1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 /* Ensure that descriptor size is aligned */ 84 if (!is_aligned(desc_size, 16)) { 85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n", 86 __func__, desc_size); 87 return NULL; 88 } 89 90 obj_size = spmc_shmem_obj_size(desc_size); 91 92 /* Ensure the obj size has not overflowed. */ 93 if (obj_size < desc_size) { 94 WARN("%s(0x%zx) desc_size overflow\n", 95 __func__, desc_size); 96 return NULL; 97 } 98 99 if (obj_size > free) { 100 WARN("%s(0x%zx) failed, free 0x%zx\n", 101 __func__, desc_size, free); 102 return NULL; 103 } 104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 105 obj->desc = (struct ffa_mtd) {0}; 106 obj->desc_size = desc_size; 107 obj->desc_filled = 0; 108 obj->in_use = 0; 109 state->allocated += obj_size; 110 return obj; 111 } 112 113 /** 114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 115 * @state: Global state. 116 * @obj: Object to free. 117 * 118 * Release memory used by @obj. Other objects may move, so on return all 119 * pointers to struct spmc_shmem_obj object should be considered invalid, not 120 * just @obj. 121 * 122 * The current implementation always compacts the remaining objects to simplify 123 * the allocator and to avoid fragmentation. 124 */ 125 126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 127 struct spmc_shmem_obj *obj) 128 { 129 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 130 uint8_t *shift_dest = (uint8_t *)obj; 131 uint8_t *shift_src = shift_dest + free_size; 132 size_t shift_size = state->allocated - (shift_src - state->data); 133 134 if (shift_size != 0U) { 135 memmove(shift_dest, shift_src, shift_size); 136 } 137 state->allocated -= free_size; 138 } 139 140 /** 141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 142 * @state: Global state. 143 * @handle: Unique handle of object to return. 144 * 145 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 146 * %NULL, if not object in @state->data has a matching handle. 147 */ 148 static struct spmc_shmem_obj * 149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 150 { 151 uint8_t *curr = state->data; 152 153 while (curr - state->data < state->allocated) { 154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 155 156 if (obj->desc.handle == handle) { 157 return obj; 158 } 159 curr += spmc_shmem_obj_size(obj->desc_size); 160 } 161 return NULL; 162 } 163 164 /** 165 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 166 * @offset: Offset used to track which objects have previously been 167 * returned. 168 * 169 * Return: the next struct spmc_shmem_obj_state object from the provided 170 * offset. 171 * %NULL, if there are no more objects. 172 */ 173 static struct spmc_shmem_obj * 174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 175 { 176 uint8_t *curr = state->data + *offset; 177 178 if (curr - state->data < state->allocated) { 179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 180 181 *offset += spmc_shmem_obj_size(obj->desc_size); 182 183 return obj; 184 } 185 return NULL; 186 } 187 188 /******************************************************************************* 189 * FF-A memory descriptor helper functions. 190 ******************************************************************************/ 191 /** 192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 193 * clients FF-A version. 194 * @desc: The memory transaction descriptor. 195 * @index: The index of the emad element to be accessed. 196 * @ffa_version: FF-A version of the provided structure. 197 * @emad_size: Will be populated with the size of the returned emad 198 * descriptor. 199 * Return: A pointer to the requested emad structure. 200 */ 201 static void * 202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 203 uint32_t ffa_version, size_t *emad_size) 204 { 205 uint8_t *emad; 206 207 assert(index < desc->emad_count); 208 209 /* 210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 211 * format, otherwise assume it is a v1.1 format. 212 */ 213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 215 *emad_size = sizeof(struct ffa_emad_v1_0); 216 } else { 217 assert(is_aligned(desc->emad_offset, 16)); 218 emad = ((uint8_t *) desc + desc->emad_offset); 219 *emad_size = desc->emad_size; 220 } 221 222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 223 return (emad + (*emad_size * index)); 224 } 225 226 /** 227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 228 * FF-A version of the descriptor. 229 * @obj: Object containing ffa_memory_region_descriptor. 230 * 231 * Return: struct ffa_comp_mrd object corresponding to the composite memory 232 * region descriptor. 233 */ 234 static struct ffa_comp_mrd * 235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 236 { 237 size_t emad_size; 238 /* 239 * The comp_mrd_offset field of the emad descriptor remains consistent 240 * between FF-A versions therefore we can use the v1.0 descriptor here 241 * in all cases. 242 */ 243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 244 ffa_version, 245 &emad_size); 246 247 /* Ensure the composite descriptor offset is aligned. */ 248 if (!is_aligned(emad->comp_mrd_offset, 8)) { 249 WARN("Unaligned composite memory region descriptor offset.\n"); 250 return NULL; 251 } 252 253 return (struct ffa_comp_mrd *) 254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 255 } 256 257 /** 258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 259 * a given memory transaction. 260 * @sp_id: Partition ID to validate. 261 * @obj: The shared memory object containing the descriptor 262 * of the memory transaction. 263 * Return: true if ID is valid, else false. 264 */ 265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 266 { 267 bool found = false; 268 struct ffa_mtd *desc = &obj->desc; 269 size_t desc_size = obj->desc_size; 270 271 /* Validate the partition is a valid participant. */ 272 for (unsigned int i = 0U; i < desc->emad_count; i++) { 273 size_t emad_size; 274 struct ffa_emad_v1_0 *emad; 275 276 emad = spmc_shmem_obj_get_emad(desc, i, 277 MAKE_FFA_VERSION(1, 1), 278 &emad_size); 279 /* 280 * Validate the calculated emad address resides within the 281 * descriptor. 282 */ 283 if ((emad == NULL) || (uintptr_t) emad >= 284 (uintptr_t)((uint8_t *) desc + desc_size)) { 285 VERBOSE("Invalid emad.\n"); 286 break; 287 } 288 if (sp_id == emad->mapd.endpoint_id) { 289 found = true; 290 break; 291 } 292 } 293 return found; 294 } 295 296 /* 297 * Compare two memory regions to determine if any range overlaps with another 298 * ongoing memory transaction. 299 */ 300 static bool 301 overlapping_memory_regions(struct ffa_comp_mrd *region1, 302 struct ffa_comp_mrd *region2) 303 { 304 uint64_t region1_start; 305 uint64_t region1_size; 306 uint64_t region1_end; 307 uint64_t region2_start; 308 uint64_t region2_size; 309 uint64_t region2_end; 310 311 assert(region1 != NULL); 312 assert(region2 != NULL); 313 314 if (region1 == region2) { 315 return true; 316 } 317 318 /* 319 * Check each memory region in the request against existing 320 * transactions. 