1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 obj_size = spmc_shmem_obj_size(desc_size); 84 85 /* Ensure the obj size has not overflowed. */ 86 if (obj_size < desc_size) { 87 WARN("%s(0x%zx) desc_size overflow\n", 88 __func__, desc_size); 89 return NULL; 90 } 91 92 if (obj_size > free) { 93 WARN("%s(0x%zx) failed, free 0x%zx\n", 94 __func__, desc_size, free); 95 return NULL; 96 } 97 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 98 obj->desc = (struct ffa_mtd) {0}; 99 obj->desc_size = desc_size; 100 obj->desc_filled = 0; 101 obj->in_use = 0; 102 state->allocated += obj_size; 103 return obj; 104 } 105 106 /** 107 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 108 * @state: Global state. 109 * @obj: Object to free. 110 * 111 * Release memory used by @obj. Other objects may move, so on return all 112 * pointers to struct spmc_shmem_obj object should be considered invalid, not 113 * just @obj. 114 * 115 * The current implementation always compacts the remaining objects to simplify 116 * the allocator and to avoid fragmentation. 117 */ 118 119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 120 struct spmc_shmem_obj *obj) 121 { 122 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 123 uint8_t *shift_dest = (uint8_t *)obj; 124 uint8_t *shift_src = shift_dest + free_size; 125 size_t shift_size = state->allocated - (shift_src - state->data); 126 127 if (shift_size != 0U) { 128 memmove(shift_dest, shift_src, shift_size); 129 } 130 state->allocated -= free_size; 131 } 132 133 /** 134 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 135 * @state: Global state. 136 * @handle: Unique handle of object to return. 137 * 138 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 139 * %NULL, if not object in @state->data has a matching handle. 140 */ 141 static struct spmc_shmem_obj * 142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 143 { 144 uint8_t *curr = state->data; 145 146 while (curr - state->data < state->allocated) { 147 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 148 149 if (obj->desc.handle == handle) { 150 return obj; 151 } 152 curr += spmc_shmem_obj_size(obj->desc_size); 153 } 154 return NULL; 155 } 156 157 /** 158 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 159 * @offset: Offset used to track which objects have previously been 160 * returned. 161 * 162 * Return: the next struct spmc_shmem_obj_state object from the provided 163 * offset. 164 * %NULL, if there are no more objects. 165 */ 166 static struct spmc_shmem_obj * 167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 168 { 169 uint8_t *curr = state->data + *offset; 170 171 if (curr - state->data < state->allocated) { 172 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 173 174 *offset += spmc_shmem_obj_size(obj->desc_size); 175 176 return obj; 177 } 178 return NULL; 179 } 180 181 /******************************************************************************* 182 * FF-A memory descriptor helper functions. 183 ******************************************************************************/ 184 /** 185 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 186 * clients FF-A version. 187 * @desc: The memory transaction descriptor. 188 * @index: The index of the emad element to be accessed. 189 * @ffa_version: FF-A version of the provided structure. 190 * @emad_size: Will be populated with the size of the returned emad 191 * descriptor. 192 * Return: A pointer to the requested emad structure. 193 */ 194 static void * 195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 196 uint32_t ffa_version, size_t *emad_size) 197 { 198 uint8_t *emad; 199 200 assert(index < desc->emad_count); 201 202 /* 203 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 204 * format, otherwise assume it is a v1.1 format. 205 */ 206 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 207 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 208 *emad_size = sizeof(struct ffa_emad_v1_0); 209 } else { 210 assert(is_aligned(desc->emad_offset, 16)); 211 emad = ((uint8_t *) desc + desc->emad_offset); 212 *emad_size = desc->emad_size; 213 } 214 215 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 216 return (emad + (*emad_size * index)); 217 } 218 219 /** 220 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 221 * FF-A version of the descriptor. 222 * @obj: Object containing ffa_memory_region_descriptor. 223 * 224 * Return: struct ffa_comp_mrd object corresponding to the composite memory 225 * region descriptor. 226 */ 227 static struct ffa_comp_mrd * 228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 229 { 230 size_t emad_size; 231 /* 232 * The comp_mrd_offset field of the emad descriptor remains consistent 233 * between FF-A versions therefore we can use the v1.0 descriptor here 234 * in all cases. 235 */ 236 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 237 ffa_version, 238 &emad_size); 239 240 /* Ensure the composite descriptor offset is aligned. */ 241 if (!is_aligned(emad->comp_mrd_offset, 8)) { 242 WARN("Unaligned composite memory region descriptor offset.\n"); 243 return NULL; 244 } 245 246 return (struct ffa_comp_mrd *) 247 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 248 } 249 250 /** 251 * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj. 252 * @obj: Object containing ffa_memory_region_descriptor. 253 * 254 * Return: Size of ffa_constituent_memory_region_descriptors in @obj. 255 */ 256 static size_t 257 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj, 258 uint32_t ffa_version) 259 { 260 struct ffa_comp_mrd *comp_mrd; 261 262 comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 263 if (comp_mrd == NULL) { 264 return 0; 265 } 266 return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd); 267 } 268 269 /** 270 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 271 * a given memory transaction. 272 * @sp_id: Partition ID to validate. 273 * @obj: The shared memory object containing the descriptor 274 * of the memory transaction. 275 * Return: true if ID is valid, else false. 276 */ 277 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 278 { 279 bool found = false; 280 struct ffa_mtd *desc = &obj->desc; 281 size_t desc_size = obj->desc_size; 282 283 /* Validate the partition is a valid participant. */ 284 for (unsigned int i = 0U; i < desc->emad_count; i++) { 285 size_t emad_size; 286 struct ffa_emad_v1_0 *emad; 287 288 emad = spmc_shmem_obj_get_emad(desc, i, 289 MAKE_FFA_VERSION(1, 1), 290 &emad_size); 291 /* 292 * Validate the calculated emad address resides within the 293 * descriptor. 294 */ 295 if ((emad == NULL) || (uintptr_t) emad >= 296 (uintptr_t)((uint8_t *) desc + desc_size)) { 297 VERBOSE("Invalid emad.\n"); 298 break; 299 } 300 if (sp_id == emad->mapd.endpoint_id) { 301 found = true; 302 break; 303 } 304 } 305 return found; 306 } 307 308 /* 309 * Compare two memory regions to determine if any range overlaps with another 310 * ongoing memory transaction. 311 */ 312 static bool 313 overlapping_memory_regions(struct ffa_comp_mrd *region1, 314 struct ffa_comp_mrd *region2) 315 { 316 uint64_t region1_start; 317 uint64_t region1_size; 318 uint64_t region1_end; 319 uint64_t region2_start; 320 uint64_t region2_size; 321 uint64_t region2_end; 322 323 assert(region1 != NULL); 324 assert(region2 != NULL); 325 326 if (region1 == region2) { 327 return true; 328 } 329 330 /* 331 * Check each memory region in the request against existing 332 * transactions. 