xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision def7590b3e34ff69b297c239cb8948d0bdc9c691)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 
9 #include <common/debug.h>
10 #include <common/runtime_svc.h>
11 #include <lib/object_pool.h>
12 #include <lib/spinlock.h>
13 #include <lib/xlat_tables/xlat_tables_v2.h>
14 #include <services/ffa_svc.h>
15 #include "spmc.h"
16 #include "spmc_shared_mem.h"
17 
18 #include <platform_def.h>
19 
20 /**
21  * struct spmc_shmem_obj - Shared memory object.
22  * @desc_size:      Size of @desc.
23  * @desc_filled:    Size of @desc already received.
24  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
25  *                  without a matching ffa_mem_relinquish call.
26  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
27  */
28 struct spmc_shmem_obj {
29 	size_t desc_size;
30 	size_t desc_filled;
31 	size_t in_use;
32 	struct ffa_mtd desc;
33 };
34 
35 /*
36  * Declare our data structure to store the metadata of memory share requests.
37  * The main datastore is allocated on a per platform basis to ensure enough
38  * storage can be made available.
39  * The address of the data store will be populated by the SPMC during its
40  * initialization.
41  */
42 
43 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
44 	/* Set start value for handle so top 32 bits are needed quickly. */
45 	.next_handle = 0xffffffc0U,
46 };
47 
48 /**
49  * spmc_shmem_obj_size - Convert from descriptor size to object size.
50  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
51  *
52  * Return: Size of struct spmc_shmem_obj object.
53  */
54 static size_t spmc_shmem_obj_size(size_t desc_size)
55 {
56 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
57 }
58 
59 /**
60  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
61  * @state:      Global state.
62  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
63  *              allocated object will hold.
64  *
65  * Return: Pointer to newly allocated object, or %NULL if there not enough space
66  *         left. The returned pointer is only valid while @state is locked, to
67  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
68  *         called.
69  */
70 static struct spmc_shmem_obj *
71 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
72 {
73 	struct spmc_shmem_obj *obj;
74 	size_t free = state->data_size - state->allocated;
75 	size_t obj_size;
76 
77 	if (state->data == NULL) {
78 		ERROR("Missing shmem datastore!\n");
79 		return NULL;
80 	}
81 
82 	obj_size = spmc_shmem_obj_size(desc_size);
83 
84 	/* Ensure the obj size has not overflowed. */
85 	if (obj_size < desc_size) {
86 		WARN("%s(0x%zx) desc_size overflow\n",
87 		     __func__, desc_size);
88 		return NULL;
89 	}
90 
91 	if (obj_size > free) {
92 		WARN("%s(0x%zx) failed, free 0x%zx\n",
93 		     __func__, desc_size, free);
94 		return NULL;
95 	}
96 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
97 	obj->desc = (struct ffa_mtd) {0};
98 	obj->desc_size = desc_size;
99 	obj->desc_filled = 0;
100 	obj->in_use = 0;
101 	state->allocated += obj_size;
102 	return obj;
103 }
104 
105 /**
106  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
107  * @state:      Global state.
108  * @obj:        Object to free.
109  *
110  * Release memory used by @obj. Other objects may move, so on return all
111  * pointers to struct spmc_shmem_obj object should be considered invalid, not
112  * just @obj.
113  *
114  * The current implementation always compacts the remaining objects to simplify
115  * the allocator and to avoid fragmentation.
116  */
117 
118 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
119 				  struct spmc_shmem_obj *obj)
120 {
121 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
122 	uint8_t *shift_dest = (uint8_t *)obj;
123 	uint8_t *shift_src = shift_dest + free_size;
124 	size_t shift_size = state->allocated - (shift_src - state->data);
125 
126 	if (shift_size != 0U) {
127 		memmove(shift_dest, shift_src, shift_size);
128 	}
129 	state->allocated -= free_size;
130 }
131 
132 /**
133  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
134  * @state:      Global state.
135  * @handle:     Unique handle of object to return.
136  *
137  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
138  *         %NULL, if not object in @state->data has a matching handle.
139  */
140 static struct spmc_shmem_obj *
141 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
142 {
143 	uint8_t *curr = state->data;
144 
145 	while (curr - state->data < state->allocated) {
146 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
147 
148 		if (obj->desc.handle == handle) {
149 			return obj;
150 		}
151 		curr += spmc_shmem_obj_size(obj->desc_size);
152 	}
153 	return NULL;
154 }
155 
156 /**
157  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
158  * @offset:     Offset used to track which objects have previously been
159  *              returned.
160  *
161  * Return: the next struct spmc_shmem_obj_state object from the provided
162  *	   offset.
163  *	   %NULL, if there are no more objects.
164  */
165 static struct spmc_shmem_obj *
166 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
167 {
168 	uint8_t *curr = state->data + *offset;
169 
170 	if (curr - state->data < state->allocated) {
171 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
172 
173 		*offset += spmc_shmem_obj_size(obj->desc_size);
174 
175 		return obj;
176 	}
177 	return NULL;
178 }
179 
180 /*******************************************************************************
181  * FF-A memory descriptor helper functions.
182  ******************************************************************************/
183 /**
184  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
185  *                           clients FF-A version.
186  * @desc:         The memory transaction descriptor.
187  * @index:        The index of the emad element to be accessed.
188  * @ffa_version:  FF-A version of the provided structure.
189  * @emad_size:    Will be populated with the size of the returned emad
190  *                descriptor.
191  * Return: A pointer to the requested emad structure.
192  */
193 static void *
194 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
195 			uint32_t ffa_version, size_t *emad_size)
196 {
197 	uint8_t *emad;
198 	/*
199 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
200 	 * format, otherwise assume it is a v1.1 format.
201 	 */
202 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
203 		/* Cast our descriptor to the v1.0 format. */
204 		struct ffa_mtd_v1_0 *mtd_v1_0 =
205 					(struct ffa_mtd_v1_0 *) desc;
206 		emad = (uint8_t *)  &(mtd_v1_0->emad);
207 		*emad_size = sizeof(struct ffa_emad_v1_0);
208 	} else {
209 		if (!is_aligned(desc->emad_offset, 16)) {
210 			WARN("Emad offset is not aligned.\n");
211 			return NULL;
212 		}
213 		emad = ((uint8_t *) desc + desc->emad_offset);
214 		*emad_size = desc->emad_size;
215 	}
216 	return (emad + (*emad_size * index));
217 }
218 
219 /**
220  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
221  *				 FF-A version of the descriptor.
222  * @obj:    Object containing ffa_memory_region_descriptor.
223  *
224  * Return: struct ffa_comp_mrd object corresponding to the composite memory
225  *	   region descriptor.
226  */
227 static struct ffa_comp_mrd *
228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
229 {
230 	size_t emad_size;
231 	/*
232 	 * The comp_mrd_offset field of the emad descriptor remains consistent
233 	 * between FF-A versions therefore we can use the v1.0 descriptor here
234 	 * in all cases.
235 	 */
236 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
237 							     ffa_version,
238 							     &emad_size);
239 	/* Ensure the emad array was found. */
240 	if (emad == NULL) {
241 		return NULL;
242 	}
243 
244 	/* Ensure the composite descriptor offset is aligned. */
245 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
246 		WARN("Unaligned composite memory region descriptor offset.\n");
247 		return NULL;
248 	}
249 
250 	return (struct ffa_comp_mrd *)
251 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
252 }
253 
254 /**
255  * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
256  * @obj:    Object containing ffa_memory_region_descriptor.
