1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 /* Ensure that descriptor size is aligned */ 84 if (!is_aligned(desc_size, 16)) { 85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n", 86 __func__, desc_size); 87 return NULL; 88 } 89 90 obj_size = spmc_shmem_obj_size(desc_size); 91 92 /* Ensure the obj size has not overflowed. */ 93 if (obj_size < desc_size) { 94 WARN("%s(0x%zx) desc_size overflow\n", 95 __func__, desc_size); 96 return NULL; 97 } 98 99 if (obj_size > free) { 100 WARN("%s(0x%zx) failed, free 0x%zx\n", 101 __func__, desc_size, free); 102 return NULL; 103 } 104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 105 obj->desc = (struct ffa_mtd) {0}; 106 obj->desc_size = desc_size; 107 obj->desc_filled = 0; 108 obj->in_use = 0; 109 state->allocated += obj_size; 110 return obj; 111 } 112 113 /** 114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 115 * @state: Global state. 116 * @obj: Object to free. 117 * 118 * Release memory used by @obj. Other objects may move, so on return all 119 * pointers to struct spmc_shmem_obj object should be considered invalid, not 120 * just @obj. 121 * 122 * The current implementation always compacts the remaining objects to simplify 123 * the allocator and to avoid fragmentation. 124 */ 125 126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 127 struct spmc_shmem_obj *obj) 128 { 129 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 130 uint8_t *shift_dest = (uint8_t *)obj; 131 uint8_t *shift_src = shift_dest + free_size; 132 size_t shift_size = state->allocated - (shift_src - state->data); 133 134 if (shift_size != 0U) { 135 memmove(shift_dest, shift_src, shift_size); 136 } 137 state->allocated -= free_size; 138 } 139 140 /** 141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 142 * @state: Global state. 143 * @handle: Unique handle of object to return. 144 * 145 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 146 * %NULL, if not object in @state->data has a matching handle. 147 */ 148 static struct spmc_shmem_obj * 149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 150 { 151 uint8_t *curr = state->data; 152 153 while (curr - state->data < state->allocated) { 154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 155 156 if (obj->desc.handle == handle) { 157 return obj; 158 } 159 curr += spmc_shmem_obj_size(obj->desc_size); 160 } 161 return NULL; 162 } 163 164 /** 165 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 166 * @offset: Offset used to track which objects have previously been 167 * returned. 168 * 169 * Return: the next struct spmc_shmem_obj_state object from the provided 170 * offset. 171 * %NULL, if there are no more objects. 172 */ 173 static struct spmc_shmem_obj * 174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 175 { 176 uint8_t *curr = state->data + *offset; 177 178 if (curr - state->data < state->allocated) { 179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 180 181 *offset += spmc_shmem_obj_size(obj->desc_size); 182 183 return obj; 184 } 185 return NULL; 186 } 187 188 /******************************************************************************* 189 * FF-A memory descriptor helper functions. 190 ******************************************************************************/ 191 /** 192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 193 * clients FF-A version. 194 * @desc: The memory transaction descriptor. 195 * @index: The index of the emad element to be accessed. 196 * @ffa_version: FF-A version of the provided structure. 197 * @emad_size: Will be populated with the size of the returned emad 198 * descriptor. 199 * Return: A pointer to the requested emad structure. 200 */ 201 static void * 202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 203 uint32_t ffa_version, size_t *emad_size) 204 { 205 uint8_t *emad; 206 207 assert(index < desc->emad_count); 208 209 /* 210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 211 * format, otherwise assume it is a v1.1 format. 212 */ 213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 215 *emad_size = sizeof(struct ffa_emad_v1_0); 216 } else { 217 assert(is_aligned(desc->emad_offset, 16)); 218 emad = ((uint8_t *) desc + desc->emad_offset); 219 *emad_size = desc->emad_size; 220 } 221 222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 223 return (emad + (*emad_size * index)); 224 } 225 226 /** 227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 228 * FF-A version of the descriptor. 229 * @obj: Object containing ffa_memory_region_descriptor. 230 * 231 * Return: struct ffa_comp_mrd object corresponding to the composite memory 232 * region descriptor. 233 */ 234 static struct ffa_comp_mrd * 235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 236 { 237 size_t emad_size; 238 /* 239 * The comp_mrd_offset field of the emad descriptor remains consistent 240 * between FF-A versions therefore we can use the v1.0 descriptor here 241 * in all cases. 242 */ 243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 244 ffa_version, 245 &emad_size); 246 247 /* Ensure the composite descriptor offset is aligned. */ 248 if (!is_aligned(emad->comp_mrd_offset, 8)) { 249 WARN("Unaligned composite memory region descriptor offset.\n"); 250 return NULL; 251 } 252 253 return (struct ffa_comp_mrd *) 254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 255 } 256 257 /** 258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 259 * a given memory transaction. 260 * @sp_id: Partition ID to validate. 261 * @obj: The shared memory object containing the descriptor 262 * of the memory transaction. 263 * Return: true if ID is valid, else false. 264 */ 265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 266 { 267 bool found = false; 268 struct ffa_mtd *desc = &obj->desc; 269 size_t desc_size = obj->desc_size; 270 271 /* Validate the partition is a valid participant. */ 272 for (unsigned int i = 0U; i < desc->emad_count; i++) { 273 size_t emad_size; 274 struct ffa_emad_v1_0 *emad; 275 276 emad = spmc_shmem_obj_get_emad(desc, i, 277 MAKE_FFA_VERSION(1, 1), 278 &emad_size); 279 /* 280 * Validate the calculated emad address resides within the 281 * descriptor. 282 */ 283 if ((emad == NULL) || (uintptr_t) emad >= 284 (uintptr_t)((uint8_t *) desc + desc_size)) { 285 VERBOSE("Invalid emad.\n"); 286 break; 287 } 288 if (sp_id == emad->mapd.endpoint_id) { 289 found = true; 290 break; 291 } 292 } 293 return found; 294 } 295 296 /* 297 * Compare two memory regions to determine if any range overlaps with another 298 * ongoing memory transaction. 299 */ 300 static bool 301 overlapping_memory_regions(struct ffa_comp_mrd *region1, 302 struct ffa_comp_mrd *region2) 303 { 304 uint64_t region1_start; 305 uint64_t region1_size; 306 uint64_t region1_end; 307 uint64_t region2_start; 308 uint64_t region2_size; 309 uint64_t region2_end; 310 311 assert(region1 != NULL); 312 assert(region2 != NULL); 313 314 if (region1 == region2) { 315 return true; 316 } 317 318 /* 319 * Check each memory region in the request against existing 320 * transactions. 