1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 /* Ensure that descriptor size is aligned */ 84 if (!is_aligned(desc_size, 16)) { 85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n", 86 __func__, desc_size); 87 return NULL; 88 } 89 90 obj_size = spmc_shmem_obj_size(desc_size); 91 92 /* Ensure the obj size has not overflowed. */ 93 if (obj_size < desc_size) { 94 WARN("%s(0x%zx) desc_size overflow\n", 95 __func__, desc_size); 96 return NULL; 97 } 98 99 if (obj_size > free) { 100 WARN("%s(0x%zx) failed, free 0x%zx\n", 101 __func__, desc_size, free); 102 return NULL; 103 } 104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 105 obj->desc = (struct ffa_mtd) {0}; 106 obj->desc_size = desc_size; 107 obj->desc_filled = 0; 108 obj->in_use = 0; 109 state->allocated += obj_size; 110 return obj; 111 } 112 113 /** 114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 115 * @state: Global state. 116 * @obj: Object to free. 117 * 118 * Release memory used by @obj. Other objects may move, so on return all 119 * pointers to struct spmc_shmem_obj object should be considered invalid, not 120 * just @obj. 121 * 122 * The current implementation always compacts the remaining objects to simplify 123 * the allocator and to avoid fragmentation. 124 */ 125 126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 127 struct spmc_shmem_obj *obj) 128 { 129 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 130 uint8_t *shift_dest = (uint8_t *)obj; 131 uint8_t *shift_src = shift_dest + free_size; 132 size_t shift_size = state->allocated - (shift_src - state->data); 133 134 if (shift_size != 0U) { 135 memmove(shift_dest, shift_src, shift_size); 136 } 137 state->allocated -= free_size; 138 } 139 140 /** 141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 142 * @state: Global state. 143 * @handle: Unique handle of object to return. 144 * 145 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 146 * %NULL, if not object in @state->data has a matching handle. 147 */ 148 static struct spmc_shmem_obj * 149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 150 { 151 uint8_t *curr = state->data; 152 153 while (curr - state->data < state->allocated) { 154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 155 156 if (obj->desc.handle == handle) { 157 return obj; 158 } 159 curr += spmc_shmem_obj_size(obj->desc_size); 160 } 161 return NULL; 162 } 163 164 /** 165 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 166 * @offset: Offset used to track which objects have previously been 167 * returned. 168 * 169 * Return: the next struct spmc_shmem_obj_state object from the provided 170 * offset. 171 * %NULL, if there are no more objects. 172 */ 173 static struct spmc_shmem_obj * 174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 175 { 176 uint8_t *curr = state->data + *offset; 177 178 if (curr - state->data < state->allocated) { 179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 180 181 *offset += spmc_shmem_obj_size(obj->desc_size); 182 183 return obj; 184 } 185 return NULL; 186 } 187 188 /******************************************************************************* 189 * FF-A memory descriptor helper functions. 190 ******************************************************************************/ 191 /** 192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 193 * clients FF-A version. 194 * @desc: The memory transaction descriptor. 195 * @index: The index of the emad element to be accessed. 196 * @ffa_version: FF-A version of the provided structure. 197 * @emad_size: Will be populated with the size of the returned emad 198 * descriptor. 199 * Return: A pointer to the requested emad structure. 200 */ 201 static void * 202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 203 uint32_t ffa_version, size_t *emad_size) 204 { 205 uint8_t *emad; 206 207 assert(index < desc->emad_count); 208 209 /* 210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 211 * format, otherwise assume it is a v1.1 format. 212 */ 213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 215 *emad_size = sizeof(struct ffa_emad_v1_0); 216 } else { 217 assert(is_aligned(desc->emad_offset, 16)); 218 emad = ((uint8_t *) desc + desc->emad_offset); 219 *emad_size = desc->emad_size; 220 } 221 222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 223 return (emad + (*emad_size * index)); 224 } 225 226 /** 227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 228 * FF-A version of the descriptor. 229 * @obj: Object containing ffa_memory_region_descriptor. 230 * 231 * Return: struct ffa_comp_mrd object corresponding to the composite memory 232 * region descriptor. 233 */ 234 static struct ffa_comp_mrd * 235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 236 { 237 size_t emad_size; 238 /* 239 * The comp_mrd_offset field of the emad descriptor remains consistent 240 * between FF-A versions therefore we can use the v1.0 descriptor here 241 * in all cases. 242 */ 243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 244 ffa_version, 245 &emad_size); 246 247 /* Ensure the composite descriptor offset is aligned. */ 248 if (!is_aligned(emad->comp_mrd_offset, 8)) { 249 WARN("Unaligned composite memory region descriptor offset.\n"); 250 return NULL; 251 } 252 253 return (struct ffa_comp_mrd *) 254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 255 } 256 257 /** 258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 259 * a given memory transaction. 260 * @sp_id: Partition ID to validate. 261 * @obj: The shared memory object containing the descriptor 262 * of the memory transaction. 263 * Return: true if ID is valid, else false. 264 */ 265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 266 { 267 bool found = false; 268 struct ffa_mtd *desc = &obj->desc; 269 size_t desc_size = obj->desc_size; 270 271 /* Validate the partition is a valid participant. */ 272 for (unsigned int i = 0U; i < desc->emad_count; i++) { 273 size_t emad_size; 274 struct ffa_emad_v1_0 *emad; 275 276 emad = spmc_shmem_obj_get_emad(desc, i, 277 MAKE_FFA_VERSION(1, 1), 278 &emad_size); 279 /* 280 * Validate the calculated emad address resides within the 281 * descriptor. 282 */ 283 if ((emad == NULL) || (uintptr_t) emad >= 284 (uintptr_t)((uint8_t *) desc + desc_size)) { 285 VERBOSE("Invalid emad.\n"); 286 break; 287 } 288 if (sp_id == emad->mapd.endpoint_id) { 289 found = true; 290 break; 291 } 292 } 293 return found; 294 } 295 296 /* 297 * Compare two memory regions to determine if any range overlaps with another 298 * ongoing memory transaction. 299 */ 300 static bool 301 overlapping_memory_regions(struct ffa_comp_mrd *region1, 302 struct ffa_comp_mrd *region2) 303 { 304 uint64_t region1_start; 305 uint64_t region1_size; 306 uint64_t region1_end; 307 uint64_t region2_start; 308 uint64_t region2_size; 309 uint64_t region2_end; 310 311 assert(region1 != NULL); 312 assert(region2 != NULL); 313 314 if (region1 == region2) { 315 return true; 316 } 317 318 /* 319 * Check each memory region in the request against existing 320 * transactions. 