xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 56c052d31126c93b3c6782ea8e0c3348b5299b75)
1 /*
2  * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9 
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18 
19 #include <platform_def.h>
20 
21 /**
22  * struct spmc_shmem_obj - Shared memory object.
23  * @desc_size:      Size of @desc.
24  * @desc_filled:    Size of @desc already received.
25  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
26  *                  without a matching ffa_mem_relinquish call.
27  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
28  */
29 struct spmc_shmem_obj {
30 	size_t desc_size;
31 	size_t desc_filled;
32 	size_t in_use;
33 	struct ffa_mtd desc;
34 };
35 
36 /*
37  * Declare our data structure to store the metadata of memory share requests.
38  * The main datastore is allocated on a per platform basis to ensure enough
39  * storage can be made available.
40  * The address of the data store will be populated by the SPMC during its
41  * initialization.
42  */
43 
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 	/* Set start value for handle so top 32 bits are needed quickly. */
46 	.next_handle = 0xffffffc0U,
47 };
48 
49 /**
50  * spmc_shmem_obj_size - Convert from descriptor size to object size.
51  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
52  *
53  * Return: Size of struct spmc_shmem_obj object.
54  */
55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59 
60 /**
61  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62  * @state:      Global state.
63  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
64  *              allocated object will hold.
65  *
66  * Return: Pointer to newly allocated object, or %NULL if there not enough space
67  *         left. The returned pointer is only valid while @state is locked, to
68  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
69  *         called.
70  */
71 static struct spmc_shmem_obj *
72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 	struct spmc_shmem_obj *obj;
75 	size_t free = state->data_size - state->allocated;
76 	size_t obj_size;
77 
78 	if (state->data == NULL) {
79 		ERROR("Missing shmem datastore!\n");
80 		return NULL;
81 	}
82 
83 	obj_size = spmc_shmem_obj_size(desc_size);
84 
85 	/* Ensure the obj size has not overflowed. */
86 	if (obj_size < desc_size) {
87 		WARN("%s(0x%zx) desc_size overflow\n",
88 		     __func__, desc_size);
89 		return NULL;
90 	}
91 
92 	if (obj_size > free) {
93 		WARN("%s(0x%zx) failed, free 0x%zx\n",
94 		     __func__, desc_size, free);
95 		return NULL;
96 	}
97 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
98 	obj->desc = (struct ffa_mtd) {0};
99 	obj->desc_size = desc_size;
100 	obj->desc_filled = 0;
101 	obj->in_use = 0;
102 	state->allocated += obj_size;
103 	return obj;
104 }
105 
106 /**
107  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
108  * @state:      Global state.
109  * @obj:        Object to free.
110  *
111  * Release memory used by @obj. Other objects may move, so on return all
112  * pointers to struct spmc_shmem_obj object should be considered invalid, not
113  * just @obj.
114  *
115  * The current implementation always compacts the remaining objects to simplify
116  * the allocator and to avoid fragmentation.
117  */
118 
119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
120 				  struct spmc_shmem_obj *obj)
121 {
122 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
123 	uint8_t *shift_dest = (uint8_t *)obj;
124 	uint8_t *shift_src = shift_dest + free_size;
125 	size_t shift_size = state->allocated - (shift_src - state->data);
126 
127 	if (shift_size != 0U) {
128 		memmove(shift_dest, shift_src, shift_size);
129 	}
130 	state->allocated -= free_size;
131 }
132 
133 /**
134  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
135  * @state:      Global state.
136  * @handle:     Unique handle of object to return.
137  *
138  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
139  *         %NULL, if not object in @state->data has a matching handle.
140  */
141 static struct spmc_shmem_obj *
142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
143 {
144 	uint8_t *curr = state->data;
145 
146 	while (curr - state->data < state->allocated) {
147 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
148 
149 		if (obj->desc.handle == handle) {
150 			return obj;
151 		}
152 		curr += spmc_shmem_obj_size(obj->desc_size);
153 	}
154 	return NULL;
155 }
156 
157 /**
158  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
159  * @offset:     Offset used to track which objects have previously been
160  *              returned.
161  *
162  * Return: the next struct spmc_shmem_obj_state object from the provided
163  *	   offset.
164  *	   %NULL, if there are no more objects.