321 */ 322 for (size_t i = 0; i < region1->address_range_count; i++) { 323 324 region1_start = region1->address_range_array[i].address; 325 region1_size = 326 region1->address_range_array[i].page_count * 327 PAGE_SIZE_4KB; 328 region1_end = region1_start + region1_size; 329 330 for (size_t j = 0; j < region2->address_range_count; j++) { 331 332 region2_start = region2->address_range_array[j].address; 333 region2_size = 334 region2->address_range_array[j].page_count * 335 PAGE_SIZE_4KB; 336 region2_end = region2_start + region2_size; 337 338 /* Check if regions are not overlapping. */ 339 if (!((region2_end <= region1_start) || 340 (region1_end <= region2_start))) { 341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 342 region1_start, region1_end, 343 region2_start, region2_end); 344 return true; 345 } 346 } 347 } 348 return false; 349 } 350 351 /******************************************************************************* 352 * FF-A v1.0 Memory Descriptor Conversion Helpers. 353 ******************************************************************************/ 354 /** 355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 356 * converted descriptor. 357 * @orig: The original v1.0 memory transaction descriptor. 358 * @desc_size: The size of the original v1.0 memory transaction descriptor. 359 * 360 * Return: the size required to store the descriptor store in the v1.1 format. 361 */ 362 static uint64_t 363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 364 { 365 uint64_t size = 0; 366 struct ffa_comp_mrd *mrd; 367 struct ffa_emad_v1_0 *emad_array = orig->emad; 368 369 /* Get the size of the v1.1 descriptor. */ 370 size += sizeof(struct ffa_mtd); 371 372 /* Add the size of the emad descriptors. */ 373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 374 375 /* Add the size of the composite mrds. */ 376 size += sizeof(struct ffa_comp_mrd); 377 378 /* Add the size of the constituent mrds. */ 379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 380 emad_array[0].comp_mrd_offset); 381 382 /* Add the size of the memory region descriptors. */ 383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 384 385 return size; 386 } 387 388 /** 389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 390 * converted descriptor. 391 * @orig: The original v1.1 memory transaction descriptor. 392 * @desc_size: The size of the original v1.1 memory transaction descriptor. 393 * 394 * Return: the size required to store the descriptor store in the v1.0 format. 395 */ 396 static size_t 397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 398 { 399 size_t size = 0; 400 struct ffa_comp_mrd *mrd; 401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 402 ((uint8_t *) orig + 403 orig->emad_offset); 404 405 /* Get the size of the v1.0 descriptor. */ 406 size += sizeof(struct ffa_mtd_v1_0); 407 408 /* Add the size of the v1.0 emad descriptors. */ 409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 410 411 /* Add the size of the composite mrds. */ 412 size += sizeof(struct ffa_comp_mrd); 413 414 /* Add the size of the constituent mrds. */ 415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 416 emad_array[0].comp_mrd_offset); 417 418 /* Check the calculated address is within the memory descriptor. */ 419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 420 (uintptr_t)((uint8_t *) orig + desc_size)) { 421 return 0; 422 } 423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 424 425 return size; 426 } 427 428 /** 429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 430 * @out_obj: The shared memory object to populate the converted descriptor. 431 * @orig: The shared memory object containing the v1.0 descriptor. 432 * 433 * Return: true if the conversion is successful else false. 434 */ 435 static bool 436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 437 struct spmc_shmem_obj *orig) 438 { 439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 440 struct ffa_mtd *out = &out_obj->desc; 441 struct ffa_emad_v1_0 *emad_array_in; 442 struct ffa_emad_v1_0 *emad_array_out; 443 struct ffa_comp_mrd *mrd_in; 444 struct ffa_comp_mrd *mrd_out; 445 446 size_t mrd_in_offset; 447 size_t mrd_out_offset; 448 size_t mrd_size = 0; 449 450 /* Populate the new descriptor format from the v1.0 struct. */ 451 out->sender_id = mtd_orig->sender_id; 452 out->memory_region_attributes = mtd_orig->memory_region_attributes; 453 out->flags = mtd_orig->flags; 454 out->handle = mtd_orig->handle; 455 out->tag = mtd_orig->tag; 456 out->emad_count = mtd_orig->emad_count; 457 out->emad_size = sizeof(struct ffa_emad_v1_0); 458 459 /* 460 * We will locate the emad descriptors directly after the ffa_mtd 461 * struct. This will be 8-byte aligned. 462 */ 463 out->emad_offset = sizeof(struct ffa_mtd); 464 465 emad_array_in = mtd_orig->emad; 466 emad_array_out = (struct ffa_emad_v1_0 *) 467 ((uint8_t *) out + out->emad_offset); 468 469 /* Copy across the emad structs. */ 470 for (unsigned int i = 0U; i < out->emad_count; i++) { 471 /* Bound check for emad array. */ 472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 473 ((uint8_t *) mtd_orig + orig->desc_size)) { 474 VERBOSE("%s: Invalid mtd structure.\n", __func__); 475 return false; 476 } 477 memcpy(&emad_array_out[i], &emad_array_in[i], 478 sizeof(struct ffa_emad_v1_0)); 479 } 480 481 /* Place the mrd descriptors after the end of the emad descriptors.*/ 482 mrd_in_offset = emad_array_in->comp_mrd_offset; 483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 485 486 /* Add the size of the composite memory region descriptor. */ 487 mrd_size += sizeof(struct ffa_comp_mrd); 488 489 /* Find the mrd descriptor. */ 490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 491 492 /* Add the size of the constituent memory region descriptors. */ 493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 494 495 /* 496 * Update the offset in the emads by the delta between the input and 497 * output addresses. 498 */ 499 for (unsigned int i = 0U; i < out->emad_count; i++) { 500 emad_array_out[i].comp_mrd_offset = 501 emad_array_in[i].comp_mrd_offset + 502 (mrd_out_offset - mrd_in_offset); 503 } 504 505 /* Verify that we stay within bound of the memory descriptors. */ 506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 510 ERROR("%s: Invalid mrd structure.\n", __func__); 511 return false; 512 } 513 514 /* Copy the mrd descriptors directly. */ 515 memcpy(mrd_out, mrd_in, mrd_size); 516 517 return true; 518 } 519 520 /** 521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 522 * v1.0 memory object. 523 * @out_obj: The shared memory object to populate the v1.0 descriptor. 524 * @orig: The shared memory object containing the v1.1 descriptor. 525 * 526 * Return: true if the conversion is successful else false. 