 		if (offset < header_emad_size) {
762 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
763 			     __func__, offset, header_emad_size);
764 			return -EINVAL;
765 		}
766 
767 		size = obj->desc_size;
768 
769 		if (offset > size) {
770 			WARN("%s: invalid object, offset %u > total size %zu\n",
771 			     __func__, offset, obj->desc_size);
772 			return -EINVAL;
773 		}
774 		size -= offset;
775 
776 		if (size < sizeof(struct ffa_comp_mrd)) {
777 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
778 			     __func__, offset, obj->desc_size);
779 			return -EINVAL;
780 		}
781 		size -= sizeof(struct ffa_comp_mrd);
782 
783 		count = size / sizeof(struct ffa_cons_mrd);
784 
785 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
786 
787 		if (comp == NULL) {
788 			WARN("%s: invalid comp_mrd offset\n", __func__);
789 			return -EINVAL;
790 		}
791 
792 		if (comp->address_range_count != count) {
793 			WARN("%s: invalid object, desc count %u != %zu\n",
794 			     __func__, comp->address_range_count, count);
795 			return -EINVAL;
796 		}
797 
798 		expected_size = offset + sizeof(*comp) +
799 				spmc_shmem_obj_ffa_constituent_size(obj,
800 								    ffa_version);
801 
802 		if (expected_size != obj->desc_size) {
803 			WARN("%s: invalid object, computed size %zu != size %zu\n",
804 			       __func__, expected_size, obj->desc_size);
805 			return -EINVAL;
806 		}
807 
808 		if (obj->desc_filled < obj->desc_size) {
809 			/*
810 			 * The whole descriptor has not yet been received.
811 			 * Skip final checks.
812 			 */
813 			return 0;
814 		}
815 
816 		/*
817 		 * The offset provided to the composite memory region descriptor
818 		 * should be consistent across endpoint descriptors. Store the
819 		 * first entry and compare against subsequent entries.
820 		 */
821 		if (comp_mrd_offset == 0) {
822 			comp_mrd_offset = offset;
823 		} else {
824 			if (comp_mrd_offset != offset) {
825 				ERROR("%s: mismatching offsets provided, %u != %u\n",
826 				       __func__, offset, comp_mrd_offset);
827 				return -EINVAL;
828 			}
829 		}
830 
831 		total_page_count = 0;
832 
833 		for (size_t i = 0; i < count; i++) {
834 			total_page_count +=
835 				comp->address_range_array[i].page_count;
836 		}
837 		if (comp->total_page_count != total_page_count) {
838 			WARN("%s: invalid object, desc total_page_count %u != %zu\n",
839 			     __func__, comp->total_page_count,
840 			total_page_count);
841 			return -EINVAL;
842 		}
843 	}
844 	return 0;
845 }
846 
847 /**
848  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
849  *				regions that are currently involved with an
850  *				existing memory transactions. This implies that
851  *				the memory is not in a valid state for lending.
852  * @obj:    Object containing ffa_memory_region_descriptor.
853  *
854  * Return: 0 if object is valid, -EINVAL if invalid memory state.
855  */
856 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
857 				      uint32_t ffa_version)
858 {
859 	size_t obj_offset = 0;
860 	struct spmc_shmem_obj *inflight_obj;
861 
862 	struct ffa_comp_mrd *other_mrd;
863 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
864 								  ffa_version);
865 
866 	if (requested_mrd == NULL) {
867 		return -EINVAL;
868 	}
869 
870 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
871 					       &obj_offset);
872 
873 	while (inflight_obj != NULL) {
874 		/*
875 		 * Don't compare the transaction to itself or to partially
876 		 * transmitted descriptors.
