xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 7e804f9695c48681c91e9e6fc6175eb6997df867)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 
9 #include <common/debug.h>
10 #include <common/runtime_svc.h>
11 #include <lib/object_pool.h>
12 #include <lib/spinlock.h>
13 #include <lib/xlat_tables/xlat_tables_v2.h>
14 #include <services/ffa_svc.h>
15 #include "spmc.h"
16 #include "spmc_shared_mem.h"
17 
18 #include <platform_def.h>
19 
20 /**
21  * struct spmc_shmem_obj - Shared memory object.
22  * @desc_size:      Size of @desc.
23  * @desc_filled:    Size of @desc already received.
24  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
25  *                  without a matching ffa_mem_relinquish call.
26  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
27  */
28 struct spmc_shmem_obj {
29 	size_t desc_size;
30 	size_t desc_filled;
31 	size_t in_use;
32 	struct ffa_mtd desc;
33 };
34 
35 /*
36  * Declare our data structure to store the metadata of memory share requests.
37  * The main datastore is allocated on a per platform basis to ensure enough
38  * storage can be made available.
39  * The address of the data store will be populated by the SPMC during its
40  * initialization.
41  */
42 
43 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
44 	/* Set start value for handle so top 32 bits are needed quickly. */
45 	.next_handle = 0xffffffc0U,
46 };
47 
48 /**
49  * spmc_shmem_obj_size - Convert from descriptor size to object size.
50  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
51  *
52  * Return: Size of struct spmc_shmem_obj object.
53  */
54 static size_t spmc_shmem_obj_size(size_t desc_size)
55 {
56 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
57 }
58 
59 /**
60  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
61  * @state:      Global state.
62  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
63  *              allocated object will hold.
64  *
65  * Return: Pointer to newly allocated object, or %NULL if there not enough space
66  *         left. The returned pointer is only valid while @state is locked, to
67  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
68  *         called.
69  */
70 static struct spmc_shmem_obj *
71 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
72 {
73 	struct spmc_shmem_obj *obj;
74 	size_t free = state->data_size - state->allocated;
75 
76 	if (state->data == NULL) {
77 		ERROR("Missing shmem datastore!\n");
78 		return NULL;
79 	}
80 
81 	if (spmc_shmem_obj_size(desc_size) > free) {
82 		WARN("%s(0x%zx) failed, free 0x%zx\n",
83 		     __func__, desc_size, free);
84 		return NULL;
85 	}
86 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
87 	obj->desc = (struct ffa_mtd) {0};
88 	obj->desc_size = desc_size;
89 	obj->desc_filled = 0;
90 	obj->in_use = 0;
91 	state->allocated += spmc_shmem_obj_size(desc_size);
92 	return obj;
93 }
94 
95 /**
96  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
97  * @state:      Global state.
98  * @obj:        Object to free.
99  *
100  * Release memory used by @obj. Other objects may move, so on return all
101  * pointers to struct spmc_shmem_obj object should be considered invalid, not
102  * just @obj.
103  *
104  * The current implementation always compacts the remaining objects to simplify
105  * the allocator and to avoid fragmentation.
106  */
107 
108 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
109 				  struct spmc_shmem_obj *obj)
110 {
111 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
112 	uint8_t *shift_dest = (uint8_t *)obj;
113 	uint8_t *shift_src = shift_dest + free_size;
114 	size_t shift_size = state->allocated - (shift_src - state->data);
115 
116 	if (shift_size != 0U) {
117 		memmove(shift_dest, shift_src, shift_size);
118 	}
119 	state->allocated -= free_size;
120 }
121 
122 /**
123  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
124  * @state:      Global state.
125  * @handle:     Unique handle of object to return.
126  *
127  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
128  *         %NULL, if not object in @state->data has a matching handle.
129  */
130 static struct spmc_shmem_obj *
131 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
132 {
133 	uint8_t *curr = state->data;
134 
135 	while (curr - state->data < state->allocated) {
136 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
137 
138 		if (obj->desc.handle == handle) {
139 			return obj;
140 		}
141 		curr += spmc_shmem_obj_size(obj->desc_size);
142 	}
143 	return NULL;
144 }
145 
146 /**
147  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
148  * @offset:     Offset used to track which objects have previously been
149  *              returned.
150  *
151  * Return: the next struct spmc_shmem_obj_state object from the provided
152  *	   offset.
153  *	   %NULL, if there are no more objects.
154  */
155 static struct spmc_shmem_obj *
156 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
157 {
158 	uint8_t *curr = state->data + *offset;
159 
160 	if (curr - state->data < state->allocated) {
161 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
162 
163 		*offset += spmc_shmem_obj_size(obj->desc_size);
164 
165 		return obj;
166 	}
167 	return NULL;
168 }
169 
170 /*******************************************************************************
171  * FF-A memory descriptor helper functions.
172  ******************************************************************************/
173 /**
174  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
175  *                           clients FF-A version.
176  * @desc:         The memory transaction descriptor.
177  * @index:        The index of the emad element to be accessed.
178  * @ffa_version:  FF-A version of the provided structure.
179  * @emad_size:    Will be populated with the size of the returned emad
180  *                descriptor.
181  * Return: A pointer to the requested emad structure.
182  */
183 static void *
184 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
185 			uint32_t ffa_version, size_t *emad_size)
186 {
187 	uint8_t *emad;
188 	/*
189 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
190 	 * format, otherwise assume it is a v1.1 format.
191 	 */
192 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
193 		/* Cast our descriptor to the v1.0 format. */
194 		struct ffa_mtd_v1_0 *mtd_v1_0 =
195 					(struct ffa_mtd_v1_0 *) desc;
196 		emad = (uint8_t *)  &(mtd_v1_0->emad);
197 		*emad_size = sizeof(struct ffa_emad_v1_0);
198 	} else {
199 		if (!is_aligned(desc->emad_offset, 16)) {
200 			WARN("Emad offset is not aligned.\n");
201 			return NULL;
202 		}
203 		emad = ((uint8_t *) desc + desc->emad_offset);
204 		*emad_size = desc->emad_size;
205 	}
206 	return (emad + (*emad_size * index));
207 }
208 
209 /**
210  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
211  *				 FF-A version of the descriptor.
212  * @obj:    Object containing ffa_memory_region_descriptor.
213  *
214  * Return: struct ffa_comp_mrd object corresponding to the composite memory
215  *	   region descriptor.
216  */
217 static struct ffa_comp_mrd *
218 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
219 {
220 	size_t emad_size;
221 	/*
222 	 * The comp_mrd_offset field of the emad descriptor remains consistent
223 	 * between FF-A versions therefore we can use the v1.0 descriptor here
224 	 * in all cases.
225 	 */
226 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
227 							     ffa_version,
228 							     &emad_size);
229 	/* Ensure the emad array was found. */
230 	if (emad == NULL) {
231 		return NULL;
232 	}
233 
234 	/* Ensure the composite descriptor offset is aligned. */
235 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
236 		WARN("Unaligned composite memory region descriptor offset.\n");
237 		return NULL;
238 	}
239 
240 	return (struct ffa_comp_mrd *)
241 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
242 }
243 
244 /**
245  * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
246  * @obj:    Object containing ffa_memory_region_descriptor.