165  */
166 static struct spmc_shmem_obj *
167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
168 {
169 	uint8_t *curr = state->data + *offset;
170 
171 	if (curr - state->data < state->allocated) {
172 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
173 
174 		*offset += spmc_shmem_obj_size(obj->desc_size);
175 
176 		return obj;
177 	}
178 	return NULL;
179 }
180 
181 /*******************************************************************************
182  * FF-A memory descriptor helper functions.
183  ******************************************************************************/
184 /**
185  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
186  *                           clients FF-A version.
187  * @desc:         The memory transaction descriptor.
188  * @index:        The index of the emad element to be accessed.
189  * @ffa_version:  FF-A version of the provided structure.
190  * @emad_size:    Will be populated with the size of the returned emad
191  *                descriptor.
192  * Return: A pointer to the requested emad structure.
193  */
194 static void *
195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
196 			uint32_t ffa_version, size_t *emad_size)
197 {
198 	uint8_t *emad;
199 	/*
200 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
201 	 * format, otherwise assume it is a v1.1 format.
202 	 */
203 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
204 		/* Cast our descriptor to the v1.0 format. */
205 		struct ffa_mtd_v1_0 *mtd_v1_0 =
206 					(struct ffa_mtd_v1_0 *) desc;
207 		emad = (uint8_t *)  &(mtd_v1_0->emad);
208 		*emad_size = sizeof(struct ffa_emad_v1_0);
209 	} else {
210 		if (!is_aligned(desc->emad_offset, 16)) {
211 			WARN("Emad offset is not aligned.\n");
212 			return NULL;
213 		}
214 		emad = ((uint8_t *) desc + desc->emad_offset);
215 		*emad_size = desc->emad_size;
216 	}
217 	return (emad + (*emad_size * index));
218 }
219 
220 /**
221  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
222  *				 FF-A version of the descriptor.
223  * @obj:    Object containing ffa_memory_region_descriptor.
224  *
225  * Return: struct ffa_comp_mrd object corresponding to the composite memory
226  *	   region descriptor.
227  */
228 static struct ffa_comp_mrd *
229 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
230 {
231 	size_t emad_size;
232 	/*
233 	 * The comp_mrd_offset field of the emad descriptor remains consistent
234 	 * between FF-A versions therefore we can use the v1.0 descriptor here
235 	 * in all cases.
236 	 */
237 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
238 							     ffa_version,
239 							     &emad_size);
240 	/* Ensure the emad array was found. */
241 	if (emad == NULL) {
242 		return NULL;
243 	}
244 
245 	/* Ensure the composite descriptor offset is aligned. */
246 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
247 		WARN("Unaligned composite memory region descriptor offset.\n");
248 		return NULL;
249 	}
250 
251 	return (struct ffa_comp_mrd *)
252 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
253 }
254 
255 /**
256  * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
257  * @obj:    Object containing ffa_memory_region_descriptor.
258  *
259  * Return: Size of ffa_constituent_memory_region_descriptors in @obj.
260  */
261 static size_t
262 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
263 				    uint32_t ffa_version)
264 {
265 	struct ffa_comp_mrd *comp_mrd;
266 
267 	comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
268 	if (comp_mrd == NULL) {
269 		return 0;
270 	}
271 	return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
272 }
273 
274 /**
275  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
276  *				a given memory transaction.
277  * @sp_id:      Partition ID to validate.
278  * @obj:        The shared memory object containing the descriptor
279  *              of the memory transaction.
280  * Return: true if ID is valid, else false.
281  */
282 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
283 {
284 	bool found = false;
285 	struct ffa_mtd *desc = &obj->desc;
286 	size_t desc_size = obj->desc_size;
287 
288 	/* Validate the partition is a valid participant. */
289 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
290 		size_t emad_size;
291 		struct ffa_emad_v1_0 *emad;
292 
293 		emad = spmc_shmem_obj_get_emad(desc, i,
294 					       MAKE_FFA_VERSION(1, 1),
295 					       &emad_size);
296 		/*
297 		 * Validate the calculated emad address resides within the
298 		 * descriptor.
299 		 */
300 		if ((emad == NULL) || (uintptr_t) emad >=
301 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
302 			VERBOSE("Invalid emad.\n");
303 			break;
304 		}
305 		if (sp_id == emad->mapd.endpoint_id) {
306 			found = true;
307 			break;
308 		}
309 	}
310 	return found;
311 }
312 
313 /*
314  * Compare two memory regions to determine if any range overlaps with another
315  * ongoing memory transaction.