257  *
258  * Return: Size of ffa_constituent_memory_region_descriptors in @obj.
259  */
260 static size_t
261 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
262 				    uint32_t ffa_version)
263 {
264 	struct ffa_comp_mrd *comp_mrd;
265 
266 	comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
267 	if (comp_mrd == NULL) {
268 		return 0;
269 	}
270 	return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
271 }
272 
273 /**
274  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
275  *				a given memory transaction.
276  * @sp_id:      Partition ID to validate.
277  * @desc:       Descriptor of the memory transaction.
278  *
279  * Return: true if ID is valid, else false.
280  */
281 bool spmc_shmem_obj_validate_id(const struct ffa_mtd *desc, uint16_t sp_id)
282 {
283 	bool found = false;
284 
285 	/* Validate the partition is a valid participant. */
286 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
287 		size_t emad_size;
288 		struct ffa_emad_v1_0 *emad;
289 
290 		emad = spmc_shmem_obj_get_emad(desc, i,
291 					       MAKE_FFA_VERSION(1, 1),
292 					       &emad_size);
293 		if (sp_id == emad->mapd.endpoint_id) {
294 			found = true;
295 			break;
296 		}
297 	}
298 	return found;
299 }
300 
301 /*
302  * Compare two memory regions to determine if any range overlaps with another
303  * ongoing memory transaction.
304  */
305 static bool
306 overlapping_memory_regions(struct ffa_comp_mrd *region1,
307 			   struct ffa_comp_mrd *region2)
308 {
309 	uint64_t region1_start;
310 	uint64_t region1_size;
311 	uint64_t region1_end;
312 	uint64_t region2_start;
313 	uint64_t region2_size;
314 	uint64_t region2_end;
315 
316 	assert(region1 != NULL);
317 	assert(region2 != NULL);
318 
319 	if (region1 == region2) {
320 		return true;
321 	}
322 
323 	/*
324 	 * Check each memory region in the request against existing
325 	 * transactions.
326 	 */
327 	for (size_t i = 0; i < region1->address_range_count; i++) {
328 
329 		region1_start = region1->address_range_array[i].address;
330 		region1_size =
331 			region1->address_range_array[i].page_count *
332 			PAGE_SIZE_4KB;
333 		region1_end = region1_start + region1_size;
334 
335 		for (size_t j = 0; j < region2->address_range_count; j++) {
336 
337 			region2_start = region2->address_range_array[j].address;
338 			region2_size =
339 				region2->address_range_array[j].page_count *
340 				PAGE_SIZE_4KB;
341 			region2_end = region2_start + region2_size;
342 
343 			/* Check if regions are not overlapping. */
344 			if (!((region2_end <= region1_start) ||
345 			      (region1_end <= region2_start))) {
346 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
347 				     region1_start, region1_end,
348 				     region2_start, region2_end);
349 				return true;
350 			}
351 		}
352 	}
353 	return false;
354 }
355 
356 /*******************************************************************************
357  * FF-A v1.0 Memory Descriptor Conversion Helpers.
358  ******************************************************************************/
359 /**
360  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
361  *                                     converted descriptor.
362  * @orig:       The original v1.0 memory transaction descriptor.
363  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
364  *
365  * Return: the size required to store the descriptor store in the v1.1 format.
366  */
367 static size_t
368 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
369 {
370 	size_t size = 0;
371 	struct ffa_comp_mrd *mrd;
372 	struct ffa_emad_v1_0 *emad_array = orig->emad;
373 
374 	/* Get the size of the v1.1 descriptor. */
375 	size += sizeof(struct ffa_mtd);
376 
377 	/* Add the size of the emad descriptors. */
378 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
379 
380 	/* Add the size of the composite mrds. */
381 	size += sizeof(struct ffa_comp_mrd);
382 
383 	/* Add the size of the constituent mrds. */
384 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
385 	      emad_array[0].comp_mrd_offset);
386 
387 	/* Check the calculated address is within the memory descriptor. */
388 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
389 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
390 		return 0;
391 	}
392 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
393 
394 	return size;
395 }
396 
397 /**
398  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
399  *                                     converted descriptor.
400  * @orig:       The original v1.1 memory transaction descriptor.
401  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
402  *
403  * Return: the size required to store the descriptor store in the v1.0 format.
404  */
405 static size_t
406 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
407 {
408 	size_t size = 0;
409 	struct ffa_comp_mrd *mrd;
410 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
411 					   ((uint8_t *) orig +
412 					    orig->emad_offset);
413 
414 	/* Get the size of the v1.0 descriptor. */
415 	size += sizeof(struct ffa_mtd_v1_0);
416 
417 	/* Add the size of the v1.0 emad descriptors. */
418 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
419 
420 	/* Add the size of the composite mrds. */
421 	size += sizeof(struct ffa_comp_mrd);
422 
423 	/* Add the size of the constituent mrds. */
424 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
425 	      emad_array[0].comp_mrd_offset);
426 
427 	/* Check the calculated address is within the memory descriptor. */
428 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
429 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
430 		return 0;
431 	}
432 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
433 
434 	return size;
435 }
436 
437 /**
438  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
439  * @out_obj:	The shared memory object to populate the converted descriptor.
440  * @orig:	The shared memory object containing the v1.0 descriptor.
441  *
442  * Return: true if the conversion is successful else false.
443  */
444 static bool
445 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
446 				     struct spmc_shmem_obj *orig)
447 {
448 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
449 	struct ffa_mtd *out = &out_obj->desc;
450 	struct ffa_emad_v1_0 *emad_array_in;
451 	struct ffa_emad_v1_0 *emad_array_out;
452 	struct ffa_comp_mrd *mrd_in;
453 	struct ffa_comp_mrd *mrd_out;
454 
455 	size_t mrd_in_offset;
456 	size_t mrd_out_offset;
457 	size_t mrd_size = 0;
458 
459 	/* Populate the new descriptor format from the v1.0 struct. */
460 	out->sender_id = mtd_orig->sender_id;
461 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
462 	out->flags = mtd_orig->flags;
463 	out->handle = mtd_orig->handle;
464 	out->tag = mtd_orig->tag;
465 	out->emad_count = mtd_orig->emad_count;
466 	out->emad_size = sizeof(struct ffa_emad_v1_0);
467 
468 	/*
469 	 * We will locate the emad descriptors directly after the ffa_mtd
470 	 * struct. This will be 8-byte aligned.
471 	 */
472 	out->emad_offset = sizeof(struct ffa_mtd);
473 
474 	emad_array_in = mtd_orig->emad;
475 	emad_array_out = (struct ffa_emad_v1_0 *)
476 			 ((uint8_t *) out + out->emad_offset);
477 
478 	/* Copy across the emad structs. */
479 	for (unsigned int i = 0U; i < out->emad_count; i++) {
480 		memcpy(&emad_array_out[i], &emad_array_in[i],
481 		       sizeof(struct ffa_emad_v1_0));
482 	}
483 
484 	/* Place the mrd descriptors after the end of the emad descriptors.*/
485 	mrd_in_offset = emad_array_in->comp_mrd_offset;
486 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
487 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
488 
489 	/* Add the size of the composite memory region descriptor. */
490 	mrd_size += sizeof(struct ffa_comp_mrd);
491 
492 	/* Find the mrd descriptor. */
493 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
494 
495 	/* Add the size of the constituent memory region descriptors. */
496 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
497 
498 	/*
499 	 * Update the offset in the emads by the delta between the input and
500 	 * output addresses.