247  *
248  * Return: Size of ffa_constituent_memory_region_descriptors in @obj.
249  */
250 static size_t
251 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
252 				    uint32_t ffa_version)
253 {
254 	struct ffa_comp_mrd *comp_mrd;
255 
256 	comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
257 	if (comp_mrd == NULL) {
258 		return 0;
259 	}
260 	return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
261 }
262 
263 /*
264  * Compare two memory regions to determine if any range overlaps with another
265  * ongoing memory transaction.
266  */
267 static bool
268 overlapping_memory_regions(struct ffa_comp_mrd *region1,
269 			   struct ffa_comp_mrd *region2)
270 {
271 	uint64_t region1_start;
272 	uint64_t region1_size;
273 	uint64_t region1_end;
274 	uint64_t region2_start;
275 	uint64_t region2_size;
276 	uint64_t region2_end;
277 
278 	assert(region1 != NULL);
279 	assert(region2 != NULL);
280 
281 	if (region1 == region2) {
282 		return true;
283 	}
284 
285 	/*
286 	 * Check each memory region in the request against existing
287 	 * transactions.
288 	 */
289 	for (size_t i = 0; i < region1->address_range_count; i++) {
290 
291 		region1_start = region1->address_range_array[i].address;
292 		region1_size =
293 			region1->address_range_array[i].page_count *
294 			PAGE_SIZE_4KB;
295 		region1_end = region1_start + region1_size;
296 
297 		for (size_t j = 0; j < region2->address_range_count; j++) {
298 
299 			region2_start = region2->address_range_array[j].address;
300 			region2_size =
301 				region2->address_range_array[j].page_count *
302 				PAGE_SIZE_4KB;
303 			region2_end = region2_start + region2_size;
304 
305 			if ((region1_start >= region2_start &&
306 			     region1_start < region2_end) ||
307 			    (region1_end >= region2_start
308 			     && region1_end < region2_end)) {
309 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
310 				     region1_start, region1_end,
311 				     region2_start, region2_end);
312 				return true;
313 			}
314 		}
315 	}
316 	return false;
317 }
318 
319 /*******************************************************************************
320  * FF-A v1.0 Memory Descriptor Conversion Helpers.
321  ******************************************************************************/
322 /**
323  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
324  *                                     converted descriptor.
325  * @orig:       The original v1.0 memory transaction descriptor.
326  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
327  *
328  * Return: the size required to store the descriptor store in the v1.1 format.
329  */
330 static size_t
331 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
332 {
333 	size_t size = 0;
334 	struct ffa_comp_mrd *mrd;
335 	struct ffa_emad_v1_0 *emad_array = orig->emad;
336 
337 	/* Get the size of the v1.1 descriptor. */
338 	size += sizeof(struct ffa_mtd);
339 
340 	/* Add the size of the emad descriptors. */
341 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
342 
343 	/* Add the size of the composite mrds. */
344 	size += sizeof(struct ffa_comp_mrd);
345 
346 	/* Add the size of the constituent mrds. */
347 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
348 	      emad_array[0].comp_mrd_offset);
349 
350 	/* Check the calculated address is within the memory descriptor. */
351 	if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) {
352 		return 0;
353 	}
354 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
355 
356 	return size;
357 }
358 
359 /**
360  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
361  *                                     converted descriptor.
362  * @orig:       The original v1.1 memory transaction descriptor.
363  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
364  *
365  * Return: the size required to store the descriptor store in the v1.0 format.
366  */
367 static size_t
368 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
369 {
370 	size_t size = 0;
371 	struct ffa_comp_mrd *mrd;
372 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
373 					   ((uint8_t *) orig +
374 					    orig->emad_offset);
375 
376 	/* Get the size of the v1.0 descriptor. */
377 	size += sizeof(struct ffa_mtd_v1_0);
378 
379 	/* Add the size of the v1.0 emad descriptors. */
380 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
381 
382 	/* Add the size of the composite mrds. */
383 	size += sizeof(struct ffa_comp_mrd);
384 
385 	/* Add the size of the constituent mrds. */
386 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
387 	      emad_array[0].comp_mrd_offset);
388 
389 	/* Check the calculated address is within the memory descriptor. */
390 	if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) {
391 		return 0;
392 	}
393 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
394 
395 	return size;
396 }
397 
398 /**
399  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
400  * @out_obj:	The shared memory object to populate the converted descriptor.
401  * @orig:	The shared memory object containing the v1.0 descriptor.
402  *
403  * Return: true if the conversion is successful else false.
404  */
405 static bool
406 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
407 				     struct spmc_shmem_obj *orig)
408 {
409 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
410 	struct ffa_mtd *out = &out_obj->desc;
411 	struct ffa_emad_v1_0 *emad_array_in;
412 	struct ffa_emad_v1_0 *emad_array_out;
413 	struct ffa_comp_mrd *mrd_in;
414 	struct ffa_comp_mrd *mrd_out;
415 
416 	size_t mrd_in_offset;
417 	size_t mrd_out_offset;
418 	size_t mrd_size = 0;
419 
420 	/* Populate the new descriptor format from the v1.0 struct. */
421 	out->sender_id = mtd_orig->sender_id;
422 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
423 	out->flags = mtd_orig->flags;
424 	out->handle = mtd_orig->handle;
425 	out->tag = mtd_orig->tag;
426 	out->emad_count = mtd_orig->emad_count;
427 	out->emad_size = sizeof(struct ffa_emad_v1_0);
428 
429 	/*
430 	 * We will locate the emad descriptors directly after the ffa_mtd
431 	 * struct. This will be 8-byte aligned.
432 	 */
433 	out->emad_offset = sizeof(struct ffa_mtd);
434 
435 	emad_array_in = mtd_orig->emad;
436 	emad_array_out = (struct ffa_emad_v1_0 *)
437 			 ((uint8_t *) out + out->emad_offset);
438 
439 	/* Copy across the emad structs. */
440 	for (unsigned int i = 0U; i < out->emad_count; i++) {
441 		memcpy(&emad_array_out[i], &emad_array_in[i],
442 		       sizeof(struct ffa_emad_v1_0));
443 	}
444 
445 	/* Place the mrd descriptors after the end of the emad descriptors.*/
446 	mrd_in_offset = emad_array_in->comp_mrd_offset;
447 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
448 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
449 
450 	/* Add the size of the composite memory region descriptor. */
451 	mrd_size += sizeof(struct ffa_comp_mrd);
452 
453 	/* Find the mrd descriptor. */
454 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
455 
456 	/* Add the size of the constituent memory region descriptors. */
457 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
458 
459 	/*
460 	 * Update the offset in the emads by the delta between the input and
461 	 * output addresses.