316  */
317 static bool
318 overlapping_memory_regions(struct ffa_comp_mrd *region1,
319 			   struct ffa_comp_mrd *region2)
320 {
321 	uint64_t region1_start;
322 	uint64_t region1_size;
323 	uint64_t region1_end;
324 	uint64_t region2_start;
325 	uint64_t region2_size;
326 	uint64_t region2_end;
327 
328 	assert(region1 != NULL);
329 	assert(region2 != NULL);
330 
331 	if (region1 == region2) {
332 		return true;
333 	}
334 
335 	/*
336 	 * Check each memory region in the request against existing
337 	 * transactions.
338 	 */
339 	for (size_t i = 0; i < region1->address_range_count; i++) {
340 
341 		region1_start = region1->address_range_array[i].address;
342 		region1_size =
343 			region1->address_range_array[i].page_count *
344 			PAGE_SIZE_4KB;
345 		region1_end = region1_start + region1_size;
346 
347 		for (size_t j = 0; j < region2->address_range_count; j++) {
348 
349 			region2_start = region2->address_range_array[j].address;
350 			region2_size =
351 				region2->address_range_array[j].page_count *
352 				PAGE_SIZE_4KB;
353 			region2_end = region2_start + region2_size;
354 
355 			/* Check if regions are not overlapping. */
356 			if (!((region2_end <= region1_start) ||
357 			      (region1_end <= region2_start))) {
358 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
359 				     region1_start, region1_end,
360 				     region2_start, region2_end);
361 				return true;
362 			}
363 		}
364 	}
365 	return false;
366 }
367 
368 /*******************************************************************************
369  * FF-A v1.0 Memory Descriptor Conversion Helpers.
370  ******************************************************************************/
371 /**
372  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
373  *                                     converted descriptor.
374  * @orig:       The original v1.0 memory transaction descriptor.
375  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
376  *
377  * Return: the size required to store the descriptor store in the v1.1 format.
378  */
379 static size_t
380 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
381 {
382 	size_t size = 0;
383 	struct ffa_comp_mrd *mrd;
384 	struct ffa_emad_v1_0 *emad_array = orig->emad;
385 
386 	/* Get the size of the v1.1 descriptor. */
387 	size += sizeof(struct ffa_mtd);
388 
389 	/* Add the size of the emad descriptors. */
390 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
391 
392 	/* Add the size of the composite mrds. */
393 	size += sizeof(struct ffa_comp_mrd);
394 
395 	/* Add the size of the constituent mrds. */
396 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
397 	      emad_array[0].comp_mrd_offset);
398 
399 	/* Check the calculated address is within the memory descriptor. */
400 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
401 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
402 		return 0;
403 	}
404 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
405 
406 	return size;
407 }
408 
409 /**
410  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
411  *                                     converted descriptor.
412  * @orig:       The original v1.1 memory transaction descriptor.
413  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
414  *
415  * Return: the size required to store the descriptor store in the v1.0 format.
416  */
417 static size_t
418 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
419 {
420 	size_t size = 0;
421 	struct ffa_comp_mrd *mrd;
422 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
423 					   ((uint8_t *) orig +
424 					    orig->emad_offset);
425 
426 	/* Get the size of the v1.0 descriptor. */
427 	size += sizeof(struct ffa_mtd_v1_0);
428 
429 	/* Add the size of the v1.0 emad descriptors. */
430 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
431 
432 	/* Add the size of the composite mrds. */
433 	size += sizeof(struct ffa_comp_mrd);
434 
435 	/* Add the size of the constituent mrds. */
436 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
437 	      emad_array[0].comp_mrd_offset);
438 
439 	/* Check the calculated address is within the memory descriptor. */
440 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
441 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
442 		return 0;
443 	}
444 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
445 
446 	return size;
447 }
448 
449 /**
450  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
451  * @out_obj:	The shared memory object to populate the converted descriptor.
452  * @orig:	The shared memory object containing the v1.0 descriptor.
453  *
454  * Return: true if the conversion is successful else false.