527 */ 528 static bool 529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 530 struct spmc_shmem_obj *orig) 531 { 532 struct ffa_mtd *mtd_orig = &orig->desc; 533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 534 struct ffa_emad_v1_0 *emad_in; 535 struct ffa_emad_v1_0 *emad_array_in; 536 struct ffa_emad_v1_0 *emad_array_out; 537 struct ffa_comp_mrd *mrd_in; 538 struct ffa_comp_mrd *mrd_out; 539 540 size_t mrd_in_offset; 541 size_t mrd_out_offset; 542 size_t emad_out_array_size; 543 size_t mrd_size = 0; 544 size_t orig_desc_size = orig->desc_size; 545 546 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 547 out->sender_id = mtd_orig->sender_id; 548 out->memory_region_attributes = mtd_orig->memory_region_attributes; 549 out->flags = mtd_orig->flags; 550 out->handle = mtd_orig->handle; 551 out->tag = mtd_orig->tag; 552 out->emad_count = mtd_orig->emad_count; 553 554 /* Determine the location of the emad array in both descriptors. */ 555 emad_array_in = (struct ffa_emad_v1_0 *) 556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 557 emad_array_out = out->emad; 558 559 /* Copy across the emad structs. */ 560 emad_in = emad_array_in; 561 for (unsigned int i = 0U; i < out->emad_count; i++) { 562 /* Bound check for emad array. */ 563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 564 ((uint8_t *) mtd_orig + orig_desc_size)) { 565 VERBOSE("%s: Invalid mtd structure.\n", __func__); 566 return false; 567 } 568 memcpy(&emad_array_out[i], emad_in, 569 sizeof(struct ffa_emad_v1_0)); 570 571 emad_in += mtd_orig->emad_size; 572 } 573 574 /* Place the mrd descriptors after the end of the emad descriptors. */ 575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 576 577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 578 emad_out_array_size; 579 580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 581 582 mrd_in_offset = mtd_orig->emad_offset + 583 (mtd_orig->emad_size * mtd_orig->emad_count); 584 585 /* Add the size of the composite memory region descriptor. */ 586 mrd_size += sizeof(struct ffa_comp_mrd); 587 588 /* Find the mrd descriptor. */ 589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 590 591 /* Add the size of the constituent memory region descriptors. */ 592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 593 594 /* 595 * Update the offset in the emads by the delta between the input and 596 * output addresses. 597 */ 598 emad_in = emad_array_in; 599 600 for (unsigned int i = 0U; i < out->emad_count; i++) { 601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 602 (mrd_out_offset - 603 mrd_in_offset); 604 emad_in += mtd_orig->emad_size; 605 } 606 607 /* Verify that we stay within bound of the memory descriptors. */ 608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 612 ERROR("%s: Invalid mrd structure.\n", __func__); 613 return false; 614 } 615 616 /* Copy the mrd descriptors directly. */ 617 memcpy(mrd_out, mrd_in, mrd_size); 618 619 return true; 620 } 621 622 /** 623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 624 * the v1.0 format and populates the 625 * provided buffer. 626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 628 * @buf_size: Size of the buffer to populate. 629 * @offset: The offset of the converted descriptor to copy. 630 * @copy_size: Will be populated with the number of bytes copied. 631 * @out_desc_size: Will be populated with the total size of the v1.0 632 * descriptor. 633 * 634 * Return: 0 if conversion and population succeeded. 635 * Note: This function invalidates the reference to @orig therefore 636 * `spmc_shmem_obj_lookup` must be called if further usage is required. 637 */ 638 static uint32_t 639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 640 size_t buf_size, size_t offset, 641 size_t *copy_size, size_t *v1_0_desc_size) 642 { 643 struct spmc_shmem_obj *v1_0_obj; 644 645 /* Calculate the size that the v1.0 descriptor will require. */ 646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 647 &orig_obj->desc, orig_obj->desc_size); 648 649 if (*v1_0_desc_size == 0) { 650 ERROR("%s: cannot determine size of descriptor.\n", 651 __func__); 652 return FFA_ERROR_INVALID_PARAMETER; 653 } 654 655 /* Get a new obj to store the v1.0 descriptor. */ 656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 657 *v1_0_desc_size); 658 659 if (!v1_0_obj) { 660 return FFA_ERROR_NO_MEMORY; 661 } 662 663 /* Perform the conversion from v1.1 to v1.0. */ 664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 666 return FFA_ERROR_INVALID_PARAMETER; 667 } 668 669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 671 672 /* 673 * We're finished with the v1.0 descriptor for now so free it. 674 * Note that this will invalidate any references to the v1.1 675 * descriptor. 676 */ 677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 678 679 return 0; 680 } 681 682 static int 683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 684 size_t fragment_length, size_t total_length) 685 { 686 unsigned long long emad_end; 687 unsigned long long emad_size; 688 unsigned long long emad_offset; 689 unsigned int min_desc_size; 690 691 /* Determine the appropriate minimum descriptor size. */ 692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 693 min_desc_size = sizeof(struct ffa_mtd_v1_0); 694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 695 min_desc_size = sizeof(struct ffa_mtd); 696 } else { 697 return FFA_ERROR_INVALID_PARAMETER; 698 } 699 if (fragment_length < min_desc_size) { 700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 701 min_desc_size); 702 return FFA_ERROR_INVALID_PARAMETER; 703 } 704 705 if (desc->emad_count == 0U) { 706 WARN("%s: unsupported attribute desc count %u.\n", 707 __func__, desc->emad_count); 708 return FFA_ERROR_INVALID_PARAMETER; 709 } 710 711 /* 712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 713 * format, otherwise assume it is a v1.1 format. 714 */ 715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 717 } else { 718 if (!is_aligned(desc->emad_offset, 16)) { 719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 720 __func__, desc->emad_offset); 721 return FFA_ERROR_INVALID_PARAMETER; 722 } 723 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 725 __func__, desc->emad_offset, 726 sizeof(struct ffa_mtd)); 727 return FFA_ERROR_INVALID_PARAMETER; 728 } 729 emad_offset = desc->emad_offset; 730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 732 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 733 return FFA_ERROR_INVALID_PARAMETER; 734 } 735 if (!is_aligned(desc->emad_size, 16)) { 736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 737 __func__, desc->emad_size); 738 return FFA_ERROR_INVALID_PARAMETER; 739 } 740 emad_size = desc->emad_size; 741 } 742 743 /* 744 * Overflow is impossible: the arithmetic happens in at least 64-bit 745 * precision, but all of the operands are bounded by UINT32_MAX, and 746 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 747 * = (2^64 - 1). 748 */ 749 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 750 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 751 (unsigned long long)sizeof(struct ffa_comp_mrd) + 752 (unsigned long long)emad_offset; 753 754 if (emad_end > total_length) { 755 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 756 __func__, emad_end, total_length); 757 return FFA_ERROR_INVALID_PARAMETER; 758 } 759 760 return 0; 761 } 762 763 static inline const struct ffa_emad_v1_0 * 764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset) 765 { 766 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset); 767 } 768 769 /** 770 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 771 * @obj: Object containing ffa_memory_region_descriptor. 772 * @ffa_version: FF-A version of the provided descriptor. 773 * 774 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if 775 * constituent_memory_region_descriptor offset or count is invalid. 