462 	 */
463 	for (unsigned int i = 0U; i < out->emad_count; i++) {
464 		emad_array_out[i].comp_mrd_offset =
465 			emad_array_in[i].comp_mrd_offset +
466 			(mrd_out_offset - mrd_in_offset);
467 	}
468 
469 	/* Verify that we stay within bound of the memory descriptors. */
470 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
471 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
472 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
473 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
474 		ERROR("%s: Invalid mrd structure.\n", __func__);
475 		return false;
476 	}
477 
478 	/* Copy the mrd descriptors directly. */
479 	memcpy(mrd_out, mrd_in, mrd_size);
480 
481 	return true;
482 }
483 
484 /**
485  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
486  *                                v1.0 memory object.
487  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
488  * @orig:       The shared memory object containing the v1.1 descriptor.
489  *
490  * Return: true if the conversion is successful else false.
491  */
492 static bool
493 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
494 			     struct spmc_shmem_obj *orig)
495 {
496 	struct ffa_mtd *mtd_orig = &orig->desc;
497 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
498 	struct ffa_emad_v1_0 *emad_in;
499 	struct ffa_emad_v1_0 *emad_array_in;
500 	struct ffa_emad_v1_0 *emad_array_out;
501 	struct ffa_comp_mrd *mrd_in;
502 	struct ffa_comp_mrd *mrd_out;
503 
504 	size_t mrd_in_offset;
505 	size_t mrd_out_offset;
506 	size_t emad_out_array_size;
507 	size_t mrd_size = 0;
508 
509 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
510 	out->sender_id = mtd_orig->sender_id;
511 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
512 	out->flags = mtd_orig->flags;
513 	out->handle = mtd_orig->handle;
514 	out->tag = mtd_orig->tag;
515 	out->emad_count = mtd_orig->emad_count;
516 
517 	/* Determine the location of the emad array in both descriptors. */
518 	emad_array_in = (struct ffa_emad_v1_0 *)
519 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
520 	emad_array_out = out->emad;
521 
522 	/* Copy across the emad structs. */
523 	emad_in = emad_array_in;
524 	for (unsigned int i = 0U; i < out->emad_count; i++) {
525 		memcpy(&emad_array_out[i], emad_in,
526 		       sizeof(struct ffa_emad_v1_0));
527 
528 		emad_in +=  mtd_orig->emad_size;
529 	}
530 
531 	/* Place the mrd descriptors after the end of the emad descriptors. */
532 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
533 
534 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
535 			  emad_out_array_size;
536 
537 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
538 
539 	mrd_in_offset = mtd_orig->emad_offset +
540 			(mtd_orig->emad_size * mtd_orig->emad_count);
541 
542 	/* Add the size of the composite memory region descriptor. */
543 	mrd_size += sizeof(struct ffa_comp_mrd);
544 
545 	/* Find the mrd descriptor. */
546 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
547 
548 	/* Add the size of the constituent memory region descriptors. */
549 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
550 
551 	/*
552 	 * Update the offset in the emads by the delta between the input and
553 	 * output addresses.
554 	 */
555 	emad_in = emad_array_in;
556 
557 	for (unsigned int i = 0U; i < out->emad_count; i++) {
558 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
559 						    (mrd_out_offset -
560 						     mrd_in_offset);
561 		emad_in +=  mtd_orig->emad_size;
562 	}
563 
564 	/* Verify that we stay within bound of the memory descriptors. */
565 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
566 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
567 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
568 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
569 		ERROR("%s: Invalid mrd structure.\n", __func__);
570 		return false;
571 	}
572 
573 	/* Copy the mrd descriptors directly. */
574 	memcpy(mrd_out, mrd_in, mrd_size);
575 
576 	return true;
577 }
578 
579 /**
580  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
581  *                                     the v1.0 format and populates the
582  *                                     provided buffer.
583  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
584  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
585  * @buf_size:	    Size of the buffer to populate.
586  * @offset:	    The offset of the converted descriptor to copy.
587  * @copy_size:	    Will be populated with the number of bytes copied.
588  * @out_desc_size:  Will be populated with the total size of the v1.0
589  *                  descriptor.
590  *
591  * Return: 0 if conversion and population succeeded.
592  * Note: This function invalidates the reference to @orig therefore
593  * `spmc_shmem_obj_lookup` must be called if further usage is required.
594  */
595 static uint32_t
596 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
597 				 size_t buf_size, size_t offset,
598 				 size_t *copy_size, size_t *v1_0_desc_size)
599 {
600 		struct spmc_shmem_obj *v1_0_obj;
601 
602 		/* Calculate the size that the v1.0 descriptor will require. */
603 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
604 					&orig_obj->desc, orig_obj->desc_size);
605 
606 		if (*v1_0_desc_size == 0) {
607 			ERROR("%s: cannot determine size of descriptor.\n",
608 			      __func__);
609 			return FFA_ERROR_INVALID_PARAMETER;
610 		}
611 
612 		/* Get a new obj to store the v1.0 descriptor. */
613 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
614 						*v1_0_desc_size);
615 
616 		if (!v1_0_obj) {
617 			return FFA_ERROR_NO_MEMORY;
618 		}
619 
620 		/* Perform the conversion from v1.1 to v1.0. */
621 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
622 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
623 			return FFA_ERROR_INVALID_PARAMETER;
624 		}
625 
626 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
627 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
628 
629 		/*
630 		 * We're finished with the v1.0 descriptor for now so free it.
631 		 * Note that this will invalidate any references to the v1.1
632 		 * descriptor.
633 		 */
634 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
635 
636 		return 0;
637 }
638 
639 /**
640  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
641  * @obj:	  Object containing ffa_memory_region_descriptor.
642  * @ffa_version:  FF-A version of the provided descriptor.
643  *
644  * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
645  * offset or count is invalid.
646  */
647 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
648 				uint32_t ffa_version)
649 {
650 	uint32_t comp_mrd_offset = 0;
651 
652 	if (obj->desc.emad_count == 0U) {
653 		WARN("%s: unsupported attribute desc count %u.\n",
654 		     __func__, obj->desc.emad_count);
655 		return -EINVAL;
656 	}
657 
658 	for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
659 		size_t size;
660 		size_t count;
661 		size_t expected_size;
662 		size_t total_page_count;
663 		size_t emad_size;
664 		size_t desc_size;
665 		size_t header_emad_size;
666 		uint32_t offset;
667 		struct ffa_comp_mrd *comp;
668 		struct ffa_emad_v1_0 *emad;
669 
670 		emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
671 					       ffa_version, &emad_size);
672 		if (emad == NULL) {
673 			WARN("%s: invalid emad structure.\n", __func__);
674 			return -EINVAL;
675 		}
676 
677 		/*
678 		 * Validate the calculated emad address resides within the
679 		 * descriptor.