333 */ 334 for (size_t i = 0; i < region1->address_range_count; i++) { 335 336 region1_start = region1->address_range_array[i].address; 337 region1_size = 338 region1->address_range_array[i].page_count * 339 PAGE_SIZE_4KB; 340 region1_end = region1_start + region1_size; 341 342 for (size_t j = 0; j < region2->address_range_count; j++) { 343 344 region2_start = region2->address_range_array[j].address; 345 region2_size = 346 region2->address_range_array[j].page_count * 347 PAGE_SIZE_4KB; 348 region2_end = region2_start + region2_size; 349 350 /* Check if regions are not overlapping. */ 351 if (!((region2_end <= region1_start) || 352 (region1_end <= region2_start))) { 353 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 354 region1_start, region1_end, 355 region2_start, region2_end); 356 return true; 357 } 358 } 359 } 360 return false; 361 } 362 363 /******************************************************************************* 364 * FF-A v1.0 Memory Descriptor Conversion Helpers. 365 ******************************************************************************/ 366 /** 367 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 368 * converted descriptor. 369 * @orig: The original v1.0 memory transaction descriptor. 370 * @desc_size: The size of the original v1.0 memory transaction descriptor. 371 * 372 * Return: the size required to store the descriptor store in the v1.1 format. 373 */ 374 static size_t 375 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 376 { 377 size_t size = 0; 378 struct ffa_comp_mrd *mrd; 379 struct ffa_emad_v1_0 *emad_array = orig->emad; 380 381 /* Get the size of the v1.1 descriptor. */ 382 size += sizeof(struct ffa_mtd); 383 384 /* Add the size of the emad descriptors. */ 385 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 386 387 /* Add the size of the composite mrds. */ 388 size += sizeof(struct ffa_comp_mrd); 389 390 /* Add the size of the constituent mrds. */ 391 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 392 emad_array[0].comp_mrd_offset); 393 394 /* Check the calculated address is within the memory descriptor. */ 395 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 396 (uintptr_t)((uint8_t *) orig + desc_size)) { 397 return 0; 398 } 399 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 400 401 return size; 402 } 403 404 /** 405 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 406 * converted descriptor. 407 * @orig: The original v1.1 memory transaction descriptor. 408 * @desc_size: The size of the original v1.1 memory transaction descriptor. 409 * 410 * Return: the size required to store the descriptor store in the v1.0 format. 411 */ 412 static size_t 413 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 414 { 415 size_t size = 0; 416 struct ffa_comp_mrd *mrd; 417 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 418 ((uint8_t *) orig + 419 orig->emad_offset); 420 421 /* Get the size of the v1.0 descriptor. */ 422 size += sizeof(struct ffa_mtd_v1_0); 423 424 /* Add the size of the v1.0 emad descriptors. */ 425 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 426 427 /* Add the size of the composite mrds. */ 428 size += sizeof(struct ffa_comp_mrd); 429 430 /* Add the size of the constituent mrds. */ 431 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 432 emad_array[0].comp_mrd_offset); 433 434 /* Check the calculated address is within the memory descriptor. */ 435 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 436 (uintptr_t)((uint8_t *) orig + desc_size)) { 437 return 0; 438 } 439 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 440 441 return size; 442 } 443 444 /** 445 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 446 * @out_obj: The shared memory object to populate the converted descriptor. 447 * @orig: The shared memory object containing the v1.0 descriptor. 448 * 449 * Return: true if the conversion is successful else false. 450 */ 451 static bool 452 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 453 struct spmc_shmem_obj *orig) 454 { 455 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 456 struct ffa_mtd *out = &out_obj->desc; 457 struct ffa_emad_v1_0 *emad_array_in; 458 struct ffa_emad_v1_0 *emad_array_out; 459 struct ffa_comp_mrd *mrd_in; 460 struct ffa_comp_mrd *mrd_out; 461 462 size_t mrd_in_offset; 463 size_t mrd_out_offset; 464 size_t mrd_size = 0; 465 466 /* Populate the new descriptor format from the v1.0 struct. */ 467 out->sender_id = mtd_orig->sender_id; 468 out->memory_region_attributes = mtd_orig->memory_region_attributes; 469 out->flags = mtd_orig->flags; 470 out->handle = mtd_orig->handle; 471 out->tag = mtd_orig->tag; 472 out->emad_count = mtd_orig->emad_count; 473 out->emad_size = sizeof(struct ffa_emad_v1_0); 474 475 /* 476 * We will locate the emad descriptors directly after the ffa_mtd 477 * struct. This will be 8-byte aligned. 478 */ 479 out->emad_offset = sizeof(struct ffa_mtd); 480 481 emad_array_in = mtd_orig->emad; 482 emad_array_out = (struct ffa_emad_v1_0 *) 483 ((uint8_t *) out + out->emad_offset); 484 485 /* Copy across the emad structs. */ 486 for (unsigned int i = 0U; i < out->emad_count; i++) { 487 /* Bound check for emad array. */ 488 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 489 ((uint8_t *) mtd_orig + orig->desc_size)) { 490 VERBOSE("%s: Invalid mtd structure.\n", __func__); 491 return false; 492 } 493 memcpy(&emad_array_out[i], &emad_array_in[i], 494 sizeof(struct ffa_emad_v1_0)); 495 } 496 497 /* Place the mrd descriptors after the end of the emad descriptors.*/ 498 mrd_in_offset = emad_array_in->comp_mrd_offset; 499 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 500 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 501 502 /* Add the size of the composite memory region descriptor. */ 503 mrd_size += sizeof(struct ffa_comp_mrd); 504 505 /* Find the mrd descriptor. */ 506 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 507 508 /* Add the size of the constituent memory region descriptors. */ 509 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 510 511 /* 512 * Update the offset in the emads by the delta between the input and 513 * output addresses. 514 */ 515 for (unsigned int i = 0U; i < out->emad_count; i++) { 516 emad_array_out[i].comp_mrd_offset = 517 emad_array_in[i].comp_mrd_offset + 518 (mrd_out_offset - mrd_in_offset); 519 } 520 521 /* Verify that we stay within bound of the memory descriptors. */ 522 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 523 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 524 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 525 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 526 ERROR("%s: Invalid mrd structure.\n", __func__); 527 return false; 528 } 529 530 /* Copy the mrd descriptors directly. */ 531 memcpy(mrd_out, mrd_in, mrd_size); 532 533 return true; 534 } 535 536 /** 537 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 538 * v1.0 memory object. 539 * @out_obj: The shared memory object to populate the v1.0 descriptor. 540 * @orig: The shared memory object containing the v1.1 descriptor. 