321 */ 322 for (size_t i = 0; i < region1->address_range_count; i++) { 323 324 region1_start = region1->address_range_array[i].address; 325 region1_size = 326 region1->address_range_array[i].page_count * 327 PAGE_SIZE_4KB; 328 region1_end = region1_start + region1_size; 329 330 for (size_t j = 0; j < region2->address_range_count; j++) { 331 332 region2_start = region2->address_range_array[j].address; 333 region2_size = 334 region2->address_range_array[j].page_count * 335 PAGE_SIZE_4KB; 336 region2_end = region2_start + region2_size; 337 338 /* Check if regions are not overlapping. */ 339 if (!((region2_end <= region1_start) || 340 (region1_end <= region2_start))) { 341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 342 region1_start, region1_end, 343 region2_start, region2_end); 344 return true; 345 } 346 } 347 } 348 return false; 349 } 350 351 /******************************************************************************* 352 * FF-A v1.0 Memory Descriptor Conversion Helpers. 353 ******************************************************************************/ 354 /** 355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 356 * converted descriptor. 357 * @orig: The original v1.0 memory transaction descriptor. 358 * @desc_size: The size of the original v1.0 memory transaction descriptor. 359 * 360 * Return: the size required to store the descriptor store in the v1.1 format. 361 */ 362 static uint64_t 363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 364 { 365 uint64_t size = 0; 366 struct ffa_comp_mrd *mrd; 367 struct ffa_emad_v1_0 *emad_array = orig->emad; 368 369 /* Get the size of the v1.1 descriptor. */ 370 size += sizeof(struct ffa_mtd); 371 372 /* Add the size of the emad descriptors. */ 373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 374 375 /* Add the size of the composite mrds. */ 376 size += sizeof(struct ffa_comp_mrd); 377 378 /* Add the size of the constituent mrds. */ 379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 380 emad_array[0].comp_mrd_offset); 381 382 /* Add the size of the memory region descriptors. */ 383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 384 385 return size; 386 } 387 388 /** 389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 390 * converted descriptor. 391 * @orig: The original v1.1 memory transaction descriptor. 392 * @desc_size: The size of the original v1.1 memory transaction descriptor. 393 * 394 * Return: the size required to store the descriptor store in the v1.0 format. 395 */ 396 static size_t 397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 398 { 399 size_t size = 0; 400 struct ffa_comp_mrd *mrd; 401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 402 ((uint8_t *) orig + 403 orig->emad_offset); 404 405 /* Get the size of the v1.0 descriptor. */ 406 size += sizeof(struct ffa_mtd_v1_0); 407 408 /* Add the size of the v1.0 emad descriptors. */ 409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 410 411 /* Add the size of the composite mrds. */ 412 size += sizeof(struct ffa_comp_mrd); 413 414 /* Add the size of the constituent mrds. */ 415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 416 emad_array[0].comp_mrd_offset); 417 418 /* Check the calculated address is within the memory descriptor. */ 419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 420 (uintptr_t)((uint8_t *) orig + desc_size)) { 421 return 0; 422 } 423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 424 425 return size; 426 } 427 428 /** 429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 430 * @out_obj: The shared memory object to populate the converted descriptor. 431 * @orig: The shared memory object containing the v1.0 descriptor. 432 * 433 * Return: true if the conversion is successful else false. 434 */ 435 static bool 436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 437 struct spmc_shmem_obj *orig) 438 { 439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 440 struct ffa_mtd *out = &out_obj->desc; 441 struct ffa_emad_v1_0 *emad_array_in; 442 struct ffa_emad_v1_0 *emad_array_out; 443 struct ffa_comp_mrd *mrd_in; 444 struct ffa_comp_mrd *mrd_out; 445 446 size_t mrd_in_offset; 447 size_t mrd_out_offset; 448 size_t mrd_size = 0; 449 450 /* Populate the new descriptor format from the v1.0 struct. */ 451 out->sender_id = mtd_orig->sender_id; 452 out->memory_region_attributes = mtd_orig->memory_region_attributes; 453 out->flags = mtd_orig->flags; 454 out->handle = mtd_orig->handle; 455 out->tag = mtd_orig->tag; 456 out->emad_count = mtd_orig->emad_count; 457 out->emad_size = sizeof(struct ffa_emad_v1_0); 458 459 /* 460 * We will locate the emad descriptors directly after the ffa_mtd 461 * struct. This will be 8-byte aligned. 462 */ 463 out->emad_offset = sizeof(struct ffa_mtd); 464 465 emad_array_in = mtd_orig->emad; 466 emad_array_out = (struct ffa_emad_v1_0 *) 467 ((uint8_t *) out + out->emad_offset); 468 469 /* Copy across the emad structs. */ 470 for (unsigned int i = 0U; i < out->emad_count; i++) { 471 /* Bound check for emad array. */ 472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 473 ((uint8_t *) mtd_orig + orig->desc_size)) { 474 VERBOSE("%s: Invalid mtd structure.\n", __func__); 475 return false; 476 } 477 memcpy(&emad_array_out[i], &emad_array_in[i], 478 sizeof(struct ffa_emad_v1_0)); 479 } 480 481 /* Place the mrd descriptors after the end of the emad descriptors.*/ 482 mrd_in_offset = emad_array_in->comp_mrd_offset; 483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 485 486 /* Add the size of the composite memory region descriptor. */ 487 mrd_size += sizeof(struct ffa_comp_mrd); 488 489 /* Find the mrd descriptor. */ 490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 491 492 /* Add the size of the constituent memory region descriptors. */ 493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 494 495 /* 496 * Update the offset in the emads by the delta between the input and 497 * output addresses. 498 */ 499 for (unsigned int i = 0U; i < out->emad_count; i++) { 500 emad_array_out[i].comp_mrd_offset = 501 emad_array_in[i].comp_mrd_offset + 502 (mrd_out_offset - mrd_in_offset); 503 } 504 505 /* Verify that we stay within bound of the memory descriptors. */ 506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 510 ERROR("%s: Invalid mrd structure.\n", __func__); 511 return false; 512 } 513 514 /* Copy the mrd descriptors directly. */ 515 memcpy(mrd_out, mrd_in, mrd_size); 516 517 return true; 518 } 519 520 /** 521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 522 * v1.0 memory object. 523 * @out_obj: The shared memory object to populate the v1.0 descriptor. 524 * @orig: The shared memory object containing the v1.1 descriptor. 525 * 526 * Return: true if the conversion is successful else false. 