776 */ 777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 778 uint32_t ffa_version) 779 { 780 unsigned long long total_page_count; 781 const struct ffa_emad_v1_0 *first_emad; 782 const struct ffa_emad_v1_0 *end_emad; 783 size_t emad_size; 784 uint32_t comp_mrd_offset; 785 size_t header_emad_size; 786 size_t size; 787 size_t count; 788 size_t expected_size; 789 const struct ffa_comp_mrd *comp; 790 791 if (obj->desc_filled != obj->desc_size) { 792 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 793 __func__, obj->desc_filled, obj->desc_size); 794 panic(); 795 } 796 797 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 798 obj->desc_filled, obj->desc_size)) { 799 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 800 __func__); 801 panic(); 802 } 803 804 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 805 ffa_version, &emad_size); 806 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size); 807 comp_mrd_offset = first_emad->comp_mrd_offset; 808 809 /* Loop through the endpoint descriptors, validating each of them. */ 810 for (const struct ffa_emad_v1_0 *emad = first_emad; emad < end_emad;) { 811 ffa_endpoint_id16_t ep_id; 812 813 /* 814 * If a partition ID resides in the secure world validate that 815 * the partition ID is for a known partition. Ignore any 816 * partition ID belonging to the normal world as it is assumed 817 * the Hypervisor will have validated these. 818 */ 819 ep_id = emad->mapd.endpoint_id; 820 if (ffa_is_secure_world_id(ep_id)) { 821 if (spmc_get_sp_ctx(ep_id) == NULL) { 822 WARN("%s: Invalid receiver id 0x%x\n", 823 __func__, ep_id); 824 return FFA_ERROR_INVALID_PARAMETER; 825 } 826 } 827 828 /* 829 * The offset provided to the composite memory region descriptor 830 * should be consistent across endpoint descriptors. 831 */ 832 if (comp_mrd_offset != emad->comp_mrd_offset) { 833 ERROR("%s: mismatching offsets provided, %u != %u\n", 834 __func__, emad->comp_mrd_offset, comp_mrd_offset); 835 return FFA_ERROR_INVALID_PARAMETER; 836 } 837 838 /* Advance to the next endpoint descriptor */ 839 emad = emad_advance(emad, emad_size); 840 841 /* 842 * Ensure neither this emad nor any subsequent emads have 843 * the same partition ID as the previous emad. 844 */ 845 for (const struct ffa_emad_v1_0 *other_emad = emad; 846 other_emad < end_emad; 847 other_emad = emad_advance(other_emad, emad_size)) { 848 if (ep_id == other_emad->mapd.endpoint_id) { 849 WARN("%s: Duplicated endpoint id 0x%x\n", 850 __func__, emad->mapd.endpoint_id); 851 return FFA_ERROR_INVALID_PARAMETER; 852 } 853 } 854 } 855 856 header_emad_size = (size_t)((const uint8_t *)end_emad - 857 (const uint8_t *)&obj->desc); 858 859 /* 860 * Check that the composite descriptor 861 * is after the endpoint descriptors. 862 */ 863 if (comp_mrd_offset < header_emad_size) { 864 WARN("%s: invalid object, offset %u < header + emad %zu\n", 865 __func__, comp_mrd_offset, header_emad_size); 866 return FFA_ERROR_INVALID_PARAMETER; 867 } 868 869 /* Ensure the composite descriptor offset is aligned. */ 870 if (!is_aligned(comp_mrd_offset, 16)) { 871 WARN("%s: invalid object, unaligned composite memory " 872 "region descriptor offset %u.\n", 873 __func__, comp_mrd_offset); 874 return FFA_ERROR_INVALID_PARAMETER; 875 } 876 877 size = obj->desc_size; 878 879 /* Check that the composite descriptor is in bounds. */ 880 if (comp_mrd_offset > size) { 881 WARN("%s: invalid object, offset %u > total size %zu\n", 882 __func__, comp_mrd_offset, obj->desc_size); 883 return FFA_ERROR_INVALID_PARAMETER; 884 } 885 size -= comp_mrd_offset; 886 887 /* Check that there is enough space for the composite descriptor. */ 888 if (size < sizeof(struct ffa_comp_mrd)) { 889 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 890 __func__, comp_mrd_offset, obj->desc_size); 891 return FFA_ERROR_INVALID_PARAMETER; 892 } 893 size -= sizeof(*comp); 894 895 count = size / sizeof(struct ffa_cons_mrd); 896 897 comp = (const struct ffa_comp_mrd *) 898 ((const uint8_t *)(&obj->desc) + comp_mrd_offset); 899 900 if (comp->address_range_count != count) { 901 WARN("%s: invalid object, desc count %u != %zu\n", 902 __func__, comp->address_range_count, count); 903 return FFA_ERROR_INVALID_PARAMETER; 904 } 905 906 /* Ensure that the expected and actual sizes are equal. */ 907 expected_size = comp_mrd_offset + sizeof(*comp) + 908 count * sizeof(struct ffa_cons_mrd); 909 910 if (expected_size != obj->desc_size) { 911 WARN("%s: invalid object, computed size %zu != size %zu\n", 912 __func__, expected_size, obj->desc_size); 913 return FFA_ERROR_INVALID_PARAMETER; 914 } 915 916 total_page_count = 0; 917 918 /* 919 * comp->address_range_count is 32-bit, so 'count' must fit in a 920 * uint32_t at this point. 921 */ 922 for (size_t i = 0; i < count; i++) { 923 const struct ffa_cons_mrd *mrd = comp->address_range_array + i; 924 925 if (!is_aligned(mrd->address, PAGE_SIZE)) { 926 WARN("%s: invalid object, address in region descriptor " 927 "%zu not 4K aligned (got 0x%016llx)", 928 __func__, i, (unsigned long long)mrd->address); 929 } 930 931 /* 932 * No overflow possible: total_page_count can hold at 933 * least 2^64 - 1, but will be have at most 2^32 - 1. 934 * values added to it, each of which cannot exceed 2^32 - 1. 935 */ 936 total_page_count += mrd->page_count; 937 } 938 939 if (comp->total_page_count != total_page_count) { 940 WARN("%s: invalid object, desc total_page_count %u != %llu\n", 941 __func__, comp->total_page_count, total_page_count); 942 return FFA_ERROR_INVALID_PARAMETER; 943 } 944 945 return 0; 946 } 947 948 /** 949 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 950 * regions that are currently involved with an 951 * existing memory transactions. This implies that 952 * the memory is not in a valid state for lending. 953 * @obj: Object containing ffa_memory_region_descriptor. 954 * 955 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory 956 * state. 957 */ 958 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 959 uint32_t ffa_version) 960 { 961 size_t obj_offset = 0; 962 struct spmc_shmem_obj *inflight_obj; 963 964 struct ffa_comp_mrd *other_mrd; 965 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 966 ffa_version); 967 968 if (requested_mrd == NULL) { 969 return FFA_ERROR_INVALID_PARAMETER; 970 } 971 972 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 973 &obj_offset); 974 975 while (inflight_obj != NULL) { 976 /* 977 * Don't compare the transaction to itself or to partially 978 * transmitted descriptors. 979 */ 980 if ((obj->desc.handle != inflight_obj->desc.handle) && 981 (obj->desc_size == obj->desc_filled)) { 982 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 983 FFA_VERSION_COMPILED); 984 if (other_mrd == NULL) { 985 return FFA_ERROR_INVALID_PARAMETER; 986 } 987 if (overlapping_memory_regions(requested_mrd, 988 other_mrd)) { 989 return FFA_ERROR_INVALID_PARAMETER; 990 } 991 } 992 993 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 994 &obj_offset); 995 } 996 return 0; 997 } 998 999 static long spmc_ffa_fill_desc(struct mailbox *mbox, 1000 struct spmc_shmem_obj *obj, 1001 uint32_t fragment_length, 1002 ffa_mtd_flag32_t mtd_flag, 1003 uint32_t ffa_version, 1004 void *smc_handle) 1005 { 1006 int ret; 1007 uint32_t handle_low; 1008 uint32_t handle_high; 1009 1010 if (mbox->rxtx_page_count == 0U) { 1011 WARN("%s: buffer pair not registered.