xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 9526282a7d7caf3b4f933d04192429c6d70fa5bf)
1 /*
2  * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9 
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18 
19 #include <platform_def.h>
20 
21 /**
22  * struct spmc_shmem_obj - Shared memory object.
23  * @desc_size:      Size of @desc.
24  * @desc_filled:    Size of @desc already received.
25  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
26  *                  without a matching ffa_mem_relinquish call.
27  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
28  */
29 struct spmc_shmem_obj {
30 	size_t desc_size;
31 	size_t desc_filled;
32 	size_t in_use;
33 	struct ffa_mtd desc;
34 };
35 
36 /*
37  * Declare our data structure to store the metadata of memory share requests.
38  * The main datastore is allocated on a per platform basis to ensure enough
39  * storage can be made available.
40  * The address of the data store will be populated by the SPMC during its
41  * initialization.
42  */
43 
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 	/* Set start value for handle so top 32 bits are needed quickly. */
46 	.next_handle = 0xffffffc0U,
47 };
48 
49 /**
50  * spmc_shmem_obj_size - Convert from descriptor size to object size.
51  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
52  *
53  * Return: Size of struct spmc_shmem_obj object.
54  */
55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59 
60 /**
61  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62  * @state:      Global state.
63  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
64  *              allocated object will hold.
65  *
66  * Return: Pointer to newly allocated object, or %NULL if there not enough space
67  *         left. The returned pointer is only valid while @state is locked, to
68  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
69  *         called.
70  */
71 static struct spmc_shmem_obj *
72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 	struct spmc_shmem_obj *obj;
75 	size_t free = state->data_size - state->allocated;
76 	size_t obj_size;
77 
78 	if (state->data == NULL) {
79 		ERROR("Missing shmem datastore!\n");
80 		return NULL;
81 	}
82 
83 	obj_size = spmc_shmem_obj_size(desc_size);
84 
85 	/* Ensure the obj size has not overflowed. */
86 	if (obj_size < desc_size) {
87 		WARN("%s(0x%zx) desc_size overflow\n",
88 		     __func__, desc_size);
89 		return NULL;
90 	}
91 
92 	if (obj_size > free) {
93 		WARN("%s(0x%zx) failed, free 0x%zx\n",
94 		     __func__, desc_size, free);
95 		return NULL;
96 	}
97 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
98 	obj->desc = (struct ffa_mtd) {0};
99 	obj->desc_size = desc_size;
100 	obj->desc_filled = 0;
101 	obj->in_use = 0;
102 	state->allocated += obj_size;
103 	return obj;
104 }
105 
106 /**
107  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
108  * @state:      Global state.
109  * @obj:        Object to free.
110  *
111  * Release memory used by @obj. Other objects may move, so on return all
112  * pointers to struct spmc_shmem_obj object should be considered invalid, not
113  * just @obj.
114  *
115  * The current implementation always compacts the remaining objects to simplify
116  * the allocator and to avoid fragmentation.
117  */
118 
119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
120 				  struct spmc_shmem_obj *obj)
121 {
122 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
123 	uint8_t *shift_dest = (uint8_t *)obj;
124 	uint8_t *shift_src = shift_dest + free_size;
125 	size_t shift_size = state->allocated - (shift_src - state->data);
126 
127 	if (shift_size != 0U) {
128 		memmove(shift_dest, shift_src, shift_size);
129 	}
130 	state->allocated -= free_size;
131 }
132 
133 /**
134  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
135  * @state:      Global state.
136  * @handle:     Unique handle of object to return.
137  *
138  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
139  *         %NULL, if not object in @state->data has a matching handle.
140  */
141 static struct spmc_shmem_obj *
142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
143 {
144 	uint8_t *curr = state->data;
145 
146 	while (curr - state->data < state->allocated) {
147 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
148 
149 		if (obj->desc.handle == handle) {
150 			return obj;
151 		}
152 		curr += spmc_shmem_obj_size(obj->desc_size);
153 	}
154 	return NULL;
155 }
156 
157 /**
158  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
159  * @offset:     Offset used to track which objects have previously been
160  *              returned.
161  *
162  * Return: the next struct spmc_shmem_obj_state object from the provided
163  *	   offset.
164  *	   %NULL, if there are no more objects.
165  */
166 static struct spmc_shmem_obj *
167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
168 {
169 	uint8_t *curr = state->data + *offset;
170 
171 	if (curr - state->data < state->allocated) {
172 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
173 
174 		*offset += spmc_shmem_obj_size(obj->desc_size);
175 
176 		return obj;
177 	}
178 	return NULL;
179 }
180 
181 /*******************************************************************************
182  * FF-A memory descriptor helper functions.
183  ******************************************************************************/
184 /**
185  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
186  *                           clients FF-A version.
187  * @desc:         The memory transaction descriptor.
188  * @index:        The index of the emad element to be accessed.
189  * @ffa_version:  FF-A version of the provided structure.
190  * @emad_size:    Will be populated with the size of the returned emad
191  *                descriptor.
192  * Return: A pointer to the requested emad structure.
193  */
194 static void *
195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
196 			uint32_t ffa_version, size_t *emad_size)
197 {
198 	uint8_t *emad;
199 
200 	assert(index < desc->emad_count);
201 
202 	/*
203 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
204 	 * format, otherwise assume it is a v1.1 format.
205 	 */
206 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
207 		emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
208 		*emad_size = sizeof(struct ffa_emad_v1_0);
209 	} else {
210 		assert(is_aligned(desc->emad_offset, 16));
211 		emad = ((uint8_t *) desc + desc->emad_offset);
212 		*emad_size = desc->emad_size;
213 	}
214 
215 	assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
216 	return (emad + (*emad_size * index));
217 }
218 
219 /**
220  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
221  *				 FF-A version of the descriptor.
222  * @obj:    Object containing ffa_memory_region_descriptor.
223  *
224  * Return: struct ffa_comp_mrd object corresponding to the composite memory
225  *	   region descriptor.
226  */
227 static struct ffa_comp_mrd *
228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
229 {
230 	size_t emad_size;
231 	/*
232 	 * The comp_mrd_offset field of the emad descriptor remains consistent
233 	 * between FF-A versions therefore we can use the v1.0 descriptor here
234 	 * in all cases.
235 	 */
236 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
237 							     ffa_version,
238 							     &emad_size);
239 
240 	/* Ensure the composite descriptor offset is aligned. */
241 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
242 		WARN("Unaligned composite memory region descriptor offset.\n");
243 		return NULL;
244 	}
245 
246 	return (struct ffa_comp_mrd *)
247 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
248 }
249 
250 /**
251  * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
252  * @obj:    Object containing ffa_memory_region_descriptor.
253  *
254  * Return: Size of ffa_constituent_memory_region_descriptors in @obj.
255  */
256 static size_t
257 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
258 				    uint32_t ffa_version)
259 {
260 	struct ffa_comp_mrd *comp_mrd;
261 
262 	comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
263 	if (comp_mrd == NULL) {
264 		return 0;
265 	}
266 	return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
267 }
268 
269 /**
270  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
271  *				a given memory transaction.
272  * @sp_id:      Partition ID to validate.
273  * @obj:        The shared memory object containing the descriptor
274  *              of the memory transaction.
275  * Return: true if ID is valid, else false.
276  */
277 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
278 {
279 	bool found = false;
280 	struct ffa_mtd *desc = &obj->desc;
281 	size_t desc_size = obj->desc_size;
282 
283 	/* Validate the partition is a valid participant. */
284 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
285 		size_t emad_size;
286 		struct ffa_emad_v1_0 *emad;
287 
288 		emad = spmc_shmem_obj_get_emad(desc, i,
289 					       MAKE_FFA_VERSION(1, 1),
290 					       &emad_size);
291 		/*
292 		 * Validate the calculated emad address resides within the
293 		 * descriptor.