680 		 */
681 		if ((uintptr_t) emad >=
682 		    (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
683 			WARN("Invalid emad access.\n");
684 			return -EINVAL;
685 		}
686 
687 		offset = emad->comp_mrd_offset;
688 
689 		if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
690 			desc_size =  sizeof(struct ffa_mtd_v1_0);
691 		} else {
692 			desc_size =  sizeof(struct ffa_mtd);
693 		}
694 
695 		header_emad_size = desc_size +
696 			(obj->desc.emad_count * emad_size);
697 
698 		if (offset < header_emad_size) {
699 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
700 			     __func__, offset, header_emad_size);
701 			return -EINVAL;
702 		}
703 
704 		size = obj->desc_size;
705 
706 		if (offset > size) {
707 			WARN("%s: invalid object, offset %u > total size %zu\n",
708 			     __func__, offset, obj->desc_size);
709 			return -EINVAL;
710 		}
711 		size -= offset;
712 
713 		if (size < sizeof(struct ffa_comp_mrd)) {
714 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
715 			     __func__, offset, obj->desc_size);
716 			return -EINVAL;
717 		}
718 		size -= sizeof(struct ffa_comp_mrd);
719 
720 		count = size / sizeof(struct ffa_cons_mrd);
721 
722 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
723 
724 		if (comp == NULL) {
725 			WARN("%s: invalid comp_mrd offset\n", __func__);
726 			return -EINVAL;
727 		}
728 
729 		if (comp->address_range_count != count) {
730 			WARN("%s: invalid object, desc count %u != %zu\n",
731 			     __func__, comp->address_range_count, count);
732 			return -EINVAL;
733 		}
734 
735 		expected_size = offset + sizeof(*comp) +
736 				spmc_shmem_obj_ffa_constituent_size(obj,
737 								    ffa_version);
738 
739 		if (expected_size != obj->desc_size) {
740 			WARN("%s: invalid object, computed size %zu != size %zu\n",
741 			       __func__, expected_size, obj->desc_size);
742 			return -EINVAL;
743 		}
744 
745 		if (obj->desc_filled < obj->desc_size) {
746 			/*
747 			 * The whole descriptor has not yet been received.
748 			 * Skip final checks.
749 			 */
750 			return 0;
751 		}
752 
753 		/*
754 		 * The offset provided to the composite memory region descriptor
755 		 * should be consistent across endpoint descriptors. Store the
756 		 * first entry and compare against subsequent entries.
757 		 */
758 		if (comp_mrd_offset == 0) {
759 			comp_mrd_offset = offset;
760 		} else {
761 			if (comp_mrd_offset != offset) {
762 				ERROR("%s: mismatching offsets provided, %u != %u\n",
763 				       __func__, offset, comp_mrd_offset);
764 				return -EINVAL;
765 			}
766 		}
767 
768 		total_page_count = 0;
769 
770 		for (size_t i = 0; i < count; i++) {
771 			total_page_count +=
772 				comp->address_range_array[i].page_count;
773 		}
774 		if (comp->total_page_count != total_page_count) {
775 			WARN("%s: invalid object, desc total_page_count %u != %zu\n",
776 			     __func__, comp->total_page_count,
777 			total_page_count);
778 			return -EINVAL;
779 		}
780 	}
781 	return 0;
782 }
783 
784 /**
785  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
786  *				regions that are currently involved with an
787  *				existing memory transactions. This implies that
788  *				the memory is not in a valid state for lending.
789  * @obj:    Object containing ffa_memory_region_descriptor.
790  *
791  * Return: 0 if object is valid, -EINVAL if invalid memory state.
792  */
793 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
794 				      uint32_t ffa_version)
795 {
796 	size_t obj_offset = 0;
797 	struct spmc_shmem_obj *inflight_obj;
798 
799 	struct ffa_comp_mrd *other_mrd;
800 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
801 								  ffa_version);
802 
803 	if (requested_mrd == NULL) {
804 		return -EINVAL;
805 	}
806 
807 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
808 					       &obj_offset);
809 
810 	while (inflight_obj != NULL) {
811 		/*
812 		 * Don't compare the transaction to itself or to partially
813 		 * transmitted descriptors.
814 		 */
815 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
816 		    (obj->desc_size == obj->desc_filled)) {
817 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
818 								ffa_version);
819 			if (other_mrd == NULL) {
820 				return -EINVAL;
821 			}
822 			if (overlapping_memory_regions(requested_mrd,
823 						       other_mrd)) {
824 				return -EINVAL;
825 			}
826 		}
827 
828 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
829 						       &obj_offset);
830 	}
831 	return 0;
832 }
833 
834 static long spmc_ffa_fill_desc(struct mailbox *mbox,
835 			       struct spmc_shmem_obj *obj,
836 			       uint32_t fragment_length,
837 			       ffa_mtd_flag32_t mtd_flag,
838 			       uint32_t ffa_version,
839 			       void *smc_handle)
840 {
841 	int ret;
842 	size_t emad_size;
843 	uint32_t handle_low;
844 	uint32_t handle_high;
845 	struct ffa_emad_v1_0 *emad;
846 	struct ffa_emad_v1_0 *other_emad;
847 
848 	if (mbox->rxtx_page_count == 0U) {
849 		WARN("%s: buffer pair not registered.\n", __func__);
850 		ret = FFA_ERROR_INVALID_PARAMETER;
851 		goto err_arg;
852 	}
853 
854 	if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
855 		WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
856 		     fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
857 		ret = FFA_ERROR_INVALID_PARAMETER;
858 		goto err_arg;
859 	}
860 
861 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
862 	       (uint8_t *) mbox->tx_buffer, fragment_length);
863 
864 	if (fragment_length > obj->desc_size - obj->desc_filled) {
865 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
866 		     fragment_length, obj->desc_size - obj->desc_filled);
867 		ret = FFA_ERROR_INVALID_PARAMETER;
868 		goto err_arg;
869 	}
870 
871 	/* Ensure that the sender ID resides in the normal world. */
872 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
873 		WARN("%s: Invalid sender ID 0x%x.\n",
874 		     __func__, obj->desc.sender_id);
875 		ret = FFA_ERROR_DENIED;
876 		goto err_arg;
877 	}
878 
879 	/*
880 	 * We don't currently support any optional flags so ensure none are
881 	 * requested.
882 	 */
883 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
884 	    (obj->desc.flags != mtd_flag)) {
885 		WARN("%s: invalid memory transaction flags %u != %u\n",
886 		     __func__, obj->desc.flags, mtd_flag);
887 		ret = FFA_ERROR_INVALID_PARAMETER;
888 		goto err_arg;
889 	}
890 
891 	if (obj->desc_filled == 0U) {
892 		/* First fragment, descriptor header has been copied */
893 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
894 		obj->desc.flags |= mtd_flag;
895 	}
896 
897 	obj->desc_filled += fragment_length;
898 	ret = spmc_shmem_check_obj(obj, ffa_version);
899 	if (ret != 0) {
900 		ret = FFA_ERROR_INVALID_PARAMETER;
901 		goto err_bad_desc;
902 	}
903 
904 	handle_low = (uint32_t)obj->desc.handle;
905 	handle_high = obj->desc.handle >> 32;
906 
907 	if (obj->desc_filled != obj->desc_size) {
908 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
909 			 handle_high, obj->desc_filled,
910 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
911 	}
912 
913 	/* The full descriptor has been received, perform any final checks. */
914 
915 	/*
916 	 * If a partition ID resides in the secure world validate that the
917 	 * partition ID is for a known partition. Ignore any partition ID
918 	 * belonging to the normal world as it is assumed the Hypervisor will
919 	 * have validated these.