501 	 */
502 	for (unsigned int i = 0U; i < out->emad_count; i++) {
503 		emad_array_out[i].comp_mrd_offset =
504 			emad_array_in[i].comp_mrd_offset +
505 			(mrd_out_offset - mrd_in_offset);
506 	}
507 
508 	/* Verify that we stay within bound of the memory descriptors. */
509 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
510 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
511 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
512 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
513 		ERROR("%s: Invalid mrd structure.\n", __func__);
514 		return false;
515 	}
516 
517 	/* Copy the mrd descriptors directly. */
518 	memcpy(mrd_out, mrd_in, mrd_size);
519 
520 	return true;
521 }
522 
523 /**
524  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
525  *                                v1.0 memory object.
526  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
527  * @orig:       The shared memory object containing the v1.1 descriptor.
528  *
529  * Return: true if the conversion is successful else false.
530  */
531 static bool
532 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
533 			     struct spmc_shmem_obj *orig)
534 {
535 	struct ffa_mtd *mtd_orig = &orig->desc;
536 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
537 	struct ffa_emad_v1_0 *emad_in;
538 	struct ffa_emad_v1_0 *emad_array_in;
539 	struct ffa_emad_v1_0 *emad_array_out;
540 	struct ffa_comp_mrd *mrd_in;
541 	struct ffa_comp_mrd *mrd_out;
542 
543 	size_t mrd_in_offset;
544 	size_t mrd_out_offset;
545 	size_t emad_out_array_size;
546 	size_t mrd_size = 0;
547 
548 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
549 	out->sender_id = mtd_orig->sender_id;
550 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
551 	out->flags = mtd_orig->flags;
552 	out->handle = mtd_orig->handle;
553 	out->tag = mtd_orig->tag;
554 	out->emad_count = mtd_orig->emad_count;
555 
556 	/* Determine the location of the emad array in both descriptors. */
557 	emad_array_in = (struct ffa_emad_v1_0 *)
558 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
559 	emad_array_out = out->emad;
560 
561 	/* Copy across the emad structs. */
562 	emad_in = emad_array_in;
563 	for (unsigned int i = 0U; i < out->emad_count; i++) {
564 		memcpy(&emad_array_out[i], emad_in,
565 		       sizeof(struct ffa_emad_v1_0));
566 
567 		emad_in +=  mtd_orig->emad_size;
568 	}
569 
570 	/* Place the mrd descriptors after the end of the emad descriptors. */
571 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
572 
573 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
574 			  emad_out_array_size;
575 
576 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
577 
578 	mrd_in_offset = mtd_orig->emad_offset +
579 			(mtd_orig->emad_size * mtd_orig->emad_count);
580 
581 	/* Add the size of the composite memory region descriptor. */
582 	mrd_size += sizeof(struct ffa_comp_mrd);
583 
584 	/* Find the mrd descriptor. */
585 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
586 
587 	/* Add the size of the constituent memory region descriptors. */
588 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
589 
590 	/*
591 	 * Update the offset in the emads by the delta between the input and
592 	 * output addresses.
593 	 */
594 	emad_in = emad_array_in;
595 
596 	for (unsigned int i = 0U; i < out->emad_count; i++) {
597 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
598 						    (mrd_out_offset -
599 						     mrd_in_offset);
600 		emad_in +=  mtd_orig->emad_size;
601 	}
602 
603 	/* Verify that we stay within bound of the memory descriptors. */
604 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
605 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
606 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
607 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
608 		ERROR("%s: Invalid mrd structure.\n", __func__);
609 		return false;
610 	}
611 
612 	/* Copy the mrd descriptors directly. */
613 	memcpy(mrd_out, mrd_in, mrd_size);
614 
615 	return true;
616 }
617 
618 /**
619  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
620  *                                     the v1.0 format and populates the
621  *                                     provided buffer.
622  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
623  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
624  * @buf_size:	    Size of the buffer to populate.
625  * @offset:	    The offset of the converted descriptor to copy.
626  * @copy_size:	    Will be populated with the number of bytes copied.
627  * @out_desc_size:  Will be populated with the total size of the v1.0
628  *                  descriptor.
629  *
630  * Return: 0 if conversion and population succeeded.
631  * Note: This function invalidates the reference to @orig therefore
632  * `spmc_shmem_obj_lookup` must be called if further usage is required.
633  */
634 static uint32_t
635 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
636 				 size_t buf_size, size_t offset,
637 				 size_t *copy_size, size_t *v1_0_desc_size)
638 {
639 		struct spmc_shmem_obj *v1_0_obj;
640 
641 		/* Calculate the size that the v1.0 descriptor will require. */
642 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
643 					&orig_obj->desc, orig_obj->desc_size);
644 
645 		if (*v1_0_desc_size == 0) {
646 			ERROR("%s: cannot determine size of descriptor.\n",
647 			      __func__);
648 			return FFA_ERROR_INVALID_PARAMETER;
649 		}
650 
651 		/* Get a new obj to store the v1.0 descriptor. */
652 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
653 						*v1_0_desc_size);
654 
655 		if (!v1_0_obj) {
656 			return FFA_ERROR_NO_MEMORY;
657 		}
658 
659 		/* Perform the conversion from v1.1 to v1.0. */
660 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
661 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
662 			return FFA_ERROR_INVALID_PARAMETER;
663 		}
664 
665 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
666 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
667 
668 		/*
669 		 * We're finished with the v1.0 descriptor for now so free it.
670 		 * Note that this will invalidate any references to the v1.1
671 		 * descriptor.
672 		 */
673 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
674 
675 		return 0;
676 }
677 
678 /**
679  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
680  * @obj:	  Object containing ffa_memory_region_descriptor.
681  * @ffa_version:  FF-A version of the provided descriptor.
682  *
683  * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
684  * offset or count is invalid.
685  */
686 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
687 				uint32_t ffa_version)
688 {
689 	uint32_t comp_mrd_offset = 0;
690 
691 	if (obj->desc.emad_count == 0U) {
692 		WARN("%s: unsupported attribute desc count %u.\n",
693 		     __func__, obj->desc.emad_count);
694 		return -EINVAL;
695 	}
696 
697 	for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
698 		size_t size;
699 		size_t count;
700 		size_t expected_size;
701 		size_t total_page_count;
702 		size_t emad_size;
703 		size_t desc_size;
704 		size_t header_emad_size;
705 		uint32_t offset;
706 		struct ffa_comp_mrd *comp;
707 		struct ffa_emad_v1_0 *emad;
708 
709 		emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
710 					       ffa_version, &emad_size);
711 		if (emad == NULL) {
712 			WARN("%s: invalid emad structure.\n", __func__);
713 			return -EINVAL;
714 		}
715 
716 		/*
717 		 * Validate the calculated emad address resides within the
718 		 * descriptor.