294 		 */
295 		if ((emad == NULL) || (uintptr_t) emad >=
296 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
297 			VERBOSE("Invalid emad.\n");
298 			break;
299 		}
300 		if (sp_id == emad->mapd.endpoint_id) {
301 			found = true;
302 			break;
303 		}
304 	}
305 	return found;
306 }
307 
308 /*
309  * Compare two memory regions to determine if any range overlaps with another
310  * ongoing memory transaction.
311  */
312 static bool
313 overlapping_memory_regions(struct ffa_comp_mrd *region1,
314 			   struct ffa_comp_mrd *region2)
315 {
316 	uint64_t region1_start;
317 	uint64_t region1_size;
318 	uint64_t region1_end;
319 	uint64_t region2_start;
320 	uint64_t region2_size;
321 	uint64_t region2_end;
322 
323 	assert(region1 != NULL);
324 	assert(region2 != NULL);
325 
326 	if (region1 == region2) {
327 		return true;
328 	}
329 
330 	/*
331 	 * Check each memory region in the request against existing
332 	 * transactions.
333 	 */
334 	for (size_t i = 0; i < region1->address_range_count; i++) {
335 
336 		region1_start = region1->address_range_array[i].address;
337 		region1_size =
338 			region1->address_range_array[i].page_count *
339 			PAGE_SIZE_4KB;
340 		region1_end = region1_start + region1_size;
341 
342 		for (size_t j = 0; j < region2->address_range_count; j++) {
343 
344 			region2_start = region2->address_range_array[j].address;
345 			region2_size =
346 				region2->address_range_array[j].page_count *
347 				PAGE_SIZE_4KB;
348 			region2_end = region2_start + region2_size;
349 
350 			/* Check if regions are not overlapping. */
351 			if (!((region2_end <= region1_start) ||
352 			      (region1_end <= region2_start))) {
353 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
354 				     region1_start, region1_end,
355 				     region2_start, region2_end);
356 				return true;
357 			}
358 		}
359 	}
360 	return false;
361 }
362 
363 /*******************************************************************************
364  * FF-A v1.0 Memory Descriptor Conversion Helpers.
365  ******************************************************************************/
366 /**
367  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
368  *                                     converted descriptor.
369  * @orig:       The original v1.0 memory transaction descriptor.
370  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
371  *
372  * Return: the size required to store the descriptor store in the v1.1 format.
373  */
374 static size_t
375 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
376 {
377 	size_t size = 0;
378 	struct ffa_comp_mrd *mrd;
379 	struct ffa_emad_v1_0 *emad_array = orig->emad;
380 
381 	/* Get the size of the v1.1 descriptor. */
382 	size += sizeof(struct ffa_mtd);
383 
384 	/* Add the size of the emad descriptors. */
385 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
386 
387 	/* Add the size of the composite mrds. */
388 	size += sizeof(struct ffa_comp_mrd);
389 
390 	/* Add the size of the constituent mrds. */
391 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
392 	      emad_array[0].comp_mrd_offset);
393 
394 	/* Check the calculated address is within the memory descriptor. */
395 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
396 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
397 		return 0;
398 	}
399 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
400 
401 	return size;
402 }
403 
404 /**
405  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
406  *                                     converted descriptor.
407  * @orig:       The original v1.1 memory transaction descriptor.
408  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
409  *
410  * Return: the size required to store the descriptor store in the v1.0 format.
411  */
412 static size_t
413 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
414 {
415 	size_t size = 0;
416 	struct ffa_comp_mrd *mrd;
417 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
418 					   ((uint8_t *) orig +
419 					    orig->emad_offset);
420 
421 	/* Get the size of the v1.0 descriptor. */
422 	size += sizeof(struct ffa_mtd_v1_0);
423 
424 	/* Add the size of the v1.0 emad descriptors. */
425 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
426 
427 	/* Add the size of the composite mrds. */
428 	size += sizeof(struct ffa_comp_mrd);
429 
430 	/* Add the size of the constituent mrds. */
431 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
432 	      emad_array[0].comp_mrd_offset);
433 
434 	/* Check the calculated address is within the memory descriptor. */
435 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
436 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
437 		return 0;
438 	}
439 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
440 
441 	return size;
442 }
443 
444 /**
445  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
446  * @out_obj:	The shared memory object to populate the converted descriptor.
447  * @orig:	The shared memory object containing the v1.0 descriptor.
448  *
449  * Return: true if the conversion is successful else false.
450  */
451 static bool
452 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
453 				     struct spmc_shmem_obj *orig)
454 {
455 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
456 	struct ffa_mtd *out = &out_obj->desc;
457 	struct ffa_emad_v1_0 *emad_array_in;
458 	struct ffa_emad_v1_0 *emad_array_out;
459 	struct ffa_comp_mrd *mrd_in;
460 	struct ffa_comp_mrd *mrd_out;
461 
462 	size_t mrd_in_offset;
463 	size_t mrd_out_offset;
464 	size_t mrd_size = 0;
465 
466 	/* Populate the new descriptor format from the v1.0 struct. */
467 	out->sender_id = mtd_orig->sender_id;
468 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
469 	out->flags = mtd_orig->flags;
470 	out->handle = mtd_orig->handle;
471 	out->tag = mtd_orig->tag;
472 	out->emad_count = mtd_orig->emad_count;
473 	out->emad_size = sizeof(struct ffa_emad_v1_0);
474 
475 	/*
476 	 * We will locate the emad descriptors directly after the ffa_mtd
477 	 * struct. This will be 8-byte aligned.
478 	 */
479 	out->emad_offset = sizeof(struct ffa_mtd);
480 
481 	emad_array_in = mtd_orig->emad;
482 	emad_array_out = (struct ffa_emad_v1_0 *)
483 			 ((uint8_t *) out + out->emad_offset);
484 
485 	/* Copy across the emad structs. */
486 	for (unsigned int i = 0U; i < out->emad_count; i++) {
487 		/* Bound check for emad array. */
488 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
489 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
490 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
491 			return false;
492 		}
493 		memcpy(&emad_array_out[i], &emad_array_in[i],
494 		       sizeof(struct ffa_emad_v1_0));
495 	}
496 
497 	/* Place the mrd descriptors after the end of the emad descriptors.*/
498 	mrd_in_offset = emad_array_in->comp_mrd_offset;
499 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
500 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
501 
502 	/* Add the size of the composite memory region descriptor. */
503 	mrd_size += sizeof(struct ffa_comp_mrd);
504 
505 	/* Find the mrd descriptor. */
506 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
507 
508 	/* Add the size of the constituent memory region descriptors. */
509 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
510 
511 	/*
512 	 * Update the offset in the emads by the delta between the input and
513 	 * output addresses.
514 	 */
515 	for (unsigned int i = 0U; i < out->emad_count; i++) {
516 		emad_array_out[i].comp_mrd_offset =
517 			emad_array_in[i].comp_mrd_offset +
518 			(mrd_out_offset - mrd_in_offset);
519 	}
520 
521 	/* Verify that we stay within bound of the memory descriptors. */
522 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
523 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
524 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
525 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
526 		ERROR("%s: Invalid mrd structure.\n", __func__);
527 		return false;
528 	}
529 
530 	/* Copy the mrd descriptors directly. */
531 	memcpy(mrd_out, mrd_in, mrd_size);
532 
533 	return true;
534 }
535 
536 /**
537  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
538  *                                v1.0 memory object.