877 		 */
878 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
879 		    (obj->desc_size == obj->desc_filled)) {
880 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
881 							  FFA_VERSION_COMPILED);
882 			if (other_mrd == NULL) {
883 				return -EINVAL;
884 			}
885 			if (overlapping_memory_regions(requested_mrd,
886 						       other_mrd)) {
887 				return -EINVAL;
888 			}
889 		}
890 
891 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
892 						       &obj_offset);
893 	}
894 	return 0;
895 }
896 
897 static long spmc_ffa_fill_desc(struct mailbox *mbox,
898 			       struct spmc_shmem_obj *obj,
899 			       uint32_t fragment_length,
900 			       ffa_mtd_flag32_t mtd_flag,
901 			       uint32_t ffa_version,
902 			       void *smc_handle)
903 {
904 	int ret;
905 	size_t emad_size;
906 	uint32_t handle_low;
907 	uint32_t handle_high;
908 	struct ffa_emad_v1_0 *emad;
909 	struct ffa_emad_v1_0 *other_emad;
910 
911 	if (mbox->rxtx_page_count == 0U) {
912 		WARN("%s: buffer pair not registered.\n", __func__);
913 		ret = FFA_ERROR_INVALID_PARAMETER;
914 		goto err_arg;
915 	}
916 
917 	if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
918 		WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
919 		     fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
920 		ret = FFA_ERROR_INVALID_PARAMETER;
921 		goto err_arg;
922 	}
923 
924 	if (fragment_length > obj->desc_size - obj->desc_filled) {
925 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
926 		     fragment_length, obj->desc_size - obj->desc_filled);
927 		ret = FFA_ERROR_INVALID_PARAMETER;
928 		goto err_arg;
929 	}
930 
931 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
932 	       (uint8_t *) mbox->tx_buffer, fragment_length);
933 
934 	/* Ensure that the sender ID resides in the normal world. */
935 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
936 		WARN("%s: Invalid sender ID 0x%x.\n",
937 		     __func__, obj->desc.sender_id);
938 		ret = FFA_ERROR_DENIED;
939 		goto err_arg;
940 	}
941 
942 	/* Ensure the NS bit is set to 0. */
943 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
944 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
945 		ret = FFA_ERROR_INVALID_PARAMETER;
946 		goto err_arg;
947 	}
948 
949 	/*
950 	 * We don't currently support any optional flags so ensure none are
951 	 * requested.
952 	 */
953 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
954 	    (obj->desc.flags != mtd_flag)) {
955 		WARN("%s: invalid memory transaction flags %u != %u\n",
956 		     __func__, obj->desc.flags, mtd_flag);
957 		ret = FFA_ERROR_INVALID_PARAMETER;
958 		goto err_arg;
959 	}
960 
961 	if (obj->desc_filled == 0U) {
962 		/* First fragment, descriptor header has been copied */
963 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
964 		obj->desc.flags |= mtd_flag;
965 	}
966 
967 	obj->desc_filled += fragment_length;
968 	ret = spmc_shmem_check_obj(obj, ffa_version);
969 	if (ret != 0) {
970 		ret = FFA_ERROR_INVALID_PARAMETER;
971 		goto err_bad_desc;
972 	}
973 
974 	handle_low = (uint32_t)obj->desc.handle;
975 	handle_high = obj->desc.handle >> 32;
976 
977 	if (obj->desc_filled != obj->desc_size) {
978 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
979 			 handle_high, obj->desc_filled,
980 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
981 	}
982 
983 	/* The full descriptor has been received, perform any final checks. */
984 
985 	/*
986 	 * If a partition ID resides in the secure world validate that the
987 	 * partition ID is for a known partition. Ignore any partition ID
988 	 * belonging to the normal world as it is assumed the Hypervisor will
989 	 * have validated these.
990 	 */
991 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
992 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
993 					       &emad_size);
994 		if (emad == NULL) {
995 			ret = FFA_ERROR_INVALID_PARAMETER;
996 			goto err_bad_desc;
997 		}
998 
999 		ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
1000 
1001 		if (ffa_is_secure_world_id(ep_id)) {
1002 			if (spmc_get_sp_ctx(ep_id) == NULL) {
1003 				WARN("%s: Invalid receiver id 0x%x\n",
1004 				     __func__, ep_id);
1005 				ret = FFA_ERROR_INVALID_PARAMETER;
1006 				goto err_bad_desc;
1007 			}
1008 		}
1009 	}
1010 
1011 	/* Ensure partition IDs are not duplicated. */
1012 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1013 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1014 					       &emad_size);
1015 		if (emad == NULL) {
1016 			ret = FFA_ERROR_INVALID_PARAMETER;
1017 			goto err_bad_desc;
1018 		}
1019 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
1020 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1021 							     ffa_version,
1022 							     &emad_size);
1023 			if (other_emad == NULL) {
1024 				ret = FFA_ERROR_INVALID_PARAMETER;
1025 				goto err_bad_desc;
1026 			}
1027 
1028 			if (emad->mapd.endpoint_id ==
1029 				other_emad->mapd.endpoint_id) {
1030 				WARN("%s: Duplicated endpoint id 0x%x\n",
1031 				     __func__, emad->mapd.endpoint_id);
1032 				ret = FFA_ERROR_INVALID_PARAMETER;
1033 				goto err_bad_desc;
1034 			}
1035 		}
1036 	}
1037 
1038 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1039 	if (ret) {
1040 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1041 		ret = FFA_ERROR_INVALID_PARAMETER;
1042 		goto err_bad_desc;
1043 	}
1044 
1045 	/*
1046 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1047 	 * the descriptor format to use the v1.1 structures.