527 */ 528 static bool 529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 530 struct spmc_shmem_obj *orig) 531 { 532 struct ffa_mtd *mtd_orig = &orig->desc; 533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 534 struct ffa_emad_v1_0 *emad_in; 535 struct ffa_emad_v1_0 *emad_array_in; 536 struct ffa_emad_v1_0 *emad_array_out; 537 struct ffa_comp_mrd *mrd_in; 538 struct ffa_comp_mrd *mrd_out; 539 540 size_t mrd_in_offset; 541 size_t mrd_out_offset; 542 size_t emad_out_array_size; 543 size_t mrd_size = 0; 544 size_t orig_desc_size = orig->desc_size; 545 546 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 547 out->sender_id = mtd_orig->sender_id; 548 out->memory_region_attributes = mtd_orig->memory_region_attributes; 549 out->flags = mtd_orig->flags; 550 out->handle = mtd_orig->handle; 551 out->tag = mtd_orig->tag; 552 out->emad_count = mtd_orig->emad_count; 553 554 /* Determine the location of the emad array in both descriptors. */ 555 emad_array_in = (struct ffa_emad_v1_0 *) 556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 557 emad_array_out = out->emad; 558 559 /* Copy across the emad structs. */ 560 emad_in = emad_array_in; 561 for (unsigned int i = 0U; i < out->emad_count; i++) { 562 /* Bound check for emad array. */ 563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 564 ((uint8_t *) mtd_orig + orig_desc_size)) { 565 VERBOSE("%s: Invalid mtd structure.\n", __func__); 566 return false; 567 } 568 memcpy(&emad_array_out[i], emad_in, 569 sizeof(struct ffa_emad_v1_0)); 570 571 emad_in += mtd_orig->emad_size; 572 } 573 574 /* Place the mrd descriptors after the end of the emad descriptors. */ 575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 576 577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 578 emad_out_array_size; 579 580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 581 582 mrd_in_offset = mtd_orig->emad_offset + 583 (mtd_orig->emad_size * mtd_orig->emad_count); 584 585 /* Add the size of the composite memory region descriptor. */ 586 mrd_size += sizeof(struct ffa_comp_mrd); 587 588 /* Find the mrd descriptor. */ 589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 590 591 /* Add the size of the constituent memory region descriptors. */ 592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 593 594 /* 595 * Update the offset in the emads by the delta between the input and 596 * output addresses. 597 */ 598 emad_in = emad_array_in; 599 600 for (unsigned int i = 0U; i < out->emad_count; i++) { 601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 602 (mrd_out_offset - 603 mrd_in_offset); 604 emad_in += mtd_orig->emad_size; 605 } 606 607 /* Verify that we stay within bound of the memory descriptors. */ 608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 612 ERROR("%s: Invalid mrd structure.\n", __func__); 613 return false; 614 } 615 616 /* Copy the mrd descriptors directly. */ 617 memcpy(mrd_out, mrd_in, mrd_size); 618 619 return true; 620 } 621 622 /** 623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 624 * the v1.0 format and populates the 625 * provided buffer. 626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 628 * @buf_size: Size of the buffer to populate. 629 * @offset: The offset of the converted descriptor to copy. 630 * @copy_size: Will be populated with the number of bytes copied. 631 * @out_desc_size: Will be populated with the total size of the v1.0 632 * descriptor. 633 * 634 * Return: 0 if conversion and population succeeded. 635 * Note: This function invalidates the reference to @orig therefore 636 * `spmc_shmem_obj_lookup` must be called if further usage is required. 637 */ 638 static uint32_t 639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 640 size_t buf_size, size_t offset, 641 size_t *copy_size, size_t *v1_0_desc_size) 642 { 643 struct spmc_shmem_obj *v1_0_obj; 644 645 /* Calculate the size that the v1.0 descriptor will require. */ 646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 647 &orig_obj->desc, orig_obj->desc_size); 648 649 if (*v1_0_desc_size == 0) { 650 ERROR("%s: cannot determine size of descriptor.\n", 651 __func__); 652 return FFA_ERROR_INVALID_PARAMETER; 653 } 654 655 /* Get a new obj to store the v1.0 descriptor. */ 656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 657 *v1_0_desc_size); 658 659 if (!v1_0_obj) { 660 return FFA_ERROR_NO_MEMORY; 661 } 662 663 /* Perform the conversion from v1.1 to v1.0. */ 664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 666 return FFA_ERROR_INVALID_PARAMETER; 667 } 668 669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 671 672 /* 673 * We're finished with the v1.0 descriptor for now so free it. 674 * Note that this will invalidate any references to the v1.1 675 * descriptor. 676 */ 677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 678 679 return 0; 680 } 681 682 static int 683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 684 size_t fragment_length, size_t total_length) 685 { 686 unsigned long long emad_end; 687 unsigned long long emad_size; 688 unsigned long long emad_offset; 689 unsigned int min_desc_size; 690 691 /* Determine the appropriate minimum descriptor size. */ 692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 693 min_desc_size = sizeof(struct ffa_mtd_v1_0); 694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 695 min_desc_size = sizeof(struct ffa_mtd); 696 } else { 697 return FFA_ERROR_INVALID_PARAMETER; 698 } 699 if (fragment_length < min_desc_size) { 700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 701 min_desc_size); 702 return FFA_ERROR_INVALID_PARAMETER; 703 } 704 705 if (desc->emad_count == 0U) { 706 WARN("%s: unsupported attribute desc count %u.\n", 707 __func__, desc->emad_count); 708 return FFA_ERROR_INVALID_PARAMETER; 709 } 710 711 /* 712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 713 * format, otherwise assume it is a v1.1 format. 714 */ 715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 717 } else { 718 if (!is_aligned(desc->emad_offset, 16)) { 719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 720 __func__, desc->emad_offset); 721 return FFA_ERROR_INVALID_PARAMETER; 722 } 723 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 725 __func__, desc->emad_offset, 726 sizeof(struct ffa_mtd)); 727 return FFA_ERROR_INVALID_PARAMETER; 728 } 729 emad_offset = desc->emad_offset; 730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 732 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 733 return FFA_ERROR_INVALID_PARAMETER; 734 } 735 if (!is_aligned(desc->emad_size, 16)) { 736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 737 __func__, desc->emad_size); 738 return FFA_ERROR_INVALID_PARAMETER; 739 } 740 emad_size = desc->emad_size; 741 } 742 743 /* 744 * Overflow is impossible: the arithmetic happens in at least 64-bit 745 * precision, but all of the operands are bounded by UINT32_MAX, and 746 * ((2^32 - 1) * (2^32 - 1) + (2^32 - 1) + (2^32 - 1)) 747 * = ((2^32 - 1) * ((2^32 - 1) + 1 + 1)) 748 * = ((2^32 - 1) * (2^32 + 1)) 749 * = (2^64 - 1). 750 */ 751 CASSERT(sizeof(desc->emad_count) == 4, assert_emad_count_max_too_large); 752 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 753 (unsigned long long)sizeof(struct ffa_comp_mrd) + 754 (unsigned long long)emad_offset; 755 756 if (emad_end > total_length) { 757 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 758 __func__, emad_end, total_length); 759 return FFA_ERROR_INVALID_PARAMETER; 760 } 761 762 return 0; 763 } 764 765 static inline const struct ffa_emad_v1_0 * 766 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset) 767 { 768 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset); 769 } 770 771 /** 772 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 773 * @obj: Object containing ffa_memory_region_descriptor. 774 * @ffa_version: FF-A version of the provided descriptor. 775 * 776 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if 777 * constituent_memory_region_descriptor offset or count is invalid. 