539  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
540  * @orig:       The shared memory object containing the v1.1 descriptor.
541  *
542  * Return: true if the conversion is successful else false.
543  */
544 static bool
545 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
546 			     struct spmc_shmem_obj *orig)
547 {
548 	struct ffa_mtd *mtd_orig = &orig->desc;
549 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
550 	struct ffa_emad_v1_0 *emad_in;
551 	struct ffa_emad_v1_0 *emad_array_in;
552 	struct ffa_emad_v1_0 *emad_array_out;
553 	struct ffa_comp_mrd *mrd_in;
554 	struct ffa_comp_mrd *mrd_out;
555 
556 	size_t mrd_in_offset;
557 	size_t mrd_out_offset;
558 	size_t emad_out_array_size;
559 	size_t mrd_size = 0;
560 	size_t orig_desc_size = orig->desc_size;
561 
562 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
563 	out->sender_id = mtd_orig->sender_id;
564 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
565 	out->flags = mtd_orig->flags;
566 	out->handle = mtd_orig->handle;
567 	out->tag = mtd_orig->tag;
568 	out->emad_count = mtd_orig->emad_count;
569 
570 	/* Determine the location of the emad array in both descriptors. */
571 	emad_array_in = (struct ffa_emad_v1_0 *)
572 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
573 	emad_array_out = out->emad;
574 
575 	/* Copy across the emad structs. */
576 	emad_in = emad_array_in;
577 	for (unsigned int i = 0U; i < out->emad_count; i++) {
578 		/* Bound check for emad array. */
579 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
580 				((uint8_t *) mtd_orig + orig_desc_size)) {
581 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
582 			return false;
583 		}
584 		memcpy(&emad_array_out[i], emad_in,
585 		       sizeof(struct ffa_emad_v1_0));
586 
587 		emad_in +=  mtd_orig->emad_size;
588 	}
589 
590 	/* Place the mrd descriptors after the end of the emad descriptors. */
591 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
592 
593 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
594 			  emad_out_array_size;
595 
596 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
597 
598 	mrd_in_offset = mtd_orig->emad_offset +
599 			(mtd_orig->emad_size * mtd_orig->emad_count);
600 
601 	/* Add the size of the composite memory region descriptor. */
602 	mrd_size += sizeof(struct ffa_comp_mrd);
603 
604 	/* Find the mrd descriptor. */
605 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
606 
607 	/* Add the size of the constituent memory region descriptors. */
608 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
609 
610 	/*
611 	 * Update the offset in the emads by the delta between the input and
612 	 * output addresses.
613 	 */
614 	emad_in = emad_array_in;
615 
616 	for (unsigned int i = 0U; i < out->emad_count; i++) {
617 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
618 						    (mrd_out_offset -
619 						     mrd_in_offset);
620 		emad_in +=  mtd_orig->emad_size;
621 	}
622 
623 	/* Verify that we stay within bound of the memory descriptors. */
624 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
625 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
626 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
627 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
628 		ERROR("%s: Invalid mrd structure.\n", __func__);
629 		return false;
630 	}
631 
632 	/* Copy the mrd descriptors directly. */
633 	memcpy(mrd_out, mrd_in, mrd_size);
634 
635 	return true;
636 }
637 
638 /**
639  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
640  *                                     the v1.0 format and populates the
641  *                                     provided buffer.
642  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
643  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
644  * @buf_size:	    Size of the buffer to populate.
645  * @offset:	    The offset of the converted descriptor to copy.
646  * @copy_size:	    Will be populated with the number of bytes copied.
647  * @out_desc_size:  Will be populated with the total size of the v1.0
648  *                  descriptor.
649  *
650  * Return: 0 if conversion and population succeeded.
651  * Note: This function invalidates the reference to @orig therefore
652  * `spmc_shmem_obj_lookup` must be called if further usage is required.
653  */
654 static uint32_t
655 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
656 				 size_t buf_size, size_t offset,
657 				 size_t *copy_size, size_t *v1_0_desc_size)
658 {
659 		struct spmc_shmem_obj *v1_0_obj;
660 
661 		/* Calculate the size that the v1.0 descriptor will require. */
662 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
663 					&orig_obj->desc, orig_obj->desc_size);
664 
665 		if (*v1_0_desc_size == 0) {
666 			ERROR("%s: cannot determine size of descriptor.\n",
667 			      __func__);
668 			return FFA_ERROR_INVALID_PARAMETER;
669 		}
670 
671 		/* Get a new obj to store the v1.0 descriptor. */
672 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
673 						*v1_0_desc_size);
674 
675 		if (!v1_0_obj) {
676 			return FFA_ERROR_NO_MEMORY;
677 		}
678 
679 		/* Perform the conversion from v1.1 to v1.0. */
680 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
681 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
682 			return FFA_ERROR_INVALID_PARAMETER;
683 		}
684 
685 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
686 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
687 
688 		/*
689 		 * We're finished with the v1.0 descriptor for now so free it.
690 		 * Note that this will invalidate any references to the v1.1
691 		 * descriptor.
692 		 */
693 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
694 
695 		return 0;
696 }
697 
698 static int
699 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
700 			size_t fragment_length, size_t total_length)
701 {
702 	unsigned long long emad_end;
703 	unsigned long long emad_size;
704 	unsigned long long emad_offset;
705 	unsigned int min_desc_size;
706 
707 	/* Determine the appropriate minimum descriptor size. */
708 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
709 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
710 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
711 		min_desc_size = sizeof(struct ffa_mtd);
712 	} else {
713 		return FFA_ERROR_INVALID_PARAMETER;
714 	}
715 	if (fragment_length < min_desc_size) {
716 		WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
717 		     min_desc_size);
718 		return FFA_ERROR_INVALID_PARAMETER;
719 	}
720 
721 	if (desc->emad_count == 0U) {
722 		WARN("%s: unsupported attribute desc count %u.\n",
723 		     __func__, desc->emad_count);
724 		return FFA_ERROR_INVALID_PARAMETER;
725 	}
726 
727 	/*
728 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
729 	 * format, otherwise assume it is a v1.1 format.
730 	 */
731 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
732 		emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
733 	} else {
734 		if (!is_aligned(desc->emad_offset, 16)) {
735 			WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
736 			     __func__, desc->emad_offset);
737 			return FFA_ERROR_INVALID_PARAMETER;
738 		}
739 		if (desc->emad_offset < sizeof(struct ffa_mtd)) {
740 			WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
741 			     __func__, desc->emad_offset,
742 			     sizeof(struct ffa_mtd));
743 			return FFA_ERROR_INVALID_PARAMETER;
744 		}
745 		emad_offset = desc->emad_offset;
746 		if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
747 			WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
748 			     desc->emad_size, sizeof(struct ffa_emad_v1_0));
749 			return FFA_ERROR_INVALID_PARAMETER;
750 		}
751 		if (!is_aligned(desc->emad_size, 16)) {
752 			WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
753 			     __func__, desc->emad_size);
754 			return FFA_ERROR_INVALID_PARAMETER;
755 		}
756 		emad_size = desc->emad_size;
757 	}
758 
759 	/*
760 	 * Overflow is impossible: the arithmetic happens in at least 64-bit
761 	 * precision, but all of the operands are bounded by UINT32_MAX, and
762 	 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1))
763 	 * = (2^64 - 1).
764 	 */
765 	CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large);
766 	emad_end = (desc->emad_count * (unsigned long long)emad_size) +
767 		   (unsigned long long)sizeof(struct ffa_comp_mrd) +
768 		   (unsigned long long)emad_offset;
769 
770 	if (emad_end > total_length) {
771 		WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
772 		     __func__, emad_end, total_length);
773 		return FFA_ERROR_INVALID_PARAMETER;
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
781  * @obj:	  Object containing ffa_memory_region_descriptor.