1048 	 */
1049 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1050 		struct spmc_shmem_obj *v1_1_obj;
1051 		uint64_t mem_handle;
1052 
1053 		/* Calculate the size that the v1.1 descriptor will required. */
1054 		size_t v1_1_desc_size =
1055 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1056 						      obj->desc_size);
1057 
1058 		if (v1_1_desc_size == 0U) {
1059 			ERROR("%s: cannot determine size of descriptor.\n",
1060 			      __func__);
1061 			goto err_arg;
1062 		}
1063 
1064 		/* Get a new obj to store the v1.1 descriptor. */
1065 		v1_1_obj =
1066 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
1067 
1068 		if (!v1_1_obj) {
1069 			ret = FFA_ERROR_NO_MEMORY;
1070 			goto err_arg;
1071 		}
1072 
1073 		/* Perform the conversion from v1.0 to v1.1. */
1074 		v1_1_obj->desc_size = v1_1_desc_size;
1075 		v1_1_obj->desc_filled = v1_1_desc_size;
1076 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1077 			ERROR("%s: Could not convert mtd!\n", __func__);
1078 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1079 			goto err_arg;
1080 		}
1081 
1082 		/*
1083 		 * We're finished with the v1.0 descriptor so free it
1084 		 * and continue our checks with the new v1.1 descriptor.
1085 		 */
1086 		mem_handle = obj->desc.handle;
1087 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1088 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1089 		if (obj == NULL) {
1090 			ERROR("%s: Failed to find converted descriptor.\n",
1091 			     __func__);
1092 			ret = FFA_ERROR_INVALID_PARAMETER;
1093 			return spmc_ffa_error_return(smc_handle, ret);
1094 		}
1095 	}
1096 
1097 	/* Allow for platform specific operations to be performed. */
1098 	ret = plat_spmc_shmem_begin(&obj->desc);
1099 	if (ret != 0) {
1100 		goto err_arg;
1101 	}
1102 
1103 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1104 		 0, 0, 0);
1105 
1106 err_bad_desc:
1107 err_arg:
1108 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1109 	return spmc_ffa_error_return(smc_handle, ret);
1110 }
1111 
1112 /**
1113  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1114  * @client:             Client state.
1115  * @total_length:       Total length of shared memory descriptor.
1116  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1117  *                      this call.
1118  * @address:            Not supported, must be 0.
1119  * @page_count:         Not supported, must be 0.
1120  * @smc_handle:         Handle passed to smc call. Used to return
1121  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1122  *
1123  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1124  * to share or lend memory from non-secure os to secure os (with no stream
1125  * endpoints).
1126  *
1127  * Return: 0 on success, error code on failure.
1128  */
1129 long spmc_ffa_mem_send(uint32_t smc_fid,
1130 			bool secure_origin,
1131 			uint64_t total_length,
1132 			uint32_t fragment_length,
1133 			uint64_t address,
1134 			uint32_t page_count,
1135 			void *cookie,
1136 			void *handle,
1137 			uint64_t flags)
1138 
1139 {
1140 	long ret;
1141 	struct spmc_shmem_obj *obj;
1142 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1143 	ffa_mtd_flag32_t mtd_flag;
1144 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1145 
1146 	if (address != 0U || page_count != 0U) {
1147 		WARN("%s: custom memory region for message not supported.\n",
1148 		     __func__);
1149 		return spmc_ffa_error_return(handle,
1150 					     FFA_ERROR_INVALID_PARAMETER);
1151 	}
1152 
1153 	if (secure_origin) {
1154 		WARN("%s: unsupported share direction.\n", __func__);
1155 		return spmc_ffa_error_return(handle,
1156 					     FFA_ERROR_INVALID_PARAMETER);
1157 	}
1158 
1159 	/*
1160 	 * Check if the descriptor is smaller than the v1.0 descriptor. The
1161 	 * descriptor cannot be smaller than this structure.
1162 	 */
1163 	if (fragment_length < sizeof(struct ffa_mtd_v1_0)) {
1164 		WARN("%s: bad first fragment size %u < %zu\n",
1165 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1166 		return spmc_ffa_error_return(handle,
1167 					     FFA_ERROR_INVALID_PARAMETER);
1168 	}
1169 
1170 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1171 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1172 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1173 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1174 	} else {
1175 		WARN("%s: invalid memory management operation.\n", __func__);
1176 		return spmc_ffa_error_return(handle,
1177 					     FFA_ERROR_INVALID_PARAMETER);
1178 	}
1179 
1180 	spin_lock(&spmc_shmem_obj_state.lock);
1181 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1182 	if (obj == NULL) {
1183 		ret = FFA_ERROR_NO_MEMORY;
1184 		goto err_unlock;
1185 	}
1186 
1187 	spin_lock(&mbox->lock);
1188 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1189 				 ffa_version, handle);
1190 	spin_unlock(&mbox->lock);
1191 
1192 	spin_unlock(&spmc_shmem_obj_state.lock);
1193 	return ret;
1194 
1195 err_unlock:
1196 	spin_unlock(&spmc_shmem_obj_state.lock);
1197 	return spmc_ffa_error_return(handle, ret);
1198 }
1199 
1200 /**
1201  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1202  * @client:             Client state.