778 */ 779 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 780 uint32_t ffa_version) 781 { 782 unsigned long long total_page_count; 783 const struct ffa_emad_v1_0 *first_emad; 784 const struct ffa_emad_v1_0 *end_emad; 785 size_t emad_size; 786 uint32_t comp_mrd_offset; 787 size_t header_emad_size; 788 size_t size; 789 size_t count; 790 size_t expected_size; 791 const struct ffa_comp_mrd *comp; 792 793 if (obj->desc_filled != obj->desc_size) { 794 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 795 __func__, obj->desc_filled, obj->desc_size); 796 panic(); 797 } 798 799 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 800 obj->desc_filled, obj->desc_size)) { 801 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 802 __func__); 803 panic(); 804 } 805 806 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 807 ffa_version, &emad_size); 808 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size); 809 comp_mrd_offset = first_emad->comp_mrd_offset; 810 811 /* Loop through the endpoint descriptors, validating each of them. */ 812 for (const struct ffa_emad_v1_0 *emad = first_emad; emad < end_emad;) { 813 ffa_endpoint_id16_t ep_id; 814 815 /* 816 * If a partition ID resides in the secure world validate that 817 * the partition ID is for a known partition. Ignore any 818 * partition ID belonging to the normal world as it is assumed 819 * the Hypervisor will have validated these. 820 */ 821 ep_id = emad->mapd.endpoint_id; 822 if (ffa_is_secure_world_id(ep_id)) { 823 if (spmc_get_sp_ctx(ep_id) == NULL) { 824 WARN("%s: Invalid receiver id 0x%x\n", 825 __func__, ep_id); 826 return FFA_ERROR_INVALID_PARAMETER; 827 } 828 } 829 830 /* 831 * The offset provided to the composite memory region descriptor 832 * should be consistent across endpoint descriptors. 833 */ 834 if (comp_mrd_offset != emad->comp_mrd_offset) { 835 ERROR("%s: mismatching offsets provided, %u != %u\n", 836 __func__, emad->comp_mrd_offset, comp_mrd_offset); 837 return FFA_ERROR_INVALID_PARAMETER; 838 } 839 840 /* Advance to the next endpoint descriptor */ 841 emad = emad_advance(emad, emad_size); 842 843 /* 844 * Ensure neither this emad nor any subsequent emads have 845 * the same partition ID as the previous emad. 846 */ 847 for (const struct ffa_emad_v1_0 *other_emad = emad; 848 other_emad < end_emad; 849 other_emad = emad_advance(other_emad, emad_size)) { 850 if (ep_id == other_emad->mapd.endpoint_id) { 851 WARN("%s: Duplicated endpoint id 0x%x\n", 852 __func__, emad->mapd.endpoint_id); 853 return FFA_ERROR_INVALID_PARAMETER; 854 } 855 } 856 } 857 858 header_emad_size = (size_t)((const uint8_t *)end_emad - 859 (const uint8_t *)&obj->desc); 860 861 /* 862 * Check that the composite descriptor 863 * is after the endpoint descriptors. 864 */ 865 if (comp_mrd_offset < header_emad_size) { 866 WARN("%s: invalid object, offset %u < header + emad %zu\n", 867 __func__, comp_mrd_offset, header_emad_size); 868 return FFA_ERROR_INVALID_PARAMETER; 869 } 870 871 /* Ensure the composite descriptor offset is aligned. */ 872 if (!is_aligned(comp_mrd_offset, 16)) { 873 WARN("%s: invalid object, unaligned composite memory " 874 "region descriptor offset %u.\n", 875 __func__, comp_mrd_offset); 876 return FFA_ERROR_INVALID_PARAMETER; 877 } 878 879 size = obj->desc_size; 880 881 /* Check that the composite descriptor is in bounds. */ 882 if (comp_mrd_offset > size) { 883 WARN("%s: invalid object, offset %u > total size %zu\n", 884 __func__, comp_mrd_offset, obj->desc_size); 885 return FFA_ERROR_INVALID_PARAMETER; 886 } 887 size -= comp_mrd_offset; 888 889 /* Check that there is enough space for the composite descriptor. */ 890 if (size < sizeof(struct ffa_comp_mrd)) { 891 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 892 __func__, comp_mrd_offset, obj->desc_size); 893 return FFA_ERROR_INVALID_PARAMETER; 894 } 895 size -= sizeof(*comp); 896 897 count = size / sizeof(struct ffa_cons_mrd); 898 899 comp = (const struct ffa_comp_mrd *) 900 ((const uint8_t *)(&obj->desc) + comp_mrd_offset); 901 902 if (comp->address_range_count != count) { 903 WARN("%s: invalid object, desc count %u != %zu\n", 904 __func__, comp->address_range_count, count); 905 return FFA_ERROR_INVALID_PARAMETER; 906 } 907 908 /* Ensure that the expected and actual sizes are equal. */ 909 expected_size = comp_mrd_offset + sizeof(*comp) + 910 count * sizeof(struct ffa_cons_mrd); 911 912 if (expected_size != obj->desc_size) { 913 WARN("%s: invalid object, computed size %zu != size %zu\n", 914 __func__, expected_size, obj->desc_size); 915 return FFA_ERROR_INVALID_PARAMETER; 916 } 917 918 total_page_count = 0; 919 920 /* 921 * comp->address_range_count is 32-bit, so 'count' must fit in a 922 * uint32_t at this point. 923 */ 924 for (size_t i = 0; i < count; i++) { 925 const struct ffa_cons_mrd *mrd = comp->address_range_array + i; 926 927 if (!is_aligned(mrd->address, PAGE_SIZE)) { 928 WARN("%s: invalid object, address in region descriptor " 929 "%zu not 4K aligned (got 0x%016llx)", 930 __func__, i, (unsigned long long)mrd->address); 931 } 932 933 /* 934 * No overflow possible: total_page_count can hold at 935 * least 2^64 - 1, but will be have at most 2^32 - 1. 936 * values added to it, each of which cannot exceed 2^32 - 1. 937 */ 938 total_page_count += mrd->page_count; 939 } 940 941 if (comp->total_page_count != total_page_count) { 942 WARN("%s: invalid object, desc total_page_count %u != %llu\n", 943 __func__, comp->total_page_count, total_page_count); 944 return FFA_ERROR_INVALID_PARAMETER; 945 } 946 947 return 0; 948 } 949 950 /** 951 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 952 * regions that are currently involved with an 953 * existing memory transactions. This implies that 954 * the memory is not in a valid state for lending. 955 * @obj: Object containing ffa_memory_region_descriptor. 956 * 957 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory 958 * state. 959 */ 960 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 961 uint32_t ffa_version) 962 { 963 size_t obj_offset = 0; 964 struct spmc_shmem_obj *inflight_obj; 965 966 struct ffa_comp_mrd *other_mrd; 967 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 968 ffa_version); 969 970 if (requested_mrd == NULL) { 971 return FFA_ERROR_INVALID_PARAMETER; 972 } 973 974 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 975 &obj_offset); 976 977 while (inflight_obj != NULL) { 978 /* 979 * Don't compare the transaction to itself or to partially 980 * transmitted descriptors. 981 */ 982 if ((obj->desc.handle != inflight_obj->desc.handle) && 983 (obj->desc_size == obj->desc_filled)) { 984 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 985 FFA_VERSION_COMPILED); 986 if (other_mrd == NULL) { 987 return FFA_ERROR_INVALID_PARAMETER; 988 } 989 if (overlapping_memory_regions(requested_mrd, 990 other_mrd)) { 991 return FFA_ERROR_INVALID_PARAMETER; 992 } 993 } 994 995 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 996 &obj_offset); 997 } 998 return 0; 999 } 1000 1001 static long spmc_ffa_fill_desc(struct mailbox *mbox, 1002 struct spmc_shmem_obj *obj, 1003 uint32_t fragment_length, 1004 ffa_mtd_flag32_t mtd_flag, 1005 uint32_t ffa_version, 1006 void *smc_handle) 1007 { 1008 int ret; 1009 uint32_t handle_low; 1010 uint32_t handle_high; 1011 1012 if (mbox->rxtx_page_count == 0U) { 1013 WARN("%s: buffer pair not registered.