321 */ 322 for (size_t i = 0; i < region1->address_range_count; i++) { 323 324 region1_start = region1->address_range_array[i].address; 325 region1_size = 326 region1->address_range_array[i].page_count * 327 PAGE_SIZE_4KB; 328 region1_end = region1_start + region1_size; 329 330 for (size_t j = 0; j < region2->address_range_count; j++) { 331 332 region2_start = region2->address_range_array[j].address; 333 region2_size = 334 region2->address_range_array[j].page_count * 335 PAGE_SIZE_4KB; 336 region2_end = region2_start + region2_size; 337 338 /* Check if regions are not overlapping. */ 339 if (!((region2_end <= region1_start) || 340 (region1_end <= region2_start))) { 341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 342 region1_start, region1_end, 343 region2_start, region2_end); 344 return true; 345 } 346 } 347 } 348 return false; 349 } 350 351 /******************************************************************************* 352 * FF-A v1.0 Memory Descriptor Conversion Helpers. 353 ******************************************************************************/ 354 /** 355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 356 * converted descriptor. 357 * @orig: The original v1.0 memory transaction descriptor. 358 * @desc_size: The size of the original v1.0 memory transaction descriptor. 359 * 360 * Return: the size required to store the descriptor store in the v1.1 format. 361 */ 362 static uint64_t 363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 364 { 365 uint64_t size = 0; 366 struct ffa_comp_mrd *mrd; 367 struct ffa_emad_v1_0 *emad_array = orig->emad; 368 369 /* Get the size of the v1.1 descriptor. */ 370 size += sizeof(struct ffa_mtd); 371 372 /* Add the size of the emad descriptors. */ 373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 374 375 /* Add the size of the composite mrds. */ 376 size += sizeof(struct ffa_comp_mrd); 377 378 /* Add the size of the constituent mrds. */ 379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 380 emad_array[0].comp_mrd_offset); 381 382 /* Add the size of the memory region descriptors. */ 383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 384 385 return size; 386 } 387 388 /** 389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 390 * converted descriptor. 391 * @orig: The original v1.1 memory transaction descriptor. 392 * @desc_size: The size of the original v1.1 memory transaction descriptor. 393 * 394 * Return: the size required to store the descriptor store in the v1.0 format. 395 */ 396 static size_t 397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 398 { 399 size_t size = 0; 400 struct ffa_comp_mrd *mrd; 401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 402 ((uint8_t *) orig + 403 orig->emad_offset); 404 405 /* Get the size of the v1.0 descriptor. */ 406 size += sizeof(struct ffa_mtd_v1_0); 407 408 /* Add the size of the v1.0 emad descriptors. */ 409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 410 411 /* Add the size of the composite mrds. */ 412 size += sizeof(struct ffa_comp_mrd); 413 414 /* Add the size of the constituent mrds. */ 415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 416 emad_array[0].comp_mrd_offset); 417 418 /* Check the calculated address is within the memory descriptor. */ 419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 420 (uintptr_t)((uint8_t *) orig + desc_size)) { 421 return 0; 422 } 423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 424 425 return size; 426 } 427 428 /** 429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 430 * @out_obj: The shared memory object to populate the converted descriptor. 431 * @orig: The shared memory object containing the v1.0 descriptor. 432 * 433 * Return: true if the conversion is successful else false. 434 */ 435 static bool 436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 437 struct spmc_shmem_obj *orig) 438 { 439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 440 struct ffa_mtd *out = &out_obj->desc; 441 struct ffa_emad_v1_0 *emad_array_in; 442 struct ffa_emad_v1_0 *emad_array_out; 443 struct ffa_comp_mrd *mrd_in; 444 struct ffa_comp_mrd *mrd_out; 445 446 size_t mrd_in_offset; 447 size_t mrd_out_offset; 448 size_t mrd_size = 0; 449 450 /* Populate the new descriptor format from the v1.0 struct. */ 451 out->sender_id = mtd_orig->sender_id; 452 out->memory_region_attributes = mtd_orig->memory_region_attributes; 453 out->flags = mtd_orig->flags; 454 out->handle = mtd_orig->handle; 455 out->tag = mtd_orig->tag; 456 out->emad_count = mtd_orig->emad_count; 457 out->emad_size = sizeof(struct ffa_emad_v1_0); 458 459 /* 460 * We will locate the emad descriptors directly after the ffa_mtd 461 * struct. This will be 8-byte aligned. 462 */ 463 out->emad_offset = sizeof(struct ffa_mtd); 464 465 emad_array_in = mtd_orig->emad; 466 emad_array_out = (struct ffa_emad_v1_0 *) 467 ((uint8_t *) out + out->emad_offset); 468 469 /* Copy across the emad structs. */ 470 for (unsigned int i = 0U; i < out->emad_count; i++) { 471 /* Bound check for emad array. */ 472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 473 ((uint8_t *) mtd_orig + orig->desc_size)) { 474 VERBOSE("%s: Invalid mtd structure.\n", __func__); 475 return false; 476 } 477 memcpy(&emad_array_out[i], &emad_array_in[i], 478 sizeof(struct ffa_emad_v1_0)); 479 } 480 481 /* Place the mrd descriptors after the end of the emad descriptors.*/ 482 mrd_in_offset = emad_array_in->comp_mrd_offset; 483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 485 486 /* Add the size of the composite memory region descriptor. */ 487 mrd_size += sizeof(struct ffa_comp_mrd); 488 489 /* Find the mrd descriptor. */ 490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 491 492 /* Add the size of the constituent memory region descriptors. */ 493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 494 495 /* 496 * Update the offset in the emads by the delta between the input and 497 * output addresses. 498 */ 499 for (unsigned int i = 0U; i < out->emad_count; i++) { 500 emad_array_out[i].comp_mrd_offset = 501 emad_array_in[i].comp_mrd_offset + 502 (mrd_out_offset - mrd_in_offset); 503 } 504 505 /* Verify that we stay within bound of the memory descriptors. */ 506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 510 ERROR("%s: Invalid mrd structure.\n", __func__); 511 return false; 512 } 513 514 /* Copy the mrd descriptors directly. */ 515 memcpy(mrd_out, mrd_in, mrd_size); 516 517 return true; 518 } 519 520 /** 521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 522 * v1.0 memory object. 523 * @out_obj: The shared memory object to populate the v1.0 descriptor. 524 * @orig: The shared memory object containing the v1.1 descriptor. 525 * 526 * Return: true if the conversion is successful else false. 