1203  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1204  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1205  * @fragment_length:    Length of fragments transmitted.
1206  * @sender_id:          Vmid of sender in bits [31:16]
1207  * @smc_handle:         Handle passed to smc call. Used to return
1208  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1209  *
1210  * Return: @smc_handle on success, error code on failure.
1211  */
1212 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1213 			  bool secure_origin,
1214 			  uint64_t handle_low,
1215 			  uint64_t handle_high,
1216 			  uint32_t fragment_length,
1217 			  uint32_t sender_id,
1218 			  void *cookie,
1219 			  void *handle,
1220 			  uint64_t flags)
1221 {
1222 	long ret;
1223 	uint32_t desc_sender_id;
1224 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1225 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1226 
1227 	struct spmc_shmem_obj *obj;
1228 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1229 
1230 	spin_lock(&spmc_shmem_obj_state.lock);
1231 
1232 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1233 	if (obj == NULL) {
1234 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1235 		     __func__, mem_handle);
1236 		ret = FFA_ERROR_INVALID_PARAMETER;
1237 		goto err_unlock;
1238 	}
1239 
1240 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1241 	if (sender_id != desc_sender_id) {
1242 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1243 		     sender_id, desc_sender_id);
1244 		ret = FFA_ERROR_INVALID_PARAMETER;
1245 		goto err_unlock;
1246 	}
1247 
1248 	if (obj->desc_filled == obj->desc_size) {
1249 		WARN("%s: object desc already filled, %zu\n", __func__,
1250 		     obj->desc_filled);
1251 		ret = FFA_ERROR_INVALID_PARAMETER;
1252 		goto err_unlock;
1253 	}
1254 
1255 	spin_lock(&mbox->lock);
1256 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1257 				 handle);
1258 	spin_unlock(&mbox->lock);
1259 
1260 	spin_unlock(&spmc_shmem_obj_state.lock);
1261 	return ret;
1262 
1263 err_unlock:
1264 	spin_unlock(&spmc_shmem_obj_state.lock);
1265 	return spmc_ffa_error_return(handle, ret);
1266 }
1267 
1268 /**
1269  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1270  *				      if the caller implements a version greater
1271  *				      than FF-A 1.0 or if they have requested
1272  *				      the functionality.
1273  *				      TODO: We are assuming that the caller is
1274  *				      an SP. To support retrieval from the
1275  *				      normal world this function will need to be
1276  *				      expanded accordingly.
1277  * @resp:       Descriptor populated in callers RX buffer.
1278  * @sp_ctx:     Context of the calling SP.
1279  */
1280 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1281 			 struct secure_partition_desc *sp_ctx)
1282 {
1283 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1284 	    sp_ctx->ns_bit_requested) {
1285 		/*
1286 		 * Currently memory senders must reside in the normal
1287 		 * world, and we do not have the functionlaity to change
1288 		 * the state of memory dynamically. Therefore we can always set
1289 		 * the NS bit to 1.
1290 		 */
1291 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1292 	}
1293 }
1294 
1295 /**
1296  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1297  * @smc_fid:            FID of SMC
1298  * @total_length:       Total length of retrieve request descriptor if this is
1299  *                      the first call. Otherwise (unsupported) must be 0.
1300  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1301  *                      in this call. Only @fragment_length == @length is
1302  *                      supported by this implementation.
1303  * @address:            Not supported, must be 0.
1304  * @page_count:         Not supported, must be 0.
1305  * @smc_handle:         Handle passed to smc call. Used to return
1306  *                      FFA_MEM_RETRIEVE_RESP.
1307  *
1308  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1309  * Used by secure os to retrieve memory already shared by non-secure os.
1310  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1311  * the client must call FFA_MEM_FRAG_RX until the full response has been
1312  * received.
1313  *
1314  * Return: @handle on success, error code on failure.
1315  */
1316 long
1317 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1318 			  bool secure_origin,
1319 			  uint32_t total_length,
1320 			  uint32_t fragment_length,
1321 			  uint64_t address,
1322 			  uint32_t page_count,
1323 			  void *cookie,
1324 			  void *handle,
1325 			  uint64_t flags)
1326 {
1327 	int ret;
1328 	size_t buf_size;
1329 	size_t copy_size = 0;
1330 	size_t min_desc_size;
1331 	size_t out_desc_size = 0;
1332 
1333 	/*
1334 	 * Currently we are only accessing fields that are the same in both the
1335 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1336 	 * here. We only need validate against the appropriate struct size.