782  * @ffa_version:  FF-A version of the provided descriptor.
783  *
784  * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
785  * offset or count is invalid.
786  */
787 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
788 				uint32_t ffa_version)
789 {
790 	uint32_t comp_mrd_offset = 0;
791 	if (obj->desc_filled != obj->desc_size) {
792 		ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
793 		      __func__, obj->desc_filled, obj->desc_size);
794 		panic();
795 	}
796 
797 	if (spmc_validate_mtd_start(&obj->desc, ffa_version,
798 				    obj->desc_filled, obj->desc_size)) {
799 		ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
800 		      __func__);
801 		panic();
802 	}
803 
804 	for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
805 		size_t size;
806 		size_t count;
807 		size_t expected_size;
808 		uint64_t total_page_count;
809 		size_t emad_size;
810 		size_t header_emad_size;
811 		uint32_t offset;
812 		struct ffa_comp_mrd *comp;
813 		struct ffa_emad_v1_0 *emad;
814 
815 		emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
816 					       ffa_version, &emad_size);
817 
818 		/*
819 		 * Validate the calculated emad address resides within the
820 		 * descriptor.
821 		 */
822 		if ((uintptr_t) emad >=
823 		    (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
824 			WARN("Invalid emad access.\n");
825 			return -EINVAL;
826 		}
827 
828 		offset = emad->comp_mrd_offset;
829 
830 		/*
831 		 * The offset provided to the composite memory region descriptor
832 		 * should be consistent across endpoint descriptors. Store the
833 		 * first entry and compare against subsequent entries.
834 		 */
835 		if (comp_mrd_offset == 0) {
836 			comp_mrd_offset = offset;
837 		} else {
838 			if (comp_mrd_offset != offset) {
839 				ERROR("%s: mismatching offsets provided, %u != %u\n",
840 				       __func__, offset, comp_mrd_offset);
841 				return -EINVAL;
842 			}
843 			continue; /* Remainder only executed on first iteration. */
844 		}
845 
846 		header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) +
847 			(obj->desc.emad_count * emad_size);
848 
849 		if (offset < header_emad_size) {
850 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
851 			     __func__, offset, header_emad_size);
852 			return -EINVAL;
853 		}
854 
855 		size = obj->desc_size;
856 
857 		if (offset > size) {
858 			WARN("%s: invalid object, offset %u > total size %zu\n",
859 			     __func__, offset, obj->desc_size);
860 			return -EINVAL;
861 		}
862 		size -= offset;
863 
864 		if (size < sizeof(struct ffa_comp_mrd)) {
865 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
866 			     __func__, offset, obj->desc_size);
867 			return -EINVAL;
868 		}
869 		size -= sizeof(struct ffa_comp_mrd);
870 
871 		count = size / sizeof(struct ffa_cons_mrd);
872 
873 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
874 
875 		if (comp == NULL) {
876 			WARN("%s: invalid comp_mrd offset\n", __func__);
877 			return -EINVAL;
878 		}
879 
880 		if (comp->address_range_count != count) {
881 			WARN("%s: invalid object, desc count %u != %zu\n",
882 			     __func__, comp->address_range_count, count);
883 			return -EINVAL;
884 		}
885 
886 		expected_size = offset + sizeof(*comp) +
887 				spmc_shmem_obj_ffa_constituent_size(obj,
888 								    ffa_version);
889 
890 		if (expected_size != obj->desc_size) {
891 			WARN("%s: invalid object, computed size %zu != size %zu\n",
892 			       __func__, expected_size, obj->desc_size);
893 			return -EINVAL;
894 		}
895 
896 		total_page_count = 0;
897 
898 		for (size_t i = 0; i < count; i++) {
899 			total_page_count +=
900 				comp->address_range_array[i].page_count;
901 		}
902 		if (comp->total_page_count != total_page_count) {
903 			WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n",
904 			     __func__, comp->total_page_count,
905 			total_page_count);
906 			return -EINVAL;
907 		}
908 	}
909 	return 0;
910 }
911 
912 /**
913  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
914  *				regions that are currently involved with an
915  *				existing memory transactions. This implies that
916  *				the memory is not in a valid state for lending.
917  * @obj:    Object containing ffa_memory_region_descriptor.
918  *
919  * Return: 0 if object is valid, -EINVAL if invalid memory state.
920  */
921 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
922 				      uint32_t ffa_version)
923 {
924 	size_t obj_offset = 0;
925 	struct spmc_shmem_obj *inflight_obj;
926 
927 	struct ffa_comp_mrd *other_mrd;
928 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
929 								  ffa_version);
930 
931 	if (requested_mrd == NULL) {
932 		return -EINVAL;
933 	}
934 
935 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
936 					       &obj_offset);
937 
938 	while (inflight_obj != NULL) {
939 		/*
940 		 * Don't compare the transaction to itself or to partially
941 		 * transmitted descriptors.
942 		 */
943 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
944 		    (obj->desc_size == obj->desc_filled)) {
945 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
946 							  FFA_VERSION_COMPILED);
947 			if (other_mrd == NULL) {
948 				return -EINVAL;
949 			}
950 			if (overlapping_memory_regions(requested_mrd,
951 						       other_mrd)) {
952 				return -EINVAL;
953 			}
954 		}
955 
956 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
957 						       &obj_offset);
958 	}
959 	return 0;
960 }
961 
962 static long spmc_ffa_fill_desc(struct mailbox *mbox,
963 			       struct spmc_shmem_obj *obj,
964 			       uint32_t fragment_length,
965 			       ffa_mtd_flag32_t mtd_flag,
966 			       uint32_t ffa_version,
967 			       void *smc_handle)
968 {
969 	int ret;
970 	size_t emad_size;
971 	uint32_t handle_low;
972 	uint32_t handle_high;
973 	struct ffa_emad_v1_0 *emad;
974 	struct ffa_emad_v1_0 *other_emad;
975 
976 	if (mbox->rxtx_page_count == 0U) {
977 		WARN("%s: buffer pair not registered.\n", __func__);
978 		ret = FFA_ERROR_INVALID_PARAMETER;
979 		goto err_arg;
980 	}
981 
982 	if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
983 		WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
984 		     fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
985 		ret = FFA_ERROR_INVALID_PARAMETER;
986 		goto err_arg;
987 	}
988 
989 	if (fragment_length > obj->desc_size - obj->desc_filled) {
990 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
991 		     fragment_length, obj->desc_size - obj->desc_filled);
992 		ret = FFA_ERROR_INVALID_PARAMETER;
993 		goto err_arg;
994 	}
995 
996 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
997 	       (uint8_t *) mbox->tx_buffer, fragment_length);
998 
999 	/* Ensure that the sender ID resides in the normal world. */
1000 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1001 		WARN("%s: Invalid sender ID 0x%x.\n",
1002 		     __func__, obj->desc.sender_id);
1003 		ret = FFA_ERROR_DENIED;
1004 		goto err_arg;
1005 	}
1006 
1007 	/* Ensure the NS bit is set to 0. */
1008 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1009 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1010 		ret = FFA_ERROR_INVALID_PARAMETER;
1011 		goto err_arg;
1012 	}
1013 
1014 	/*
1015 	 * We don't currently support any optional flags so ensure none are
1016 	 * requested.