527 */ 528 static bool 529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 530 struct spmc_shmem_obj *orig) 531 { 532 struct ffa_mtd *mtd_orig = &orig->desc; 533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 534 struct ffa_emad_v1_0 *emad_in; 535 struct ffa_emad_v1_0 *emad_array_in; 536 struct ffa_emad_v1_0 *emad_array_out; 537 struct ffa_comp_mrd *mrd_in; 538 struct ffa_comp_mrd *mrd_out; 539 540 size_t mrd_in_offset; 541 size_t mrd_out_offset; 542 size_t emad_out_array_size; 543 size_t mrd_size = 0; 544 size_t orig_desc_size = orig->desc_size; 545 546 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 547 out->sender_id = mtd_orig->sender_id; 548 out->memory_region_attributes = mtd_orig->memory_region_attributes; 549 out->flags = mtd_orig->flags; 550 out->handle = mtd_orig->handle; 551 out->tag = mtd_orig->tag; 552 out->emad_count = mtd_orig->emad_count; 553 554 /* Determine the location of the emad array in both descriptors. */ 555 emad_array_in = (struct ffa_emad_v1_0 *) 556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 557 emad_array_out = out->emad; 558 559 /* Copy across the emad structs. */ 560 emad_in = emad_array_in; 561 for (unsigned int i = 0U; i < out->emad_count; i++) { 562 /* Bound check for emad array. */ 563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 564 ((uint8_t *) mtd_orig + orig_desc_size)) { 565 VERBOSE("%s: Invalid mtd structure.\n", __func__); 566 return false; 567 } 568 memcpy(&emad_array_out[i], emad_in, 569 sizeof(struct ffa_emad_v1_0)); 570 571 emad_in += mtd_orig->emad_size; 572 } 573 574 /* Place the mrd descriptors after the end of the emad descriptors. */ 575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 576 577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 578 emad_out_array_size; 579 580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 581 582 mrd_in_offset = mtd_orig->emad_offset + 583 (mtd_orig->emad_size * mtd_orig->emad_count); 584 585 /* Add the size of the composite memory region descriptor. */ 586 mrd_size += sizeof(struct ffa_comp_mrd); 587 588 /* Find the mrd descriptor. */ 589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 590 591 /* Add the size of the constituent memory region descriptors. */ 592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 593 594 /* 595 * Update the offset in the emads by the delta between the input and 596 * output addresses. 597 */ 598 emad_in = emad_array_in; 599 600 for (unsigned int i = 0U; i < out->emad_count; i++) { 601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 602 (mrd_out_offset - 603 mrd_in_offset); 604 emad_in += mtd_orig->emad_size; 605 } 606 607 /* Verify that we stay within bound of the memory descriptors. */ 608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 612 ERROR("%s: Invalid mrd structure.\n", __func__); 613 return false; 614 } 615 616 /* Copy the mrd descriptors directly. */ 617 memcpy(mrd_out, mrd_in, mrd_size); 618 619 return true; 620 } 621 622 /** 623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 624 * the v1.0 format and populates the 625 * provided buffer. 626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 628 * @buf_size: Size of the buffer to populate. 629 * @offset: The offset of the converted descriptor to copy. 630 * @copy_size: Will be populated with the number of bytes copied. 631 * @out_desc_size: Will be populated with the total size of the v1.0 632 * descriptor. 633 * 634 * Return: 0 if conversion and population succeeded. 635 * Note: This function invalidates the reference to @orig therefore 636 * `spmc_shmem_obj_lookup` must be called if further usage is required. 637 */ 638 static uint32_t 639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 640 size_t buf_size, size_t offset, 641 size_t *copy_size, size_t *v1_0_desc_size) 642 { 643 struct spmc_shmem_obj *v1_0_obj; 644 645 /* Calculate the size that the v1.0 descriptor will require. */ 646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 647 &orig_obj->desc, orig_obj->desc_size); 648 649 if (*v1_0_desc_size == 0) { 650 ERROR("%s: cannot determine size of descriptor.\n", 651 __func__); 652 return FFA_ERROR_INVALID_PARAMETER; 653 } 654 655 /* Get a new obj to store the v1.0 descriptor. */ 656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 657 *v1_0_desc_size); 658 659 if (!v1_0_obj) { 660 return FFA_ERROR_NO_MEMORY; 661 } 662 663 /* Perform the conversion from v1.1 to v1.0. */ 664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 666 return FFA_ERROR_INVALID_PARAMETER; 667 } 668 669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 671 672 /* 673 * We're finished with the v1.0 descriptor for now so free it. 674 * Note that this will invalidate any references to the v1.1 675 * descriptor. 676 */ 677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 678 679 return 0; 680 } 681 682 static int 683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 684 size_t fragment_length, size_t total_length) 685 { 686 unsigned long long emad_end; 687 unsigned long long emad_size; 688 unsigned long long emad_offset; 689 unsigned int min_desc_size; 690 691 /* Determine the appropriate minimum descriptor size. */ 692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 693 min_desc_size = sizeof(struct ffa_mtd_v1_0); 694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 695 min_desc_size = sizeof(struct ffa_mtd); 696 } else { 697 return FFA_ERROR_INVALID_PARAMETER; 698 } 699 if (fragment_length < min_desc_size) { 700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 701 min_desc_size); 702 return FFA_ERROR_INVALID_PARAMETER; 703 } 704 705 if (desc->emad_count == 0U) { 706 WARN("%s: unsupported attribute desc count %u.\n", 707 __func__, desc->emad_count); 708 return FFA_ERROR_INVALID_PARAMETER; 709 } 710 711 /* 712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 713 * format, otherwise assume it is a v1.1 format. 714 */ 715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 717 } else { 718 if (!is_aligned(desc->emad_offset, 16)) { 719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 720 __func__, desc->emad_offset); 721 return FFA_ERROR_INVALID_PARAMETER; 722 } 723 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 725 __func__, desc->emad_offset, 726 sizeof(struct ffa_mtd)); 727 return FFA_ERROR_INVALID_PARAMETER; 728 } 729 emad_offset = desc->emad_offset; 730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 732 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 733 return FFA_ERROR_INVALID_PARAMETER; 734 } 735 if (!is_aligned(desc->emad_size, 16)) { 736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 737 __func__, desc->emad_size); 738 return FFA_ERROR_INVALID_PARAMETER; 739 } 740 emad_size = desc->emad_size; 741 } 742 743 /* 744 * Overflow is impossible: the arithmetic happens in at least 64-bit 745 * precision, but all of the operands are bounded by UINT32_MAX, and 746 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 747 * = (2^64 - 1). 748 */ 749 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 750 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 751 (unsigned long long)sizeof(struct ffa_comp_mrd) + 752 (unsigned long long)emad_offset; 753 754 if (emad_end > total_length) { 755 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 756 __func__, emad_end, total_length); 757 return FFA_ERROR_INVALID_PARAMETER; 758 } 759 760 return 0; 761 } 762 763 static inline const struct ffa_emad_v1_0 * 764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset) 765 { 766 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset); 767 } 768 769 /** 770 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 771 * @obj: Object containing ffa_memory_region_descriptor. 