\n", __func__); 1014 ret = FFA_ERROR_INVALID_PARAMETER; 1015 goto err_arg; 1016 } 1017 1018 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 1019 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 1020 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 1021 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 1022 ret = FFA_ERROR_INVALID_PARAMETER; 1023 goto err_arg; 1024 } 1025 1026 if (fragment_length > obj->desc_size - obj->desc_filled) { 1027 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 1028 fragment_length, obj->desc_size - obj->desc_filled); 1029 ret = FFA_ERROR_INVALID_PARAMETER; 1030 goto err_arg; 1031 } 1032 1033 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 1034 (uint8_t *) mbox->tx_buffer, fragment_length); 1035 1036 /* Ensure that the sender ID resides in the normal world. */ 1037 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1038 WARN("%s: Invalid sender ID 0x%x.\n", 1039 __func__, obj->desc.sender_id); 1040 ret = FFA_ERROR_DENIED; 1041 goto err_arg; 1042 } 1043 1044 /* Ensure the NS bit is set to 0. */ 1045 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1046 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1047 ret = FFA_ERROR_INVALID_PARAMETER; 1048 goto err_arg; 1049 } 1050 1051 /* 1052 * We don't currently support any optional flags so ensure none are 1053 * requested. 1054 */ 1055 if (obj->desc.flags != 0U && mtd_flag != 0U && 1056 (obj->desc.flags != mtd_flag)) { 1057 WARN("%s: invalid memory transaction flags %u != %u\n", 1058 __func__, obj->desc.flags, mtd_flag); 1059 ret = FFA_ERROR_INVALID_PARAMETER; 1060 goto err_arg; 1061 } 1062 1063 if (obj->desc_filled == 0U) { 1064 /* First fragment, descriptor header has been copied */ 1065 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1066 fragment_length, obj->desc_size); 1067 if (ret != 0) { 1068 goto err_bad_desc; 1069 } 1070 1071 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1072 obj->desc.flags |= mtd_flag; 1073 } 1074 1075 obj->desc_filled += fragment_length; 1076 1077 handle_low = (uint32_t)obj->desc.handle; 1078 handle_high = obj->desc.handle >> 32; 1079 1080 if (obj->desc_filled != obj->desc_size) { 1081 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1082 handle_high, obj->desc_filled, 1083 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1084 } 1085 1086 /* The full descriptor has been received, perform any final checks. */ 1087 1088 ret = spmc_shmem_check_obj(obj, ffa_version); 1089 if (ret != 0) { 1090 goto err_bad_desc; 1091 } 1092 1093 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1094 if (ret) { 1095 ERROR("%s: invalid memory region descriptor.\n", __func__); 1096 goto err_bad_desc; 1097 } 1098 1099 /* 1100 * Everything checks out, if the sender was using FF-A v1.0, convert 1101 * the descriptor format to use the v1.1 structures. 1102 */ 1103 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1104 struct spmc_shmem_obj *v1_1_obj; 1105 uint64_t mem_handle; 1106 1107 /* Calculate the size that the v1.1 descriptor will required. */ 1108 uint64_t v1_1_desc_size = 1109 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1110 obj->desc_size); 1111 1112 if (v1_1_desc_size > UINT32_MAX) { 1113 ret = FFA_ERROR_NO_MEMORY; 1114 goto err_arg; 1115 } 1116 1117 /* Get a new obj to store the v1.1 descriptor. */ 1118 v1_1_obj = 1119 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1120 1121 if (!v1_1_obj) { 1122 ret = FFA_ERROR_NO_MEMORY; 1123 goto err_arg; 1124 } 1125 1126 /* Perform the conversion from v1.0 to v1.1. */ 1127 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1128 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1129 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1130 ERROR("%s: Could not convert mtd!\n", __func__); 1131 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1132 goto err_arg; 1133 } 1134 1135 /* 1136 * We're finished with the v1.0 descriptor so free it 1137 * and continue our checks with the new v1.1 descriptor. 1138 */ 1139 mem_handle = obj->desc.handle; 1140 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1141 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1142 if (obj == NULL) { 1143 ERROR("%s: Failed to find converted descriptor.\n", 1144 __func__); 1145 ret = FFA_ERROR_INVALID_PARAMETER; 1146 return spmc_ffa_error_return(smc_handle, ret); 1147 } 1148 } 1149 1150 /* Allow for platform specific operations to be performed. */ 1151 ret = plat_spmc_shmem_begin(&obj->desc); 1152 if (ret != 0) { 1153 goto err_arg; 1154 } 1155 1156 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1157 0, 0, 0); 1158 1159 err_bad_desc: 1160 err_arg: 1161 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1162 return spmc_ffa_error_return(smc_handle, ret); 1163 } 1164 1165 /** 1166 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1167 * @client: Client state. 1168 * @total_length: Total length of shared memory descriptor. 1169 * @fragment_length: Length of fragment of shared memory descriptor passed in 1170 * this call. 1171 * @address: Not supported, must be 0. 1172 * @page_count: Not supported, must be 0. 1173 * @smc_handle: Handle passed to smc call. Used to return 1174 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1175 * 1176 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1177 * to share or lend memory from non-secure os to secure os (with no stream 1178 * endpoints). 1179 * 1180 * Return: 0 on success, error code on failure. 1181 */ 1182 long spmc_ffa_mem_send(uint32_t smc_fid, 1183 bool secure_origin, 1184 uint64_t total_length, 1185 uint32_t fragment_length, 1186 uint64_t address, 1187 uint32_t page_count, 1188 void *cookie, 1189 void *handle, 1190 uint64_t flags) 1191 1192 { 1193 long ret; 1194 struct spmc_shmem_obj *obj; 1195 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1196 ffa_mtd_flag32_t mtd_flag; 1197 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1198 size_t min_desc_size; 1199 1200 if (address != 0U || page_count != 0U) { 1201 WARN("%s: custom memory region for message not supported.\n", 1202 __func__); 1203 return spmc_ffa_error_return(handle, 1204 FFA_ERROR_INVALID_PARAMETER); 1205 } 1206 1207 if (secure_origin) { 1208 WARN("%s: unsupported share direction.\n", __func__); 1209 return spmc_ffa_error_return(handle, 1210 FFA_ERROR_INVALID_PARAMETER); 1211 } 1212 1213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1214 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1215 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1216 min_desc_size = sizeof(struct ffa_mtd); 1217 } else { 1218 WARN("%s: bad FF-A version.\n", __func__); 1219 return spmc_ffa_error_return(handle, 1220 FFA_ERROR_INVALID_PARAMETER); 1221 } 1222 1223 /* Check if the descriptor is too small for the FF-A version. */ 1224 if (fragment_length < min_desc_size) { 1225 WARN("%s: bad first fragment size %u < %zu\n", 1226 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1227 return spmc_ffa_error_return(handle, 1228 FFA_ERROR_INVALID_PARAMETER); 1229 } 1230 1231 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1232 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1233 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1234 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1235 } else { 1236 WARN("%s: invalid memory management operation.