1017 	 */
1018 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
1019 	    (obj->desc.flags != mtd_flag)) {
1020 		WARN("%s: invalid memory transaction flags %u != %u\n",
1021 		     __func__, obj->desc.flags, mtd_flag);
1022 		ret = FFA_ERROR_INVALID_PARAMETER;
1023 		goto err_arg;
1024 	}
1025 
1026 	if (obj->desc_filled == 0U) {
1027 		/* First fragment, descriptor header has been copied */
1028 		ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1029 					      fragment_length, obj->desc_size);
1030 		if (ret != 0) {
1031 			goto err_bad_desc;
1032 		}
1033 
1034 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1035 		obj->desc.flags |= mtd_flag;
1036 	}
1037 
1038 	obj->desc_filled += fragment_length;
1039 
1040 	handle_low = (uint32_t)obj->desc.handle;
1041 	handle_high = obj->desc.handle >> 32;
1042 
1043 	if (obj->desc_filled != obj->desc_size) {
1044 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1045 			 handle_high, obj->desc_filled,
1046 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1047 	}
1048 
1049 	/* The full descriptor has been received, perform any final checks. */
1050 
1051 	ret = spmc_shmem_check_obj(obj, ffa_version);
1052 	if (ret != 0) {
1053 		ret = FFA_ERROR_INVALID_PARAMETER;
1054 		goto err_bad_desc;
1055 	}
1056 
1057 	/*
1058 	 * If a partition ID resides in the secure world validate that the
1059 	 * partition ID is for a known partition. Ignore any partition ID
1060 	 * belonging to the normal world as it is assumed the Hypervisor will
1061 	 * have validated these.
1062 	 */
1063 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1064 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1065 					       &emad_size);
1066 
1067 		ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
1068 
1069 		if (ffa_is_secure_world_id(ep_id)) {
1070 			if (spmc_get_sp_ctx(ep_id) == NULL) {
1071 				WARN("%s: Invalid receiver id 0x%x\n",
1072 				     __func__, ep_id);
1073 				ret = FFA_ERROR_INVALID_PARAMETER;
1074 				goto err_bad_desc;
1075 			}
1076 		}
1077 	}
1078 
1079 	/* Ensure partition IDs are not duplicated. */
1080 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1081 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1082 					       &emad_size);
1083 
1084 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
1085 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1086 							     ffa_version,
1087 							     &emad_size);
1088 
1089 			if (emad->mapd.endpoint_id ==
1090 				other_emad->mapd.endpoint_id) {
1091 				WARN("%s: Duplicated endpoint id 0x%x\n",
1092 				     __func__, emad->mapd.endpoint_id);
1093 				ret = FFA_ERROR_INVALID_PARAMETER;
1094 				goto err_bad_desc;
1095 			}
1096 		}
1097 	}
1098 
1099 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1100 	if (ret) {
1101 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1102 		ret = FFA_ERROR_INVALID_PARAMETER;
1103 		goto err_bad_desc;
1104 	}
1105 
1106 	/*
1107 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1108 	 * the descriptor format to use the v1.1 structures.
1109 	 */
1110 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1111 		struct spmc_shmem_obj *v1_1_obj;
1112 		uint64_t mem_handle;
1113 
1114 		/* Calculate the size that the v1.1 descriptor will required. */
1115 		size_t v1_1_desc_size =
1116 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1117 						      obj->desc_size);
1118 
1119 		if (v1_1_desc_size == 0U) {
1120 			ERROR("%s: cannot determine size of descriptor.\n",
1121 			      __func__);
1122 			goto err_arg;
1123 		}
1124 
1125 		/* Get a new obj to store the v1.1 descriptor. */
1126 		v1_1_obj =
1127 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
1128 
1129 		if (!v1_1_obj) {
1130 			ret = FFA_ERROR_NO_MEMORY;
1131 			goto err_arg;
1132 		}
1133 
1134 		/* Perform the conversion from v1.0 to v1.1. */
1135 		v1_1_obj->desc_size = v1_1_desc_size;
1136 		v1_1_obj->desc_filled = v1_1_desc_size;
1137 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1138 			ERROR("%s: Could not convert mtd!\n", __func__);
1139 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1140 			goto err_arg;
1141 		}
1142 
1143 		/*
1144 		 * We're finished with the v1.0 descriptor so free it
1145 		 * and continue our checks with the new v1.1 descriptor.
1146 		 */
1147 		mem_handle = obj->desc.handle;
1148 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1149 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1150 		if (obj == NULL) {
1151 			ERROR("%s: Failed to find converted descriptor.\n",
1152 			     __func__);
1153 			ret = FFA_ERROR_INVALID_PARAMETER;
1154 			return spmc_ffa_error_return(smc_handle, ret);
1155 		}
1156 	}
1157 
1158 	/* Allow for platform specific operations to be performed. */
1159 	ret = plat_spmc_shmem_begin(&obj->desc);
1160 	if (ret != 0) {
1161 		goto err_arg;
1162 	}
1163 
1164 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1165 		 0, 0, 0);
1166 
1167 err_bad_desc:
1168 err_arg:
1169 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1170 	return spmc_ffa_error_return(smc_handle, ret);
1171 }
1172 
1173 /**
1174  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1175  * @client:             Client state.
1176  * @total_length:       Total length of shared memory descriptor.
1177  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1178  *                      this call.
1179  * @address:            Not supported, must be 0.
1180  * @page_count:         Not supported, must be 0.
1181  * @smc_handle:         Handle passed to smc call. Used to return
1182  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1183  *
1184  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1185  * to share or lend memory from non-secure os to secure os (with no stream
1186  * endpoints).
1187  *
1188  * Return: 0 on success, error code on failure.
1189  */
1190 long spmc_ffa_mem_send(uint32_t smc_fid,
1191 			bool secure_origin,
1192 			uint64_t total_length,
1193 			uint32_t fragment_length,
1194 			uint64_t address,
1195 			uint32_t page_count,
1196 			void *cookie,
1197 			void *handle,
1198 			uint64_t flags)
1199 
1200 {
1201 	long ret;
1202 	struct spmc_shmem_obj *obj;
1203 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1204 	ffa_mtd_flag32_t mtd_flag;
1205 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1206 	size_t min_desc_size;
1207 
1208 	if (address != 0U || page_count != 0U) {
1209 		WARN("%s: custom memory region for message not supported.\n",
1210 		     __func__);
1211 		return spmc_ffa_error_return(handle,
1212 					     FFA_ERROR_INVALID_PARAMETER);
1213 	}
1214 
1215 	if (secure_origin) {
1216 		WARN("%s: unsupported share direction.\n", __func__);
1217 		return spmc_ffa_error_return(handle,
1218 					     FFA_ERROR_INVALID_PARAMETER);
1219 	}
1220 
1221 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1222 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1223 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1224 		min_desc_size = sizeof(struct ffa_mtd);
1225 	} else {
1226 		WARN("%s: bad FF-A version.\n", __func__);
1227 		return spmc_ffa_error_return(handle,
1228 					     FFA_ERROR_INVALID_PARAMETER);
1229 	}
1230 
1231 	/* Check if the descriptor is too small for the FF-A version. */
1232 	if (fragment_length < min_desc_size) {
1233 		WARN("%s: bad first fragment size %u < %zu\n",
1234 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1235 		return spmc_ffa_error_return(handle,
1236 					     FFA_ERROR_INVALID_PARAMETER);
1237 	}
1238 
1239 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1240 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1241 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1242 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1243 	} else {
1244 		WARN("%s: invalid memory management operation.\n", __func__);
1245 		return spmc_ffa_error_return(handle,
1246 					     FFA_ERROR_INVALID_PARAMETER);
1247 	}
1248 
1249 	spin_lock(&spmc_shmem_obj_state.lock);
1250 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1251 	if (obj == NULL) {
1252 		ret = FFA_ERROR_NO_MEMORY;
1253 		goto err_unlock;
1254 	}
1255 
1256 	spin_lock(&mbox->lock);
1257 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1258 				 ffa_version, handle);
1259 	spin_unlock(&mbox->lock);
1260 
1261 	spin_unlock(&spmc_shmem_obj_state.lock);
1262 	return ret;
1263 
1264 err_unlock:
1265 	spin_unlock(&spmc_shmem_obj_state.lock);
1266 	return spmc_ffa_error_return(handle, ret);
1267 }
1268 
1269 /**
1270  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1271  * @client:             Client state.