455  */
456 static bool
457 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
458 				     struct spmc_shmem_obj *orig)
459 {
460 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
461 	struct ffa_mtd *out = &out_obj->desc;
462 	struct ffa_emad_v1_0 *emad_array_in;
463 	struct ffa_emad_v1_0 *emad_array_out;
464 	struct ffa_comp_mrd *mrd_in;
465 	struct ffa_comp_mrd *mrd_out;
466 
467 	size_t mrd_in_offset;
468 	size_t mrd_out_offset;
469 	size_t mrd_size = 0;
470 
471 	/* Populate the new descriptor format from the v1.0 struct. */
472 	out->sender_id = mtd_orig->sender_id;
473 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
474 	out->flags = mtd_orig->flags;
475 	out->handle = mtd_orig->handle;
476 	out->tag = mtd_orig->tag;
477 	out->emad_count = mtd_orig->emad_count;
478 	out->emad_size = sizeof(struct ffa_emad_v1_0);
479 
480 	/*
481 	 * We will locate the emad descriptors directly after the ffa_mtd
482 	 * struct. This will be 8-byte aligned.
483 	 */
484 	out->emad_offset = sizeof(struct ffa_mtd);
485 
486 	emad_array_in = mtd_orig->emad;
487 	emad_array_out = (struct ffa_emad_v1_0 *)
488 			 ((uint8_t *) out + out->emad_offset);
489 
490 	/* Copy across the emad structs. */
491 	for (unsigned int i = 0U; i < out->emad_count; i++) {
492 		/* Bound check for emad array. */
493 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
494 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
495 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
496 			return false;
497 		}
498 		memcpy(&emad_array_out[i], &emad_array_in[i],
499 		       sizeof(struct ffa_emad_v1_0));
500 	}
501 
502 	/* Place the mrd descriptors after the end of the emad descriptors.*/
503 	mrd_in_offset = emad_array_in->comp_mrd_offset;
504 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
505 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
506 
507 	/* Add the size of the composite memory region descriptor. */
508 	mrd_size += sizeof(struct ffa_comp_mrd);
509 
510 	/* Find the mrd descriptor. */
511 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
512 
513 	/* Add the size of the constituent memory region descriptors. */
514 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
515 
516 	/*
517 	 * Update the offset in the emads by the delta between the input and
518 	 * output addresses.
519 	 */
520 	for (unsigned int i = 0U; i < out->emad_count; i++) {
521 		emad_array_out[i].comp_mrd_offset =
522 			emad_array_in[i].comp_mrd_offset +
523 			(mrd_out_offset - mrd_in_offset);
524 	}
525 
526 	/* Verify that we stay within bound of the memory descriptors. */
527 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
528 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
529 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
530 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
531 		ERROR("%s: Invalid mrd structure.\n", __func__);
532 		return false;
533 	}
534 
535 	/* Copy the mrd descriptors directly. */
536 	memcpy(mrd_out, mrd_in, mrd_size);
537 
538 	return true;
539 }
540 
541 /**
542  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
543  *                                v1.0 memory object.
544  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
545  * @orig:       The shared memory object containing the v1.1 descriptor.
546  *
547  * Return: true if the conversion is successful else false.
548  */
549 static bool
550 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
551 			     struct spmc_shmem_obj *orig)
552 {
553 	struct ffa_mtd *mtd_orig = &orig->desc;
554 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
555 	struct ffa_emad_v1_0 *emad_in;
556 	struct ffa_emad_v1_0 *emad_array_in;
557 	struct ffa_emad_v1_0 *emad_array_out;
558 	struct ffa_comp_mrd *mrd_in;
559 	struct ffa_comp_mrd *mrd_out;
560 
561 	size_t mrd_in_offset;
562 	size_t mrd_out_offset;
563 	size_t emad_out_array_size;
564 	size_t mrd_size = 0;
565 	size_t orig_desc_size = orig->desc_size;
566 
567 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
568 	out->sender_id = mtd_orig->sender_id;
569 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
570 	out->flags = mtd_orig->flags;
571 	out->handle = mtd_orig->handle;
572 	out->tag = mtd_orig->tag;
573 	out->emad_count = mtd_orig->emad_count;
574 
575 	/* Determine the location of the emad array in both descriptors. */
576 	emad_array_in = (struct ffa_emad_v1_0 *)
577 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
578 	emad_array_out = out->emad;
579 
580 	/* Copy across the emad structs. */
581 	emad_in = emad_array_in;
582 	for (unsigned int i = 0U; i < out->emad_count; i++) {
583 		/* Bound check for emad array. */
584 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
585 				((uint8_t *) mtd_orig + orig_desc_size)) {
586 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
587 			return false;
588 		}
589 		memcpy(&emad_array_out[i], emad_in,
590 		       sizeof(struct ffa_emad_v1_0));
591 
592 		emad_in +=  mtd_orig->emad_size;
593 	}
594 
595 	/* Place the mrd descriptors after the end of the emad descriptors. */
596 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
597 
598 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
599 			  emad_out_array_size;
600 
601 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
602 
603 	mrd_in_offset = mtd_orig->emad_offset +
604 			(mtd_orig->emad_size * mtd_orig->emad_count);
605 
606 	/* Add the size of the composite memory region descriptor. */
607 	mrd_size += sizeof(struct ffa_comp_mrd);
608 
609 	/* Find the mrd descriptor. */
610 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
611 
612 	/* Add the size of the constituent memory region descriptors. */
613 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
614 
615 	/*
616 	 * Update the offset in the emads by the delta between the input and
617 	 * output addresses.