772 * @ffa_version: FF-A version of the provided descriptor. 773 * 774 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if 775 * constituent_memory_region_descriptor offset or count is invalid. 776 */ 777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 778 uint32_t ffa_version) 779 { 780 uint64_t total_page_count; 781 const struct ffa_emad_v1_0 *first_emad; 782 const struct ffa_emad_v1_0 *end_emad; 783 size_t emad_size; 784 uint32_t comp_mrd_offset = 0; 785 size_t header_emad_size; 786 size_t size; 787 size_t count; 788 size_t expected_size; 789 struct ffa_comp_mrd *comp; 790 791 if (obj->desc_filled != obj->desc_size) { 792 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 793 __func__, obj->desc_filled, obj->desc_size); 794 panic(); 795 } 796 797 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 798 obj->desc_filled, obj->desc_size)) { 799 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 800 __func__); 801 panic(); 802 } 803 804 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 805 ffa_version, &emad_size); 806 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size); 807 comp_mrd_offset = first_emad->comp_mrd_offset; 808 809 /* Loop through the endpoint descriptors, validating each of them. */ 810 for (const struct ffa_emad_v1_0 *emad = first_emad; 811 emad < end_emad; 812 emad = emad_advance(emad, emad_size)) { 813 ffa_endpoint_id16_t ep_id; 814 815 /* 816 * If a partition ID resides in the secure world validate that 817 * the partition ID is for a known partition. Ignore any 818 * partition ID belonging to the normal world as it is assumed 819 * the Hypervisor will have validated these. 820 */ 821 ep_id = emad->mapd.endpoint_id; 822 if (ffa_is_secure_world_id(ep_id)) { 823 if (spmc_get_sp_ctx(ep_id) == NULL) { 824 WARN("%s: Invalid receiver id 0x%x\n", 825 __func__, ep_id); 826 return FFA_ERROR_INVALID_PARAMETER; 827 } 828 } 829 830 /* 831 * The offset provided to the composite memory region descriptor 832 * should be consistent across endpoint descriptors. 833 */ 834 if (comp_mrd_offset != emad->comp_mrd_offset) { 835 ERROR("%s: mismatching offsets provided, %u != %u\n", 836 __func__, emad->comp_mrd_offset, comp_mrd_offset); 837 return FFA_ERROR_INVALID_PARAMETER; 838 } 839 } 840 841 header_emad_size = (size_t)((const uint8_t *)end_emad - 842 (const uint8_t *)&obj->desc); 843 844 if (comp_mrd_offset < header_emad_size) { 845 WARN("%s: invalid object, offset %u < header + emad %zu\n", 846 __func__, comp_mrd_offset, header_emad_size); 847 return FFA_ERROR_INVALID_PARAMETER; 848 } 849 850 /* Ensure the composite descriptor offset is aligned. */ 851 if (!is_aligned(comp_mrd_offset, 16)) { 852 WARN("%s: invalid object, unaligned composite memory " 853 "region descriptor offset %u.\n", 854 __func__, comp_mrd_offset); 855 return FFA_ERROR_INVALID_PARAMETER; 856 } 857 858 size = obj->desc_size; 859 860 if (comp_mrd_offset > size) { 861 WARN("%s: invalid object, offset %u > total size %zu\n", 862 __func__, comp_mrd_offset, obj->desc_size); 863 return FFA_ERROR_INVALID_PARAMETER; 864 } 865 size -= comp_mrd_offset; 866 867 if (size < sizeof(struct ffa_comp_mrd)) { 868 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 869 __func__, comp_mrd_offset, obj->desc_size); 870 return FFA_ERROR_INVALID_PARAMETER; 871 } 872 size -= sizeof(struct ffa_comp_mrd); 873 874 count = size / sizeof(struct ffa_cons_mrd); 875 876 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 877 878 if (comp->address_range_count != count) { 879 WARN("%s: invalid object, desc count %u != %zu\n", 880 __func__, comp->address_range_count, count); 881 return FFA_ERROR_INVALID_PARAMETER; 882 } 883 884 expected_size = comp_mrd_offset + sizeof(*comp) + 885 count * sizeof(struct ffa_cons_mrd); 886 887 if (expected_size != obj->desc_size) { 888 WARN("%s: invalid object, computed size %zu != size %zu\n", 889 __func__, expected_size, obj->desc_size); 890 return FFA_ERROR_INVALID_PARAMETER; 891 } 892 893 total_page_count = 0; 894 895 for (size_t i = 0; i < count; i++) { 896 total_page_count += 897 comp->address_range_array[i].page_count; 898 } 899 if (comp->total_page_count != total_page_count) { 900 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 901 __func__, comp->total_page_count, 902 total_page_count); 903 return FFA_ERROR_INVALID_PARAMETER; 904 } 905 906 return 0; 907 } 908 909 /** 910 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 911 * regions that are currently involved with an 912 * existing memory transactions. This implies that 913 * the memory is not in a valid state for lending. 914 * @obj: Object containing ffa_memory_region_descriptor. 915 * 916 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory 917 * state. 918 */ 919 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 920 uint32_t ffa_version) 921 { 922 size_t obj_offset = 0; 923 struct spmc_shmem_obj *inflight_obj; 924 925 struct ffa_comp_mrd *other_mrd; 926 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 927 ffa_version); 928 929 if (requested_mrd == NULL) { 930 return FFA_ERROR_INVALID_PARAMETER; 931 } 932 933 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 934 &obj_offset); 935 936 while (inflight_obj != NULL) { 937 /* 938 * Don't compare the transaction to itself or to partially 939 * transmitted descriptors. 940 */ 941 if ((obj->desc.handle != inflight_obj->desc.handle) && 942 (obj->desc_size == obj->desc_filled)) { 943 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 944 FFA_VERSION_COMPILED); 945 if (other_mrd == NULL) { 946 return FFA_ERROR_INVALID_PARAMETER; 947 } 948 if (overlapping_memory_regions(requested_mrd, 949 other_mrd)) { 950 return FFA_ERROR_INVALID_PARAMETER; 951 } 952 } 953 954 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 955 &obj_offset); 956 } 957 return 0; 958 } 959 960 static long spmc_ffa_fill_desc(struct mailbox *mbox, 961 struct spmc_shmem_obj *obj, 962 uint32_t fragment_length, 963 ffa_mtd_flag32_t mtd_flag, 964 uint32_t ffa_version, 965 void *smc_handle) 966 { 967 int ret; 968 size_t emad_size; 969 uint32_t handle_low; 970 uint32_t handle_high; 971 struct ffa_emad_v1_0 *emad; 972 struct ffa_emad_v1_0 *other_emad; 973 974 if (mbox->rxtx_page_count == 0U) { 975 WARN("%s: buffer pair not registered.\n", __func__); 976 ret = FFA_ERROR_INVALID_PARAMETER; 977 goto err_arg; 978 } 979 980 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 981 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 982 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 983 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 984 ret = FFA_ERROR_INVALID_PARAMETER; 985 goto err_arg; 986 } 987 988 if (fragment_length > obj->desc_size - obj->desc_filled) { 989 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 990 fragment_length, obj->desc_size - obj->desc_filled); 991 ret = FFA_ERROR_INVALID_PARAMETER; 992 goto err_arg; 993 } 994 995 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 996 (uint8_t *) mbox->tx_buffer, fragment_length); 997 998 /* Ensure that the sender ID resides in the normal world. */ 999 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1000 WARN("%s: Invalid sender ID 0x%x.