1272  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1273  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1274  * @fragment_length:    Length of fragments transmitted.
1275  * @sender_id:          Vmid of sender in bits [31:16]
1276  * @smc_handle:         Handle passed to smc call. Used to return
1277  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1278  *
1279  * Return: @smc_handle on success, error code on failure.
1280  */
1281 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1282 			  bool secure_origin,
1283 			  uint64_t handle_low,
1284 			  uint64_t handle_high,
1285 			  uint32_t fragment_length,
1286 			  uint32_t sender_id,
1287 			  void *cookie,
1288 			  void *handle,
1289 			  uint64_t flags)
1290 {
1291 	long ret;
1292 	uint32_t desc_sender_id;
1293 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1294 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1295 
1296 	struct spmc_shmem_obj *obj;
1297 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1298 
1299 	spin_lock(&spmc_shmem_obj_state.lock);
1300 
1301 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1302 	if (obj == NULL) {
1303 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1304 		     __func__, mem_handle);
1305 		ret = FFA_ERROR_INVALID_PARAMETER;
1306 		goto err_unlock;
1307 	}
1308 
1309 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1310 	if (sender_id != desc_sender_id) {
1311 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1312 		     sender_id, desc_sender_id);
1313 		ret = FFA_ERROR_INVALID_PARAMETER;
1314 		goto err_unlock;
1315 	}
1316 
1317 	if (obj->desc_filled == obj->desc_size) {
1318 		WARN("%s: object desc already filled, %zu\n", __func__,
1319 		     obj->desc_filled);
1320 		ret = FFA_ERROR_INVALID_PARAMETER;
1321 		goto err_unlock;
1322 	}
1323 
1324 	spin_lock(&mbox->lock);
1325 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1326 				 handle);
1327 	spin_unlock(&mbox->lock);
1328 
1329 	spin_unlock(&spmc_shmem_obj_state.lock);
1330 	return ret;
1331 
1332 err_unlock:
1333 	spin_unlock(&spmc_shmem_obj_state.lock);
1334 	return spmc_ffa_error_return(handle, ret);
1335 }
1336 
1337 /**
1338  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1339  *				      if the caller implements a version greater
1340  *				      than FF-A 1.0 or if they have requested
1341  *				      the functionality.
1342  *				      TODO: We are assuming that the caller is
1343  *				      an SP. To support retrieval from the
1344  *				      normal world this function will need to be
1345  *				      expanded accordingly.
1346  * @resp:       Descriptor populated in callers RX buffer.
1347  * @sp_ctx:     Context of the calling SP.
1348  */
1349 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1350 			 struct secure_partition_desc *sp_ctx)
1351 {
1352 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1353 	    sp_ctx->ns_bit_requested) {
1354 		/*
1355 		 * Currently memory senders must reside in the normal
1356 		 * world, and we do not have the functionlaity to change
1357 		 * the state of memory dynamically. Therefore we can always set
1358 		 * the NS bit to 1.
1359 		 */
1360 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1361 	}
1362 }
1363 
1364 /**
1365  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1366  * @smc_fid:            FID of SMC
1367  * @total_length:       Total length of retrieve request descriptor if this is
1368  *                      the first call. Otherwise (unsupported) must be 0.
1369  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1370  *                      in this call. Only @fragment_length == @length is
1371  *                      supported by this implementation.
1372  * @address:            Not supported, must be 0.
1373  * @page_count:         Not supported, must be 0.
1374  * @smc_handle:         Handle passed to smc call. Used to return
1375  *                      FFA_MEM_RETRIEVE_RESP.
1376  *
1377  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1378  * Used by secure os to retrieve memory already shared by non-secure os.
1379  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1380  * the client must call FFA_MEM_FRAG_RX until the full response has been
1381  * received.
1382  *
1383  * Return: @handle on success, error code on failure.
1384  */
1385 long
1386 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1387 			  bool secure_origin,
1388 			  uint32_t total_length,
1389 			  uint32_t fragment_length,
1390 			  uint64_t address,
1391 			  uint32_t page_count,
1392 			  void *cookie,
1393 			  void *handle,
1394 			  uint64_t flags)
1395 {
1396 	int ret;
1397 	size_t buf_size;
1398 	size_t copy_size = 0;
1399 	size_t min_desc_size;
1400 	size_t out_desc_size = 0;
1401 
1402 	/*
1403 	 * Currently we are only accessing fields that are the same in both the
1404 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1405 	 * here. We only need validate against the appropriate struct size.
1406 	 */
1407 	struct ffa_mtd *resp;
1408 	const struct ffa_mtd *req;
1409 	struct spmc_shmem_obj *obj = NULL;
1410 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1411 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1412 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1413 
1414 	if (!secure_origin) {
1415 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1416 		return spmc_ffa_error_return(handle,
1417 					     FFA_ERROR_INVALID_PARAMETER);
1418 	}
1419 
1420 	if (address != 0U || page_count != 0U) {
1421 		WARN("%s: custom memory region not supported.\n", __func__);
1422 		return spmc_ffa_error_return(handle,
1423 					     FFA_ERROR_INVALID_PARAMETER);
1424 	}
1425 
1426 	spin_lock(&mbox->lock);
1427 
1428 	req = mbox->tx_buffer;
1429 	resp = mbox->rx_buffer;
1430 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1431 
1432 	if (mbox->rxtx_page_count == 0U) {
1433 		WARN("%s: buffer pair not registered.\n", __func__);
1434 		ret = FFA_ERROR_INVALID_PARAMETER;
1435 		goto err_unlock_mailbox;
1436 	}
1437 
1438 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1439 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1440 		ret = FFA_ERROR_DENIED;
1441 		goto err_unlock_mailbox;
1442 	}
1443 
1444 	if (fragment_length != total_length) {
1445 		WARN("%s: fragmented retrieve request not supported.\n",
1446 		     __func__);
1447 		ret = FFA_ERROR_INVALID_PARAMETER;
1448 		goto err_unlock_mailbox;
1449 	}
1450 
1451 	if (req->emad_count == 0U) {
1452 		WARN("%s: unsupported attribute desc count %u.\n",
1453 		     __func__, obj->desc.emad_count);
1454 		ret = FFA_ERROR_INVALID_PARAMETER;
1455 		goto err_unlock_mailbox;
1456 	}
1457 
1458 	/* Determine the appropriate minimum descriptor size. */
1459 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1460 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1461 	} else {
1462 		min_desc_size = sizeof(struct ffa_mtd);
1463 	}
1464 	if (total_length < min_desc_size) {
1465 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1466 		     min_desc_size);
1467 		ret = FFA_ERROR_INVALID_PARAMETER;
1468 		goto err_unlock_mailbox;
1469 	}
1470 
1471 	spin_lock(&spmc_shmem_obj_state.lock);
1472 
1473 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1474 	if (obj == NULL) {
1475 		ret = FFA_ERROR_INVALID_PARAMETER;
1476 		goto err_unlock_all;
1477 	}
1478 
1479 	if (obj->desc_filled != obj->desc_size) {
1480 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1481 		     __func__, obj->desc_filled, obj->desc_size);
1482 		ret = FFA_ERROR_INVALID_PARAMETER;
1483 		goto err_unlock_all;
1484 	}
1485 
1486 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1487 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1488 		     __func__, req->sender_id, obj->desc.sender_id);
1489 		ret = FFA_ERROR_INVALID_PARAMETER;
1490 		goto err_unlock_all;
1491 	}
1492 
1493 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1494 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1495 		     __func__, req->tag, obj->desc.tag);
1496 		ret = FFA_ERROR_INVALID_PARAMETER;
1497 		goto err_unlock_all;
1498 	}
1499 
1500 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1501 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1502 		     __func__, req->emad_count, obj->desc.emad_count);
1503 		ret = FFA_ERROR_INVALID_PARAMETER;
1504 		goto err_unlock_all;
1505 	}
1506 
1507 	/* Ensure the NS bit is set to 0 in the request. */
1508 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1509 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1510 		ret = FFA_ERROR_INVALID_PARAMETER;
1511 		goto err_unlock_all;
1512 	}
1513 
1514 	if (req->flags != 0U) {
1515 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1516 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1517 			/*
1518 			 * If the retrieve request specifies the memory
1519 			 * transaction ensure it matches what we expect.