920 	 */
921 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
922 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
923 					       &emad_size);
924 		if (emad == NULL) {
925 			ret = FFA_ERROR_INVALID_PARAMETER;
926 			goto err_bad_desc;
927 		}
928 
929 		ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
930 
931 		if (ffa_is_secure_world_id(ep_id)) {
932 			if (spmc_get_sp_ctx(ep_id) == NULL) {
933 				WARN("%s: Invalid receiver id 0x%x\n",
934 				     __func__, ep_id);
935 				ret = FFA_ERROR_INVALID_PARAMETER;
936 				goto err_bad_desc;
937 			}
938 		}
939 	}
940 
941 	/* Ensure partition IDs are not duplicated. */
942 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
943 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
944 					       &emad_size);
945 		if (emad == NULL) {
946 			ret = FFA_ERROR_INVALID_PARAMETER;
947 			goto err_bad_desc;
948 		}
949 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
950 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
951 							     ffa_version,
952 							     &emad_size);
953 			if (other_emad == NULL) {
954 				ret = FFA_ERROR_INVALID_PARAMETER;
955 				goto err_bad_desc;
956 			}
957 
958 			if (emad->mapd.endpoint_id ==
959 				other_emad->mapd.endpoint_id) {
960 				WARN("%s: Duplicated endpoint id 0x%x\n",
961 				     __func__, emad->mapd.endpoint_id);
962 				ret = FFA_ERROR_INVALID_PARAMETER;
963 				goto err_bad_desc;
964 			}
965 		}
966 	}
967 
968 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
969 	if (ret) {
970 		ERROR("%s: invalid memory region descriptor.\n", __func__);
971 		ret = FFA_ERROR_INVALID_PARAMETER;
972 		goto err_bad_desc;
973 	}
974 
975 	/*
976 	 * Everything checks out, if the sender was using FF-A v1.0, convert
977 	 * the descriptor format to use the v1.1 structures.
978 	 */
979 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
980 		struct spmc_shmem_obj *v1_1_obj;
981 		uint64_t mem_handle;
982 
983 		/* Calculate the size that the v1.1 descriptor will required. */
984 		size_t v1_1_desc_size =
985 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
986 						      fragment_length);
987 
988 		if (v1_1_desc_size == 0U) {
989 			ERROR("%s: cannot determine size of descriptor.\n",
990 			      __func__);
991 			goto err_arg;
992 		}
993 
994 		/* Get a new obj to store the v1.1 descriptor. */
995 		v1_1_obj =
996 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
997 
998 		if (!obj) {
999 			ret = FFA_ERROR_NO_MEMORY;
1000 			goto err_arg;
1001 		}
1002 
1003 		/* Perform the conversion from v1.0 to v1.1. */
1004 		v1_1_obj->desc_size = v1_1_desc_size;
1005 		v1_1_obj->desc_filled = v1_1_desc_size;
1006 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1007 			ERROR("%s: Could not convert mtd!\n", __func__);
1008 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1009 			goto err_arg;
1010 		}
1011 
1012 		/*
1013 		 * We're finished with the v1.0 descriptor so free it
1014 		 * and continue our checks with the new v1.1 descriptor.
1015 		 */
1016 		mem_handle = obj->desc.handle;
1017 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1018 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1019 		if (obj == NULL) {
1020 			ERROR("%s: Failed to find converted descriptor.\n",
1021 			     __func__);
1022 			ret = FFA_ERROR_INVALID_PARAMETER;
1023 			return spmc_ffa_error_return(smc_handle, ret);
1024 		}
1025 	}
1026 
1027 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1028 		 0, 0, 0);
1029 
1030 err_bad_desc:
1031 err_arg:
1032 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1033 	return spmc_ffa_error_return(smc_handle, ret);
1034 }
1035 
1036 /**
1037  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1038  * @client:             Client state.
1039  * @total_length:       Total length of shared memory descriptor.
1040  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1041  *                      this call.
1042  * @address:            Not supported, must be 0.
1043  * @page_count:         Not supported, must be 0.
1044  * @smc_handle:         Handle passed to smc call. Used to return
1045  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1046  *
1047  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1048  * to share or lend memory from non-secure os to secure os (with no stream
1049  * endpoints).
1050  *
1051  * Return: 0 on success, error code on failure.
1052  */
1053 long spmc_ffa_mem_send(uint32_t smc_fid,
1054 			bool secure_origin,
1055 			uint64_t total_length,
1056 			uint32_t fragment_length,
1057 			uint64_t address,
1058 			uint32_t page_count,
1059 			void *cookie,
1060 			void *handle,
1061 			uint64_t flags)
1062 
1063 {
1064 	long ret;
1065 	struct spmc_shmem_obj *obj;
1066 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1067 	ffa_mtd_flag32_t mtd_flag;
1068 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1069 
1070 	if (address != 0U || page_count != 0U) {
1071 		WARN("%s: custom memory region for message not supported.\n",
1072 		     __func__);
1073 		return spmc_ffa_error_return(handle,
1074 					     FFA_ERROR_INVALID_PARAMETER);
1075 	}
1076 
1077 	if (secure_origin) {
1078 		WARN("%s: unsupported share direction.\n", __func__);
1079 		return spmc_ffa_error_return(handle,
1080 					     FFA_ERROR_INVALID_PARAMETER);
1081 	}
1082 
1083 	/*
1084 	 * Check if the descriptor is smaller than the v1.0 descriptor. The
1085 	 * descriptor cannot be smaller than this structure.
1086 	 */
1087 	if (fragment_length < sizeof(struct ffa_mtd_v1_0)) {
1088 		WARN("%s: bad first fragment size %u < %zu\n",
1089 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1090 		return spmc_ffa_error_return(handle,
1091 					     FFA_ERROR_INVALID_PARAMETER);
1092 	}
1093 
1094 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1095 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1096 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1097 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1098 	} else {
1099 		WARN("%s: invalid memory management operation.\n", __func__);
1100 		return spmc_ffa_error_return(handle,
1101 					     FFA_ERROR_INVALID_PARAMETER);
1102 	}
1103 
1104 	spin_lock(&spmc_shmem_obj_state.lock);
1105 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1106 	if (obj == NULL) {
1107 		ret = FFA_ERROR_NO_MEMORY;
1108 		goto err_unlock;
1109 	}
1110 
1111 	spin_lock(&mbox->lock);
1112 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1113 				 ffa_version, handle);
1114 	spin_unlock(&mbox->lock);
1115 
1116 	spin_unlock(&spmc_shmem_obj_state.lock);
1117 	return ret;
1118 
1119 err_unlock:
1120 	spin_unlock(&spmc_shmem_obj_state.lock);
1121 	return spmc_ffa_error_return(handle, ret);
1122 }
1123 
1124 /**
1125  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1126  * @client:             Client state.