618 	 */
619 	emad_in = emad_array_in;
620 
621 	for (unsigned int i = 0U; i < out->emad_count; i++) {
622 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
623 						    (mrd_out_offset -
624 						     mrd_in_offset);
625 		emad_in +=  mtd_orig->emad_size;
626 	}
627 
628 	/* Verify that we stay within bound of the memory descriptors. */
629 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
630 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
631 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
632 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
633 		ERROR("%s: Invalid mrd structure.\n", __func__);
634 		return false;
635 	}
636 
637 	/* Copy the mrd descriptors directly. */
638 	memcpy(mrd_out, mrd_in, mrd_size);
639 
640 	return true;
641 }
642 
643 /**
644  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
645  *                                     the v1.0 format and populates the
646  *                                     provided buffer.
647  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
648  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
649  * @buf_size:	    Size of the buffer to populate.
650  * @offset:	    The offset of the converted descriptor to copy.
651  * @copy_size:	    Will be populated with the number of bytes copied.
652  * @out_desc_size:  Will be populated with the total size of the v1.0
653  *                  descriptor.
654  *
655  * Return: 0 if conversion and population succeeded.
656  * Note: This function invalidates the reference to @orig therefore
657  * `spmc_shmem_obj_lookup` must be called if further usage is required.
658  */
659 static uint32_t
660 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
661 				 size_t buf_size, size_t offset,
662 				 size_t *copy_size, size_t *v1_0_desc_size)
663 {
664 		struct spmc_shmem_obj *v1_0_obj;
665 
666 		/* Calculate the size that the v1.0 descriptor will require. */
667 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
668 					&orig_obj->desc, orig_obj->desc_size);
669 
670 		if (*v1_0_desc_size == 0) {
671 			ERROR("%s: cannot determine size of descriptor.\n",
672 			      __func__);
673 			return FFA_ERROR_INVALID_PARAMETER;
674 		}
675 
676 		/* Get a new obj to store the v1.0 descriptor. */
677 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
678 						*v1_0_desc_size);
679 
680 		if (!v1_0_obj) {
681 			return FFA_ERROR_NO_MEMORY;
682 		}
683 
684 		/* Perform the conversion from v1.1 to v1.0. */
685 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
686 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
687 			return FFA_ERROR_INVALID_PARAMETER;
688 		}
689 
690 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
691 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
692 
693 		/*
694 		 * We're finished with the v1.0 descriptor for now so free it.
695 		 * Note that this will invalidate any references to the v1.1
696 		 * descriptor.
697 		 */
698 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
699 
700 		return 0;
701 }
702 
703 static int
704 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
705 			size_t fragment_length, size_t total_length)
706 {
707 	unsigned long long emad_end;
708 	unsigned long long emad_size;
709 	unsigned long long emad_offset;
710 	unsigned int min_desc_size;
711 
712 	/* Determine the appropriate minimum descriptor size. */
713 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
714 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
715 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
716 		min_desc_size = sizeof(struct ffa_mtd);
717 	} else {
718 		return FFA_ERROR_INVALID_PARAMETER;
719 	}
720 	if (fragment_length < min_desc_size) {
721 		WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
722 		     min_desc_size);
723 		return FFA_ERROR_INVALID_PARAMETER;
724 	}
725 
726 	if (desc->emad_count == 0U) {
727 		WARN("%s: unsupported attribute desc count %u.\n",
728 		     __func__, desc->emad_count);
729 		return FFA_ERROR_INVALID_PARAMETER;
730 	}
731 
732 	/*
733 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
734 	 * format, otherwise assume it is a v1.1 format.