1337 	 */
1338 	struct ffa_mtd *resp;
1339 	const struct ffa_mtd *req;
1340 	struct spmc_shmem_obj *obj = NULL;
1341 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1342 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1343 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1344 
1345 	if (!secure_origin) {
1346 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1347 		return spmc_ffa_error_return(handle,
1348 					     FFA_ERROR_INVALID_PARAMETER);
1349 	}
1350 
1351 	if (address != 0U || page_count != 0U) {
1352 		WARN("%s: custom memory region not supported.\n", __func__);
1353 		return spmc_ffa_error_return(handle,
1354 					     FFA_ERROR_INVALID_PARAMETER);
1355 	}
1356 
1357 	spin_lock(&mbox->lock);
1358 
1359 	req = mbox->tx_buffer;
1360 	resp = mbox->rx_buffer;
1361 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1362 
1363 	if (mbox->rxtx_page_count == 0U) {
1364 		WARN("%s: buffer pair not registered.\n", __func__);
1365 		ret = FFA_ERROR_INVALID_PARAMETER;
1366 		goto err_unlock_mailbox;
1367 	}
1368 
1369 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1370 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1371 		ret = FFA_ERROR_DENIED;
1372 		goto err_unlock_mailbox;
1373 	}
1374 
1375 	if (fragment_length != total_length) {
1376 		WARN("%s: fragmented retrieve request not supported.\n",
1377 		     __func__);
1378 		ret = FFA_ERROR_INVALID_PARAMETER;
1379 		goto err_unlock_mailbox;
1380 	}
1381 
1382 	if (req->emad_count == 0U) {
1383 		WARN("%s: unsupported attribute desc count %u.\n",
1384 		     __func__, obj->desc.emad_count);
1385 		ret = FFA_ERROR_INVALID_PARAMETER;
1386 		goto err_unlock_mailbox;
1387 	}
1388 
1389 	/* Determine the appropriate minimum descriptor size. */
1390 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1391 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1392 	} else {
1393 		min_desc_size = sizeof(struct ffa_mtd);
1394 	}
1395 	if (total_length < min_desc_size) {
1396 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1397 		     min_desc_size);
1398 		ret = FFA_ERROR_INVALID_PARAMETER;
1399 		goto err_unlock_mailbox;
1400 	}
1401 
1402 	spin_lock(&spmc_shmem_obj_state.lock);
1403 
1404 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1405 	if (obj == NULL) {
1406 		ret = FFA_ERROR_INVALID_PARAMETER;
1407 		goto err_unlock_all;
1408 	}
1409 
1410 	if (obj->desc_filled != obj->desc_size) {
1411 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1412 		     __func__, obj->desc_filled, obj->desc_size);
1413 		ret = FFA_ERROR_INVALID_PARAMETER;
1414 		goto err_unlock_all;
1415 	}
1416 
1417 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1418 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1419 		     __func__, req->sender_id, obj->desc.sender_id);
1420 		ret = FFA_ERROR_INVALID_PARAMETER;
1421 		goto err_unlock_all;
1422 	}
1423 
1424 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1425 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1426 		     __func__, req->tag, obj->desc.tag);
1427 		ret = FFA_ERROR_INVALID_PARAMETER;
1428 		goto err_unlock_all;
1429 	}
1430 
1431 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1432 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1433 		     __func__, req->emad_count, obj->desc.emad_count);
1434 		ret = FFA_ERROR_INVALID_PARAMETER;
1435 		goto err_unlock_all;
1436 	}
1437 
1438 	/* Ensure the NS bit is set to 0 in the request. */
1439 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1440 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1441 		ret = FFA_ERROR_INVALID_PARAMETER;
1442 		goto err_unlock_all;
1443 	}
1444 
1445 	if (req->flags != 0U) {
1446 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1447 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1448 			/*
1449 			 * If the retrieve request specifies the memory
1450 			 * transaction ensure it matches what we expect.
1451 			 */
1452 			WARN("%s: wrong mem transaction flags %x != %x\n",
1453 			__func__, req->flags, obj->desc.flags);
1454 			ret = FFA_ERROR_INVALID_PARAMETER;
1455 			goto err_unlock_all;
1456 		}
1457 
1458 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1459 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1460 			/*
1461 			 * Current implementation does not support donate and
1462 			 * it supports no other flags.