541 * 542 * Return: true if the conversion is successful else false. 543 */ 544 static bool 545 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 546 struct spmc_shmem_obj *orig) 547 { 548 struct ffa_mtd *mtd_orig = &orig->desc; 549 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 550 struct ffa_emad_v1_0 *emad_in; 551 struct ffa_emad_v1_0 *emad_array_in; 552 struct ffa_emad_v1_0 *emad_array_out; 553 struct ffa_comp_mrd *mrd_in; 554 struct ffa_comp_mrd *mrd_out; 555 556 size_t mrd_in_offset; 557 size_t mrd_out_offset; 558 size_t emad_out_array_size; 559 size_t mrd_size = 0; 560 size_t orig_desc_size = orig->desc_size; 561 562 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 563 out->sender_id = mtd_orig->sender_id; 564 out->memory_region_attributes = mtd_orig->memory_region_attributes; 565 out->flags = mtd_orig->flags; 566 out->handle = mtd_orig->handle; 567 out->tag = mtd_orig->tag; 568 out->emad_count = mtd_orig->emad_count; 569 570 /* Determine the location of the emad array in both descriptors. */ 571 emad_array_in = (struct ffa_emad_v1_0 *) 572 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 573 emad_array_out = out->emad; 574 575 /* Copy across the emad structs. */ 576 emad_in = emad_array_in; 577 for (unsigned int i = 0U; i < out->emad_count; i++) { 578 /* Bound check for emad array. */ 579 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 580 ((uint8_t *) mtd_orig + orig_desc_size)) { 581 VERBOSE("%s: Invalid mtd structure.\n", __func__); 582 return false; 583 } 584 memcpy(&emad_array_out[i], emad_in, 585 sizeof(struct ffa_emad_v1_0)); 586 587 emad_in += mtd_orig->emad_size; 588 } 589 590 /* Place the mrd descriptors after the end of the emad descriptors. */ 591 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 592 593 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 594 emad_out_array_size; 595 596 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 597 598 mrd_in_offset = mtd_orig->emad_offset + 599 (mtd_orig->emad_size * mtd_orig->emad_count); 600 601 /* Add the size of the composite memory region descriptor. */ 602 mrd_size += sizeof(struct ffa_comp_mrd); 603 604 /* Find the mrd descriptor. */ 605 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 606 607 /* Add the size of the constituent memory region descriptors. */ 608 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 609 610 /* 611 * Update the offset in the emads by the delta between the input and 612 * output addresses. 613 */ 614 emad_in = emad_array_in; 615 616 for (unsigned int i = 0U; i < out->emad_count; i++) { 617 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 618 (mrd_out_offset - 619 mrd_in_offset); 620 emad_in += mtd_orig->emad_size; 621 } 622 623 /* Verify that we stay within bound of the memory descriptors. */ 624 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 625 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 626 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 627 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 628 ERROR("%s: Invalid mrd structure.\n", __func__); 629 return false; 630 } 631 632 /* Copy the mrd descriptors directly. */ 633 memcpy(mrd_out, mrd_in, mrd_size); 634 635 return true; 636 } 637 638 /** 639 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 640 * the v1.0 format and populates the 641 * provided buffer. 642 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 643 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 644 * @buf_size: Size of the buffer to populate. 645 * @offset: The offset of the converted descriptor to copy. 646 * @copy_size: Will be populated with the number of bytes copied. 647 * @out_desc_size: Will be populated with the total size of the v1.0 648 * descriptor. 649 * 650 * Return: 0 if conversion and population succeeded. 651 * Note: This function invalidates the reference to @orig therefore 652 * `spmc_shmem_obj_lookup` must be called if further usage is required. 653 */ 654 static uint32_t 655 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 656 size_t buf_size, size_t offset, 657 size_t *copy_size, size_t *v1_0_desc_size) 658 { 659 struct spmc_shmem_obj *v1_0_obj; 660 661 /* Calculate the size that the v1.0 descriptor will require. */ 662 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 663 &orig_obj->desc, orig_obj->desc_size); 664 665 if (*v1_0_desc_size == 0) { 666 ERROR("%s: cannot determine size of descriptor.\n", 667 __func__); 668 return FFA_ERROR_INVALID_PARAMETER; 669 } 670 671 /* Get a new obj to store the v1.0 descriptor. */ 672 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 673 *v1_0_desc_size); 674 675 if (!v1_0_obj) { 676 return FFA_ERROR_NO_MEMORY; 677 } 678 679 /* Perform the conversion from v1.1 to v1.0. */ 680 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 681 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 682 return FFA_ERROR_INVALID_PARAMETER; 683 } 684 685 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 686 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 687 688 /* 689 * We're finished with the v1.0 descriptor for now so free it. 690 * Note that this will invalidate any references to the v1.1 691 * descriptor. 692 */ 693 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 694 695 return 0; 696 } 697 698 static int 699 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 700 size_t fragment_length, size_t total_length) 701 { 702 unsigned long long emad_end; 703 unsigned long long emad_size; 704 unsigned long long emad_offset; 705 unsigned int min_desc_size; 706 707 /* Determine the appropriate minimum descriptor size. */ 708 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 709 min_desc_size = sizeof(struct ffa_mtd_v1_0); 710 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 711 min_desc_size = sizeof(struct ffa_mtd); 712 } else { 713 return FFA_ERROR_INVALID_PARAMETER; 714 } 715 if (fragment_length < min_desc_size) { 716 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 717 min_desc_size); 718 return FFA_ERROR_INVALID_PARAMETER; 719 } 720 721 if (desc->emad_count == 0U) { 722 WARN("%s: unsupported attribute desc count %u.\n", 723 __func__, desc->emad_count); 724 return FFA_ERROR_INVALID_PARAMETER; 725 } 726 727 /* 728 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 729 * format, otherwise assume it is a v1.1 format. 730 */ 731 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 732 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 733 } else { 734 if (!is_aligned(desc->emad_offset, 16)) { 735 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 736 __func__, desc->emad_offset); 737 return FFA_ERROR_INVALID_PARAMETER; 738 } 739 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 740 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 741 __func__, desc->emad_offset, 742 sizeof(struct ffa_mtd)); 743 return FFA_ERROR_INVALID_PARAMETER; 744 } 745 emad_offset = desc->emad_offset; 746 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 747 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 748 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 749 return FFA_ERROR_INVALID_PARAMETER; 750 } 751 if (!is_aligned(desc->emad_size, 16)) { 752 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 753 __func__, desc->emad_size); 754 return FFA_ERROR_INVALID_PARAMETER; 755 } 756 emad_size = desc->emad_size; 757 } 758 759 /* 760 * Overflow is impossible: the arithmetic happens in at least 64-bit 761 * precision, but all of the operands are bounded by UINT32_MAX, and 762 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 763 * = (2^64 - 1). 