\n", __func__); 1237 return spmc_ffa_error_return(handle, 1238 FFA_ERROR_INVALID_PARAMETER); 1239 } 1240 1241 spin_lock(&spmc_shmem_obj_state.lock); 1242 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1243 if (obj == NULL) { 1244 ret = FFA_ERROR_NO_MEMORY; 1245 goto err_unlock; 1246 } 1247 1248 spin_lock(&mbox->lock); 1249 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1250 ffa_version, handle); 1251 spin_unlock(&mbox->lock); 1252 1253 spin_unlock(&spmc_shmem_obj_state.lock); 1254 return ret; 1255 1256 err_unlock: 1257 spin_unlock(&spmc_shmem_obj_state.lock); 1258 return spmc_ffa_error_return(handle, ret); 1259 } 1260 1261 /** 1262 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1263 * @client: Client state. 1264 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1265 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1266 * @fragment_length: Length of fragments transmitted. 1267 * @sender_id: Vmid of sender in bits [31:16] 1268 * @smc_handle: Handle passed to smc call. Used to return 1269 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1270 * 1271 * Return: @smc_handle on success, error code on failure. 1272 */ 1273 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1274 bool secure_origin, 1275 uint64_t handle_low, 1276 uint64_t handle_high, 1277 uint32_t fragment_length, 1278 uint32_t sender_id, 1279 void *cookie, 1280 void *handle, 1281 uint64_t flags) 1282 { 1283 long ret; 1284 uint32_t desc_sender_id; 1285 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1286 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1287 1288 struct spmc_shmem_obj *obj; 1289 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1290 1291 spin_lock(&spmc_shmem_obj_state.lock); 1292 1293 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1294 if (obj == NULL) { 1295 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1296 __func__, mem_handle); 1297 ret = FFA_ERROR_INVALID_PARAMETER; 1298 goto err_unlock; 1299 } 1300 1301 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1302 if (sender_id != desc_sender_id) { 1303 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1304 sender_id, desc_sender_id); 1305 ret = FFA_ERROR_INVALID_PARAMETER; 1306 goto err_unlock; 1307 } 1308 1309 if (obj->desc_filled == obj->desc_size) { 1310 WARN("%s: object desc already filled, %zu\n", __func__, 1311 obj->desc_filled); 1312 ret = FFA_ERROR_INVALID_PARAMETER; 1313 goto err_unlock; 1314 } 1315 1316 spin_lock(&mbox->lock); 1317 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1318 handle); 1319 spin_unlock(&mbox->lock); 1320 1321 spin_unlock(&spmc_shmem_obj_state.lock); 1322 return ret; 1323 1324 err_unlock: 1325 spin_unlock(&spmc_shmem_obj_state.lock); 1326 return spmc_ffa_error_return(handle, ret); 1327 } 1328 1329 /** 1330 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1331 * if the caller implements a version greater 1332 * than FF-A 1.0 or if they have requested 1333 * the functionality. 1334 * TODO: We are assuming that the caller is 1335 * an SP. To support retrieval from the 1336 * normal world this function will need to be 1337 * expanded accordingly. 1338 * @resp: Descriptor populated in callers RX buffer. 1339 * @sp_ctx: Context of the calling SP. 1340 */ 1341 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1342 struct secure_partition_desc *sp_ctx) 1343 { 1344 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1345 sp_ctx->ns_bit_requested) { 1346 /* 1347 * Currently memory senders must reside in the normal 1348 * world, and we do not have the functionlaity to change 1349 * the state of memory dynamically. Therefore we can always set 1350 * the NS bit to 1. 1351 */ 1352 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1353 } 1354 } 1355 1356 /** 1357 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1358 * @smc_fid: FID of SMC 1359 * @total_length: Total length of retrieve request descriptor if this is 1360 * the first call. Otherwise (unsupported) must be 0. 1361 * @fragment_length: Length of fragment of retrieve request descriptor passed 1362 * in this call. Only @fragment_length == @length is 1363 * supported by this implementation. 1364 * @address: Not supported, must be 0. 1365 * @page_count: Not supported, must be 0. 1366 * @smc_handle: Handle passed to smc call. Used to return 1367 * FFA_MEM_RETRIEVE_RESP. 1368 * 1369 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1370 * Used by secure os to retrieve memory already shared by non-secure os. 1371 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1372 * the client must call FFA_MEM_FRAG_RX until the full response has been 1373 * received. 1374 * 1375 * Return: @handle on success, error code on failure. 1376 */ 1377 long 1378 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1379 bool secure_origin, 1380 uint32_t total_length, 1381 uint32_t fragment_length, 1382 uint64_t address, 1383 uint32_t page_count, 1384 void *cookie, 1385 void *handle, 1386 uint64_t flags) 1387 { 1388 int ret; 1389 size_t buf_size; 1390 size_t copy_size = 0; 1391 size_t min_desc_size; 1392 size_t out_desc_size = 0; 1393 1394 /* 1395 * Currently we are only accessing fields that are the same in both the 1396 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1397 * here. We only need validate against the appropriate struct size. 1398 */ 1399 struct ffa_mtd *resp; 1400 const struct ffa_mtd *req; 1401 struct spmc_shmem_obj *obj = NULL; 1402 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1403 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1404 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1405 1406 if (!secure_origin) { 1407 WARN("%s: unsupported retrieve req direction.\n", __func__); 1408 return spmc_ffa_error_return(handle, 1409 FFA_ERROR_INVALID_PARAMETER); 1410 } 1411 1412 if (address != 0U || page_count != 0U) { 1413 WARN("%s: custom memory region not supported.\n", __func__); 1414 return spmc_ffa_error_return(handle, 1415 FFA_ERROR_INVALID_PARAMETER); 1416 } 1417 1418 spin_lock(&mbox->lock); 1419 1420 req = mbox->tx_buffer; 1421 resp = mbox->rx_buffer; 1422 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1423 1424 if (mbox->rxtx_page_count == 0U) { 1425 WARN("%s: buffer pair not registered.\n", __func__); 1426 ret = FFA_ERROR_INVALID_PARAMETER; 1427 goto err_unlock_mailbox; 1428 } 1429 1430 if (mbox->state != MAILBOX_STATE_EMPTY) { 1431 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1432 ret = FFA_ERROR_DENIED; 1433 goto err_unlock_mailbox; 1434 } 1435 1436 if (fragment_length != total_length) { 1437 WARN("%s: fragmented retrieve request not supported.\n", 1438 __func__); 1439 ret = FFA_ERROR_INVALID_PARAMETER; 1440 goto err_unlock_mailbox; 1441 } 1442 1443 if (req->emad_count == 0U) { 1444 WARN("%s: unsupported attribute desc count %u.