1127  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1128  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1129  * @fragment_length:    Length of fragments transmitted.
1130  * @sender_id:          Vmid of sender in bits [31:16]
1131  * @smc_handle:         Handle passed to smc call. Used to return
1132  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1133  *
1134  * Return: @smc_handle on success, error code on failure.
1135  */
1136 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1137 			  bool secure_origin,
1138 			  uint64_t handle_low,
1139 			  uint64_t handle_high,
1140 			  uint32_t fragment_length,
1141 			  uint32_t sender_id,
1142 			  void *cookie,
1143 			  void *handle,
1144 			  uint64_t flags)
1145 {
1146 	long ret;
1147 	uint32_t desc_sender_id;
1148 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1149 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1150 
1151 	struct spmc_shmem_obj *obj;
1152 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1153 
1154 	spin_lock(&spmc_shmem_obj_state.lock);
1155 
1156 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1157 	if (obj == NULL) {
1158 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1159 		     __func__, mem_handle);
1160 		ret = FFA_ERROR_INVALID_PARAMETER;
1161 		goto err_unlock;
1162 	}
1163 
1164 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1165 	if (sender_id != desc_sender_id) {
1166 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1167 		     sender_id, desc_sender_id);
1168 		ret = FFA_ERROR_INVALID_PARAMETER;
1169 		goto err_unlock;
1170 	}
1171 
1172 	if (obj->desc_filled == obj->desc_size) {
1173 		WARN("%s: object desc already filled, %zu\n", __func__,
1174 		     obj->desc_filled);
1175 		ret = FFA_ERROR_INVALID_PARAMETER;
1176 		goto err_unlock;
1177 	}
1178 
1179 	spin_lock(&mbox->lock);
1180 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1181 				 handle);
1182 	spin_unlock(&mbox->lock);
1183 
1184 	spin_unlock(&spmc_shmem_obj_state.lock);
1185 	return ret;
1186 
1187 err_unlock:
1188 	spin_unlock(&spmc_shmem_obj_state.lock);
1189 	return spmc_ffa_error_return(handle, ret);
1190 }
1191 
1192 /**
1193  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1194  * @smc_fid:            FID of SMC
1195  * @total_length:       Total length of retrieve request descriptor if this is
1196  *                      the first call. Otherwise (unsupported) must be 0.
1197  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1198  *                      in this call. Only @fragment_length == @length is
1199  *                      supported by this implementation.
1200  * @address:            Not supported, must be 0.
1201  * @page_count:         Not supported, must be 0.
1202  * @smc_handle:         Handle passed to smc call. Used to return
1203  *                      FFA_MEM_RETRIEVE_RESP.
1204  *
1205  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1206  * Used by secure os to retrieve memory already shared by non-secure os.
1207  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1208  * the client must call FFA_MEM_FRAG_RX until the full response has been
1209  * received.
1210  *
1211  * Return: @handle on success, error code on failure.
1212  */
1213 long
1214 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1215 			  bool secure_origin,
1216 			  uint32_t total_length,
1217 			  uint32_t fragment_length,
1218 			  uint64_t address,
1219 			  uint32_t page_count,
1220 			  void *cookie,
1221 			  void *handle,
1222 			  uint64_t flags)
1223 {
1224 	int ret;
1225 	size_t buf_size;
1226 	size_t copy_size = 0;
1227 	size_t min_desc_size;
1228 	size_t out_desc_size = 0;
1229 
1230 	/*
1231 	 * Currently we are only accessing fields that are the same in both the
1232 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1233 	 * here. We only need validate against the appropriate struct size.
1234 	 */
1235 	struct ffa_mtd *resp;
1236 	const struct ffa_mtd *req;
1237 	struct spmc_shmem_obj *obj = NULL;
1238 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1239 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1240 
1241 	if (!secure_origin) {
1242 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1243 		return spmc_ffa_error_return(handle,
1244 					     FFA_ERROR_INVALID_PARAMETER);
1245 	}
1246 
1247 	if (address != 0U || page_count != 0U) {
1248 		WARN("%s: custom memory region not supported.\n", __func__);
1249 		return spmc_ffa_error_return(handle,
1250 					     FFA_ERROR_INVALID_PARAMETER);
1251 	}
1252 
1253 	spin_lock(&mbox->lock);
1254 
1255 	req = mbox->tx_buffer;
1256 	resp = mbox->rx_buffer;
1257 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1258 
1259 	if (mbox->rxtx_page_count == 0U) {
1260 		WARN("%s: buffer pair not registered.\n", __func__);
1261 		ret = FFA_ERROR_INVALID_PARAMETER;
1262 		goto err_unlock_mailbox;
1263 	}
1264 
1265 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1266 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1267 		ret = FFA_ERROR_DENIED;
1268 		goto err_unlock_mailbox;
1269 	}
1270 
1271 	if (fragment_length != total_length) {
1272 		WARN("%s: fragmented retrieve request not supported.\n",
1273 		     __func__);
1274 		ret = FFA_ERROR_INVALID_PARAMETER;
1275 		goto err_unlock_mailbox;
1276 	}
1277 
1278 	if (req->emad_count == 0U) {
1279 		WARN("%s: unsupported attribute desc count %u.\n",
1280 		     __func__, obj->desc.emad_count);
1281 		return -EINVAL;
1282 	}
1283 
1284 	/* Determine the appropriate minimum descriptor size. */
1285 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1286 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1287 	} else {
1288 		min_desc_size = sizeof(struct ffa_mtd);
1289 	}
1290 	if (total_length < min_desc_size) {
1291 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1292 		     min_desc_size);
1293 		ret = FFA_ERROR_INVALID_PARAMETER;
1294 		goto err_unlock_mailbox;
1295 	}
1296 
1297 	spin_lock(&spmc_shmem_obj_state.lock);
1298 
1299 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1300 	if (obj == NULL) {
1301 		ret = FFA_ERROR_INVALID_PARAMETER;
1302 		goto err_unlock_all;
1303 	}
1304 
1305 	if (obj->desc_filled != obj->desc_size) {
1306 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1307 		     __func__, obj->desc_filled, obj->desc_size);
1308 		ret = FFA_ERROR_INVALID_PARAMETER;
1309 		goto err_unlock_all;
1310 	}
1311 
1312 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1313 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1314 		     __func__, req->sender_id, obj->desc.sender_id);
1315 		ret = FFA_ERROR_INVALID_PARAMETER;
1316 		goto err_unlock_all;
1317 	}
1318 
1319 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1320 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1321 		     __func__, req->tag, obj->desc.tag);
1322 		ret = FFA_ERROR_INVALID_PARAMETER;
1323 		goto err_unlock_all;
1324 	}
1325 
1326 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1327 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1328 		     __func__, req->emad_count, obj->desc.emad_count);
1329 		ret = FFA_ERROR_INVALID_PARAMETER;
1330 		goto err_unlock_all;
1331 	}
1332 
1333 	if (req->flags != 0U) {
1334 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1335 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1336 			/*
1337 			 * If the retrieve request specifies the memory
1338 			 * transaction ensure it matches what we expect.