719 		 */
720 		if ((uintptr_t) emad >=
721 		    (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
722 			WARN("Invalid emad access.\n");
723 			return -EINVAL;
724 		}
725 
726 		offset = emad->comp_mrd_offset;
727 
728 		if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
729 			desc_size =  sizeof(struct ffa_mtd_v1_0);
730 		} else {
731 			desc_size =  sizeof(struct ffa_mtd);
732 		}
733 
734 		header_emad_size = desc_size +
735 			(obj->desc.emad_count * emad_size);
736 
737 		if (offset < header_emad_size) {
738 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
739 			     __func__, offset, header_emad_size);
740 			return -EINVAL;
741 		}
742 
743 		size = obj->desc_size;
744 
745 		if (offset > size) {
746 			WARN("%s: invalid object, offset %u > total size %zu\n",
747 			     __func__, offset, obj->desc_size);
748 			return -EINVAL;
749 		}
750 		size -= offset;
751 
752 		if (size < sizeof(struct ffa_comp_mrd)) {
753 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
754 			     __func__, offset, obj->desc_size);
755 			return -EINVAL;
756 		}
757 		size -= sizeof(struct ffa_comp_mrd);
758 
759 		count = size / sizeof(struct ffa_cons_mrd);
760 
761 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
762 
763 		if (comp == NULL) {
764 			WARN("%s: invalid comp_mrd offset\n", __func__);
765 			return -EINVAL;
766 		}
767 
768 		if (comp->address_range_count != count) {
769 			WARN("%s: invalid object, desc count %u != %zu\n",
770 			     __func__, comp->address_range_count, count);
771 			return -EINVAL;
772 		}
773 
774 		expected_size = offset + sizeof(*comp) +
775 				spmc_shmem_obj_ffa_constituent_size(obj,
776 								    ffa_version);
777 
778 		if (expected_size != obj->desc_size) {
779 			WARN("%s: invalid object, computed size %zu != size %zu\n",
780 			       __func__, expected_size, obj->desc_size);
781 			return -EINVAL;
782 		}
783 
784 		if (obj->desc_filled < obj->desc_size) {
785 			/*
786 			 * The whole descriptor has not yet been received.
787 			 * Skip final checks.
788 			 */
789 			return 0;
790 		}
791 
792 		/*
793 		 * The offset provided to the composite memory region descriptor
794 		 * should be consistent across endpoint descriptors. Store the
795 		 * first entry and compare against subsequent entries.
796 		 */
797 		if (comp_mrd_offset == 0) {
798 			comp_mrd_offset = offset;
799 		} else {
800 			if (comp_mrd_offset != offset) {
801 				ERROR("%s: mismatching offsets provided, %u != %u\n",
802 				       __func__, offset, comp_mrd_offset);
803 				return -EINVAL;
804 			}
805 		}
806 
807 		total_page_count = 0;
808 
809 		for (size_t i = 0; i < count; i++) {
810 			total_page_count +=
811 				comp->address_range_array[i].page_count;
812 		}
813 		if (comp->total_page_count != total_page_count) {
814 			WARN("%s: invalid object, desc total_page_count %u != %zu\n",
815 			     __func__, comp->total_page_count,
816 			total_page_count);
817 			return -EINVAL;
818 		}
819 	}
820 	return 0;
821 }
822 
823 /**
824  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
825  *				regions that are currently involved with an
826  *				existing memory transactions. This implies that
827  *				the memory is not in a valid state for lending.
828  * @obj:    Object containing ffa_memory_region_descriptor.
829  *
830  * Return: 0 if object is valid, -EINVAL if invalid memory state.
831  */
832 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
833 				      uint32_t ffa_version)
834 {
835 	size_t obj_offset = 0;
836 	struct spmc_shmem_obj *inflight_obj;
837 
838 	struct ffa_comp_mrd *other_mrd;
839 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
840 								  ffa_version);
841 
842 	if (requested_mrd == NULL) {
843 		return -EINVAL;
844 	}
845 
846 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
847 					       &obj_offset);
848 
849 	while (inflight_obj != NULL) {
850 		/*
851 		 * Don't compare the transaction to itself or to partially
852 		 * transmitted descriptors.
853 		 */
854 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
855 		    (obj->desc_size == obj->desc_filled)) {
856 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
857 							  FFA_VERSION_COMPILED);
858 			if (other_mrd == NULL) {
859 				return -EINVAL;
860 			}
861 			if (overlapping_memory_regions(requested_mrd,
862 						       other_mrd)) {
863 				return -EINVAL;
864 			}
865 		}
866 
867 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
868 						       &obj_offset);
869 	}
870 	return 0;
871 }
872 
873 static long spmc_ffa_fill_desc(struct mailbox *mbox,
874 			       struct spmc_shmem_obj *obj,
875 			       uint32_t fragment_length,
876 			       ffa_mtd_flag32_t mtd_flag,
877 			       uint32_t ffa_version,
878 			       void *smc_handle)
879 {
880 	int ret;
881 	size_t emad_size;
882 	uint32_t handle_low;
883 	uint32_t handle_high;
884 	struct ffa_emad_v1_0 *emad;
885 	struct ffa_emad_v1_0 *other_emad;
886 
887 	if (mbox->rxtx_page_count == 0U) {
888 		WARN("%s: buffer pair not registered.\n", __func__);
889 		ret = FFA_ERROR_INVALID_PARAMETER;
890 		goto err_arg;
891 	}
892 
893 	if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
894 		WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
895 		     fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
896 		ret = FFA_ERROR_INVALID_PARAMETER;
897 		goto err_arg;
898 	}
899 
900 	if (fragment_length > obj->desc_size - obj->desc_filled) {
901 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
902 		     fragment_length, obj->desc_size - obj->desc_filled);
903 		ret = FFA_ERROR_INVALID_PARAMETER;
904 		goto err_arg;
905 	}
906 
907 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
908 	       (uint8_t *) mbox->tx_buffer, fragment_length);
909 
910 	/* Ensure that the sender ID resides in the normal world. */
911 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
912 		WARN("%s: Invalid sender ID 0x%x.\n",
913 		     __func__, obj->desc.sender_id);
914 		ret = FFA_ERROR_DENIED;
915 		goto err_arg;
916 	}
917 
918 	/* Ensure the NS bit is set to 0. */
919 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
920 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
921 		ret = FFA_ERROR_INVALID_PARAMETER;
922 		goto err_arg;
923 	}
924 
925 	/*
926 	 * We don't currently support any optional flags so ensure none are
927 	 * requested.
928 	 */
929 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
930 	    (obj->desc.flags != mtd_flag)) {
931 		WARN("%s: invalid memory transaction flags %u != %u\n",
932 		     __func__, obj->desc.flags, mtd_flag);
933 		ret = FFA_ERROR_INVALID_PARAMETER;
934 		goto err_arg;
935 	}
936 
937 	if (obj->desc_filled == 0U) {
938 		/* First fragment, descriptor header has been copied */
939 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
940 		obj->desc.flags |= mtd_flag;
941 	}
942 
943 	obj->desc_filled += fragment_length;
944 	ret = spmc_shmem_check_obj(obj, ffa_version);
945 	if (ret != 0) {
946 		ret = FFA_ERROR_INVALID_PARAMETER;
947 		goto err_bad_desc;
948 	}
949 
950 	handle_low = (uint32_t)obj->desc.handle;
951 	handle_high = obj->desc.handle >> 32;
952 
953 	if (obj->desc_filled != obj->desc_size) {
954 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
955 			 handle_high, obj->desc_filled,
956 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
957 	}
958 
959 	/* The full descriptor has been received, perform any final checks. */
960 
961 	/*
962 	 * If a partition ID resides in the secure world validate that the
963 	 * partition ID is for a known partition. Ignore any partition ID
964 	 * belonging to the normal world as it is assumed the Hypervisor will
965 	 * have validated these.