764 */ 765 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 766 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 767 (unsigned long long)sizeof(struct ffa_comp_mrd) + 768 (unsigned long long)emad_offset; 769 770 if (emad_end > total_length) { 771 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 772 __func__, emad_end, total_length); 773 return FFA_ERROR_INVALID_PARAMETER; 774 } 775 776 return 0; 777 } 778 779 /** 780 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 781 * @obj: Object containing ffa_memory_region_descriptor. 782 * @ffa_version: FF-A version of the provided descriptor. 783 * 784 * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor 785 * offset or count is invalid. 786 */ 787 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 788 uint32_t ffa_version) 789 { 790 uint32_t comp_mrd_offset = 0; 791 792 if (obj->desc.emad_count == 0U) { 793 WARN("%s: unsupported attribute desc count %u.\n", 794 __func__, obj->desc.emad_count); 795 return -EINVAL; 796 } 797 798 for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { 799 size_t size; 800 size_t count; 801 size_t expected_size; 802 size_t total_page_count; 803 size_t emad_size; 804 size_t header_emad_size; 805 uint32_t offset; 806 struct ffa_comp_mrd *comp; 807 struct ffa_emad_v1_0 *emad; 808 809 emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num, 810 ffa_version, &emad_size); 811 812 /* 813 * Validate the calculated emad address resides within the 814 * descriptor. 815 */ 816 if ((uintptr_t) emad >= 817 (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) { 818 WARN("Invalid emad access.\n"); 819 return -EINVAL; 820 } 821 822 offset = emad->comp_mrd_offset; 823 824 /* 825 * The offset provided to the composite memory region descriptor 826 * should be consistent across endpoint descriptors. Store the 827 * first entry and compare against subsequent entries. 828 */ 829 if (comp_mrd_offset == 0) { 830 comp_mrd_offset = offset; 831 } else { 832 if (comp_mrd_offset != offset) { 833 ERROR("%s: mismatching offsets provided, %u != %u\n", 834 __func__, offset, comp_mrd_offset); 835 return -EINVAL; 836 } 837 continue; /* Remainder only executed on first iteration. */ 838 } 839 840 header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) + 841 (obj->desc.emad_count * emad_size); 842 843 if (offset < header_emad_size) { 844 WARN("%s: invalid object, offset %u < header + emad %zu\n", 845 __func__, offset, header_emad_size); 846 return -EINVAL; 847 } 848 849 size = obj->desc_size; 850 851 if (offset > size) { 852 WARN("%s: invalid object, offset %u > total size %zu\n", 853 __func__, offset, obj->desc_size); 854 return -EINVAL; 855 } 856 size -= offset; 857 858 if (size < sizeof(struct ffa_comp_mrd)) { 859 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 860 __func__, offset, obj->desc_size); 861 return -EINVAL; 862 } 863 size -= sizeof(struct ffa_comp_mrd); 864 865 count = size / sizeof(struct ffa_cons_mrd); 866 867 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 868 869 if (comp == NULL) { 870 WARN("%s: invalid comp_mrd offset\n", __func__); 871 return -EINVAL; 872 } 873 874 if (comp->address_range_count != count) { 875 WARN("%s: invalid object, desc count %u != %zu\n", 876 __func__, comp->address_range_count, count); 877 return -EINVAL; 878 } 879 880 expected_size = offset + sizeof(*comp) + 881 spmc_shmem_obj_ffa_constituent_size(obj, 882 ffa_version); 883 884 if (expected_size != obj->desc_size) { 885 WARN("%s: invalid object, computed size %zu != size %zu\n", 886 __func__, expected_size, obj->desc_size); 887 return -EINVAL; 888 } 889 890 total_page_count = 0; 891 892 for (size_t i = 0; i < count; i++) { 893 total_page_count += 894 comp->address_range_array[i].page_count; 895 } 896 if (comp->total_page_count != total_page_count) { 897 WARN("%s: invalid object, desc total_page_count %u != %zu\n", 898 __func__, comp->total_page_count, 899 total_page_count); 900 return -EINVAL; 901 } 902 } 903 return 0; 904 } 905 906 /** 907 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 908 * regions that are currently involved with an 909 * existing memory transactions. This implies that 910 * the memory is not in a valid state for lending. 911 * @obj: Object containing ffa_memory_region_descriptor. 912 * 913 * Return: 0 if object is valid, -EINVAL if invalid memory state. 914 */ 915 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 916 uint32_t ffa_version) 917 { 918 size_t obj_offset = 0; 919 struct spmc_shmem_obj *inflight_obj; 920 921 struct ffa_comp_mrd *other_mrd; 922 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 923 ffa_version); 924 925 if (requested_mrd == NULL) { 926 return -EINVAL; 927 } 928 929 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 930 &obj_offset); 931 932 while (inflight_obj != NULL) { 933 /* 934 * Don't compare the transaction to itself or to partially 935 * transmitted descriptors. 936 */ 937 if ((obj->desc.handle != inflight_obj->desc.handle) && 938 (obj->desc_size == obj->desc_filled)) { 939 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 940 FFA_VERSION_COMPILED); 941 if (other_mrd == NULL) { 942 return -EINVAL; 943 } 944 if (overlapping_memory_regions(requested_mrd, 945 other_mrd)) { 946 return -EINVAL; 947 } 948 } 949 950 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 951 &obj_offset); 952 } 953 return 0; 954 } 955 956 static long spmc_ffa_fill_desc(struct mailbox *mbox, 957 struct spmc_shmem_obj *obj, 958 uint32_t fragment_length, 959 ffa_mtd_flag32_t mtd_flag, 960 uint32_t ffa_version, 961 void *smc_handle) 962 { 963 int ret; 964 size_t emad_size; 965 uint32_t handle_low; 966 uint32_t handle_high; 967 struct ffa_emad_v1_0 *emad; 968 struct ffa_emad_v1_0 *other_emad; 969 970 if (mbox->rxtx_page_count == 0U) { 971 WARN("%s: buffer pair not registered.\n", __func__); 972 ret = FFA_ERROR_INVALID_PARAMETER; 973 goto err_arg; 974 } 975 976 if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) { 977 WARN("%s: bad fragment size %u > %u buffer size\n", __func__, 978 fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB); 979 ret = FFA_ERROR_INVALID_PARAMETER; 980 goto err_arg; 981 } 982 983 if (fragment_length > obj->desc_size - obj->desc_filled) { 984 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 985 fragment_length, obj->desc_size - obj->desc_filled); 986 ret = FFA_ERROR_INVALID_PARAMETER; 987 goto err_arg; 988 } 989 990 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 991 (uint8_t *) mbox->tx_buffer, fragment_length); 992 993 /* Ensure that the sender ID resides in the normal world. */ 994 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 995 WARN("%s: Invalid sender ID 0x%x.\n", 996 __func__, obj->desc.sender_id); 997 ret = FFA_ERROR_DENIED; 998 goto err_arg; 999 } 1000 1001 /* Ensure the NS bit is set to 0. */ 1002 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1003 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1004 ret = FFA_ERROR_INVALID_PARAMETER; 1005 goto err_arg; 1006 } 1007 1008 /* 1009 * We don't currently support any optional flags so ensure none are 1010 * requested. 