\n", __func__); 1012 ret = FFA_ERROR_INVALID_PARAMETER; 1013 goto err_arg; 1014 } 1015 1016 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 1017 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 1018 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 1019 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 1020 ret = FFA_ERROR_INVALID_PARAMETER; 1021 goto err_arg; 1022 } 1023 1024 if (fragment_length > obj->desc_size - obj->desc_filled) { 1025 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 1026 fragment_length, obj->desc_size - obj->desc_filled); 1027 ret = FFA_ERROR_INVALID_PARAMETER; 1028 goto err_arg; 1029 } 1030 1031 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 1032 (uint8_t *) mbox->tx_buffer, fragment_length); 1033 1034 /* Ensure that the sender ID resides in the normal world. */ 1035 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1036 WARN("%s: Invalid sender ID 0x%x.\n", 1037 __func__, obj->desc.sender_id); 1038 ret = FFA_ERROR_DENIED; 1039 goto err_arg; 1040 } 1041 1042 /* Ensure the NS bit is set to 0. */ 1043 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1044 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1045 ret = FFA_ERROR_INVALID_PARAMETER; 1046 goto err_arg; 1047 } 1048 1049 /* 1050 * We don't currently support any optional flags so ensure none are 1051 * requested. 1052 */ 1053 if (obj->desc.flags != 0U && mtd_flag != 0U && 1054 (obj->desc.flags != mtd_flag)) { 1055 WARN("%s: invalid memory transaction flags %u != %u\n", 1056 __func__, obj->desc.flags, mtd_flag); 1057 ret = FFA_ERROR_INVALID_PARAMETER; 1058 goto err_arg; 1059 } 1060 1061 if (obj->desc_filled == 0U) { 1062 /* First fragment, descriptor header has been copied */ 1063 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1064 fragment_length, obj->desc_size); 1065 if (ret != 0) { 1066 goto err_bad_desc; 1067 } 1068 1069 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1070 obj->desc.flags |= mtd_flag; 1071 } 1072 1073 obj->desc_filled += fragment_length; 1074 1075 handle_low = (uint32_t)obj->desc.handle; 1076 handle_high = obj->desc.handle >> 32; 1077 1078 if (obj->desc_filled != obj->desc_size) { 1079 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1080 handle_high, obj->desc_filled, 1081 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1082 } 1083 1084 /* The full descriptor has been received, perform any final checks. */ 1085 1086 ret = spmc_shmem_check_obj(obj, ffa_version); 1087 if (ret != 0) { 1088 goto err_bad_desc; 1089 } 1090 1091 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1092 if (ret) { 1093 ERROR("%s: invalid memory region descriptor.\n", __func__); 1094 goto err_bad_desc; 1095 } 1096 1097 /* 1098 * Everything checks out, if the sender was using FF-A v1.0, convert 1099 * the descriptor format to use the v1.1 structures. 1100 */ 1101 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1102 struct spmc_shmem_obj *v1_1_obj; 1103 uint64_t mem_handle; 1104 1105 /* Calculate the size that the v1.1 descriptor will required. */ 1106 uint64_t v1_1_desc_size = 1107 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1108 obj->desc_size); 1109 1110 if (v1_1_desc_size > UINT32_MAX) { 1111 ret = FFA_ERROR_NO_MEMORY; 1112 goto err_arg; 1113 } 1114 1115 /* Get a new obj to store the v1.1 descriptor. */ 1116 v1_1_obj = 1117 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1118 1119 if (!v1_1_obj) { 1120 ret = FFA_ERROR_NO_MEMORY; 1121 goto err_arg; 1122 } 1123 1124 /* Perform the conversion from v1.0 to v1.1. */ 1125 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1126 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1127 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1128 ERROR("%s: Could not convert mtd!\n", __func__); 1129 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1130 goto err_arg; 1131 } 1132 1133 /* 1134 * We're finished with the v1.0 descriptor so free it 1135 * and continue our checks with the new v1.1 descriptor. 1136 */ 1137 mem_handle = obj->desc.handle; 1138 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1139 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1140 if (obj == NULL) { 1141 ERROR("%s: Failed to find converted descriptor.\n", 1142 __func__); 1143 ret = FFA_ERROR_INVALID_PARAMETER; 1144 return spmc_ffa_error_return(smc_handle, ret); 1145 } 1146 } 1147 1148 /* Allow for platform specific operations to be performed. */ 1149 ret = plat_spmc_shmem_begin(&obj->desc); 1150 if (ret != 0) { 1151 goto err_arg; 1152 } 1153 1154 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1155 0, 0, 0); 1156 1157 err_bad_desc: 1158 err_arg: 1159 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1160 return spmc_ffa_error_return(smc_handle, ret); 1161 } 1162 1163 /** 1164 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1165 * @client: Client state. 1166 * @total_length: Total length of shared memory descriptor. 1167 * @fragment_length: Length of fragment of shared memory descriptor passed in 1168 * this call. 1169 * @address: Not supported, must be 0. 1170 * @page_count: Not supported, must be 0. 1171 * @smc_handle: Handle passed to smc call. Used to return 1172 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1173 * 1174 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1175 * to share or lend memory from non-secure os to secure os (with no stream 1176 * endpoints). 1177 * 1178 * Return: 0 on success, error code on failure. 1179 */ 1180 long spmc_ffa_mem_send(uint32_t smc_fid, 1181 bool secure_origin, 1182 uint64_t total_length, 1183 uint32_t fragment_length, 1184 uint64_t address, 1185 uint32_t page_count, 1186 void *cookie, 1187 void *handle, 1188 uint64_t flags) 1189 1190 { 1191 long ret; 1192 struct spmc_shmem_obj *obj; 1193 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1194 ffa_mtd_flag32_t mtd_flag; 1195 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1196 size_t min_desc_size; 1197 1198 if (address != 0U || page_count != 0U) { 1199 WARN("%s: custom memory region for message not supported.\n", 1200 __func__); 1201 return spmc_ffa_error_return(handle, 1202 FFA_ERROR_INVALID_PARAMETER); 1203 } 1204 1205 if (secure_origin) { 1206 WARN("%s: unsupported share direction.\n", __func__); 1207 return spmc_ffa_error_return(handle, 1208 FFA_ERROR_INVALID_PARAMETER); 1209 } 1210 1211 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1212 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1213 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1214 min_desc_size = sizeof(struct ffa_mtd); 1215 } else { 1216 WARN("%s: bad FF-A version.\n", __func__); 1217 return spmc_ffa_error_return(handle, 1218 FFA_ERROR_INVALID_PARAMETER); 1219 } 1220 1221 /* Check if the descriptor is too small for the FF-A version. */ 1222 if (fragment_length < min_desc_size) { 1223 WARN("%s: bad first fragment size %u < %zu\n", 1224 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1225 return spmc_ffa_error_return(handle, 1226 FFA_ERROR_INVALID_PARAMETER); 1227 } 1228 1229 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1230 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1231 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1232 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1233 } else { 1234 WARN("%s: invalid memory management operation.