1339 			 */
1340 			WARN("%s: wrong mem transaction flags %x != %x\n",
1341 			__func__, req->flags, obj->desc.flags);
1342 			ret = FFA_ERROR_INVALID_PARAMETER;
1343 			goto err_unlock_all;
1344 		}
1345 
1346 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1347 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1348 			/*
1349 			 * Current implementation does not support donate and
1350 			 * it supports no other flags.
1351 			 */
1352 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1353 			ret = FFA_ERROR_INVALID_PARAMETER;
1354 			goto err_unlock_all;
1355 		}
1356 	}
1357 
1358 	/* Validate that the provided emad offset and structure is valid.*/
1359 	for (size_t i = 0; i < req->emad_count; i++) {
1360 		size_t emad_size;
1361 		struct ffa_emad_v1_0 *emad;
1362 
1363 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1364 					       &emad_size);
1365 		if (emad == NULL) {
1366 			WARN("%s: invalid emad structure.\n", __func__);
1367 			ret = FFA_ERROR_INVALID_PARAMETER;
1368 			goto err_unlock_all;
1369 		}
1370 
1371 		if ((uintptr_t) emad >= (uintptr_t)
1372 					((uint8_t *) req + total_length)) {
1373 			WARN("Invalid emad access.\n");
1374 			ret = FFA_ERROR_INVALID_PARAMETER;
1375 			goto err_unlock_all;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Validate all the endpoints match in the case of multiple
1381 	 * borrowers. We don't mandate that the order of the borrowers
1382 	 * must match in the descriptors therefore check to see if the
1383 	 * endpoints match in any order.
1384 	 */
1385 	for (size_t i = 0; i < req->emad_count; i++) {
1386 		bool found = false;
1387 		size_t emad_size;
1388 		struct ffa_emad_v1_0 *emad;
1389 		struct ffa_emad_v1_0 *other_emad;
1390 
1391 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1392 					       &emad_size);
1393 		if (emad == NULL) {
1394 			ret = FFA_ERROR_INVALID_PARAMETER;
1395 			goto err_unlock_all;
1396 		}
1397 
1398 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1399 			other_emad = spmc_shmem_obj_get_emad(
1400 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1401 					&emad_size);
1402 
1403 			if (other_emad == NULL) {
1404 				ret = FFA_ERROR_INVALID_PARAMETER;
1405 				goto err_unlock_all;
1406 			}
1407 
1408 			if (req->emad_count &&
1409 			    emad->mapd.endpoint_id ==
1410 			    other_emad->mapd.endpoint_id) {
1411 				found = true;
1412 				break;
1413 			}
1414 		}
1415 
1416 		if (!found) {
1417 			WARN("%s: invalid receiver id (0x%x).\n",
1418 			     __func__, emad->mapd.endpoint_id);
1419 			ret = FFA_ERROR_INVALID_PARAMETER;
1420 			goto err_unlock_all;
1421 		}
1422 	}
1423 
1424 	mbox->state = MAILBOX_STATE_FULL;
1425 
1426 	if (req->emad_count != 0U) {
1427 		obj->in_use++;
1428 	}
1429 
1430 	/*
1431 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1432 	 * directly.
1433 	 */
1434 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1435 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1436 							&copy_size,
1437 							&out_desc_size);
1438 		if (ret != 0U) {
1439 			ERROR("%s: Failed to process descriptor.\n", __func__);
1440 			goto err_unlock_all;
1441 		}
1442 	} else {
1443 		copy_size = MIN(obj->desc_size, buf_size);
1444 		out_desc_size = obj->desc_size;
1445 
1446 		memcpy(resp, &obj->desc, copy_size);
1447 	}
1448 
1449 	spin_unlock(&spmc_shmem_obj_state.lock);
1450 	spin_unlock(&mbox->lock);
1451 
1452 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1453 		 copy_size, 0, 0, 0, 0, 0);
1454 
1455 err_unlock_all:
1456 	spin_unlock(&spmc_shmem_obj_state.lock);
1457 err_unlock_mailbox:
1458 	spin_unlock(&mbox->lock);
1459 	return spmc_ffa_error_return(handle, ret);
1460 }
1461 
1462 /**
1463  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1464  * @client:             Client state.
1465  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1466  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1467  * @fragment_offset:    Byte offset in descriptor to resume at.
1468  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1469  *                      hypervisor. 0 otherwise.
1470  * @smc_handle:         Handle passed to smc call. Used to return
1471  *                      FFA_MEM_FRAG_TX.
1472  *
1473  * Return: @smc_handle on success, error code on failure.
1474  */
1475 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1476 			  bool secure_origin,
1477 			  uint32_t handle_low,
1478 			  uint32_t handle_high,
1479 			  uint32_t fragment_offset,
1480 			  uint32_t sender_id,
1481 			  void *cookie,
1482 			  void *handle,
1483 			  uint64_t flags)
1484 {
1485 	int ret;
1486 	void *src;
1487 	size_t buf_size;
1488 	size_t copy_size;
1489 	size_t full_copy_size;
1490 	uint32_t desc_sender_id;
1491 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1492 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1493 	struct spmc_shmem_obj *obj;
1494 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1495 
1496 	if (!secure_origin) {
1497 		WARN("%s: can only be called from swld.\n",
1498 		     __func__);
1499 		return spmc_ffa_error_return(handle,
1500 					     FFA_ERROR_INVALID_PARAMETER);
1501 	}
1502 
1503 	spin_lock(&spmc_shmem_obj_state.lock);
1504 
1505 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1506 	if (obj == NULL) {
1507 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1508 		     __func__, mem_handle);
1509 		ret = FFA_ERROR_INVALID_PARAMETER;
1510 		goto err_unlock_shmem;
1511 	}
1512 
1513 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1514 	if (sender_id != 0U && sender_id != desc_sender_id) {
1515 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1516 		     sender_id, desc_sender_id);
1517 		ret = FFA_ERROR_INVALID_PARAMETER;
1518 		goto err_unlock_shmem;
1519 	}
1520 
1521 	if (fragment_offset >= obj->desc_size) {
1522 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1523 		     __func__, fragment_offset, obj->desc_size);
1524 		ret = FFA_ERROR_INVALID_PARAMETER;
1525 		goto err_unlock_shmem;
1526 	}
1527 
1528 	spin_lock(&mbox->lock);
1529 
1530 	if (mbox->rxtx_page_count == 0U) {
1531 		WARN("%s: buffer pair not registered.\n", __func__);
1532 		ret = FFA_ERROR_INVALID_PARAMETER;
1533 		goto err_unlock_all;
1534 	}
1535 
1536 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1537 		WARN("%s: RX Buffer is full!\n", __func__);
1538 		ret = FFA_ERROR_DENIED;
1539 		goto err_unlock_all;
1540 	}
1541 
1542 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1543 
1544 	mbox->state = MAILBOX_STATE_FULL;
1545 
1546 	/*
1547 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1548 	 * directly.