1011 */ 1012 if (obj->desc.flags != 0U && mtd_flag != 0U && 1013 (obj->desc.flags != mtd_flag)) { 1014 WARN("%s: invalid memory transaction flags %u != %u\n", 1015 __func__, obj->desc.flags, mtd_flag); 1016 ret = FFA_ERROR_INVALID_PARAMETER; 1017 goto err_arg; 1018 } 1019 1020 if (obj->desc_filled == 0U) { 1021 /* First fragment, descriptor header has been copied */ 1022 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1023 fragment_length, obj->desc_size); 1024 if (ret != 0) { 1025 goto err_bad_desc; 1026 } 1027 1028 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1029 obj->desc.flags |= mtd_flag; 1030 } 1031 1032 obj->desc_filled += fragment_length; 1033 1034 handle_low = (uint32_t)obj->desc.handle; 1035 handle_high = obj->desc.handle >> 32; 1036 1037 if (obj->desc_filled != obj->desc_size) { 1038 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1039 handle_high, obj->desc_filled, 1040 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1041 } 1042 1043 /* The full descriptor has been received, perform any final checks. */ 1044 1045 ret = spmc_shmem_check_obj(obj, ffa_version); 1046 if (ret != 0) { 1047 ret = FFA_ERROR_INVALID_PARAMETER; 1048 goto err_bad_desc; 1049 } 1050 1051 /* 1052 * If a partition ID resides in the secure world validate that the 1053 * partition ID is for a known partition. Ignore any partition ID 1054 * belonging to the normal world as it is assumed the Hypervisor will 1055 * have validated these. 1056 */ 1057 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1058 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1059 &emad_size); 1060 1061 ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id; 1062 1063 if (ffa_is_secure_world_id(ep_id)) { 1064 if (spmc_get_sp_ctx(ep_id) == NULL) { 1065 WARN("%s: Invalid receiver id 0x%x\n", 1066 __func__, ep_id); 1067 ret = FFA_ERROR_INVALID_PARAMETER; 1068 goto err_bad_desc; 1069 } 1070 } 1071 } 1072 1073 /* Ensure partition IDs are not duplicated. */ 1074 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1075 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1076 &emad_size); 1077 1078 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1079 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1080 ffa_version, 1081 &emad_size); 1082 1083 if (emad->mapd.endpoint_id == 1084 other_emad->mapd.endpoint_id) { 1085 WARN("%s: Duplicated endpoint id 0x%x\n", 1086 __func__, emad->mapd.endpoint_id); 1087 ret = FFA_ERROR_INVALID_PARAMETER; 1088 goto err_bad_desc; 1089 } 1090 } 1091 } 1092 1093 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1094 if (ret) { 1095 ERROR("%s: invalid memory region descriptor.\n", __func__); 1096 ret = FFA_ERROR_INVALID_PARAMETER; 1097 goto err_bad_desc; 1098 } 1099 1100 /* 1101 * Everything checks out, if the sender was using FF-A v1.0, convert 1102 * the descriptor format to use the v1.1 structures. 1103 */ 1104 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1105 struct spmc_shmem_obj *v1_1_obj; 1106 uint64_t mem_handle; 1107 1108 /* Calculate the size that the v1.1 descriptor will required. */ 1109 size_t v1_1_desc_size = 1110 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1111 obj->desc_size); 1112 1113 if (v1_1_desc_size == 0U) { 1114 ERROR("%s: cannot determine size of descriptor.\n", 1115 __func__); 1116 goto err_arg; 1117 } 1118 1119 /* Get a new obj to store the v1.1 descriptor. */ 1120 v1_1_obj = 1121 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size); 1122 1123 if (!v1_1_obj) { 1124 ret = FFA_ERROR_NO_MEMORY; 1125 goto err_arg; 1126 } 1127 1128 /* Perform the conversion from v1.0 to v1.1. */ 1129 v1_1_obj->desc_size = v1_1_desc_size; 1130 v1_1_obj->desc_filled = v1_1_desc_size; 1131 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1132 ERROR("%s: Could not convert mtd!\n", __func__); 1133 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1134 goto err_arg; 1135 } 1136 1137 /* 1138 * We're finished with the v1.0 descriptor so free it 1139 * and continue our checks with the new v1.1 descriptor. 1140 */ 1141 mem_handle = obj->desc.handle; 1142 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1143 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1144 if (obj == NULL) { 1145 ERROR("%s: Failed to find converted descriptor.\n", 1146 __func__); 1147 ret = FFA_ERROR_INVALID_PARAMETER; 1148 return spmc_ffa_error_return(smc_handle, ret); 1149 } 1150 } 1151 1152 /* Allow for platform specific operations to be performed. */ 1153 ret = plat_spmc_shmem_begin(&obj->desc); 1154 if (ret != 0) { 1155 goto err_arg; 1156 } 1157 1158 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1159 0, 0, 0); 1160 1161 err_bad_desc: 1162 err_arg: 1163 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1164 return spmc_ffa_error_return(smc_handle, ret); 1165 } 1166 1167 /** 1168 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1169 * @client: Client state. 1170 * @total_length: Total length of shared memory descriptor. 1171 * @fragment_length: Length of fragment of shared memory descriptor passed in 1172 * this call. 1173 * @address: Not supported, must be 0. 1174 * @page_count: Not supported, must be 0. 1175 * @smc_handle: Handle passed to smc call. Used to return 1176 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1177 * 1178 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1179 * to share or lend memory from non-secure os to secure os (with no stream 1180 * endpoints). 1181 * 1182 * Return: 0 on success, error code on failure. 1183 */ 1184 long spmc_ffa_mem_send(uint32_t smc_fid, 1185 bool secure_origin, 1186 uint64_t total_length, 1187 uint32_t fragment_length, 1188 uint64_t address, 1189 uint32_t page_count, 1190 void *cookie, 1191 void *handle, 1192 uint64_t flags) 1193 1194 { 1195 long ret; 1196 struct spmc_shmem_obj *obj; 1197 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1198 ffa_mtd_flag32_t mtd_flag; 1199 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1200 size_t min_desc_size; 1201 1202 if (address != 0U || page_count != 0U) { 1203 WARN("%s: custom memory region for message not supported.\n", 1204 __func__); 1205 return spmc_ffa_error_return(handle, 1206 FFA_ERROR_INVALID_PARAMETER); 1207 } 1208 1209 if (secure_origin) { 1210 WARN("%s: unsupported share direction.\n", __func__); 1211 return spmc_ffa_error_return(handle, 1212 FFA_ERROR_INVALID_PARAMETER); 1213 } 1214 1215 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1216 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1217 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1218 min_desc_size = sizeof(struct ffa_mtd); 1219 } else { 1220 WARN("%s: bad FF-A version.\n", __func__); 1221 return spmc_ffa_error_return(handle, 1222 FFA_ERROR_INVALID_PARAMETER); 1223 } 1224 1225 /* Check if the descriptor is too small for the FF-A version. */ 1226 if (fragment_length < min_desc_size) { 1227 WARN("%s: bad first fragment size %u < %zu\n", 1228 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1229 return spmc_ffa_error_return(handle, 1230 FFA_ERROR_INVALID_PARAMETER); 1231 } 1232 1233 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1234 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1235 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1236 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1237 } else { 1238 WARN("%s: invalid memory management operation.