\n", 1001 __func__, obj->desc.sender_id); 1002 ret = FFA_ERROR_DENIED; 1003 goto err_arg; 1004 } 1005 1006 /* Ensure the NS bit is set to 0. */ 1007 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1008 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1009 ret = FFA_ERROR_INVALID_PARAMETER; 1010 goto err_arg; 1011 } 1012 1013 /* 1014 * We don't currently support any optional flags so ensure none are 1015 * requested. 1016 */ 1017 if (obj->desc.flags != 0U && mtd_flag != 0U && 1018 (obj->desc.flags != mtd_flag)) { 1019 WARN("%s: invalid memory transaction flags %u != %u\n", 1020 __func__, obj->desc.flags, mtd_flag); 1021 ret = FFA_ERROR_INVALID_PARAMETER; 1022 goto err_arg; 1023 } 1024 1025 if (obj->desc_filled == 0U) { 1026 /* First fragment, descriptor header has been copied */ 1027 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1028 fragment_length, obj->desc_size); 1029 if (ret != 0) { 1030 goto err_bad_desc; 1031 } 1032 1033 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1034 obj->desc.flags |= mtd_flag; 1035 } 1036 1037 obj->desc_filled += fragment_length; 1038 1039 handle_low = (uint32_t)obj->desc.handle; 1040 handle_high = obj->desc.handle >> 32; 1041 1042 if (obj->desc_filled != obj->desc_size) { 1043 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1044 handle_high, obj->desc_filled, 1045 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1046 } 1047 1048 /* The full descriptor has been received, perform any final checks. */ 1049 1050 ret = spmc_shmem_check_obj(obj, ffa_version); 1051 if (ret != 0) { 1052 goto err_bad_desc; 1053 } 1054 1055 /* Ensure partition IDs are not duplicated. */ 1056 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1057 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1058 &emad_size); 1059 1060 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1061 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1062 ffa_version, 1063 &emad_size); 1064 1065 if (emad->mapd.endpoint_id == 1066 other_emad->mapd.endpoint_id) { 1067 WARN("%s: Duplicated endpoint id 0x%x\n", 1068 __func__, emad->mapd.endpoint_id); 1069 ret = FFA_ERROR_INVALID_PARAMETER; 1070 goto err_bad_desc; 1071 } 1072 } 1073 } 1074 1075 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1076 if (ret) { 1077 ERROR("%s: invalid memory region descriptor.\n", __func__); 1078 goto err_bad_desc; 1079 } 1080 1081 /* 1082 * Everything checks out, if the sender was using FF-A v1.0, convert 1083 * the descriptor format to use the v1.1 structures. 1084 */ 1085 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1086 struct spmc_shmem_obj *v1_1_obj; 1087 uint64_t mem_handle; 1088 1089 /* Calculate the size that the v1.1 descriptor will required. */ 1090 uint64_t v1_1_desc_size = 1091 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1092 obj->desc_size); 1093 1094 if (v1_1_desc_size > UINT32_MAX) { 1095 ret = FFA_ERROR_NO_MEMORY; 1096 goto err_arg; 1097 } 1098 1099 /* Get a new obj to store the v1.1 descriptor. */ 1100 v1_1_obj = 1101 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1102 1103 if (!v1_1_obj) { 1104 ret = FFA_ERROR_NO_MEMORY; 1105 goto err_arg; 1106 } 1107 1108 /* Perform the conversion from v1.0 to v1.1. */ 1109 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1110 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1111 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1112 ERROR("%s: Could not convert mtd!\n", __func__); 1113 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1114 goto err_arg; 1115 } 1116 1117 /* 1118 * We're finished with the v1.0 descriptor so free it 1119 * and continue our checks with the new v1.1 descriptor. 1120 */ 1121 mem_handle = obj->desc.handle; 1122 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1123 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1124 if (obj == NULL) { 1125 ERROR("%s: Failed to find converted descriptor.\n", 1126 __func__); 1127 ret = FFA_ERROR_INVALID_PARAMETER; 1128 return spmc_ffa_error_return(smc_handle, ret); 1129 } 1130 } 1131 1132 /* Allow for platform specific operations to be performed. */ 1133 ret = plat_spmc_shmem_begin(&obj->desc); 1134 if (ret != 0) { 1135 goto err_arg; 1136 } 1137 1138 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1139 0, 0, 0); 1140 1141 err_bad_desc: 1142 err_arg: 1143 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1144 return spmc_ffa_error_return(smc_handle, ret); 1145 } 1146 1147 /** 1148 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1149 * @client: Client state. 1150 * @total_length: Total length of shared memory descriptor. 1151 * @fragment_length: Length of fragment of shared memory descriptor passed in 1152 * this call. 1153 * @address: Not supported, must be 0. 1154 * @page_count: Not supported, must be 0. 1155 * @smc_handle: Handle passed to smc call. Used to return 1156 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1157 * 1158 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1159 * to share or lend memory from non-secure os to secure os (with no stream 1160 * endpoints). 1161 * 1162 * Return: 0 on success, error code on failure. 1163 */ 1164 long spmc_ffa_mem_send(uint32_t smc_fid, 1165 bool secure_origin, 1166 uint64_t total_length, 1167 uint32_t fragment_length, 1168 uint64_t address, 1169 uint32_t page_count, 1170 void *cookie, 1171 void *handle, 1172 uint64_t flags) 1173 1174 { 1175 long ret; 1176 struct spmc_shmem_obj *obj; 1177 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1178 ffa_mtd_flag32_t mtd_flag; 1179 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1180 size_t min_desc_size; 1181 1182 if (address != 0U || page_count != 0U) { 1183 WARN("%s: custom memory region for message not supported.\n", 1184 __func__); 1185 return spmc_ffa_error_return(handle, 1186 FFA_ERROR_INVALID_PARAMETER); 1187 } 1188 1189 if (secure_origin) { 1190 WARN("%s: unsupported share direction.\n", __func__); 1191 return spmc_ffa_error_return(handle, 1192 FFA_ERROR_INVALID_PARAMETER); 1193 } 1194 1195 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1196 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1197 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1198 min_desc_size = sizeof(struct ffa_mtd); 1199 } else { 1200 WARN("%s: bad FF-A version.\n", __func__); 1201 return spmc_ffa_error_return(handle, 1202 FFA_ERROR_INVALID_PARAMETER); 1203 } 1204 1205 /* Check if the descriptor is too small for the FF-A version. */ 1206 if (fragment_length < min_desc_size) { 1207 WARN("%s: bad first fragment size %u < %zu\n", 1208 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1209 return spmc_ffa_error_return(handle, 1210 FFA_ERROR_INVALID_PARAMETER); 1211 } 1212 1213 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1214 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1215 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1216 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1217 } else { 1218 WARN("%s: invalid memory management operation.