\n", __func__); 1235 return spmc_ffa_error_return(handle, 1236 FFA_ERROR_INVALID_PARAMETER); 1237 } 1238 1239 spin_lock(&spmc_shmem_obj_state.lock); 1240 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1241 if (obj == NULL) { 1242 ret = FFA_ERROR_NO_MEMORY; 1243 goto err_unlock; 1244 } 1245 1246 spin_lock(&mbox->lock); 1247 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1248 ffa_version, handle); 1249 spin_unlock(&mbox->lock); 1250 1251 spin_unlock(&spmc_shmem_obj_state.lock); 1252 return ret; 1253 1254 err_unlock: 1255 spin_unlock(&spmc_shmem_obj_state.lock); 1256 return spmc_ffa_error_return(handle, ret); 1257 } 1258 1259 /** 1260 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1261 * @client: Client state. 1262 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1263 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1264 * @fragment_length: Length of fragments transmitted. 1265 * @sender_id: Vmid of sender in bits [31:16] 1266 * @smc_handle: Handle passed to smc call. Used to return 1267 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1268 * 1269 * Return: @smc_handle on success, error code on failure. 1270 */ 1271 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1272 bool secure_origin, 1273 uint64_t handle_low, 1274 uint64_t handle_high, 1275 uint32_t fragment_length, 1276 uint32_t sender_id, 1277 void *cookie, 1278 void *handle, 1279 uint64_t flags) 1280 { 1281 long ret; 1282 uint32_t desc_sender_id; 1283 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1284 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1285 1286 struct spmc_shmem_obj *obj; 1287 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1288 1289 spin_lock(&spmc_shmem_obj_state.lock); 1290 1291 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1292 if (obj == NULL) { 1293 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1294 __func__, mem_handle); 1295 ret = FFA_ERROR_INVALID_PARAMETER; 1296 goto err_unlock; 1297 } 1298 1299 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1300 if (sender_id != desc_sender_id) { 1301 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1302 sender_id, desc_sender_id); 1303 ret = FFA_ERROR_INVALID_PARAMETER; 1304 goto err_unlock; 1305 } 1306 1307 if (obj->desc_filled == obj->desc_size) { 1308 WARN("%s: object desc already filled, %zu\n", __func__, 1309 obj->desc_filled); 1310 ret = FFA_ERROR_INVALID_PARAMETER; 1311 goto err_unlock; 1312 } 1313 1314 spin_lock(&mbox->lock); 1315 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1316 handle); 1317 spin_unlock(&mbox->lock); 1318 1319 spin_unlock(&spmc_shmem_obj_state.lock); 1320 return ret; 1321 1322 err_unlock: 1323 spin_unlock(&spmc_shmem_obj_state.lock); 1324 return spmc_ffa_error_return(handle, ret); 1325 } 1326 1327 /** 1328 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1329 * if the caller implements a version greater 1330 * than FF-A 1.0 or if they have requested 1331 * the functionality. 1332 * TODO: We are assuming that the caller is 1333 * an SP. To support retrieval from the 1334 * normal world this function will need to be 1335 * expanded accordingly. 1336 * @resp: Descriptor populated in callers RX buffer. 1337 * @sp_ctx: Context of the calling SP. 1338 */ 1339 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1340 struct secure_partition_desc *sp_ctx) 1341 { 1342 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1343 sp_ctx->ns_bit_requested) { 1344 /* 1345 * Currently memory senders must reside in the normal 1346 * world, and we do not have the functionlaity to change 1347 * the state of memory dynamically. Therefore we can always set 1348 * the NS bit to 1. 1349 */ 1350 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1351 } 1352 } 1353 1354 /** 1355 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1356 * @smc_fid: FID of SMC 1357 * @total_length: Total length of retrieve request descriptor if this is 1358 * the first call. Otherwise (unsupported) must be 0. 1359 * @fragment_length: Length of fragment of retrieve request descriptor passed 1360 * in this call. Only @fragment_length == @length is 1361 * supported by this implementation. 1362 * @address: Not supported, must be 0. 1363 * @page_count: Not supported, must be 0. 1364 * @smc_handle: Handle passed to smc call. Used to return 1365 * FFA_MEM_RETRIEVE_RESP. 1366 * 1367 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1368 * Used by secure os to retrieve memory already shared by non-secure os. 1369 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1370 * the client must call FFA_MEM_FRAG_RX until the full response has been 1371 * received. 1372 * 1373 * Return: @handle on success, error code on failure. 1374 */ 1375 long 1376 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1377 bool secure_origin, 1378 uint32_t total_length, 1379 uint32_t fragment_length, 1380 uint64_t address, 1381 uint32_t page_count, 1382 void *cookie, 1383 void *handle, 1384 uint64_t flags) 1385 { 1386 int ret; 1387 size_t buf_size; 1388 size_t copy_size = 0; 1389 size_t min_desc_size; 1390 size_t out_desc_size = 0; 1391 1392 /* 1393 * Currently we are only accessing fields that are the same in both the 1394 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1395 * here. We only need validate against the appropriate struct size. 1396 */ 1397 struct ffa_mtd *resp; 1398 const struct ffa_mtd *req; 1399 struct spmc_shmem_obj *obj = NULL; 1400 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1401 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1402 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1403 1404 if (!secure_origin) { 1405 WARN("%s: unsupported retrieve req direction.\n", __func__); 1406 return spmc_ffa_error_return(handle, 1407 FFA_ERROR_INVALID_PARAMETER); 1408 } 1409 1410 if (address != 0U || page_count != 0U) { 1411 WARN("%s: custom memory region not supported.\n", __func__); 1412 return spmc_ffa_error_return(handle, 1413 FFA_ERROR_INVALID_PARAMETER); 1414 } 1415 1416 spin_lock(&mbox->lock); 1417 1418 req = mbox->tx_buffer; 1419 resp = mbox->rx_buffer; 1420 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1421 1422 if (mbox->rxtx_page_count == 0U) { 1423 WARN("%s: buffer pair not registered.\n", __func__); 1424 ret = FFA_ERROR_INVALID_PARAMETER; 1425 goto err_unlock_mailbox; 1426 } 1427 1428 if (mbox->state != MAILBOX_STATE_EMPTY) { 1429 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1430 ret = FFA_ERROR_DENIED; 1431 goto err_unlock_mailbox; 1432 } 1433 1434 if (fragment_length != total_length) { 1435 WARN("%s: fragmented retrieve request not supported.\n", 1436 __func__); 1437 ret = FFA_ERROR_INVALID_PARAMETER; 1438 goto err_unlock_mailbox; 1439 } 1440 1441 if (req->emad_count == 0U) { 1442 WARN("%s: unsupported attribute desc count %u.