\n", __func__); 1239 return spmc_ffa_error_return(handle, 1240 FFA_ERROR_INVALID_PARAMETER); 1241 } 1242 1243 spin_lock(&spmc_shmem_obj_state.lock); 1244 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1245 if (obj == NULL) { 1246 ret = FFA_ERROR_NO_MEMORY; 1247 goto err_unlock; 1248 } 1249 1250 spin_lock(&mbox->lock); 1251 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1252 ffa_version, handle); 1253 spin_unlock(&mbox->lock); 1254 1255 spin_unlock(&spmc_shmem_obj_state.lock); 1256 return ret; 1257 1258 err_unlock: 1259 spin_unlock(&spmc_shmem_obj_state.lock); 1260 return spmc_ffa_error_return(handle, ret); 1261 } 1262 1263 /** 1264 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1265 * @client: Client state. 1266 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1267 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1268 * @fragment_length: Length of fragments transmitted. 1269 * @sender_id: Vmid of sender in bits [31:16] 1270 * @smc_handle: Handle passed to smc call. Used to return 1271 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1272 * 1273 * Return: @smc_handle on success, error code on failure. 1274 */ 1275 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1276 bool secure_origin, 1277 uint64_t handle_low, 1278 uint64_t handle_high, 1279 uint32_t fragment_length, 1280 uint32_t sender_id, 1281 void *cookie, 1282 void *handle, 1283 uint64_t flags) 1284 { 1285 long ret; 1286 uint32_t desc_sender_id; 1287 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1288 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1289 1290 struct spmc_shmem_obj *obj; 1291 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1292 1293 spin_lock(&spmc_shmem_obj_state.lock); 1294 1295 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1296 if (obj == NULL) { 1297 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1298 __func__, mem_handle); 1299 ret = FFA_ERROR_INVALID_PARAMETER; 1300 goto err_unlock; 1301 } 1302 1303 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1304 if (sender_id != desc_sender_id) { 1305 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1306 sender_id, desc_sender_id); 1307 ret = FFA_ERROR_INVALID_PARAMETER; 1308 goto err_unlock; 1309 } 1310 1311 if (obj->desc_filled == obj->desc_size) { 1312 WARN("%s: object desc already filled, %zu\n", __func__, 1313 obj->desc_filled); 1314 ret = FFA_ERROR_INVALID_PARAMETER; 1315 goto err_unlock; 1316 } 1317 1318 spin_lock(&mbox->lock); 1319 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1320 handle); 1321 spin_unlock(&mbox->lock); 1322 1323 spin_unlock(&spmc_shmem_obj_state.lock); 1324 return ret; 1325 1326 err_unlock: 1327 spin_unlock(&spmc_shmem_obj_state.lock); 1328 return spmc_ffa_error_return(handle, ret); 1329 } 1330 1331 /** 1332 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1333 * if the caller implements a version greater 1334 * than FF-A 1.0 or if they have requested 1335 * the functionality. 1336 * TODO: We are assuming that the caller is 1337 * an SP. To support retrieval from the 1338 * normal world this function will need to be 1339 * expanded accordingly. 1340 * @resp: Descriptor populated in callers RX buffer. 1341 * @sp_ctx: Context of the calling SP. 1342 */ 1343 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1344 struct secure_partition_desc *sp_ctx) 1345 { 1346 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1347 sp_ctx->ns_bit_requested) { 1348 /* 1349 * Currently memory senders must reside in the normal 1350 * world, and we do not have the functionlaity to change 1351 * the state of memory dynamically. Therefore we can always set 1352 * the NS bit to 1. 1353 */ 1354 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1355 } 1356 } 1357 1358 /** 1359 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1360 * @smc_fid: FID of SMC 1361 * @total_length: Total length of retrieve request descriptor if this is 1362 * the first call. Otherwise (unsupported) must be 0. 1363 * @fragment_length: Length of fragment of retrieve request descriptor passed 1364 * in this call. Only @fragment_length == @length is 1365 * supported by this implementation. 1366 * @address: Not supported, must be 0. 1367 * @page_count: Not supported, must be 0. 1368 * @smc_handle: Handle passed to smc call. Used to return 1369 * FFA_MEM_RETRIEVE_RESP. 1370 * 1371 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1372 * Used by secure os to retrieve memory already shared by non-secure os. 1373 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1374 * the client must call FFA_MEM_FRAG_RX until the full response has been 1375 * received. 1376 * 1377 * Return: @handle on success, error code on failure. 1378 */ 1379 long 1380 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1381 bool secure_origin, 1382 uint32_t total_length, 1383 uint32_t fragment_length, 1384 uint64_t address, 1385 uint32_t page_count, 1386 void *cookie, 1387 void *handle, 1388 uint64_t flags) 1389 { 1390 int ret; 1391 size_t buf_size; 1392 size_t copy_size = 0; 1393 size_t min_desc_size; 1394 size_t out_desc_size = 0; 1395 1396 /* 1397 * Currently we are only accessing fields that are the same in both the 1398 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1399 * here. We only need validate against the appropriate struct size. 1400 */ 1401 struct ffa_mtd *resp; 1402 const struct ffa_mtd *req; 1403 struct spmc_shmem_obj *obj = NULL; 1404 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1405 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1406 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1407 1408 if (!secure_origin) { 1409 WARN("%s: unsupported retrieve req direction.\n", __func__); 1410 return spmc_ffa_error_return(handle, 1411 FFA_ERROR_INVALID_PARAMETER); 1412 } 1413 1414 if (address != 0U || page_count != 0U) { 1415 WARN("%s: custom memory region not supported.\n", __func__); 1416 return spmc_ffa_error_return(handle, 1417 FFA_ERROR_INVALID_PARAMETER); 1418 } 1419 1420 spin_lock(&mbox->lock); 1421 1422 req = mbox->tx_buffer; 1423 resp = mbox->rx_buffer; 1424 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1425 1426 if (mbox->rxtx_page_count == 0U) { 1427 WARN("%s: buffer pair not registered.\n", __func__); 1428 ret = FFA_ERROR_INVALID_PARAMETER; 1429 goto err_unlock_mailbox; 1430 } 1431 1432 if (mbox->state != MAILBOX_STATE_EMPTY) { 1433 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1434 ret = FFA_ERROR_DENIED; 1435 goto err_unlock_mailbox; 1436 } 1437 1438 if (fragment_length != total_length) { 1439 WARN("%s: fragmented retrieve request not supported.\n", 1440 __func__); 1441 ret = FFA_ERROR_INVALID_PARAMETER; 1442 goto err_unlock_mailbox; 1443 } 1444 1445 if (req->emad_count == 0U) { 1446 WARN("%s: unsupported attribute desc count %u.