\n", __func__); 1219 return spmc_ffa_error_return(handle, 1220 FFA_ERROR_INVALID_PARAMETER); 1221 } 1222 1223 spin_lock(&spmc_shmem_obj_state.lock); 1224 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1225 if (obj == NULL) { 1226 ret = FFA_ERROR_NO_MEMORY; 1227 goto err_unlock; 1228 } 1229 1230 spin_lock(&mbox->lock); 1231 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1232 ffa_version, handle); 1233 spin_unlock(&mbox->lock); 1234 1235 spin_unlock(&spmc_shmem_obj_state.lock); 1236 return ret; 1237 1238 err_unlock: 1239 spin_unlock(&spmc_shmem_obj_state.lock); 1240 return spmc_ffa_error_return(handle, ret); 1241 } 1242 1243 /** 1244 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1245 * @client: Client state. 1246 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1247 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1248 * @fragment_length: Length of fragments transmitted. 1249 * @sender_id: Vmid of sender in bits [31:16] 1250 * @smc_handle: Handle passed to smc call. Used to return 1251 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1252 * 1253 * Return: @smc_handle on success, error code on failure. 1254 */ 1255 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1256 bool secure_origin, 1257 uint64_t handle_low, 1258 uint64_t handle_high, 1259 uint32_t fragment_length, 1260 uint32_t sender_id, 1261 void *cookie, 1262 void *handle, 1263 uint64_t flags) 1264 { 1265 long ret; 1266 uint32_t desc_sender_id; 1267 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1268 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1269 1270 struct spmc_shmem_obj *obj; 1271 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1272 1273 spin_lock(&spmc_shmem_obj_state.lock); 1274 1275 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1276 if (obj == NULL) { 1277 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1278 __func__, mem_handle); 1279 ret = FFA_ERROR_INVALID_PARAMETER; 1280 goto err_unlock; 1281 } 1282 1283 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1284 if (sender_id != desc_sender_id) { 1285 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1286 sender_id, desc_sender_id); 1287 ret = FFA_ERROR_INVALID_PARAMETER; 1288 goto err_unlock; 1289 } 1290 1291 if (obj->desc_filled == obj->desc_size) { 1292 WARN("%s: object desc already filled, %zu\n", __func__, 1293 obj->desc_filled); 1294 ret = FFA_ERROR_INVALID_PARAMETER; 1295 goto err_unlock; 1296 } 1297 1298 spin_lock(&mbox->lock); 1299 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1300 handle); 1301 spin_unlock(&mbox->lock); 1302 1303 spin_unlock(&spmc_shmem_obj_state.lock); 1304 return ret; 1305 1306 err_unlock: 1307 spin_unlock(&spmc_shmem_obj_state.lock); 1308 return spmc_ffa_error_return(handle, ret); 1309 } 1310 1311 /** 1312 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1313 * if the caller implements a version greater 1314 * than FF-A 1.0 or if they have requested 1315 * the functionality. 1316 * TODO: We are assuming that the caller is 1317 * an SP. To support retrieval from the 1318 * normal world this function will need to be 1319 * expanded accordingly. 1320 * @resp: Descriptor populated in callers RX buffer. 1321 * @sp_ctx: Context of the calling SP. 1322 */ 1323 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1324 struct secure_partition_desc *sp_ctx) 1325 { 1326 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1327 sp_ctx->ns_bit_requested) { 1328 /* 1329 * Currently memory senders must reside in the normal 1330 * world, and we do not have the functionlaity to change 1331 * the state of memory dynamically. Therefore we can always set 1332 * the NS bit to 1. 1333 */ 1334 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1335 } 1336 } 1337 1338 /** 1339 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1340 * @smc_fid: FID of SMC 1341 * @total_length: Total length of retrieve request descriptor if this is 1342 * the first call. Otherwise (unsupported) must be 0. 1343 * @fragment_length: Length of fragment of retrieve request descriptor passed 1344 * in this call. Only @fragment_length == @length is 1345 * supported by this implementation. 1346 * @address: Not supported, must be 0. 1347 * @page_count: Not supported, must be 0. 1348 * @smc_handle: Handle passed to smc call. Used to return 1349 * FFA_MEM_RETRIEVE_RESP. 1350 * 1351 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1352 * Used by secure os to retrieve memory already shared by non-secure os. 1353 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1354 * the client must call FFA_MEM_FRAG_RX until the full response has been 1355 * received. 1356 * 1357 * Return: @handle on success, error code on failure. 1358 */ 1359 long 1360 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1361 bool secure_origin, 1362 uint32_t total_length, 1363 uint32_t fragment_length, 1364 uint64_t address, 1365 uint32_t page_count, 1366 void *cookie, 1367 void *handle, 1368 uint64_t flags) 1369 { 1370 int ret; 1371 size_t buf_size; 1372 size_t copy_size = 0; 1373 size_t min_desc_size; 1374 size_t out_desc_size = 0; 1375 1376 /* 1377 * Currently we are only accessing fields that are the same in both the 1378 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1379 * here. We only need validate against the appropriate struct size. 1380 */ 1381 struct ffa_mtd *resp; 1382 const struct ffa_mtd *req; 1383 struct spmc_shmem_obj *obj = NULL; 1384 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1385 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1386 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1387 1388 if (!secure_origin) { 1389 WARN("%s: unsupported retrieve req direction.\n", __func__); 1390 return spmc_ffa_error_return(handle, 1391 FFA_ERROR_INVALID_PARAMETER); 1392 } 1393 1394 if (address != 0U || page_count != 0U) { 1395 WARN("%s: custom memory region not supported.\n", __func__); 1396 return spmc_ffa_error_return(handle, 1397 FFA_ERROR_INVALID_PARAMETER); 1398 } 1399 1400 spin_lock(&mbox->lock); 1401 1402 req = mbox->tx_buffer; 1403 resp = mbox->rx_buffer; 1404 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1405 1406 if (mbox->rxtx_page_count == 0U) { 1407 WARN("%s: buffer pair not registered.\n", __func__); 1408 ret = FFA_ERROR_INVALID_PARAMETER; 1409 goto err_unlock_mailbox; 1410 } 1411 1412 if (mbox->state != MAILBOX_STATE_EMPTY) { 1413 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1414 ret = FFA_ERROR_DENIED; 1415 goto err_unlock_mailbox; 1416 } 1417 1418 if (fragment_length != total_length) { 1419 WARN("%s: fragmented retrieve request not supported.\n", 1420 __func__); 1421 ret = FFA_ERROR_INVALID_PARAMETER; 1422 goto err_unlock_mailbox; 1423 } 1424 1425 if (req->emad_count == 0U) { 1426 WARN("%s: unsupported attribute desc count %u.