\n", 1445 __func__, obj->desc.emad_count); 1446 ret = FFA_ERROR_INVALID_PARAMETER; 1447 goto err_unlock_mailbox; 1448 } 1449 1450 /* Determine the appropriate minimum descriptor size. */ 1451 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1452 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1453 } else { 1454 min_desc_size = sizeof(struct ffa_mtd); 1455 } 1456 if (total_length < min_desc_size) { 1457 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1458 min_desc_size); 1459 ret = FFA_ERROR_INVALID_PARAMETER; 1460 goto err_unlock_mailbox; 1461 } 1462 1463 spin_lock(&spmc_shmem_obj_state.lock); 1464 1465 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1466 if (obj == NULL) { 1467 ret = FFA_ERROR_INVALID_PARAMETER; 1468 goto err_unlock_all; 1469 } 1470 1471 if (obj->desc_filled != obj->desc_size) { 1472 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1473 __func__, obj->desc_filled, obj->desc_size); 1474 ret = FFA_ERROR_INVALID_PARAMETER; 1475 goto err_unlock_all; 1476 } 1477 1478 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1479 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1480 __func__, req->sender_id, obj->desc.sender_id); 1481 ret = FFA_ERROR_INVALID_PARAMETER; 1482 goto err_unlock_all; 1483 } 1484 1485 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1486 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1487 __func__, req->tag, obj->desc.tag); 1488 ret = FFA_ERROR_INVALID_PARAMETER; 1489 goto err_unlock_all; 1490 } 1491 1492 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1493 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1494 __func__, req->emad_count, obj->desc.emad_count); 1495 ret = FFA_ERROR_INVALID_PARAMETER; 1496 goto err_unlock_all; 1497 } 1498 1499 /* Ensure the NS bit is set to 0 in the request. */ 1500 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1501 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1502 ret = FFA_ERROR_INVALID_PARAMETER; 1503 goto err_unlock_all; 1504 } 1505 1506 if (req->flags != 0U) { 1507 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1508 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1509 /* 1510 * If the retrieve request specifies the memory 1511 * transaction ensure it matches what we expect. 1512 */ 1513 WARN("%s: wrong mem transaction flags %x != %x\n", 1514 __func__, req->flags, obj->desc.flags); 1515 ret = FFA_ERROR_INVALID_PARAMETER; 1516 goto err_unlock_all; 1517 } 1518 1519 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1520 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1521 /* 1522 * Current implementation does not support donate and 1523 * it supports no other flags. 1524 */ 1525 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1526 ret = FFA_ERROR_INVALID_PARAMETER; 1527 goto err_unlock_all; 1528 } 1529 } 1530 1531 /* Validate the caller is a valid participant. */ 1532 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1533 WARN("%s: Invalid endpoint ID (0x%x).\n", 1534 __func__, sp_ctx->sp_id); 1535 ret = FFA_ERROR_INVALID_PARAMETER; 1536 goto err_unlock_all; 1537 } 1538 1539 /* Validate that the provided emad offset and structure is valid.*/ 1540 for (size_t i = 0; i < req->emad_count; i++) { 1541 size_t emad_size; 1542 struct ffa_emad_v1_0 *emad; 1543 1544 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1545 &emad_size); 1546 1547 if ((uintptr_t) emad >= (uintptr_t) 1548 ((uint8_t *) req + total_length)) { 1549 WARN("Invalid emad access.\n"); 1550 ret = FFA_ERROR_INVALID_PARAMETER; 1551 goto err_unlock_all; 1552 } 1553 } 1554 1555 /* 1556 * Validate all the endpoints match in the case of multiple 1557 * borrowers. We don't mandate that the order of the borrowers 1558 * must match in the descriptors therefore check to see if the 1559 * endpoints match in any order. 1560 */ 1561 for (size_t i = 0; i < req->emad_count; i++) { 1562 bool found = false; 1563 size_t emad_size; 1564 struct ffa_emad_v1_0 *emad; 1565 struct ffa_emad_v1_0 *other_emad; 1566 1567 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1568 &emad_size); 1569 1570 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1571 other_emad = spmc_shmem_obj_get_emad( 1572 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1573 &emad_size); 1574 1575 if (req->emad_count && 1576 emad->mapd.endpoint_id == 1577 other_emad->mapd.endpoint_id) { 1578 found = true; 1579 break; 1580 } 1581 } 1582 1583 if (!found) { 1584 WARN("%s: invalid receiver id (0x%x).\n", 1585 __func__, emad->mapd.endpoint_id); 1586 ret = FFA_ERROR_INVALID_PARAMETER; 1587 goto err_unlock_all; 1588 } 1589 } 1590 1591 mbox->state = MAILBOX_STATE_FULL; 1592 1593 if (req->emad_count != 0U) { 1594 obj->in_use++; 1595 } 1596 1597 /* 1598 * If the caller is v1.0 convert the descriptor, otherwise copy 1599 * directly. 1600 */ 1601 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1602 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1603 ©_size, 1604 &out_desc_size); 1605 if (ret != 0U) { 1606 ERROR("%s: Failed to process descriptor.\n", __func__); 1607 goto err_unlock_all; 1608 } 1609 } else { 1610 copy_size = MIN(obj->desc_size, buf_size); 1611 out_desc_size = obj->desc_size; 1612 1613 memcpy(resp, &obj->desc, copy_size); 1614 } 1615 1616 /* Set the NS bit in the response if applicable. */ 1617 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1618 1619 spin_unlock(&spmc_shmem_obj_state.lock); 1620 spin_unlock(&mbox->lock); 1621 1622 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1623 copy_size, 0, 0, 0, 0, 0); 1624 1625 err_unlock_all: 1626 spin_unlock(&spmc_shmem_obj_state.lock); 1627 err_unlock_mailbox: 1628 spin_unlock(&mbox->lock); 1629 return spmc_ffa_error_return(handle, ret); 1630 } 1631 1632 /** 1633 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1634 * @client: Client state. 1635 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1636 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1637 * @fragment_offset: Byte offset in descriptor to resume at. 1638 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1639 * hypervisor. 0 otherwise. 1640 * @smc_handle: Handle passed to smc call. Used to return 1641 * FFA_MEM_FRAG_TX. 1642 * 1643 * Return: @smc_handle on success, error code on failure. 1644 */ 1645 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1646 bool secure_origin, 1647 uint32_t handle_low, 1648 uint32_t handle_high, 1649 uint32_t fragment_offset, 1650 uint32_t sender_id, 1651 void *cookie, 1652 void *handle, 1653 uint64_t flags) 1654 { 1655 int ret; 1656 void *src; 1657 size_t buf_size; 1658 size_t copy_size; 1659 size_t full_copy_size; 1660 uint32_t desc_sender_id; 1661 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1662 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1663 struct spmc_shmem_obj *obj; 1664 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1665 1666 if (!secure_origin) { 1667 WARN("%s: can only be called from swld.\n", 1668 __func__); 1669 return spmc_ffa_error_return(handle, 1670 FFA_ERROR_INVALID_PARAMETER); 1671 } 1672 1673 spin_lock(&spmc_shmem_obj_state.lock); 1674 1675 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1676 if (obj == NULL) { 1677 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1678 __func__, mem_handle); 1679 ret = FFA_ERROR_INVALID_PARAMETER; 1680 goto err_unlock_shmem; 1681 } 1682 1683 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1684 if (sender_id != 0U && sender_id != desc_sender_id) { 1685 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1686 sender_id, desc_sender_id); 1687 ret = FFA_ERROR_INVALID_PARAMETER; 1688 goto err_unlock_shmem; 1689 } 1690 1691 if (fragment_offset >= obj->desc_size) { 1692 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1693 __func__, fragment_offset, obj->desc_size); 1694 ret = FFA_ERROR_INVALID_PARAMETER; 1695 goto err_unlock_shmem; 1696 } 1697 1698 spin_lock(&mbox->lock); 1699 1700 if (mbox->rxtx_page_count == 0U) { 1701 WARN("%s: buffer pair not registered.