735 	 */
736 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
737 		emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
738 	} else {
739 		if (!is_aligned(desc->emad_offset, 16)) {
740 			WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
741 			     __func__, desc->emad_offset);
742 			return FFA_ERROR_INVALID_PARAMETER;
743 		}
744 		if (desc->emad_offset < sizeof(struct ffa_mtd)) {
745 			WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
746 			     __func__, desc->emad_offset,
747 			     sizeof(struct ffa_mtd));
748 			return FFA_ERROR_INVALID_PARAMETER;
749 		}
750 		emad_offset = desc->emad_offset;
751 		if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
752 			WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
753 			     desc->emad_size, sizeof(struct ffa_emad_v1_0));
754 			return FFA_ERROR_INVALID_PARAMETER;
755 		}
756 		if (!is_aligned(desc->emad_size, 16)) {
757 			WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
758 			     __func__, desc->emad_size);
759 			return FFA_ERROR_INVALID_PARAMETER;
760 		}
761 		emad_size = desc->emad_size;
762 	}
763 
764 	/*
765 	 * Overflow is impossible: the arithmetic happens in at least 64-bit
766 	 * precision, but all of the operands are bounded by UINT32_MAX, and
767 	 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1))
768 	 * = (2^64 - 1).
769 	 */
770 	CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large);
771 	emad_end = (desc->emad_count * (unsigned long long)emad_size) +
772 		   (unsigned long long)sizeof(struct ffa_comp_mrd) +
773 		   (unsigned long long)emad_offset;
774 
775 	if (emad_end > total_length) {
776 		WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
777 		     __func__, emad_end, total_length);
778 		return FFA_ERROR_INVALID_PARAMETER;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
786  * @obj:	  Object containing ffa_memory_region_descriptor.
787  * @ffa_version:  FF-A version of the provided descriptor.
788  *
789  * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
790  * offset or count is invalid.
791  */
792 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
793 				uint32_t ffa_version)
794 {
795 	uint32_t comp_mrd_offset = 0;
796 
797 	if (obj->desc.emad_count == 0U) {
798 		WARN("%s: unsupported attribute desc count %u.\n",
799 		     __func__, obj->desc.emad_count);
800 		return -EINVAL;
801 	}
802 
803 	for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
804 		size_t size;
805 		size_t count;
806 		size_t expected_size;
807 		size_t total_page_count;
808 		size_t emad_size;
809 		size_t desc_size;
810 		size_t header_emad_size;
811 		uint32_t offset;
812 		struct ffa_comp_mrd *comp;
813 		struct ffa_emad_v1_0 *emad;
814 
815 		emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
816 					       ffa_version, &emad_size);
817 		if (emad == NULL) {
818 			WARN("%s: invalid emad structure.\n", __func__);
819 			return -EINVAL;
820 		}
821 
822 		/*
823 		 * Validate the calculated emad address resides within the
824 		 * descriptor.