966 	 */
967 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
968 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
969 					       &emad_size);
970 		if (emad == NULL) {
971 			ret = FFA_ERROR_INVALID_PARAMETER;
972 			goto err_bad_desc;
973 		}
974 
975 		ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
976 
977 		if (ffa_is_secure_world_id(ep_id)) {
978 			if (spmc_get_sp_ctx(ep_id) == NULL) {
979 				WARN("%s: Invalid receiver id 0x%x\n",
980 				     __func__, ep_id);
981 				ret = FFA_ERROR_INVALID_PARAMETER;
982 				goto err_bad_desc;
983 			}
984 		}
985 	}
986 
987 	/* Ensure partition IDs are not duplicated. */
988 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
989 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
990 					       &emad_size);
991 		if (emad == NULL) {
992 			ret = FFA_ERROR_INVALID_PARAMETER;
993 			goto err_bad_desc;
994 		}
995 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
996 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
997 							     ffa_version,
998 							     &emad_size);
999 			if (other_emad == NULL) {
1000 				ret = FFA_ERROR_INVALID_PARAMETER;
1001 				goto err_bad_desc;
1002 			}
1003 
1004 			if (emad->mapd.endpoint_id ==
1005 				other_emad->mapd.endpoint_id) {
1006 				WARN("%s: Duplicated endpoint id 0x%x\n",
1007 				     __func__, emad->mapd.endpoint_id);
1008 				ret = FFA_ERROR_INVALID_PARAMETER;
1009 				goto err_bad_desc;
1010 			}
1011 		}
1012 	}
1013 
1014 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1015 	if (ret) {
1016 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1017 		ret = FFA_ERROR_INVALID_PARAMETER;
1018 		goto err_bad_desc;
1019 	}
1020 
1021 	/*
1022 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1023 	 * the descriptor format to use the v1.1 structures.
1024 	 */
1025 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1026 		struct spmc_shmem_obj *v1_1_obj;
1027 		uint64_t mem_handle;
1028 
1029 		/* Calculate the size that the v1.1 descriptor will required. */
1030 		size_t v1_1_desc_size =
1031 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1032 						      obj->desc_size);
1033 
1034 		if (v1_1_desc_size == 0U) {
1035 			ERROR("%s: cannot determine size of descriptor.\n",
1036 			      __func__);
1037 			goto err_arg;
1038 		}
1039 
1040 		/* Get a new obj to store the v1.1 descriptor. */
1041 		v1_1_obj =
1042 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
1043 
1044 		if (!v1_1_obj) {
1045 			ret = FFA_ERROR_NO_MEMORY;
1046 			goto err_arg;
1047 		}
1048 
1049 		/* Perform the conversion from v1.0 to v1.1. */
1050 		v1_1_obj->desc_size = v1_1_desc_size;
1051 		v1_1_obj->desc_filled = v1_1_desc_size;
1052 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1053 			ERROR("%s: Could not convert mtd!\n", __func__);
1054 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1055 			goto err_arg;
1056 		}
1057 
1058 		/*
1059 		 * We're finished with the v1.0 descriptor so free it
1060 		 * and continue our checks with the new v1.1 descriptor.
1061 		 */
1062 		mem_handle = obj->desc.handle;
1063 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1064 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1065 		if (obj == NULL) {
1066 			ERROR("%s: Failed to find converted descriptor.\n",
1067 			     __func__);
1068 			ret = FFA_ERROR_INVALID_PARAMETER;
1069 			return spmc_ffa_error_return(smc_handle, ret);
1070 		}
1071 	}
1072 
1073 	/* Allow for platform specific operations to be performed. */
1074 	ret = plat_spmc_shmem_begin(&obj->desc);
1075 	if (ret != 0) {
1076 		goto err_arg;
1077 	}
1078 
1079 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1080 		 0, 0, 0);
1081 
1082 err_bad_desc:
1083 err_arg:
1084 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1085 	return spmc_ffa_error_return(smc_handle, ret);
1086 }
1087 
1088 /**
1089  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1090  * @client:             Client state.
1091  * @total_length:       Total length of shared memory descriptor.
1092  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1093  *                      this call.
1094  * @address:            Not supported, must be 0.
1095  * @page_count:         Not supported, must be 0.
1096  * @smc_handle:         Handle passed to smc call. Used to return
1097  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1098  *
1099  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1100  * to share or lend memory from non-secure os to secure os (with no stream
1101  * endpoints).
1102  *
1103  * Return: 0 on success, error code on failure.
1104  */
1105 long spmc_ffa_mem_send(uint32_t smc_fid,
1106 			bool secure_origin,
1107 			uint64_t total_length,
1108 			uint32_t fragment_length,
1109 			uint64_t address,
1110 			uint32_t page_count,
1111 			void *cookie,
1112 			void *handle,
1113 			uint64_t flags)
1114 
1115 {
1116 	long ret;
1117 	struct spmc_shmem_obj *obj;
1118 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1119 	ffa_mtd_flag32_t mtd_flag;
1120 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1121 
1122 	if (address != 0U || page_count != 0U) {
1123 		WARN("%s: custom memory region for message not supported.\n",
1124 		     __func__);
1125 		return spmc_ffa_error_return(handle,
1126 					     FFA_ERROR_INVALID_PARAMETER);
1127 	}
1128 
1129 	if (secure_origin) {
1130 		WARN("%s: unsupported share direction.\n", __func__);
1131 		return spmc_ffa_error_return(handle,
1132 					     FFA_ERROR_INVALID_PARAMETER);
1133 	}
1134 
1135 	/*
1136 	 * Check if the descriptor is smaller than the v1.0 descriptor. The
1137 	 * descriptor cannot be smaller than this structure.
1138 	 */
1139 	if (fragment_length < sizeof(struct ffa_mtd_v1_0)) {
1140 		WARN("%s: bad first fragment size %u < %zu\n",
1141 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1142 		return spmc_ffa_error_return(handle,
1143 					     FFA_ERROR_INVALID_PARAMETER);
1144 	}
1145 
1146 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1147 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1148 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1149 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1150 	} else {
1151 		WARN("%s: invalid memory management operation.\n", __func__);
1152 		return spmc_ffa_error_return(handle,
1153 					     FFA_ERROR_INVALID_PARAMETER);
1154 	}
1155 
1156 	spin_lock(&spmc_shmem_obj_state.lock);
1157 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1158 	if (obj == NULL) {
1159 		ret = FFA_ERROR_NO_MEMORY;
1160 		goto err_unlock;
1161 	}
1162 
1163 	spin_lock(&mbox->lock);
1164 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1165 				 ffa_version, handle);
1166 	spin_unlock(&mbox->lock);
1167 
1168 	spin_unlock(&spmc_shmem_obj_state.lock);
1169 	return ret;
1170 
1171 err_unlock:
1172 	spin_unlock(&spmc_shmem_obj_state.lock);
1173 	return spmc_ffa_error_return(handle, ret);
1174 }
1175 
1176 /**
1177  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1178  * @client:             Client state.
1179  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1180  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1181  * @fragment_length:    Length of fragments transmitted.
1182  * @sender_id:          Vmid of sender in bits [31:16]
1183  * @smc_handle:         Handle passed to smc call. Used to return
1184  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1185  *
1186  * Return: @smc_handle on success, error code on failure.