\n", 1443 __func__, obj->desc.emad_count); 1444 ret = FFA_ERROR_INVALID_PARAMETER; 1445 goto err_unlock_mailbox; 1446 } 1447 1448 /* Determine the appropriate minimum descriptor size. */ 1449 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1450 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1451 } else { 1452 min_desc_size = sizeof(struct ffa_mtd); 1453 } 1454 if (total_length < min_desc_size) { 1455 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1456 min_desc_size); 1457 ret = FFA_ERROR_INVALID_PARAMETER; 1458 goto err_unlock_mailbox; 1459 } 1460 1461 spin_lock(&spmc_shmem_obj_state.lock); 1462 1463 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1464 if (obj == NULL) { 1465 ret = FFA_ERROR_INVALID_PARAMETER; 1466 goto err_unlock_all; 1467 } 1468 1469 if (obj->desc_filled != obj->desc_size) { 1470 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1471 __func__, obj->desc_filled, obj->desc_size); 1472 ret = FFA_ERROR_INVALID_PARAMETER; 1473 goto err_unlock_all; 1474 } 1475 1476 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1477 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1478 __func__, req->sender_id, obj->desc.sender_id); 1479 ret = FFA_ERROR_INVALID_PARAMETER; 1480 goto err_unlock_all; 1481 } 1482 1483 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1484 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1485 __func__, req->tag, obj->desc.tag); 1486 ret = FFA_ERROR_INVALID_PARAMETER; 1487 goto err_unlock_all; 1488 } 1489 1490 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1491 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1492 __func__, req->emad_count, obj->desc.emad_count); 1493 ret = FFA_ERROR_INVALID_PARAMETER; 1494 goto err_unlock_all; 1495 } 1496 1497 /* Ensure the NS bit is set to 0 in the request. */ 1498 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1499 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1500 ret = FFA_ERROR_INVALID_PARAMETER; 1501 goto err_unlock_all; 1502 } 1503 1504 if (req->flags != 0U) { 1505 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1506 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1507 /* 1508 * If the retrieve request specifies the memory 1509 * transaction ensure it matches what we expect. 1510 */ 1511 WARN("%s: wrong mem transaction flags %x != %x\n", 1512 __func__, req->flags, obj->desc.flags); 1513 ret = FFA_ERROR_INVALID_PARAMETER; 1514 goto err_unlock_all; 1515 } 1516 1517 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1518 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1519 /* 1520 * Current implementation does not support donate and 1521 * it supports no other flags. 1522 */ 1523 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1524 ret = FFA_ERROR_INVALID_PARAMETER; 1525 goto err_unlock_all; 1526 } 1527 } 1528 1529 /* Validate the caller is a valid participant. */ 1530 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1531 WARN("%s: Invalid endpoint ID (0x%x).\n", 1532 __func__, sp_ctx->sp_id); 1533 ret = FFA_ERROR_INVALID_PARAMETER; 1534 goto err_unlock_all; 1535 } 1536 1537 /* Validate that the provided emad offset and structure is valid.*/ 1538 for (size_t i = 0; i < req->emad_count; i++) { 1539 size_t emad_size; 1540 struct ffa_emad_v1_0 *emad; 1541 1542 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1543 &emad_size); 1544 1545 if ((uintptr_t) emad >= (uintptr_t) 1546 ((uint8_t *) req + total_length)) { 1547 WARN("Invalid emad access.\n"); 1548 ret = FFA_ERROR_INVALID_PARAMETER; 1549 goto err_unlock_all; 1550 } 1551 } 1552 1553 /* 1554 * Validate all the endpoints match in the case of multiple 1555 * borrowers. We don't mandate that the order of the borrowers 1556 * must match in the descriptors therefore check to see if the 1557 * endpoints match in any order. 1558 */ 1559 for (size_t i = 0; i < req->emad_count; i++) { 1560 bool found = false; 1561 size_t emad_size; 1562 struct ffa_emad_v1_0 *emad; 1563 struct ffa_emad_v1_0 *other_emad; 1564 1565 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1566 &emad_size); 1567 1568 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1569 other_emad = spmc_shmem_obj_get_emad( 1570 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1571 &emad_size); 1572 1573 if (req->emad_count && 1574 emad->mapd.endpoint_id == 1575 other_emad->mapd.endpoint_id) { 1576 found = true; 1577 break; 1578 } 1579 } 1580 1581 if (!found) { 1582 WARN("%s: invalid receiver id (0x%x).\n", 1583 __func__, emad->mapd.endpoint_id); 1584 ret = FFA_ERROR_INVALID_PARAMETER; 1585 goto err_unlock_all; 1586 } 1587 } 1588 1589 mbox->state = MAILBOX_STATE_FULL; 1590 1591 if (req->emad_count != 0U) { 1592 obj->in_use++; 1593 } 1594 1595 /* 1596 * If the caller is v1.0 convert the descriptor, otherwise copy 1597 * directly. 1598 */ 1599 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1600 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1601 ©_size, 1602 &out_desc_size); 1603 if (ret != 0U) { 1604 ERROR("%s: Failed to process descriptor.\n", __func__); 1605 goto err_unlock_all; 1606 } 1607 } else { 1608 copy_size = MIN(obj->desc_size, buf_size); 1609 out_desc_size = obj->desc_size; 1610 1611 memcpy(resp, &obj->desc, copy_size); 1612 } 1613 1614 /* Set the NS bit in the response if applicable. */ 1615 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1616 1617 spin_unlock(&spmc_shmem_obj_state.lock); 1618 spin_unlock(&mbox->lock); 1619 1620 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1621 copy_size, 0, 0, 0, 0, 0); 1622 1623 err_unlock_all: 1624 spin_unlock(&spmc_shmem_obj_state.lock); 1625 err_unlock_mailbox: 1626 spin_unlock(&mbox->lock); 1627 return spmc_ffa_error_return(handle, ret); 1628 } 1629 1630 /** 1631 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1632 * @client: Client state. 1633 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1634 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1635 * @fragment_offset: Byte offset in descriptor to resume at. 1636 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1637 * hypervisor. 0 otherwise. 1638 * @smc_handle: Handle passed to smc call. Used to return 1639 * FFA_MEM_FRAG_TX. 1640 * 1641 * Return: @smc_handle on success, error code on failure. 1642 */ 1643 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1644 bool secure_origin, 1645 uint32_t handle_low, 1646 uint32_t handle_high, 1647 uint32_t fragment_offset, 1648 uint32_t sender_id, 1649 void *cookie, 1650 void *handle, 1651 uint64_t flags) 1652 { 1653 int ret; 1654 void *src; 1655 size_t buf_size; 1656 size_t copy_size; 1657 size_t full_copy_size; 1658 uint32_t desc_sender_id; 1659 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1660 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1661 struct spmc_shmem_obj *obj; 1662 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1663 1664 if (!secure_origin) { 1665 WARN("%s: can only be called from swld.\n", 1666 __func__); 1667 return spmc_ffa_error_return(handle, 1668 FFA_ERROR_INVALID_PARAMETER); 1669 } 1670 1671 spin_lock(&spmc_shmem_obj_state.lock); 1672 1673 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1674 if (obj == NULL) { 1675 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1676 __func__, mem_handle); 1677 ret = FFA_ERROR_INVALID_PARAMETER; 1678 goto err_unlock_shmem; 1679 } 1680 1681 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1682 if (sender_id != 0U && sender_id != desc_sender_id) { 1683 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1684 sender_id, desc_sender_id); 1685 ret = FFA_ERROR_INVALID_PARAMETER; 1686 goto err_unlock_shmem; 1687 } 1688 1689 if (fragment_offset >= obj->desc_size) { 1690 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1691 __func__, fragment_offset, obj->desc_size); 1692 ret = FFA_ERROR_INVALID_PARAMETER; 1693 goto err_unlock_shmem; 1694 } 1695 1696 spin_lock(&mbox->lock); 1697 1698 if (mbox->rxtx_page_count == 0U) { 1699 WARN("%s: buffer pair not registered.