\n", 1427 __func__, obj->desc.emad_count); 1428 ret = FFA_ERROR_INVALID_PARAMETER; 1429 goto err_unlock_mailbox; 1430 } 1431 1432 /* Determine the appropriate minimum descriptor size. */ 1433 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1434 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1435 } else { 1436 min_desc_size = sizeof(struct ffa_mtd); 1437 } 1438 if (total_length < min_desc_size) { 1439 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1440 min_desc_size); 1441 ret = FFA_ERROR_INVALID_PARAMETER; 1442 goto err_unlock_mailbox; 1443 } 1444 1445 spin_lock(&spmc_shmem_obj_state.lock); 1446 1447 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1448 if (obj == NULL) { 1449 ret = FFA_ERROR_INVALID_PARAMETER; 1450 goto err_unlock_all; 1451 } 1452 1453 if (obj->desc_filled != obj->desc_size) { 1454 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1455 __func__, obj->desc_filled, obj->desc_size); 1456 ret = FFA_ERROR_INVALID_PARAMETER; 1457 goto err_unlock_all; 1458 } 1459 1460 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1461 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1462 __func__, req->sender_id, obj->desc.sender_id); 1463 ret = FFA_ERROR_INVALID_PARAMETER; 1464 goto err_unlock_all; 1465 } 1466 1467 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1468 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1469 __func__, req->tag, obj->desc.tag); 1470 ret = FFA_ERROR_INVALID_PARAMETER; 1471 goto err_unlock_all; 1472 } 1473 1474 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1475 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1476 __func__, req->emad_count, obj->desc.emad_count); 1477 ret = FFA_ERROR_INVALID_PARAMETER; 1478 goto err_unlock_all; 1479 } 1480 1481 /* Ensure the NS bit is set to 0 in the request. */ 1482 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1483 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1484 ret = FFA_ERROR_INVALID_PARAMETER; 1485 goto err_unlock_all; 1486 } 1487 1488 if (req->flags != 0U) { 1489 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1490 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1491 /* 1492 * If the retrieve request specifies the memory 1493 * transaction ensure it matches what we expect. 1494 */ 1495 WARN("%s: wrong mem transaction flags %x != %x\n", 1496 __func__, req->flags, obj->desc.flags); 1497 ret = FFA_ERROR_INVALID_PARAMETER; 1498 goto err_unlock_all; 1499 } 1500 1501 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1502 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1503 /* 1504 * Current implementation does not support donate and 1505 * it supports no other flags. 1506 */ 1507 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1508 ret = FFA_ERROR_INVALID_PARAMETER; 1509 goto err_unlock_all; 1510 } 1511 } 1512 1513 /* Validate the caller is a valid participant. */ 1514 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1515 WARN("%s: Invalid endpoint ID (0x%x).\n", 1516 __func__, sp_ctx->sp_id); 1517 ret = FFA_ERROR_INVALID_PARAMETER; 1518 goto err_unlock_all; 1519 } 1520 1521 /* Validate that the provided emad offset and structure is valid.*/ 1522 for (size_t i = 0; i < req->emad_count; i++) { 1523 size_t emad_size; 1524 struct ffa_emad_v1_0 *emad; 1525 1526 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1527 &emad_size); 1528 1529 if ((uintptr_t) emad >= (uintptr_t) 1530 ((uint8_t *) req + total_length)) { 1531 WARN("Invalid emad access.\n"); 1532 ret = FFA_ERROR_INVALID_PARAMETER; 1533 goto err_unlock_all; 1534 } 1535 } 1536 1537 /* 1538 * Validate all the endpoints match in the case of multiple 1539 * borrowers. We don't mandate that the order of the borrowers 1540 * must match in the descriptors therefore check to see if the 1541 * endpoints match in any order. 1542 */ 1543 for (size_t i = 0; i < req->emad_count; i++) { 1544 bool found = false; 1545 size_t emad_size; 1546 struct ffa_emad_v1_0 *emad; 1547 struct ffa_emad_v1_0 *other_emad; 1548 1549 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1550 &emad_size); 1551 1552 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1553 other_emad = spmc_shmem_obj_get_emad( 1554 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1555 &emad_size); 1556 1557 if (req->emad_count && 1558 emad->mapd.endpoint_id == 1559 other_emad->mapd.endpoint_id) { 1560 found = true; 1561 break; 1562 } 1563 } 1564 1565 if (!found) { 1566 WARN("%s: invalid receiver id (0x%x).\n", 1567 __func__, emad->mapd.endpoint_id); 1568 ret = FFA_ERROR_INVALID_PARAMETER; 1569 goto err_unlock_all; 1570 } 1571 } 1572 1573 mbox->state = MAILBOX_STATE_FULL; 1574 1575 if (req->emad_count != 0U) { 1576 obj->in_use++; 1577 } 1578 1579 /* 1580 * If the caller is v1.0 convert the descriptor, otherwise copy 1581 * directly. 1582 */ 1583 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1584 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1585 ©_size, 1586 &out_desc_size); 1587 if (ret != 0U) { 1588 ERROR("%s: Failed to process descriptor.\n", __func__); 1589 goto err_unlock_all; 1590 } 1591 } else { 1592 copy_size = MIN(obj->desc_size, buf_size); 1593 out_desc_size = obj->desc_size; 1594 1595 memcpy(resp, &obj->desc, copy_size); 1596 } 1597 1598 /* Set the NS bit in the response if applicable. */ 1599 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1600 1601 spin_unlock(&spmc_shmem_obj_state.lock); 1602 spin_unlock(&mbox->lock); 1603 1604 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1605 copy_size, 0, 0, 0, 0, 0); 1606 1607 err_unlock_all: 1608 spin_unlock(&spmc_shmem_obj_state.lock); 1609 err_unlock_mailbox: 1610 spin_unlock(&mbox->lock); 1611 return spmc_ffa_error_return(handle, ret); 1612 } 1613 1614 /** 1615 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1616 * @client: Client state. 1617 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1618 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1619 * @fragment_offset: Byte offset in descriptor to resume at. 1620 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1621 * hypervisor. 0 otherwise. 1622 * @smc_handle: Handle passed to smc call. Used to return 1623 * FFA_MEM_FRAG_TX. 1624 * 1625 * Return: @smc_handle on success, error code on failure. 1626 */ 1627 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1628 bool secure_origin, 1629 uint32_t handle_low, 1630 uint32_t handle_high, 1631 uint32_t fragment_offset, 1632 uint32_t sender_id, 1633 void *cookie, 1634 void *handle, 1635 uint64_t flags) 1636 { 1637 int ret; 1638 void *src; 1639 size_t buf_size; 1640 size_t copy_size; 1641 size_t full_copy_size; 1642 uint32_t desc_sender_id; 1643 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1644 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1645 struct spmc_shmem_obj *obj; 1646 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1647 1648 if (!secure_origin) { 1649 WARN("%s: can only be called from swld.\n", 1650 __func__); 1651 return spmc_ffa_error_return(handle, 1652 FFA_ERROR_INVALID_PARAMETER); 1653 } 1654 1655 spin_lock(&spmc_shmem_obj_state.lock); 1656 1657 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1658 if (obj == NULL) { 1659 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1660 __func__, mem_handle); 1661 ret = FFA_ERROR_INVALID_PARAMETER; 1662 goto err_unlock_shmem; 1663 } 1664 1665 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1666 if (sender_id != 0U && sender_id != desc_sender_id) { 1667 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1668 sender_id, desc_sender_id); 1669 ret = FFA_ERROR_INVALID_PARAMETER; 1670 goto err_unlock_shmem; 1671 } 1672 1673 if (fragment_offset >= obj->desc_size) { 1674 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1675 __func__, fragment_offset, obj->desc_size); 1676 ret = FFA_ERROR_INVALID_PARAMETER; 1677 goto err_unlock_shmem; 1678 } 1679 1680 spin_lock(&mbox->lock); 1681 1682 if (mbox->rxtx_page_count == 0U) { 1683 WARN("%s: buffer pair not registered.