1187  */
1188 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1189 			  bool secure_origin,
1190 			  uint64_t handle_low,
1191 			  uint64_t handle_high,
1192 			  uint32_t fragment_length,
1193 			  uint32_t sender_id,
1194 			  void *cookie,
1195 			  void *handle,
1196 			  uint64_t flags)
1197 {
1198 	long ret;
1199 	uint32_t desc_sender_id;
1200 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1201 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1202 
1203 	struct spmc_shmem_obj *obj;
1204 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1205 
1206 	spin_lock(&spmc_shmem_obj_state.lock);
1207 
1208 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1209 	if (obj == NULL) {
1210 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1211 		     __func__, mem_handle);
1212 		ret = FFA_ERROR_INVALID_PARAMETER;
1213 		goto err_unlock;
1214 	}
1215 
1216 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1217 	if (sender_id != desc_sender_id) {
1218 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1219 		     sender_id, desc_sender_id);
1220 		ret = FFA_ERROR_INVALID_PARAMETER;
1221 		goto err_unlock;
1222 	}
1223 
1224 	if (obj->desc_filled == obj->desc_size) {
1225 		WARN("%s: object desc already filled, %zu\n", __func__,
1226 		     obj->desc_filled);
1227 		ret = FFA_ERROR_INVALID_PARAMETER;
1228 		goto err_unlock;
1229 	}
1230 
1231 	spin_lock(&mbox->lock);
1232 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1233 				 handle);
1234 	spin_unlock(&mbox->lock);
1235 
1236 	spin_unlock(&spmc_shmem_obj_state.lock);
1237 	return ret;
1238 
1239 err_unlock:
1240 	spin_unlock(&spmc_shmem_obj_state.lock);
1241 	return spmc_ffa_error_return(handle, ret);
1242 }
1243 
1244 /**
1245  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1246  *				      if the caller implements a version greater
1247  *				      than FF-A 1.0 or if they have requested
1248  *				      the functionality.
1249  *				      TODO: We are assuming that the caller is
1250  *				      an SP. To support retrieval from the
1251  *				      normal world this function will need to be
1252  *				      expanded accordingly.
1253  * @resp:       Descriptor populated in callers RX buffer.
1254  * @sp_ctx:     Context of the calling SP.
1255  */
1256 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1257 			 struct secure_partition_desc *sp_ctx)
1258 {
1259 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1260 	    sp_ctx->ns_bit_requested) {
1261 		/*
1262 		 * Currently memory senders must reside in the normal
1263 		 * world, and we do not have the functionlaity to change
1264 		 * the state of memory dynamically. Therefore we can always set
1265 		 * the NS bit to 1.
1266 		 */
1267 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1268 	}
1269 }
1270 
1271 /**
1272  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1273  * @smc_fid:            FID of SMC
1274  * @total_length:       Total length of retrieve request descriptor if this is
1275  *                      the first call. Otherwise (unsupported) must be 0.
1276  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1277  *                      in this call. Only @fragment_length == @length is
1278  *                      supported by this implementation.
1279  * @address:            Not supported, must be 0.
1280  * @page_count:         Not supported, must be 0.
1281  * @smc_handle:         Handle passed to smc call. Used to return
1282  *                      FFA_MEM_RETRIEVE_RESP.
1283  *
1284  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1285  * Used by secure os to retrieve memory already shared by non-secure os.
1286  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1287  * the client must call FFA_MEM_FRAG_RX until the full response has been
1288  * received.
1289  *
1290  * Return: @handle on success, error code on failure.
1291  */
1292 long
1293 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1294 			  bool secure_origin,
1295 			  uint32_t total_length,
1296 			  uint32_t fragment_length,
1297 			  uint64_t address,
1298 			  uint32_t page_count,
1299 			  void *cookie,
1300 			  void *handle,
1301 			  uint64_t flags)
1302 {
1303 	int ret;
1304 	size_t buf_size;
1305 	size_t copy_size = 0;
1306 	size_t min_desc_size;
1307 	size_t out_desc_size = 0;
1308 
1309 	/*
1310 	 * Currently we are only accessing fields that are the same in both the
1311 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1312 	 * here. We only need validate against the appropriate struct size.
1313 	 */
1314 	struct ffa_mtd *resp;
1315 	const struct ffa_mtd *req;
1316 	struct spmc_shmem_obj *obj = NULL;
1317 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1318 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1319 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1320 
1321 	if (!secure_origin) {
1322 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1323 		return spmc_ffa_error_return(handle,
1324 					     FFA_ERROR_INVALID_PARAMETER);
1325 	}
1326 
1327 	if (address != 0U || page_count != 0U) {
1328 		WARN("%s: custom memory region not supported.\n", __func__);
1329 		return spmc_ffa_error_return(handle,
1330 					     FFA_ERROR_INVALID_PARAMETER);
1331 	}
1332 
1333 	spin_lock(&mbox->lock);
1334 
1335 	req = mbox->tx_buffer;
1336 	resp = mbox->rx_buffer;
1337 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1338 
1339 	if (mbox->rxtx_page_count == 0U) {
1340 		WARN("%s: buffer pair not registered.\n", __func__);
1341 		ret = FFA_ERROR_INVALID_PARAMETER;
1342 		goto err_unlock_mailbox;
1343 	}
1344 
1345 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1346 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1347 		ret = FFA_ERROR_DENIED;
1348 		goto err_unlock_mailbox;
1349 	}
1350 
1351 	if (fragment_length != total_length) {
1352 		WARN("%s: fragmented retrieve request not supported.\n",
1353 		     __func__);
1354 		ret = FFA_ERROR_INVALID_PARAMETER;
1355 		goto err_unlock_mailbox;
1356 	}
1357 
1358 	if (req->emad_count == 0U) {
1359 		WARN("%s: unsupported attribute desc count %u.\n",
1360 		     __func__, obj->desc.emad_count);
1361 		ret = FFA_ERROR_INVALID_PARAMETER;
1362 		goto err_unlock_mailbox;
1363 	}
1364 
1365 	/* Determine the appropriate minimum descriptor size. */
1366 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1367 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1368 	} else {
1369 		min_desc_size = sizeof(struct ffa_mtd);
1370 	}
1371 	if (total_length < min_desc_size) {
1372 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1373 		     min_desc_size);
1374 		ret = FFA_ERROR_INVALID_PARAMETER;
1375 		goto err_unlock_mailbox;
1376 	}
1377 
1378 	spin_lock(&spmc_shmem_obj_state.lock);
1379 
1380 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1381 	if (obj == NULL) {
1382 		ret = FFA_ERROR_INVALID_PARAMETER;
1383 		goto err_unlock_all;
1384 	}
1385 
1386 	if (obj->desc_filled != obj->desc_size) {
1387 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1388 		     __func__, obj->desc_filled, obj->desc_size);
1389 		ret = FFA_ERROR_INVALID_PARAMETER;
1390 		goto err_unlock_all;
1391 	}
1392 
1393 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1394 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1395 		     __func__, req->sender_id, obj->desc.sender_id);
1396 		ret = FFA_ERROR_INVALID_PARAMETER;
1397 		goto err_unlock_all;
1398 	}
1399 
1400 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1401 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1402 		     __func__, req->tag, obj->desc.tag);
1403 		ret = FFA_ERROR_INVALID_PARAMETER;
1404 		goto err_unlock_all;
1405 	}
1406 
1407 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1408 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1409 		     __func__, req->emad_count, obj->desc.emad_count);
1410 		ret = FFA_ERROR_INVALID_PARAMETER;
1411 		goto err_unlock_all;
1412 	}
1413 
1414 	/* Ensure the NS bit is set to 0 in the request. */
1415 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1416 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1417 		ret = FFA_ERROR_INVALID_PARAMETER;
1418 		goto err_unlock_all;
1419 	}
1420 
1421 	if (req->flags != 0U) {
1422 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1423 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1424 			/*
1425 			 * If the retrieve request specifies the memory
1426 			 * transaction ensure it matches what we expect.