1463 			 */
1464 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1465 			ret = FFA_ERROR_INVALID_PARAMETER;
1466 			goto err_unlock_all;
1467 		}
1468 	}
1469 
1470 	/* Validate the caller is a valid participant. */
1471 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1472 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1473 			__func__, sp_ctx->sp_id);
1474 		ret = FFA_ERROR_INVALID_PARAMETER;
1475 		goto err_unlock_all;
1476 	}
1477 
1478 	/* Validate that the provided emad offset and structure is valid.*/
1479 	for (size_t i = 0; i < req->emad_count; i++) {
1480 		size_t emad_size;
1481 		struct ffa_emad_v1_0 *emad;
1482 
1483 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1484 					       &emad_size);
1485 		if (emad == NULL) {
1486 			WARN("%s: invalid emad structure.\n", __func__);
1487 			ret = FFA_ERROR_INVALID_PARAMETER;
1488 			goto err_unlock_all;
1489 		}
1490 
1491 		if ((uintptr_t) emad >= (uintptr_t)
1492 					((uint8_t *) req + total_length)) {
1493 			WARN("Invalid emad access.\n");
1494 			ret = FFA_ERROR_INVALID_PARAMETER;
1495 			goto err_unlock_all;
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * Validate all the endpoints match in the case of multiple
1501 	 * borrowers. We don't mandate that the order of the borrowers
1502 	 * must match in the descriptors therefore check to see if the
1503 	 * endpoints match in any order.
1504 	 */
1505 	for (size_t i = 0; i < req->emad_count; i++) {
1506 		bool found = false;
1507 		size_t emad_size;
1508 		struct ffa_emad_v1_0 *emad;
1509 		struct ffa_emad_v1_0 *other_emad;
1510 
1511 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1512 					       &emad_size);
1513 		if (emad == NULL) {
1514 			ret = FFA_ERROR_INVALID_PARAMETER;
1515 			goto err_unlock_all;
1516 		}
1517 
1518 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1519 			other_emad = spmc_shmem_obj_get_emad(
1520 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1521 					&emad_size);
1522 
1523 			if (other_emad == NULL) {
1524 				ret = FFA_ERROR_INVALID_PARAMETER;
1525 				goto err_unlock_all;
1526 			}
1527 
1528 			if (req->emad_count &&
1529 			    emad->mapd.endpoint_id ==
1530 			    other_emad->mapd.endpoint_id) {
1531 				found = true;
1532 				break;
1533 			}
1534 		}
1535 
1536 		if (!found) {
1537 			WARN("%s: invalid receiver id (0x%x).\n",
1538 			     __func__, emad->mapd.endpoint_id);
1539 			ret = FFA_ERROR_INVALID_PARAMETER;
1540 			goto err_unlock_all;
1541 		}
1542 	}
1543 
1544 	mbox->state = MAILBOX_STATE_FULL;
1545 
1546 	if (req->emad_count != 0U) {
1547 		obj->in_use++;
1548 	}
1549 
1550 	/*
1551 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1552 	 * directly.
1553 	 */
1554 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1555 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1556 							&copy_size,
1557 							&out_desc_size);
1558 		if (ret != 0U) {
1559 			ERROR("%s: Failed to process descriptor.\n", __func__);
1560 			goto err_unlock_all;
1561 		}
1562 	} else {
1563 		copy_size = MIN(obj->desc_size, buf_size);
1564 		out_desc_size = obj->desc_size;
1565 
1566 		memcpy(resp, &obj->desc, copy_size);
1567 	}
1568 
1569 	/* Set the NS bit in the response if applicable. */
1570 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1571 
1572 	spin_unlock(&spmc_shmem_obj_state.lock);
1573 	spin_unlock(&mbox->lock);
1574 
1575 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1576 		 copy_size, 0, 0, 0, 0, 0);
1577 
1578 err_unlock_all:
1579 	spin_unlock(&spmc_shmem_obj_state.lock);
1580 err_unlock_mailbox:
1581 	spin_unlock(&mbox->lock);
1582 	return spmc_ffa_error_return(handle, ret);
1583 }
1584 
1585 /**
1586  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1587  * @client:             Client state.
1588  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1589  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1590  * @fragment_offset:    Byte offset in descriptor to resume at.
1591  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1592  *                      hypervisor. 0 otherwise.
1593  * @smc_handle:         Handle passed to smc call. Used to return
1594  *                      FFA_MEM_FRAG_TX.
1595  *
1596  * Return: @smc_handle on success, error code on failure.