\n", __func__); 1702 ret = FFA_ERROR_INVALID_PARAMETER; 1703 goto err_unlock_all; 1704 } 1705 1706 if (mbox->state != MAILBOX_STATE_EMPTY) { 1707 WARN("%s: RX Buffer is full!\n", __func__); 1708 ret = FFA_ERROR_DENIED; 1709 goto err_unlock_all; 1710 } 1711 1712 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1713 1714 mbox->state = MAILBOX_STATE_FULL; 1715 1716 /* 1717 * If the caller is v1.0 convert the descriptor, otherwise copy 1718 * directly. 1719 */ 1720 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1721 size_t out_desc_size; 1722 1723 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1724 buf_size, 1725 fragment_offset, 1726 ©_size, 1727 &out_desc_size); 1728 if (ret != 0U) { 1729 ERROR("%s: Failed to process descriptor.\n", __func__); 1730 goto err_unlock_all; 1731 } 1732 } else { 1733 full_copy_size = obj->desc_size - fragment_offset; 1734 copy_size = MIN(full_copy_size, buf_size); 1735 1736 src = &obj->desc; 1737 1738 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1739 } 1740 1741 spin_unlock(&mbox->lock); 1742 spin_unlock(&spmc_shmem_obj_state.lock); 1743 1744 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1745 copy_size, sender_id, 0, 0, 0); 1746 1747 err_unlock_all: 1748 spin_unlock(&mbox->lock); 1749 err_unlock_shmem: 1750 spin_unlock(&spmc_shmem_obj_state.lock); 1751 return spmc_ffa_error_return(handle, ret); 1752 } 1753 1754 /** 1755 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1756 * @client: Client state. 1757 * 1758 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1759 * Used by secure os release previously shared memory to non-secure os. 1760 * 1761 * The handle to release must be in the client's (secure os's) transmit buffer. 1762 * 1763 * Return: 0 on success, error code on failure. 1764 */ 1765 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1766 bool secure_origin, 1767 uint32_t handle_low, 1768 uint32_t handle_high, 1769 uint32_t fragment_offset, 1770 uint32_t sender_id, 1771 void *cookie, 1772 void *handle, 1773 uint64_t flags) 1774 { 1775 int ret; 1776 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1777 struct spmc_shmem_obj *obj; 1778 const struct ffa_mem_relinquish_descriptor *req; 1779 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1780 1781 if (!secure_origin) { 1782 WARN("%s: unsupported relinquish direction.\n", __func__); 1783 return spmc_ffa_error_return(handle, 1784 FFA_ERROR_INVALID_PARAMETER); 1785 } 1786 1787 spin_lock(&mbox->lock); 1788 1789 if (mbox->rxtx_page_count == 0U) { 1790 WARN("%s: buffer pair not registered.\n", __func__); 1791 ret = FFA_ERROR_INVALID_PARAMETER; 1792 goto err_unlock_mailbox; 1793 } 1794 1795 req = mbox->tx_buffer; 1796 1797 if (req->flags != 0U) { 1798 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1799 ret = FFA_ERROR_INVALID_PARAMETER; 1800 goto err_unlock_mailbox; 1801 } 1802 1803 if (req->endpoint_count == 0) { 1804 WARN("%s: endpoint count cannot be 0.\n", __func__); 1805 ret = FFA_ERROR_INVALID_PARAMETER; 1806 goto err_unlock_mailbox; 1807 } 1808 1809 spin_lock(&spmc_shmem_obj_state.lock); 1810 1811 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1812 if (obj == NULL) { 1813 ret = FFA_ERROR_INVALID_PARAMETER; 1814 goto err_unlock_all; 1815 } 1816 1817 /* 1818 * Validate the endpoint ID was populated correctly. We don't currently 1819 * support proxy endpoints so the endpoint count should always be 1. 1820 */ 1821 if (req->endpoint_count != 1U) { 1822 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1823 req->endpoint_count); 1824 ret = FFA_ERROR_INVALID_PARAMETER; 1825 goto err_unlock_all; 1826 } 1827 1828 /* Validate provided endpoint ID matches the partition ID. */ 1829 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1830 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1831 req->endpoint_array[0], sp_ctx->sp_id); 1832 ret = FFA_ERROR_INVALID_PARAMETER; 1833 goto err_unlock_all; 1834 } 1835 1836 /* Validate the caller is a valid participant. */ 1837 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1838 WARN("%s: Invalid endpoint ID (0x%x).\n", 1839 __func__, req->endpoint_array[0]); 1840 ret = FFA_ERROR_INVALID_PARAMETER; 1841 goto err_unlock_all; 1842 } 1843 1844 if (obj->in_use == 0U) { 1845 ret = FFA_ERROR_INVALID_PARAMETER; 1846 goto err_unlock_all; 1847 } 1848 obj->in_use--; 1849 1850 spin_unlock(&spmc_shmem_obj_state.lock); 1851 spin_unlock(&mbox->lock); 1852 1853 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1854 1855 err_unlock_all: 1856 spin_unlock(&spmc_shmem_obj_state.lock); 1857 err_unlock_mailbox: 1858 spin_unlock(&mbox->lock); 1859 return spmc_ffa_error_return(handle, ret); 1860 } 1861 1862 /** 1863 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1864 * @client: Client state. 1865 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1866 * @handle_high: Unique handle of shared memory object to reclaim. 1867 * Bit[63:32]. 1868 * @flags: Unsupported, ignored. 1869 * 1870 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1871 * Used by non-secure os reclaim memory previously shared with secure os. 1872 * 1873 * Return: 0 on success, error code on failure. 1874 */ 1875 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1876 bool secure_origin, 1877 uint32_t handle_low, 1878 uint32_t handle_high, 1879 uint32_t mem_flags, 1880 uint64_t x4, 1881 void *cookie, 1882 void *handle, 1883 uint64_t flags) 1884 { 1885 int ret; 1886 struct spmc_shmem_obj *obj; 1887 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1888 1889 if (secure_origin) { 1890 WARN("%s: unsupported reclaim direction.\n", __func__); 1891 return spmc_ffa_error_return(handle, 1892 FFA_ERROR_INVALID_PARAMETER); 1893 } 1894 1895 if (mem_flags != 0U) { 1896 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1897 return spmc_ffa_error_return(handle, 1898 FFA_ERROR_INVALID_PARAMETER); 1899 } 1900 1901 spin_lock(&spmc_shmem_obj_state.lock); 1902 1903 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1904 if (obj == NULL) { 1905 ret = FFA_ERROR_INVALID_PARAMETER; 1906 goto err_unlock; 1907 } 1908 if (obj->in_use != 0U) { 1909 ret = FFA_ERROR_DENIED; 1910 goto err_unlock; 1911 } 1912 1913 if (obj->desc_filled != obj->desc_size) { 1914 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1915 __func__, obj->desc_filled, obj->desc_size); 1916 ret = FFA_ERROR_INVALID_PARAMETER; 1917 goto err_unlock; 1918 } 1919 1920 /* Allow for platform specific operations to be performed. */ 1921 ret = plat_spmc_shmem_reclaim(&obj->desc); 1922 if (ret != 0) { 1923 goto err_unlock; 1924 } 1925 1926 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1927 spin_unlock(&spmc_shmem_obj_state.lock); 1928 1929 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1930 1931 err_unlock: 1932 spin_unlock(&spmc_shmem_obj_state.lock); 1933 return spmc_ffa_error_return(handle, ret); 1934 } 1935