1427 			 */
1428 			WARN("%s: wrong mem transaction flags %x != %x\n",
1429 			__func__, req->flags, obj->desc.flags);
1430 			ret = FFA_ERROR_INVALID_PARAMETER;
1431 			goto err_unlock_all;
1432 		}
1433 
1434 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1435 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1436 			/*
1437 			 * Current implementation does not support donate and
1438 			 * it supports no other flags.
1439 			 */
1440 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1441 			ret = FFA_ERROR_INVALID_PARAMETER;
1442 			goto err_unlock_all;
1443 		}
1444 	}
1445 
1446 	/* Validate the caller is a valid participant. */
1447 	if (!spmc_shmem_obj_validate_id(&obj->desc, sp_ctx->sp_id)) {
1448 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1449 			__func__, sp_ctx->sp_id);
1450 		ret = FFA_ERROR_INVALID_PARAMETER;
1451 		goto err_unlock_all;
1452 	}
1453 
1454 	/* Validate that the provided emad offset and structure is valid.*/
1455 	for (size_t i = 0; i < req->emad_count; i++) {
1456 		size_t emad_size;
1457 		struct ffa_emad_v1_0 *emad;
1458 
1459 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1460 					       &emad_size);
1461 		if (emad == NULL) {
1462 			WARN("%s: invalid emad structure.\n", __func__);
1463 			ret = FFA_ERROR_INVALID_PARAMETER;
1464 			goto err_unlock_all;
1465 		}
1466 
1467 		if ((uintptr_t) emad >= (uintptr_t)
1468 					((uint8_t *) req + total_length)) {
1469 			WARN("Invalid emad access.\n");
1470 			ret = FFA_ERROR_INVALID_PARAMETER;
1471 			goto err_unlock_all;
1472 		}
1473 	}
1474 
1475 	/*
1476 	 * Validate all the endpoints match in the case of multiple
1477 	 * borrowers. We don't mandate that the order of the borrowers
1478 	 * must match in the descriptors therefore check to see if the
1479 	 * endpoints match in any order.
1480 	 */
1481 	for (size_t i = 0; i < req->emad_count; i++) {
1482 		bool found = false;
1483 		size_t emad_size;
1484 		struct ffa_emad_v1_0 *emad;
1485 		struct ffa_emad_v1_0 *other_emad;
1486 
1487 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1488 					       &emad_size);
1489 		if (emad == NULL) {
1490 			ret = FFA_ERROR_INVALID_PARAMETER;
1491 			goto err_unlock_all;
1492 		}
1493 
1494 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1495 			other_emad = spmc_shmem_obj_get_emad(
1496 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1497 					&emad_size);
1498 
1499 			if (other_emad == NULL) {
1500 				ret = FFA_ERROR_INVALID_PARAMETER;
1501 				goto err_unlock_all;
1502 			}
1503 
1504 			if (req->emad_count &&
1505 			    emad->mapd.endpoint_id ==
1506 			    other_emad->mapd.endpoint_id) {
1507 				found = true;
1508 				break;
1509 			}
1510 		}
1511 
1512 		if (!found) {
1513 			WARN("%s: invalid receiver id (0x%x).\n",
1514 			     __func__, emad->mapd.endpoint_id);
1515 			ret = FFA_ERROR_INVALID_PARAMETER;
1516 			goto err_unlock_all;
1517 		}
1518 	}
1519 
1520 	mbox->state = MAILBOX_STATE_FULL;
1521 
1522 	if (req->emad_count != 0U) {
1523 		obj->in_use++;
1524 	}
1525 
1526 	/*
1527 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1528 	 * directly.
1529 	 */
1530 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1531 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1532 							&copy_size,
1533 							&out_desc_size);
1534 		if (ret != 0U) {
1535 			ERROR("%s: Failed to process descriptor.\n", __func__);
1536 			goto err_unlock_all;
1537 		}
1538 	} else {
1539 		copy_size = MIN(obj->desc_size, buf_size);
1540 		out_desc_size = obj->desc_size;
1541 
1542 		memcpy(resp, &obj->desc, copy_size);
1543 	}
1544 
1545 	/* Set the NS bit in the response if applicable. */
1546 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1547 
1548 	spin_unlock(&spmc_shmem_obj_state.lock);
1549 	spin_unlock(&mbox->lock);
1550 
1551 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1552 		 copy_size, 0, 0, 0, 0, 0);
1553 
1554 err_unlock_all:
1555 	spin_unlock(&spmc_shmem_obj_state.lock);
1556 err_unlock_mailbox:
1557 	spin_unlock(&mbox->lock);
1558 	return spmc_ffa_error_return(handle, ret);
1559 }
1560 
1561 /**
1562  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1563  * @client:             Client state.
1564  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1565  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1566  * @fragment_offset:    Byte offset in descriptor to resume at.
1567  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1568  *                      hypervisor. 0 otherwise.
1569  * @smc_handle:         Handle passed to smc call. Used to return
1570  *                      FFA_MEM_FRAG_TX.
1571  *
1572  * Return: @smc_handle on success, error code on failure.
1573  */
1574 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1575 			  bool secure_origin,
1576 			  uint32_t handle_low,
1577 			  uint32_t handle_high,
1578 			  uint32_t fragment_offset,
1579 			  uint32_t sender_id,
1580 			  void *cookie,
1581 			  void *handle,
1582 			  uint64_t flags)
1583 {
1584 	int ret;
1585 	void *src;
1586 	size_t buf_size;
1587 	size_t copy_size;
1588 	size_t full_copy_size;
1589 	uint32_t desc_sender_id;
1590 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1591 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1592 	struct spmc_shmem_obj *obj;
1593 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1594 
1595 	if (!secure_origin) {
1596 		WARN("%s: can only be called from swld.\n",
1597 		     __func__);
1598 		return spmc_ffa_error_return(handle,
1599 					     FFA_ERROR_INVALID_PARAMETER);
1600 	}
1601 
1602 	spin_lock(&spmc_shmem_obj_state.lock);
1603 
1604 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1605 	if (obj == NULL) {
1606 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1607 		     __func__, mem_handle);
1608 		ret = FFA_ERROR_INVALID_PARAMETER;
1609 		goto err_unlock_shmem;
1610 	}
1611 
1612 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1613 	if (sender_id != 0U && sender_id != desc_sender_id) {
1614 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1615 		     sender_id, desc_sender_id);
1616 		ret = FFA_ERROR_INVALID_PARAMETER;
1617 		goto err_unlock_shmem;
1618 	}
1619 
1620 	if (fragment_offset >= obj->desc_size) {
1621 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1622 		     __func__, fragment_offset, obj->desc_size);
1623 		ret = FFA_ERROR_INVALID_PARAMETER;
1624 		goto err_unlock_shmem;
1625 	}
1626 
1627 	spin_lock(&mbox->lock);
1628 
1629 	if (mbox->rxtx_page_count == 0U) {
1630 		WARN("%s: buffer pair not registered.\n", __func__);
1631 		ret = FFA_ERROR_INVALID_PARAMETER;
1632 		goto err_unlock_all;
1633 	}
1634 
1635 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1636 		WARN("%s: RX Buffer is full!\n", __func__);
1637 		ret = FFA_ERROR_DENIED;
1638 		goto err_unlock_all;
1639 	}
1640 
1641 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1642 
1643 	mbox->state = MAILBOX_STATE_FULL;
1644 
1645 	/*
1646 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1647 	 * directly.