1597  */
1598 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1599 			  bool secure_origin,
1600 			  uint32_t handle_low,
1601 			  uint32_t handle_high,
1602 			  uint32_t fragment_offset,
1603 			  uint32_t sender_id,
1604 			  void *cookie,
1605 			  void *handle,
1606 			  uint64_t flags)
1607 {
1608 	int ret;
1609 	void *src;
1610 	size_t buf_size;
1611 	size_t copy_size;
1612 	size_t full_copy_size;
1613 	uint32_t desc_sender_id;
1614 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1615 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1616 	struct spmc_shmem_obj *obj;
1617 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1618 
1619 	if (!secure_origin) {
1620 		WARN("%s: can only be called from swld.\n",
1621 		     __func__);
1622 		return spmc_ffa_error_return(handle,
1623 					     FFA_ERROR_INVALID_PARAMETER);
1624 	}
1625 
1626 	spin_lock(&spmc_shmem_obj_state.lock);
1627 
1628 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1629 	if (obj == NULL) {
1630 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1631 		     __func__, mem_handle);
1632 		ret = FFA_ERROR_INVALID_PARAMETER;
1633 		goto err_unlock_shmem;
1634 	}
1635 
1636 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1637 	if (sender_id != 0U && sender_id != desc_sender_id) {
1638 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1639 		     sender_id, desc_sender_id);
1640 		ret = FFA_ERROR_INVALID_PARAMETER;
1641 		goto err_unlock_shmem;
1642 	}
1643 
1644 	if (fragment_offset >= obj->desc_size) {
1645 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1646 		     __func__, fragment_offset, obj->desc_size);
1647 		ret = FFA_ERROR_INVALID_PARAMETER;
1648 		goto err_unlock_shmem;
1649 	}
1650 
1651 	spin_lock(&mbox->lock);
1652 
1653 	if (mbox->rxtx_page_count == 0U) {
1654 		WARN("%s: buffer pair not registered.\n", __func__);
1655 		ret = FFA_ERROR_INVALID_PARAMETER;
1656 		goto err_unlock_all;
1657 	}
1658 
1659 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1660 		WARN("%s: RX Buffer is full!\n", __func__);
1661 		ret = FFA_ERROR_DENIED;
1662 		goto err_unlock_all;
1663 	}
1664 
1665 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1666 
1667 	mbox->state = MAILBOX_STATE_FULL;
1668 
1669 	/*
1670 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1671 	 * directly.
1672 	 */
1673 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1674 		size_t out_desc_size;
1675 
1676 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1677 							buf_size,
1678 							fragment_offset,
1679 							&copy_size,
1680 							&out_desc_size);
1681 		if (ret != 0U) {
1682 			ERROR("%s: Failed to process descriptor.\n", __func__);
1683 			goto err_unlock_all;
1684 		}
1685 	} else {
1686 		full_copy_size = obj->desc_size - fragment_offset;
1687 		copy_size = MIN(full_copy_size, buf_size);
1688 
1689 		src = &obj->desc;
1690 
1691 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1692 	}
1693 
1694 	spin_unlock(&mbox->lock);
1695 	spin_unlock(&spmc_shmem_obj_state.lock);
1696 
1697 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1698 		 copy_size, sender_id, 0, 0, 0);
1699 
1700 err_unlock_all:
1701 	spin_unlock(&mbox->lock);
1702 err_unlock_shmem:
1703 	spin_unlock(&spmc_shmem_obj_state.lock);
1704 	return spmc_ffa_error_return(handle, ret);
1705 }
1706 
1707 /**
1708  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1709  * @client:             Client state.
1710  *
1711  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1712  * Used by secure os release previously shared memory to non-secure os.
1713  *
1714  * The handle to release must be in the client's (secure os's) transmit buffer.
1715  *
1716  * Return: 0 on success, error code on failure.
1717  */
1718 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1719 			    bool secure_origin,
1720 			    uint32_t handle_low,
1721 			    uint32_t handle_high,
1722 			    uint32_t fragment_offset,
1723 			    uint32_t sender_id,
1724 			    void *cookie,
1725 			    void *handle,
1726 			    uint64_t flags)
1727 {
1728 	int ret;
1729 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1730 	struct spmc_shmem_obj *obj;
1731 	const struct ffa_mem_relinquish_descriptor *req;
1732 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1733 
1734 	if (!secure_origin) {
1735 		WARN("%s: unsupported relinquish direction.\n", __func__);
1736 		return spmc_ffa_error_return(handle,
1737 					     FFA_ERROR_INVALID_PARAMETER);
1738 	}
1739 
1740 	spin_lock(&mbox->lock);
1741 
1742 	if (mbox->rxtx_page_count == 0U) {
1743 		WARN("%s: buffer pair not registered.\n", __func__);
1744 		ret = FFA_ERROR_INVALID_PARAMETER;
1745 		goto err_unlock_mailbox;
1746 	}
1747 
1748 	req = mbox->tx_buffer;
1749 
1750 	if (req->flags != 0U) {
1751 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1752 		ret = FFA_ERROR_INVALID_PARAMETER;
1753 		goto err_unlock_mailbox;
1754 	}
1755 
1756 	if (req->endpoint_count == 0) {
1757 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1758 		ret = FFA_ERROR_INVALID_PARAMETER;
1759 		goto err_unlock_mailbox;
1760 	}
1761 
1762 	spin_lock(&spmc_shmem_obj_state.lock);
1763 
1764 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1765 	if (obj == NULL) {
1766 		ret = FFA_ERROR_INVALID_PARAMETER;
1767 		goto err_unlock_all;
1768 	}
1769 
1770 	/*
1771 	 * Validate the endpoint ID was populated correctly. We don't currently
1772 	 * support proxy endpoints so the endpoint count should always be 1.