1549 	 */
1550 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1551 		size_t out_desc_size;
1552 
1553 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1554 							buf_size,
1555 							fragment_offset,
1556 							&copy_size,
1557 							&out_desc_size);
1558 		if (ret != 0U) {
1559 			ERROR("%s: Failed to process descriptor.\n", __func__);
1560 			goto err_unlock_all;
1561 		}
1562 	} else {
1563 		full_copy_size = obj->desc_size - fragment_offset;
1564 		copy_size = MIN(full_copy_size, buf_size);
1565 
1566 		src = &obj->desc;
1567 
1568 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1569 	}
1570 
1571 	spin_unlock(&mbox->lock);
1572 	spin_unlock(&spmc_shmem_obj_state.lock);
1573 
1574 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1575 		 copy_size, sender_id, 0, 0, 0);
1576 
1577 err_unlock_all:
1578 	spin_unlock(&mbox->lock);
1579 err_unlock_shmem:
1580 	spin_unlock(&spmc_shmem_obj_state.lock);
1581 	return spmc_ffa_error_return(handle, ret);
1582 }
1583 
1584 /**
1585  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1586  * @client:             Client state.
1587  *
1588  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1589  * Used by secure os release previously shared memory to non-secure os.
1590  *
1591  * The handle to release must be in the client's (secure os's) transmit buffer.
1592  *
1593  * Return: 0 on success, error code on failure.
1594  */
1595 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1596 			    bool secure_origin,
1597 			    uint32_t handle_low,
1598 			    uint32_t handle_high,
1599 			    uint32_t fragment_offset,
1600 			    uint32_t sender_id,
1601 			    void *cookie,
1602 			    void *handle,
1603 			    uint64_t flags)
1604 {
1605 	int ret;
1606 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1607 	struct spmc_shmem_obj *obj;
1608 	const struct ffa_mem_relinquish_descriptor *req;
1609 
1610 	if (!secure_origin) {
1611 		WARN("%s: unsupported relinquish direction.\n", __func__);
1612 		return spmc_ffa_error_return(handle,
1613 					     FFA_ERROR_INVALID_PARAMETER);
1614 	}
1615 
1616 	spin_lock(&mbox->lock);
1617 
1618 	if (mbox->rxtx_page_count == 0U) {
1619 		WARN("%s: buffer pair not registered.\n", __func__);
1620 		ret = FFA_ERROR_INVALID_PARAMETER;
1621 		goto err_unlock_mailbox;
1622 	}
1623 
1624 	req = mbox->tx_buffer;
1625 
1626 	if (req->flags != 0U) {
1627 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1628 		ret = FFA_ERROR_INVALID_PARAMETER;
1629 		goto err_unlock_mailbox;
1630 	}
1631 
1632 	if (req->endpoint_count == 0) {
1633 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1634 		ret = FFA_ERROR_INVALID_PARAMETER;
1635 		goto err_unlock_mailbox;
1636 	}
1637 
1638 	spin_lock(&spmc_shmem_obj_state.lock);
1639 
1640 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1641 	if (obj == NULL) {
1642 		ret = FFA_ERROR_INVALID_PARAMETER;
1643 		goto err_unlock_all;
1644 	}
1645 
1646 	if (obj->desc.emad_count != req->endpoint_count) {
1647 		WARN("%s: mismatch of endpoint count %u != %u\n", __func__,
1648 		     obj->desc.emad_count, req->endpoint_count);
1649 		ret = FFA_ERROR_INVALID_PARAMETER;
1650 		goto err_unlock_all;
1651 	}
1652 
1653 	/* Validate requested endpoint IDs match descriptor. */
1654 	for (size_t i = 0; i < req->endpoint_count; i++) {
1655 		bool found = false;
1656 		size_t emad_size;
1657 		struct ffa_emad_v1_0 *emad;
1658 
1659 		for (unsigned int j = 0; j < obj->desc.emad_count; j++) {
1660 			emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1661 							MAKE_FFA_VERSION(1, 1),
1662 							&emad_size);
1663 			if (req->endpoint_array[i] ==
1664 			    emad->mapd.endpoint_id) {
1665 				found = true;
1666 				break;
1667 			}
1668 		}
1669 
1670 		if (!found) {
1671 			WARN("%s: Invalid endpoint ID (0x%x).\n",
1672 			     __func__, req->endpoint_array[i]);
1673 			ret = FFA_ERROR_INVALID_PARAMETER;
1674 			goto err_unlock_all;
1675 		}
1676 	}
1677 
1678 	if (obj->in_use == 0U) {
1679 		ret = FFA_ERROR_INVALID_PARAMETER;
1680 		goto err_unlock_all;
1681 	}
1682 	obj->in_use--;
1683 
1684 	spin_unlock(&spmc_shmem_obj_state.lock);
1685 	spin_unlock(&mbox->lock);
1686 
1687 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1688 
1689 err_unlock_all:
1690 	spin_unlock(&spmc_shmem_obj_state.lock);
1691 err_unlock_mailbox:
1692 	spin_unlock(&mbox->lock);
1693 	return spmc_ffa_error_return(handle, ret);
1694 }
1695 
1696 /**
1697  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1698  * @client:         Client state.
1699  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1700  * @handle_high:    Unique handle of shared memory object to reclaim.
1701  *                  Bit[63:32].
1702  * @flags:          Unsupported, ignored.
1703  *
1704  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1705  * Used by non-secure os reclaim memory previously shared with secure os.
1706  *
1707  * Return: 0 on success, error code on failure.
1708  */
1709 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1710 			 bool secure_origin,
1711 			 uint32_t handle_low,
1712 			 uint32_t handle_high,
1713 			 uint32_t mem_flags,
1714 			 uint64_t x4,
1715 			 void *cookie,
1716 			 void *handle,
1717 			 uint64_t flags)
1718 {
1719 	int ret;
1720 	struct spmc_shmem_obj *obj;
1721 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1722 
1723 	if (secure_origin) {
1724 		WARN("%s: unsupported reclaim direction.\n", __func__);
1725 		return spmc_ffa_error_return(handle,
1726 					     FFA_ERROR_INVALID_PARAMETER);
1727 	}
1728 
1729 	if (mem_flags != 0U) {
1730 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1731 		return spmc_ffa_error_return(handle,
1732 					     FFA_ERROR_INVALID_PARAMETER);
1733 	}
1734 
1735 	spin_lock(&spmc_shmem_obj_state.lock);
1736 
1737 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1738 	if (obj == NULL) {
1739 		ret = FFA_ERROR_INVALID_PARAMETER;
1740 		goto err_unlock;
1741 	}
1742 	if (obj->in_use != 0U) {
1743 		ret = FFA_ERROR_DENIED;
1744 		goto err_unlock;
1745 	}
1746 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1747 	spin_unlock(&spmc_shmem_obj_state.lock);
1748 
1749 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1750 
1751 err_unlock:
1752 	spin_unlock(&spmc_shmem_obj_state.lock);
1753 	return spmc_ffa_error_return(handle, ret);
1754 }
1755