1520 			 */
1521 			WARN("%s: wrong mem transaction flags %x != %x\n",
1522 			__func__, req->flags, obj->desc.flags);
1523 			ret = FFA_ERROR_INVALID_PARAMETER;
1524 			goto err_unlock_all;
1525 		}
1526 
1527 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1528 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1529 			/*
1530 			 * Current implementation does not support donate and
1531 			 * it supports no other flags.
1532 			 */
1533 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1534 			ret = FFA_ERROR_INVALID_PARAMETER;
1535 			goto err_unlock_all;
1536 		}
1537 	}
1538 
1539 	/* Validate the caller is a valid participant. */
1540 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1541 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1542 			__func__, sp_ctx->sp_id);
1543 		ret = FFA_ERROR_INVALID_PARAMETER;
1544 		goto err_unlock_all;
1545 	}
1546 
1547 	/* Validate that the provided emad offset and structure is valid.*/
1548 	for (size_t i = 0; i < req->emad_count; i++) {
1549 		size_t emad_size;
1550 		struct ffa_emad_v1_0 *emad;
1551 
1552 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1553 					       &emad_size);
1554 
1555 		if ((uintptr_t) emad >= (uintptr_t)
1556 					((uint8_t *) req + total_length)) {
1557 			WARN("Invalid emad access.\n");
1558 			ret = FFA_ERROR_INVALID_PARAMETER;
1559 			goto err_unlock_all;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Validate all the endpoints match in the case of multiple
1565 	 * borrowers. We don't mandate that the order of the borrowers
1566 	 * must match in the descriptors therefore check to see if the
1567 	 * endpoints match in any order.
1568 	 */
1569 	for (size_t i = 0; i < req->emad_count; i++) {
1570 		bool found = false;
1571 		size_t emad_size;
1572 		struct ffa_emad_v1_0 *emad;
1573 		struct ffa_emad_v1_0 *other_emad;
1574 
1575 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1576 					       &emad_size);
1577 
1578 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1579 			other_emad = spmc_shmem_obj_get_emad(
1580 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1581 					&emad_size);
1582 
1583 			if (req->emad_count &&
1584 			    emad->mapd.endpoint_id ==
1585 			    other_emad->mapd.endpoint_id) {
1586 				found = true;
1587 				break;
1588 			}
1589 		}
1590 
1591 		if (!found) {
1592 			WARN("%s: invalid receiver id (0x%x).\n",
1593 			     __func__, emad->mapd.endpoint_id);
1594 			ret = FFA_ERROR_INVALID_PARAMETER;
1595 			goto err_unlock_all;
1596 		}
1597 	}
1598 
1599 	mbox->state = MAILBOX_STATE_FULL;
1600 
1601 	if (req->emad_count != 0U) {
1602 		obj->in_use++;
1603 	}
1604 
1605 	/*
1606 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1607 	 * directly.
1608 	 */
1609 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1610 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1611 							&copy_size,
1612 							&out_desc_size);
1613 		if (ret != 0U) {
1614 			ERROR("%s: Failed to process descriptor.\n", __func__);
1615 			goto err_unlock_all;
1616 		}
1617 	} else {
1618 		copy_size = MIN(obj->desc_size, buf_size);
1619 		out_desc_size = obj->desc_size;
1620 
1621 		memcpy(resp, &obj->desc, copy_size);
1622 	}
1623 
1624 	/* Set the NS bit in the response if applicable. */
1625 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1626 
1627 	spin_unlock(&spmc_shmem_obj_state.lock);
1628 	spin_unlock(&mbox->lock);
1629 
1630 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1631 		 copy_size, 0, 0, 0, 0, 0);
1632 
1633 err_unlock_all:
1634 	spin_unlock(&spmc_shmem_obj_state.lock);
1635 err_unlock_mailbox:
1636 	spin_unlock(&mbox->lock);
1637 	return spmc_ffa_error_return(handle, ret);
1638 }
1639 
1640 /**
1641  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1642  * @client:             Client state.
1643  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1644  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1645  * @fragment_offset:    Byte offset in descriptor to resume at.
1646  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1647  *                      hypervisor. 0 otherwise.
1648  * @smc_handle:         Handle passed to smc call. Used to return
1649  *                      FFA_MEM_FRAG_TX.
1650  *
1651  * Return: @smc_handle on success, error code on failure.
1652  */
1653 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1654 			  bool secure_origin,
1655 			  uint32_t handle_low,
1656 			  uint32_t handle_high,
1657 			  uint32_t fragment_offset,
1658 			  uint32_t sender_id,
1659 			  void *cookie,
1660 			  void *handle,
1661 			  uint64_t flags)
1662 {
1663 	int ret;
1664 	void *src;
1665 	size_t buf_size;
1666 	size_t copy_size;
1667 	size_t full_copy_size;
1668 	uint32_t desc_sender_id;
1669 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1670 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1671 	struct spmc_shmem_obj *obj;
1672 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1673 
1674 	if (!secure_origin) {
1675 		WARN("%s: can only be called from swld.\n",
1676 		     __func__);
1677 		return spmc_ffa_error_return(handle,
1678 					     FFA_ERROR_INVALID_PARAMETER);
1679 	}
1680 
1681 	spin_lock(&spmc_shmem_obj_state.lock);
1682 
1683 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1684 	if (obj == NULL) {
1685 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1686 		     __func__, mem_handle);
1687 		ret = FFA_ERROR_INVALID_PARAMETER;
1688 		goto err_unlock_shmem;
1689 	}
1690 
1691 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1692 	if (sender_id != 0U && sender_id != desc_sender_id) {
1693 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1694 		     sender_id, desc_sender_id);
1695 		ret = FFA_ERROR_INVALID_PARAMETER;
1696 		goto err_unlock_shmem;
1697 	}
1698 
1699 	if (fragment_offset >= obj->desc_size) {
1700 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1701 		     __func__, fragment_offset, obj->desc_size);
1702 		ret = FFA_ERROR_INVALID_PARAMETER;
1703 		goto err_unlock_shmem;
1704 	}
1705 
1706 	spin_lock(&mbox->lock);
1707 
1708 	if (mbox->rxtx_page_count == 0U) {
1709 		WARN("%s: buffer pair not registered.\n", __func__);
1710 		ret = FFA_ERROR_INVALID_PARAMETER;
1711 		goto err_unlock_all;
1712 	}
1713 
1714 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1715 		WARN("%s: RX Buffer is full!\n", __func__);
1716 		ret = FFA_ERROR_DENIED;
1717 		goto err_unlock_all;
1718 	}
1719 
1720 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1721 
1722 	mbox->state = MAILBOX_STATE_FULL;
1723 
1724 	/*
1725 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1726 	 * directly.