1773 	 */
1774 	if (req->endpoint_count != 1U) {
1775 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1776 		     req->endpoint_count);
1777 		ret = FFA_ERROR_INVALID_PARAMETER;
1778 		goto err_unlock_all;
1779 	}
1780 
1781 	/* Validate provided endpoint ID matches the partition ID. */
1782 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1783 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1784 		     req->endpoint_array[0], sp_ctx->sp_id);
1785 		ret = FFA_ERROR_INVALID_PARAMETER;
1786 		goto err_unlock_all;
1787 	}
1788 
1789 	/* Validate the caller is a valid participant. */
1790 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1791 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1792 			__func__, req->endpoint_array[0]);
1793 		ret = FFA_ERROR_INVALID_PARAMETER;
1794 		goto err_unlock_all;
1795 	}
1796 
1797 	if (obj->in_use == 0U) {
1798 		ret = FFA_ERROR_INVALID_PARAMETER;
1799 		goto err_unlock_all;
1800 	}
1801 	obj->in_use--;
1802 
1803 	spin_unlock(&spmc_shmem_obj_state.lock);
1804 	spin_unlock(&mbox->lock);
1805 
1806 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1807 
1808 err_unlock_all:
1809 	spin_unlock(&spmc_shmem_obj_state.lock);
1810 err_unlock_mailbox:
1811 	spin_unlock(&mbox->lock);
1812 	return spmc_ffa_error_return(handle, ret);
1813 }
1814 
1815 /**
1816  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1817  * @client:         Client state.
1818  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1819  * @handle_high:    Unique handle of shared memory object to reclaim.
1820  *                  Bit[63:32].
1821  * @flags:          Unsupported, ignored.
1822  *
1823  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1824  * Used by non-secure os reclaim memory previously shared with secure os.
1825  *
1826  * Return: 0 on success, error code on failure.
1827  */
1828 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1829 			 bool secure_origin,
1830 			 uint32_t handle_low,
1831 			 uint32_t handle_high,
1832 			 uint32_t mem_flags,
1833 			 uint64_t x4,
1834 			 void *cookie,
1835 			 void *handle,
1836 			 uint64_t flags)
1837 {
1838 	int ret;
1839 	struct spmc_shmem_obj *obj;
1840 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1841 
1842 	if (secure_origin) {
1843 		WARN("%s: unsupported reclaim direction.\n", __func__);
1844 		return spmc_ffa_error_return(handle,
1845 					     FFA_ERROR_INVALID_PARAMETER);
1846 	}
1847 
1848 	if (mem_flags != 0U) {
1849 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1850 		return spmc_ffa_error_return(handle,
1851 					     FFA_ERROR_INVALID_PARAMETER);
1852 	}
1853 
1854 	spin_lock(&spmc_shmem_obj_state.lock);
1855 
1856 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1857 	if (obj == NULL) {
1858 		ret = FFA_ERROR_INVALID_PARAMETER;
1859 		goto err_unlock;
1860 	}
1861 	if (obj->in_use != 0U) {
1862 		ret = FFA_ERROR_DENIED;
1863 		goto err_unlock;
1864 	}
1865 
1866 	if (obj->desc_filled != obj->desc_size) {
1867 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1868 		     __func__, obj->desc_filled, obj->desc_size);
1869 		ret = FFA_ERROR_INVALID_PARAMETER;
1870 		goto err_unlock;
1871 	}
1872 
1873 	/* Allow for platform specific operations to be performed. */
1874 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1875 	if (ret != 0) {
1876 		goto err_unlock;
1877 	}
1878 
1879 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1880 	spin_unlock(&spmc_shmem_obj_state.lock);
1881 
1882 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1883 
1884 err_unlock:
1885 	spin_unlock(&spmc_shmem_obj_state.lock);
1886 	return spmc_ffa_error_return(handle, ret);
1887 }
1888