\n", __func__); 1700 ret = FFA_ERROR_INVALID_PARAMETER; 1701 goto err_unlock_all; 1702 } 1703 1704 if (mbox->state != MAILBOX_STATE_EMPTY) { 1705 WARN("%s: RX Buffer is full!\n", __func__); 1706 ret = FFA_ERROR_DENIED; 1707 goto err_unlock_all; 1708 } 1709 1710 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1711 1712 mbox->state = MAILBOX_STATE_FULL; 1713 1714 /* 1715 * If the caller is v1.0 convert the descriptor, otherwise copy 1716 * directly. 1717 */ 1718 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1719 size_t out_desc_size; 1720 1721 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1722 buf_size, 1723 fragment_offset, 1724 ©_size, 1725 &out_desc_size); 1726 if (ret != 0U) { 1727 ERROR("%s: Failed to process descriptor.\n", __func__); 1728 goto err_unlock_all; 1729 } 1730 } else { 1731 full_copy_size = obj->desc_size - fragment_offset; 1732 copy_size = MIN(full_copy_size, buf_size); 1733 1734 src = &obj->desc; 1735 1736 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1737 } 1738 1739 spin_unlock(&mbox->lock); 1740 spin_unlock(&spmc_shmem_obj_state.lock); 1741 1742 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1743 copy_size, sender_id, 0, 0, 0); 1744 1745 err_unlock_all: 1746 spin_unlock(&mbox->lock); 1747 err_unlock_shmem: 1748 spin_unlock(&spmc_shmem_obj_state.lock); 1749 return spmc_ffa_error_return(handle, ret); 1750 } 1751 1752 /** 1753 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1754 * @client: Client state. 1755 * 1756 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1757 * Used by secure os release previously shared memory to non-secure os. 1758 * 1759 * The handle to release must be in the client's (secure os's) transmit buffer. 1760 * 1761 * Return: 0 on success, error code on failure. 1762 */ 1763 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1764 bool secure_origin, 1765 uint32_t handle_low, 1766 uint32_t handle_high, 1767 uint32_t fragment_offset, 1768 uint32_t sender_id, 1769 void *cookie, 1770 void *handle, 1771 uint64_t flags) 1772 { 1773 int ret; 1774 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1775 struct spmc_shmem_obj *obj; 1776 const struct ffa_mem_relinquish_descriptor *req; 1777 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1778 1779 if (!secure_origin) { 1780 WARN("%s: unsupported relinquish direction.\n", __func__); 1781 return spmc_ffa_error_return(handle, 1782 FFA_ERROR_INVALID_PARAMETER); 1783 } 1784 1785 spin_lock(&mbox->lock); 1786 1787 if (mbox->rxtx_page_count == 0U) { 1788 WARN("%s: buffer pair not registered.\n", __func__); 1789 ret = FFA_ERROR_INVALID_PARAMETER; 1790 goto err_unlock_mailbox; 1791 } 1792 1793 req = mbox->tx_buffer; 1794 1795 if (req->flags != 0U) { 1796 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1797 ret = FFA_ERROR_INVALID_PARAMETER; 1798 goto err_unlock_mailbox; 1799 } 1800 1801 if (req->endpoint_count == 0) { 1802 WARN("%s: endpoint count cannot be 0.\n", __func__); 1803 ret = FFA_ERROR_INVALID_PARAMETER; 1804 goto err_unlock_mailbox; 1805 } 1806 1807 spin_lock(&spmc_shmem_obj_state.lock); 1808 1809 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1810 if (obj == NULL) { 1811 ret = FFA_ERROR_INVALID_PARAMETER; 1812 goto err_unlock_all; 1813 } 1814 1815 /* 1816 * Validate the endpoint ID was populated correctly. We don't currently 1817 * support proxy endpoints so the endpoint count should always be 1. 1818 */ 1819 if (req->endpoint_count != 1U) { 1820 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1821 req->endpoint_count); 1822 ret = FFA_ERROR_INVALID_PARAMETER; 1823 goto err_unlock_all; 1824 } 1825 1826 /* Validate provided endpoint ID matches the partition ID. */ 1827 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1828 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1829 req->endpoint_array[0], sp_ctx->sp_id); 1830 ret = FFA_ERROR_INVALID_PARAMETER; 1831 goto err_unlock_all; 1832 } 1833 1834 /* Validate the caller is a valid participant. */ 1835 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1836 WARN("%s: Invalid endpoint ID (0x%x).\n", 1837 __func__, req->endpoint_array[0]); 1838 ret = FFA_ERROR_INVALID_PARAMETER; 1839 goto err_unlock_all; 1840 } 1841 1842 if (obj->in_use == 0U) { 1843 ret = FFA_ERROR_INVALID_PARAMETER; 1844 goto err_unlock_all; 1845 } 1846 obj->in_use--; 1847 1848 spin_unlock(&spmc_shmem_obj_state.lock); 1849 spin_unlock(&mbox->lock); 1850 1851 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1852 1853 err_unlock_all: 1854 spin_unlock(&spmc_shmem_obj_state.lock); 1855 err_unlock_mailbox: 1856 spin_unlock(&mbox->lock); 1857 return spmc_ffa_error_return(handle, ret); 1858 } 1859 1860 /** 1861 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1862 * @client: Client state. 1863 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1864 * @handle_high: Unique handle of shared memory object to reclaim. 1865 * Bit[63:32]. 1866 * @flags: Unsupported, ignored. 1867 * 1868 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1869 * Used by non-secure os reclaim memory previously shared with secure os. 1870 * 1871 * Return: 0 on success, error code on failure. 1872 */ 1873 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1874 bool secure_origin, 1875 uint32_t handle_low, 1876 uint32_t handle_high, 1877 uint32_t mem_flags, 1878 uint64_t x4, 1879 void *cookie, 1880 void *handle, 1881 uint64_t flags) 1882 { 1883 int ret; 1884 struct spmc_shmem_obj *obj; 1885 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1886 1887 if (secure_origin) { 1888 WARN("%s: unsupported reclaim direction.\n", __func__); 1889 return spmc_ffa_error_return(handle, 1890 FFA_ERROR_INVALID_PARAMETER); 1891 } 1892 1893 if (mem_flags != 0U) { 1894 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1895 return spmc_ffa_error_return(handle, 1896 FFA_ERROR_INVALID_PARAMETER); 1897 } 1898 1899 spin_lock(&spmc_shmem_obj_state.lock); 1900 1901 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1902 if (obj == NULL) { 1903 ret = FFA_ERROR_INVALID_PARAMETER; 1904 goto err_unlock; 1905 } 1906 if (obj->in_use != 0U) { 1907 ret = FFA_ERROR_DENIED; 1908 goto err_unlock; 1909 } 1910 1911 if (obj->desc_filled != obj->desc_size) { 1912 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1913 __func__, obj->desc_filled, obj->desc_size); 1914 ret = FFA_ERROR_INVALID_PARAMETER; 1915 goto err_unlock; 1916 } 1917 1918 /* Allow for platform specific operations to be performed. */ 1919 ret = plat_spmc_shmem_reclaim(&obj->desc); 1920 if (ret != 0) { 1921 goto err_unlock; 1922 } 1923 1924 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1925 spin_unlock(&spmc_shmem_obj_state.lock); 1926 1927 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1928 1929 err_unlock: 1930 spin_unlock(&spmc_shmem_obj_state.lock); 1931 return spmc_ffa_error_return(handle, ret); 1932 } 1933