\n", 1447 __func__, obj->desc.emad_count); 1448 ret = FFA_ERROR_INVALID_PARAMETER; 1449 goto err_unlock_mailbox; 1450 } 1451 1452 /* Determine the appropriate minimum descriptor size. */ 1453 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1454 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1455 } else { 1456 min_desc_size = sizeof(struct ffa_mtd); 1457 } 1458 if (total_length < min_desc_size) { 1459 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1460 min_desc_size); 1461 ret = FFA_ERROR_INVALID_PARAMETER; 1462 goto err_unlock_mailbox; 1463 } 1464 1465 spin_lock(&spmc_shmem_obj_state.lock); 1466 1467 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1468 if (obj == NULL) { 1469 ret = FFA_ERROR_INVALID_PARAMETER; 1470 goto err_unlock_all; 1471 } 1472 1473 if (obj->desc_filled != obj->desc_size) { 1474 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1475 __func__, obj->desc_filled, obj->desc_size); 1476 ret = FFA_ERROR_INVALID_PARAMETER; 1477 goto err_unlock_all; 1478 } 1479 1480 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1481 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1482 __func__, req->sender_id, obj->desc.sender_id); 1483 ret = FFA_ERROR_INVALID_PARAMETER; 1484 goto err_unlock_all; 1485 } 1486 1487 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1488 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1489 __func__, req->tag, obj->desc.tag); 1490 ret = FFA_ERROR_INVALID_PARAMETER; 1491 goto err_unlock_all; 1492 } 1493 1494 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1495 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1496 __func__, req->emad_count, obj->desc.emad_count); 1497 ret = FFA_ERROR_INVALID_PARAMETER; 1498 goto err_unlock_all; 1499 } 1500 1501 /* Ensure the NS bit is set to 0 in the request. */ 1502 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1503 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1504 ret = FFA_ERROR_INVALID_PARAMETER; 1505 goto err_unlock_all; 1506 } 1507 1508 if (req->flags != 0U) { 1509 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1510 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1511 /* 1512 * If the retrieve request specifies the memory 1513 * transaction ensure it matches what we expect. 1514 */ 1515 WARN("%s: wrong mem transaction flags %x != %x\n", 1516 __func__, req->flags, obj->desc.flags); 1517 ret = FFA_ERROR_INVALID_PARAMETER; 1518 goto err_unlock_all; 1519 } 1520 1521 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1522 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1523 /* 1524 * Current implementation does not support donate and 1525 * it supports no other flags. 1526 */ 1527 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1528 ret = FFA_ERROR_INVALID_PARAMETER; 1529 goto err_unlock_all; 1530 } 1531 } 1532 1533 /* Validate the caller is a valid participant. */ 1534 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1535 WARN("%s: Invalid endpoint ID (0x%x).\n", 1536 __func__, sp_ctx->sp_id); 1537 ret = FFA_ERROR_INVALID_PARAMETER; 1538 goto err_unlock_all; 1539 } 1540 1541 /* Validate that the provided emad offset and structure is valid.*/ 1542 for (size_t i = 0; i < req->emad_count; i++) { 1543 size_t emad_size; 1544 struct ffa_emad_v1_0 *emad; 1545 1546 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1547 &emad_size); 1548 1549 if ((uintptr_t) emad >= (uintptr_t) 1550 ((uint8_t *) req + total_length)) { 1551 WARN("Invalid emad access.\n"); 1552 ret = FFA_ERROR_INVALID_PARAMETER; 1553 goto err_unlock_all; 1554 } 1555 } 1556 1557 /* 1558 * Validate all the endpoints match in the case of multiple 1559 * borrowers. We don't mandate that the order of the borrowers 1560 * must match in the descriptors therefore check to see if the 1561 * endpoints match in any order. 1562 */ 1563 for (size_t i = 0; i < req->emad_count; i++) { 1564 bool found = false; 1565 size_t emad_size; 1566 struct ffa_emad_v1_0 *emad; 1567 struct ffa_emad_v1_0 *other_emad; 1568 1569 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1570 &emad_size); 1571 1572 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1573 other_emad = spmc_shmem_obj_get_emad( 1574 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1575 &emad_size); 1576 1577 if (req->emad_count && 1578 emad->mapd.endpoint_id == 1579 other_emad->mapd.endpoint_id) { 1580 found = true; 1581 break; 1582 } 1583 } 1584 1585 if (!found) { 1586 WARN("%s: invalid receiver id (0x%x).\n", 1587 __func__, emad->mapd.endpoint_id); 1588 ret = FFA_ERROR_INVALID_PARAMETER; 1589 goto err_unlock_all; 1590 } 1591 } 1592 1593 mbox->state = MAILBOX_STATE_FULL; 1594 1595 if (req->emad_count != 0U) { 1596 obj->in_use++; 1597 } 1598 1599 /* 1600 * If the caller is v1.0 convert the descriptor, otherwise copy 1601 * directly. 1602 */ 1603 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1604 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1605 ©_size, 1606 &out_desc_size); 1607 if (ret != 0U) { 1608 ERROR("%s: Failed to process descriptor.\n", __func__); 1609 goto err_unlock_all; 1610 } 1611 } else { 1612 copy_size = MIN(obj->desc_size, buf_size); 1613 out_desc_size = obj->desc_size; 1614 1615 memcpy(resp, &obj->desc, copy_size); 1616 } 1617 1618 /* Set the NS bit in the response if applicable. */ 1619 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1620 1621 spin_unlock(&spmc_shmem_obj_state.lock); 1622 spin_unlock(&mbox->lock); 1623 1624 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1625 copy_size, 0, 0, 0, 0, 0); 1626 1627 err_unlock_all: 1628 spin_unlock(&spmc_shmem_obj_state.lock); 1629 err_unlock_mailbox: 1630 spin_unlock(&mbox->lock); 1631 return spmc_ffa_error_return(handle, ret); 1632 } 1633 1634 /** 1635 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1636 * @client: Client state. 1637 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1638 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1639 * @fragment_offset: Byte offset in descriptor to resume at. 1640 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1641 * hypervisor. 0 otherwise. 1642 * @smc_handle: Handle passed to smc call. Used to return 1643 * FFA_MEM_FRAG_TX. 1644 * 1645 * Return: @smc_handle on success, error code on failure. 1646 */ 1647 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1648 bool secure_origin, 1649 uint32_t handle_low, 1650 uint32_t handle_high, 1651 uint32_t fragment_offset, 1652 uint32_t sender_id, 1653 void *cookie, 1654 void *handle, 1655 uint64_t flags) 1656 { 1657 int ret; 1658 void *src; 1659 size_t buf_size; 1660 size_t copy_size; 1661 size_t full_copy_size; 1662 uint32_t desc_sender_id; 1663 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1664 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1665 struct spmc_shmem_obj *obj; 1666 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1667 1668 if (!secure_origin) { 1669 WARN("%s: can only be called from swld.\n", 1670 __func__); 1671 return spmc_ffa_error_return(handle, 1672 FFA_ERROR_INVALID_PARAMETER); 1673 } 1674 1675 spin_lock(&spmc_shmem_obj_state.lock); 1676 1677 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1678 if (obj == NULL) { 1679 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1680 __func__, mem_handle); 1681 ret = FFA_ERROR_INVALID_PARAMETER; 1682 goto err_unlock_shmem; 1683 } 1684 1685 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1686 if (sender_id != 0U && sender_id != desc_sender_id) { 1687 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1688 sender_id, desc_sender_id); 1689 ret = FFA_ERROR_INVALID_PARAMETER; 1690 goto err_unlock_shmem; 1691 } 1692 1693 if (fragment_offset >= obj->desc_size) { 1694 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1695 __func__, fragment_offset, obj->desc_size); 1696 ret = FFA_ERROR_INVALID_PARAMETER; 1697 goto err_unlock_shmem; 1698 } 1699 1700 spin_lock(&mbox->lock); 1701 1702 if (mbox->rxtx_page_count == 0U) { 1703 WARN("%s: buffer pair not registered.