1727 	 */
1728 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1729 		size_t out_desc_size;
1730 
1731 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1732 							buf_size,
1733 							fragment_offset,
1734 							&copy_size,
1735 							&out_desc_size);
1736 		if (ret != 0U) {
1737 			ERROR("%s: Failed to process descriptor.\n", __func__);
1738 			goto err_unlock_all;
1739 		}
1740 	} else {
1741 		full_copy_size = obj->desc_size - fragment_offset;
1742 		copy_size = MIN(full_copy_size, buf_size);
1743 
1744 		src = &obj->desc;
1745 
1746 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1747 	}
1748 
1749 	spin_unlock(&mbox->lock);
1750 	spin_unlock(&spmc_shmem_obj_state.lock);
1751 
1752 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1753 		 copy_size, sender_id, 0, 0, 0);
1754 
1755 err_unlock_all:
1756 	spin_unlock(&mbox->lock);
1757 err_unlock_shmem:
1758 	spin_unlock(&spmc_shmem_obj_state.lock);
1759 	return spmc_ffa_error_return(handle, ret);
1760 }
1761 
1762 /**
1763  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1764  * @client:             Client state.
1765  *
1766  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1767  * Used by secure os release previously shared memory to non-secure os.
1768  *
1769  * The handle to release must be in the client's (secure os's) transmit buffer.
1770  *
1771  * Return: 0 on success, error code on failure.
1772  */
1773 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1774 			    bool secure_origin,
1775 			    uint32_t handle_low,
1776 			    uint32_t handle_high,
1777 			    uint32_t fragment_offset,
1778 			    uint32_t sender_id,
1779 			    void *cookie,
1780 			    void *handle,
1781 			    uint64_t flags)
1782 {
1783 	int ret;
1784 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1785 	struct spmc_shmem_obj *obj;
1786 	const struct ffa_mem_relinquish_descriptor *req;
1787 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1788 
1789 	if (!secure_origin) {
1790 		WARN("%s: unsupported relinquish direction.\n", __func__);
1791 		return spmc_ffa_error_return(handle,
1792 					     FFA_ERROR_INVALID_PARAMETER);
1793 	}
1794 
1795 	spin_lock(&mbox->lock);
1796 
1797 	if (mbox->rxtx_page_count == 0U) {
1798 		WARN("%s: buffer pair not registered.\n", __func__);
1799 		ret = FFA_ERROR_INVALID_PARAMETER;
1800 		goto err_unlock_mailbox;
1801 	}
1802 
1803 	req = mbox->tx_buffer;
1804 
1805 	if (req->flags != 0U) {
1806 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1807 		ret = FFA_ERROR_INVALID_PARAMETER;
1808 		goto err_unlock_mailbox;
1809 	}
1810 
1811 	if (req->endpoint_count == 0) {
1812 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1813 		ret = FFA_ERROR_INVALID_PARAMETER;
1814 		goto err_unlock_mailbox;
1815 	}
1816 
1817 	spin_lock(&spmc_shmem_obj_state.lock);
1818 
1819 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1820 	if (obj == NULL) {
1821 		ret = FFA_ERROR_INVALID_PARAMETER;
1822 		goto err_unlock_all;
1823 	}
1824 
1825 	/*
1826 	 * Validate the endpoint ID was populated correctly. We don't currently
1827 	 * support proxy endpoints so the endpoint count should always be 1.
1828 	 */
1829 	if (req->endpoint_count != 1U) {
1830 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1831 		     req->endpoint_count);
1832 		ret = FFA_ERROR_INVALID_PARAMETER;
1833 		goto err_unlock_all;
1834 	}
1835 
1836 	/* Validate provided endpoint ID matches the partition ID. */
1837 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1838 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1839 		     req->endpoint_array[0], sp_ctx->sp_id);
1840 		ret = FFA_ERROR_INVALID_PARAMETER;
1841 		goto err_unlock_all;
1842 	}
1843 
1844 	/* Validate the caller is a valid participant. */
1845 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1846 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1847 			__func__, req->endpoint_array[0]);
1848 		ret = FFA_ERROR_INVALID_PARAMETER;
1849 		goto err_unlock_all;
1850 	}
1851 
1852 	if (obj->in_use == 0U) {
1853 		ret = FFA_ERROR_INVALID_PARAMETER;
1854 		goto err_unlock_all;
1855 	}
1856 	obj->in_use--;
1857 
1858 	spin_unlock(&spmc_shmem_obj_state.lock);
1859 	spin_unlock(&mbox->lock);
1860 
1861 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1862 
1863 err_unlock_all:
1864 	spin_unlock(&spmc_shmem_obj_state.lock);
1865 err_unlock_mailbox:
1866 	spin_unlock(&mbox->lock);
1867 	return spmc_ffa_error_return(handle, ret);
1868 }
1869 
1870 /**
1871  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1872  * @client:         Client state.
1873  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1874  * @handle_high:    Unique handle of shared memory object to reclaim.
1875  *                  Bit[63:32].
1876  * @flags:          Unsupported, ignored.
1877  *
1878  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1879  * Used by non-secure os reclaim memory previously shared with secure os.
1880  *
1881  * Return: 0 on success, error code on failure.
1882  */
1883 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1884 			 bool secure_origin,
1885 			 uint32_t handle_low,
1886 			 uint32_t handle_high,
1887 			 uint32_t mem_flags,
1888 			 uint64_t x4,
1889 			 void *cookie,
1890 			 void *handle,
1891 			 uint64_t flags)
1892 {
1893 	int ret;
1894 	struct spmc_shmem_obj *obj;
1895 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1896 
1897 	if (secure_origin) {
1898 		WARN("%s: unsupported reclaim direction.\n", __func__);
1899 		return spmc_ffa_error_return(handle,
1900 					     FFA_ERROR_INVALID_PARAMETER);
1901 	}
1902 
1903 	if (mem_flags != 0U) {
1904 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1905 		return spmc_ffa_error_return(handle,
1906 					     FFA_ERROR_INVALID_PARAMETER);
1907 	}
1908 
1909 	spin_lock(&spmc_shmem_obj_state.lock);
1910 
1911 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1912 	if (obj == NULL) {
1913 		ret = FFA_ERROR_INVALID_PARAMETER;
1914 		goto err_unlock;
1915 	}
1916 	if (obj->in_use != 0U) {
1917 		ret = FFA_ERROR_DENIED;
1918 		goto err_unlock;
1919 	}
1920 
1921 	if (obj->desc_filled != obj->desc_size) {
1922 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1923 		     __func__, obj->desc_filled, obj->desc_size);
1924 		ret = FFA_ERROR_INVALID_PARAMETER;
1925 		goto err_unlock;
1926 	}
1927 
1928 	/* Allow for platform specific operations to be performed. */
1929 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1930 	if (ret != 0) {
1931 		goto err_unlock;
1932 	}
1933 
1934 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1935 	spin_unlock(&spmc_shmem_obj_state.lock);
1936 
1937 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1938 
1939 err_unlock:
1940 	spin_unlock(&spmc_shmem_obj_state.lock);
1941 	return spmc_ffa_error_return(handle, ret);
1942 }
1943