1648 	 */
1649 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1650 		size_t out_desc_size;
1651 
1652 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1653 							buf_size,
1654 							fragment_offset,
1655 							&copy_size,
1656 							&out_desc_size);
1657 		if (ret != 0U) {
1658 			ERROR("%s: Failed to process descriptor.\n", __func__);
1659 			goto err_unlock_all;
1660 		}
1661 	} else {
1662 		full_copy_size = obj->desc_size - fragment_offset;
1663 		copy_size = MIN(full_copy_size, buf_size);
1664 
1665 		src = &obj->desc;
1666 
1667 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1668 	}
1669 
1670 	spin_unlock(&mbox->lock);
1671 	spin_unlock(&spmc_shmem_obj_state.lock);
1672 
1673 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1674 		 copy_size, sender_id, 0, 0, 0);
1675 
1676 err_unlock_all:
1677 	spin_unlock(&mbox->lock);
1678 err_unlock_shmem:
1679 	spin_unlock(&spmc_shmem_obj_state.lock);
1680 	return spmc_ffa_error_return(handle, ret);
1681 }
1682 
1683 /**
1684  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1685  * @client:             Client state.
1686  *
1687  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1688  * Used by secure os release previously shared memory to non-secure os.
1689  *
1690  * The handle to release must be in the client's (secure os's) transmit buffer.
1691  *
1692  * Return: 0 on success, error code on failure.
1693  */
1694 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1695 			    bool secure_origin,
1696 			    uint32_t handle_low,
1697 			    uint32_t handle_high,
1698 			    uint32_t fragment_offset,
1699 			    uint32_t sender_id,
1700 			    void *cookie,
1701 			    void *handle,
1702 			    uint64_t flags)
1703 {
1704 	int ret;
1705 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1706 	struct spmc_shmem_obj *obj;
1707 	const struct ffa_mem_relinquish_descriptor *req;
1708 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1709 
1710 	if (!secure_origin) {
1711 		WARN("%s: unsupported relinquish direction.\n", __func__);
1712 		return spmc_ffa_error_return(handle,
1713 					     FFA_ERROR_INVALID_PARAMETER);
1714 	}
1715 
1716 	spin_lock(&mbox->lock);
1717 
1718 	if (mbox->rxtx_page_count == 0U) {
1719 		WARN("%s: buffer pair not registered.\n", __func__);
1720 		ret = FFA_ERROR_INVALID_PARAMETER;
1721 		goto err_unlock_mailbox;
1722 	}
1723 
1724 	req = mbox->tx_buffer;
1725 
1726 	if (req->flags != 0U) {
1727 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1728 		ret = FFA_ERROR_INVALID_PARAMETER;
1729 		goto err_unlock_mailbox;
1730 	}
1731 
1732 	if (req->endpoint_count == 0) {
1733 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1734 		ret = FFA_ERROR_INVALID_PARAMETER;
1735 		goto err_unlock_mailbox;
1736 	}
1737 
1738 	spin_lock(&spmc_shmem_obj_state.lock);
1739 
1740 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1741 	if (obj == NULL) {
1742 		ret = FFA_ERROR_INVALID_PARAMETER;
1743 		goto err_unlock_all;
1744 	}
1745 
1746 	/*
1747 	 * Validate the endpoint ID was populated correctly. We don't currently
1748 	 * support proxy endpoints so the endpoint count should always be 1.
1749 	 */
1750 	if (req->endpoint_count != 1U) {
1751 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1752 		     req->endpoint_count);
1753 		ret = FFA_ERROR_INVALID_PARAMETER;
1754 		goto err_unlock_all;
1755 	}
1756 
1757 	/* Validate provided endpoint ID matches the partition ID. */
1758 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1759 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1760 		     req->endpoint_array[0], sp_ctx->sp_id);
1761 		ret = FFA_ERROR_INVALID_PARAMETER;
1762 		goto err_unlock_all;
1763 	}
1764 
1765 	/* Validate the caller is a valid participant. */
1766 	if (!spmc_shmem_obj_validate_id(&obj->desc, sp_ctx->sp_id)) {
1767 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1768 			__func__, req->endpoint_array[0]);
1769 		ret = FFA_ERROR_INVALID_PARAMETER;
1770 		goto err_unlock_all;
1771 	}
1772 
1773 	if (obj->in_use == 0U) {
1774 		ret = FFA_ERROR_INVALID_PARAMETER;
1775 		goto err_unlock_all;
1776 	}
1777 	obj->in_use--;
1778 
1779 	spin_unlock(&spmc_shmem_obj_state.lock);
1780 	spin_unlock(&mbox->lock);
1781 
1782 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1783 
1784 err_unlock_all:
1785 	spin_unlock(&spmc_shmem_obj_state.lock);
1786 err_unlock_mailbox:
1787 	spin_unlock(&mbox->lock);
1788 	return spmc_ffa_error_return(handle, ret);
1789 }
1790 
1791 /**
1792  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1793  * @client:         Client state.
1794  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1795  * @handle_high:    Unique handle of shared memory object to reclaim.
1796  *                  Bit[63:32].
1797  * @flags:          Unsupported, ignored.
1798  *
1799  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1800  * Used by non-secure os reclaim memory previously shared with secure os.
1801  *
1802  * Return: 0 on success, error code on failure.
1803  */
1804 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1805 			 bool secure_origin,
1806 			 uint32_t handle_low,
1807 			 uint32_t handle_high,
1808 			 uint32_t mem_flags,
1809 			 uint64_t x4,
1810 			 void *cookie,
1811 			 void *handle,
1812 			 uint64_t flags)
1813 {
1814 	int ret;
1815 	struct spmc_shmem_obj *obj;
1816 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1817 
1818 	if (secure_origin) {
1819 		WARN("%s: unsupported reclaim direction.\n", __func__);
1820 		return spmc_ffa_error_return(handle,
1821 					     FFA_ERROR_INVALID_PARAMETER);
1822 	}
1823 
1824 	if (mem_flags != 0U) {
1825 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1826 		return spmc_ffa_error_return(handle,
1827 					     FFA_ERROR_INVALID_PARAMETER);
1828 	}
1829 
1830 	spin_lock(&spmc_shmem_obj_state.lock);
1831 
1832 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1833 	if (obj == NULL) {
1834 		ret = FFA_ERROR_INVALID_PARAMETER;
1835 		goto err_unlock;
1836 	}
1837 	if (obj->in_use != 0U) {
1838 		ret = FFA_ERROR_DENIED;
1839 		goto err_unlock;
1840 	}
1841 
1842 	if (obj->desc_filled != obj->desc_size) {
1843 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1844 		     __func__, obj->desc_filled, obj->desc_size);
1845 		ret = FFA_ERROR_INVALID_PARAMETER;
1846 		goto err_unlock;
1847 	}
1848 
1849 	/* Allow for platform specific operations to be performed. */
1850 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1851 	if (ret != 0) {
1852 		goto err_unlock;
1853 	}
1854 
1855 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1856 	spin_unlock(&spmc_shmem_obj_state.lock);
1857 
1858 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1859 
1860 err_unlock:
1861 	spin_unlock(&spmc_shmem_obj_state.lock);
1862 	return spmc_ffa_error_return(handle, ret);
1863 }
1864