\n", __func__); 1704 ret = FFA_ERROR_INVALID_PARAMETER; 1705 goto err_unlock_all; 1706 } 1707 1708 if (mbox->state != MAILBOX_STATE_EMPTY) { 1709 WARN("%s: RX Buffer is full!\n", __func__); 1710 ret = FFA_ERROR_DENIED; 1711 goto err_unlock_all; 1712 } 1713 1714 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1715 1716 mbox->state = MAILBOX_STATE_FULL; 1717 1718 /* 1719 * If the caller is v1.0 convert the descriptor, otherwise copy 1720 * directly. 1721 */ 1722 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1723 size_t out_desc_size; 1724 1725 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1726 buf_size, 1727 fragment_offset, 1728 ©_size, 1729 &out_desc_size); 1730 if (ret != 0U) { 1731 ERROR("%s: Failed to process descriptor.\n", __func__); 1732 goto err_unlock_all; 1733 } 1734 } else { 1735 full_copy_size = obj->desc_size - fragment_offset; 1736 copy_size = MIN(full_copy_size, buf_size); 1737 1738 src = &obj->desc; 1739 1740 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1741 } 1742 1743 spin_unlock(&mbox->lock); 1744 spin_unlock(&spmc_shmem_obj_state.lock); 1745 1746 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1747 copy_size, sender_id, 0, 0, 0); 1748 1749 err_unlock_all: 1750 spin_unlock(&mbox->lock); 1751 err_unlock_shmem: 1752 spin_unlock(&spmc_shmem_obj_state.lock); 1753 return spmc_ffa_error_return(handle, ret); 1754 } 1755 1756 /** 1757 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1758 * @client: Client state. 1759 * 1760 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1761 * Used by secure os release previously shared memory to non-secure os. 1762 * 1763 * The handle to release must be in the client's (secure os's) transmit buffer. 1764 * 1765 * Return: 0 on success, error code on failure. 1766 */ 1767 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1768 bool secure_origin, 1769 uint32_t handle_low, 1770 uint32_t handle_high, 1771 uint32_t fragment_offset, 1772 uint32_t sender_id, 1773 void *cookie, 1774 void *handle, 1775 uint64_t flags) 1776 { 1777 int ret; 1778 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1779 struct spmc_shmem_obj *obj; 1780 const struct ffa_mem_relinquish_descriptor *req; 1781 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1782 1783 if (!secure_origin) { 1784 WARN("%s: unsupported relinquish direction.\n", __func__); 1785 return spmc_ffa_error_return(handle, 1786 FFA_ERROR_INVALID_PARAMETER); 1787 } 1788 1789 spin_lock(&mbox->lock); 1790 1791 if (mbox->rxtx_page_count == 0U) { 1792 WARN("%s: buffer pair not registered.\n", __func__); 1793 ret = FFA_ERROR_INVALID_PARAMETER; 1794 goto err_unlock_mailbox; 1795 } 1796 1797 req = mbox->tx_buffer; 1798 1799 if (req->flags != 0U) { 1800 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1801 ret = FFA_ERROR_INVALID_PARAMETER; 1802 goto err_unlock_mailbox; 1803 } 1804 1805 if (req->endpoint_count == 0) { 1806 WARN("%s: endpoint count cannot be 0.\n", __func__); 1807 ret = FFA_ERROR_INVALID_PARAMETER; 1808 goto err_unlock_mailbox; 1809 } 1810 1811 spin_lock(&spmc_shmem_obj_state.lock); 1812 1813 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1814 if (obj == NULL) { 1815 ret = FFA_ERROR_INVALID_PARAMETER; 1816 goto err_unlock_all; 1817 } 1818 1819 /* 1820 * Validate the endpoint ID was populated correctly. We don't currently 1821 * support proxy endpoints so the endpoint count should always be 1. 1822 */ 1823 if (req->endpoint_count != 1U) { 1824 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1825 req->endpoint_count); 1826 ret = FFA_ERROR_INVALID_PARAMETER; 1827 goto err_unlock_all; 1828 } 1829 1830 /* Validate provided endpoint ID matches the partition ID. */ 1831 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1832 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1833 req->endpoint_array[0], sp_ctx->sp_id); 1834 ret = FFA_ERROR_INVALID_PARAMETER; 1835 goto err_unlock_all; 1836 } 1837 1838 /* Validate the caller is a valid participant. */ 1839 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1840 WARN("%s: Invalid endpoint ID (0x%x).\n", 1841 __func__, req->endpoint_array[0]); 1842 ret = FFA_ERROR_INVALID_PARAMETER; 1843 goto err_unlock_all; 1844 } 1845 1846 if (obj->in_use == 0U) { 1847 ret = FFA_ERROR_INVALID_PARAMETER; 1848 goto err_unlock_all; 1849 } 1850 obj->in_use--; 1851 1852 spin_unlock(&spmc_shmem_obj_state.lock); 1853 spin_unlock(&mbox->lock); 1854 1855 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1856 1857 err_unlock_all: 1858 spin_unlock(&spmc_shmem_obj_state.lock); 1859 err_unlock_mailbox: 1860 spin_unlock(&mbox->lock); 1861 return spmc_ffa_error_return(handle, ret); 1862 } 1863 1864 /** 1865 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1866 * @client: Client state. 1867 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1868 * @handle_high: Unique handle of shared memory object to reclaim. 1869 * Bit[63:32]. 1870 * @flags: Unsupported, ignored. 1871 * 1872 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1873 * Used by non-secure os reclaim memory previously shared with secure os. 1874 * 1875 * Return: 0 on success, error code on failure. 1876 */ 1877 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1878 bool secure_origin, 1879 uint32_t handle_low, 1880 uint32_t handle_high, 1881 uint32_t mem_flags, 1882 uint64_t x4, 1883 void *cookie, 1884 void *handle, 1885 uint64_t flags) 1886 { 1887 int ret; 1888 struct spmc_shmem_obj *obj; 1889 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1890 1891 if (secure_origin) { 1892 WARN("%s: unsupported reclaim direction.\n", __func__); 1893 return spmc_ffa_error_return(handle, 1894 FFA_ERROR_INVALID_PARAMETER); 1895 } 1896 1897 if (mem_flags != 0U) { 1898 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1899 return spmc_ffa_error_return(handle, 1900 FFA_ERROR_INVALID_PARAMETER); 1901 } 1902 1903 spin_lock(&spmc_shmem_obj_state.lock); 1904 1905 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1906 if (obj == NULL) { 1907 ret = FFA_ERROR_INVALID_PARAMETER; 1908 goto err_unlock; 1909 } 1910 if (obj->in_use != 0U) { 1911 ret = FFA_ERROR_DENIED; 1912 goto err_unlock; 1913 } 1914 1915 if (obj->desc_filled != obj->desc_size) { 1916 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1917 __func__, obj->desc_filled, obj->desc_size); 1918 ret = FFA_ERROR_INVALID_PARAMETER; 1919 goto err_unlock; 1920 } 1921 1922 /* Allow for platform specific operations to be performed. */ 1923 ret = plat_spmc_shmem_reclaim(&obj->desc); 1924 if (ret != 0) { 1925 goto err_unlock; 1926 } 1927 1928 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1929 spin_unlock(&spmc_shmem_obj_state.lock); 1930 1931 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1932 1933 err_unlock: 1934 spin_unlock(&spmc_shmem_obj_state.lock); 1935 return spmc_ffa_error_return(handle, ret); 1936 } 1937