\n", __func__); 1684 ret = FFA_ERROR_INVALID_PARAMETER; 1685 goto err_unlock_all; 1686 } 1687 1688 if (mbox->state != MAILBOX_STATE_EMPTY) { 1689 WARN("%s: RX Buffer is full!\n", __func__); 1690 ret = FFA_ERROR_DENIED; 1691 goto err_unlock_all; 1692 } 1693 1694 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1695 1696 mbox->state = MAILBOX_STATE_FULL; 1697 1698 /* 1699 * If the caller is v1.0 convert the descriptor, otherwise copy 1700 * directly. 1701 */ 1702 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1703 size_t out_desc_size; 1704 1705 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1706 buf_size, 1707 fragment_offset, 1708 ©_size, 1709 &out_desc_size); 1710 if (ret != 0U) { 1711 ERROR("%s: Failed to process descriptor.\n", __func__); 1712 goto err_unlock_all; 1713 } 1714 } else { 1715 full_copy_size = obj->desc_size - fragment_offset; 1716 copy_size = MIN(full_copy_size, buf_size); 1717 1718 src = &obj->desc; 1719 1720 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1721 } 1722 1723 spin_unlock(&mbox->lock); 1724 spin_unlock(&spmc_shmem_obj_state.lock); 1725 1726 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1727 copy_size, sender_id, 0, 0, 0); 1728 1729 err_unlock_all: 1730 spin_unlock(&mbox->lock); 1731 err_unlock_shmem: 1732 spin_unlock(&spmc_shmem_obj_state.lock); 1733 return spmc_ffa_error_return(handle, ret); 1734 } 1735 1736 /** 1737 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1738 * @client: Client state. 1739 * 1740 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1741 * Used by secure os release previously shared memory to non-secure os. 1742 * 1743 * The handle to release must be in the client's (secure os's) transmit buffer. 1744 * 1745 * Return: 0 on success, error code on failure. 1746 */ 1747 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1748 bool secure_origin, 1749 uint32_t handle_low, 1750 uint32_t handle_high, 1751 uint32_t fragment_offset, 1752 uint32_t sender_id, 1753 void *cookie, 1754 void *handle, 1755 uint64_t flags) 1756 { 1757 int ret; 1758 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1759 struct spmc_shmem_obj *obj; 1760 const struct ffa_mem_relinquish_descriptor *req; 1761 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1762 1763 if (!secure_origin) { 1764 WARN("%s: unsupported relinquish direction.\n", __func__); 1765 return spmc_ffa_error_return(handle, 1766 FFA_ERROR_INVALID_PARAMETER); 1767 } 1768 1769 spin_lock(&mbox->lock); 1770 1771 if (mbox->rxtx_page_count == 0U) { 1772 WARN("%s: buffer pair not registered.\n", __func__); 1773 ret = FFA_ERROR_INVALID_PARAMETER; 1774 goto err_unlock_mailbox; 1775 } 1776 1777 req = mbox->tx_buffer; 1778 1779 if (req->flags != 0U) { 1780 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1781 ret = FFA_ERROR_INVALID_PARAMETER; 1782 goto err_unlock_mailbox; 1783 } 1784 1785 if (req->endpoint_count == 0) { 1786 WARN("%s: endpoint count cannot be 0.\n", __func__); 1787 ret = FFA_ERROR_INVALID_PARAMETER; 1788 goto err_unlock_mailbox; 1789 } 1790 1791 spin_lock(&spmc_shmem_obj_state.lock); 1792 1793 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1794 if (obj == NULL) { 1795 ret = FFA_ERROR_INVALID_PARAMETER; 1796 goto err_unlock_all; 1797 } 1798 1799 /* 1800 * Validate the endpoint ID was populated correctly. We don't currently 1801 * support proxy endpoints so the endpoint count should always be 1. 1802 */ 1803 if (req->endpoint_count != 1U) { 1804 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1805 req->endpoint_count); 1806 ret = FFA_ERROR_INVALID_PARAMETER; 1807 goto err_unlock_all; 1808 } 1809 1810 /* Validate provided endpoint ID matches the partition ID. */ 1811 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1812 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1813 req->endpoint_array[0], sp_ctx->sp_id); 1814 ret = FFA_ERROR_INVALID_PARAMETER; 1815 goto err_unlock_all; 1816 } 1817 1818 /* Validate the caller is a valid participant. */ 1819 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1820 WARN("%s: Invalid endpoint ID (0x%x).\n", 1821 __func__, req->endpoint_array[0]); 1822 ret = FFA_ERROR_INVALID_PARAMETER; 1823 goto err_unlock_all; 1824 } 1825 1826 if (obj->in_use == 0U) { 1827 ret = FFA_ERROR_INVALID_PARAMETER; 1828 goto err_unlock_all; 1829 } 1830 obj->in_use--; 1831 1832 spin_unlock(&spmc_shmem_obj_state.lock); 1833 spin_unlock(&mbox->lock); 1834 1835 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1836 1837 err_unlock_all: 1838 spin_unlock(&spmc_shmem_obj_state.lock); 1839 err_unlock_mailbox: 1840 spin_unlock(&mbox->lock); 1841 return spmc_ffa_error_return(handle, ret); 1842 } 1843 1844 /** 1845 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1846 * @client: Client state. 1847 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1848 * @handle_high: Unique handle of shared memory object to reclaim. 1849 * Bit[63:32]. 1850 * @flags: Unsupported, ignored. 1851 * 1852 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1853 * Used by non-secure os reclaim memory previously shared with secure os. 1854 * 1855 * Return: 0 on success, error code on failure. 1856 */ 1857 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1858 bool secure_origin, 1859 uint32_t handle_low, 1860 uint32_t handle_high, 1861 uint32_t mem_flags, 1862 uint64_t x4, 1863 void *cookie, 1864 void *handle, 1865 uint64_t flags) 1866 { 1867 int ret; 1868 struct spmc_shmem_obj *obj; 1869 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1870 1871 if (secure_origin) { 1872 WARN("%s: unsupported reclaim direction.\n", __func__); 1873 return spmc_ffa_error_return(handle, 1874 FFA_ERROR_INVALID_PARAMETER); 1875 } 1876 1877 if (mem_flags != 0U) { 1878 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1879 return spmc_ffa_error_return(handle, 1880 FFA_ERROR_INVALID_PARAMETER); 1881 } 1882 1883 spin_lock(&spmc_shmem_obj_state.lock); 1884 1885 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1886 if (obj == NULL) { 1887 ret = FFA_ERROR_INVALID_PARAMETER; 1888 goto err_unlock; 1889 } 1890 if (obj->in_use != 0U) { 1891 ret = FFA_ERROR_DENIED; 1892 goto err_unlock; 1893 } 1894 1895 if (obj->desc_filled != obj->desc_size) { 1896 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1897 __func__, obj->desc_filled, obj->desc_size); 1898 ret = FFA_ERROR_INVALID_PARAMETER; 1899 goto err_unlock; 1900 } 1901 1902 /* Allow for platform specific operations to be performed. */ 1903 ret = plat_spmc_shmem_reclaim(&obj->desc); 1904 if (ret != 0) { 1905 goto err_unlock; 1906 } 1907 1908 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1909 spin_unlock(&spmc_shmem_obj_state.lock); 1910 1911 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1912 1913 err_unlock: 1914 spin_unlock(&spmc_shmem_obj_state.lock); 1915 return spmc_ffa_error_return(handle, ret); 1916 } 1917