825 		 */
826 		if ((uintptr_t) emad >=
827 		    (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
828 			WARN("Invalid emad access.\n");
829 			return -EINVAL;
830 		}
831 
832 		offset = emad->comp_mrd_offset;
833 
834 		if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
835 			desc_size =  sizeof(struct ffa_mtd_v1_0);
836 		} else {
837 			desc_size =  sizeof(struct ffa_mtd);
838 		}
839 
840 		header_emad_size = desc_size +
841 			(obj->desc.emad_count * emad_size);
842 
843 		if (offset < header_emad_size) {
844 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
845 			     __func__, offset, header_emad_size);
846 			return -EINVAL;
847 		}
848 
849 		size = obj->desc_size;
850 
851 		if (offset > size) {
852 			WARN("%s: invalid object, offset %u > total size %zu\n",
853 			     __func__, offset, obj->desc_size);
854 			return -EINVAL;
855 		}
856 		size -= offset;
857 
858 		if (size < sizeof(struct ffa_comp_mrd)) {
859 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
860 			     __func__, offset, obj->desc_size);
861 			return -EINVAL;
862 		}
863 		size -= sizeof(struct ffa_comp_mrd);
864 
865 		count = size / sizeof(struct ffa_cons_mrd);
866 
867 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
868 
869 		if (comp == NULL) {
870 			WARN("%s: invalid comp_mrd offset\n", __func__);
871 			return -EINVAL;
872 		}
873 
874 		if (comp->address_range_count != count) {
875 			WARN("%s: invalid object, desc count %u != %zu\n",
876 			     __func__, comp->address_range_count, count);
877 			return -EINVAL;
878 		}
879 
880 		expected_size = offset + sizeof(*comp) +
881 				spmc_shmem_obj_ffa_constituent_size(obj,
882 								    ffa_version);
883 
884 		if (expected_size != obj->desc_size) {
885 			WARN("%s: invalid object, computed size %zu != size %zu\n",
886 			       __func__, expected_size, obj->desc_size);
887 			return -EINVAL;
888 		}
889 
890 		if (obj->desc_filled < obj->desc_size) {
891 			/*
892 			 * The whole descriptor has not yet been received.
893 			 * Skip final checks.
894 			 */
895 			return 0;
896 		}
897 
898 		/*
899 		 * The offset provided to the composite memory region descriptor
900 		 * should be consistent across endpoint descriptors. Store the
901 		 * first entry and compare against subsequent entries.
902 		 */
903 		if (comp_mrd_offset == 0) {
904 			comp_mrd_offset = offset;
905 		} else {
906 			if (comp_mrd_offset != offset) {
907 				ERROR("%s: mismatching offsets provided, %u != %u\n",
908 				       __func__, offset, comp_mrd_offset);
909 				return -EINVAL;
910 			}
911 		}
912 
913 		total_page_count = 0;
914 
915 		for (size_t i = 0; i < count; i++) {
916 			total_page_count +=
917 				comp->address_range_array[i].page_count;
918 		}
919 		if (comp->total_page_count != total_page_count) {
920 			WARN("%s: invalid object, desc total_page_count %u != %zu\n",
921 			     __func__, comp->total_page_count,
922 			total_page_count);
923 			return -EINVAL;
924 		}
925 	}
926 	return 0;
927 }
928 
929 /**
930  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
931  *				regions that are currently involved with an
932  *				existing memory transactions. This implies that
933  *				the memory is not in a valid state for lending.
934  * @obj:    Object containing ffa_memory_region_descriptor.
935  *
936  * Return: 0 if object is valid, -EINVAL if invalid memory state.
937  */
938 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
939 				      uint32_t ffa_version)
940 {
941 	size_t obj_offset = 0;
942 	struct spmc_shmem_obj *inflight_obj;
943 
944 	struct ffa_comp_mrd *other_mrd;
945 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
946 								  ffa_version);
947 
948 	if (requested_mrd == NULL) {
949 		return -EINVAL;
950 	}
951 
952 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
953 					       &obj_offset);
954 
955 	while (inflight_obj != NULL) {
956 		/*
957 		 * Don't compare the transaction to itself or to partially
958 		 * transmitted descriptors.
959 		 */
960 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
961 		    (obj->desc_size == obj->desc_filled)) {
962 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
963 							  FFA_VERSION_COMPILED);
964 			if (other_mrd == NULL) {
965 				return -EINVAL;
966 			}
967 			if (overlapping_memory_regions(requested_mrd,
968 						       other_mrd)) {
969 				return -EINVAL;
970 			}
971 		}
972 
973 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
974 						       &obj_offset);
975 	}
976 	return 0;
977 }
978 
979 static long spmc_ffa_fill_desc(struct mailbox *mbox,
980 			       struct spmc_shmem_obj *obj,
981 			       uint32_t fragment_length,
982 			       ffa_mtd_flag32_t mtd_flag,
983 			       uint32_t ffa_version,
984 			       void *smc_handle)
985 {
986 	int ret;
987 	size_t emad_size;
988 	uint32_t handle_low;
989 	uint32_t handle_high;
990 	struct ffa_emad_v1_0 *emad;
991 	struct ffa_emad_v1_0 *other_emad;
992 
993 	if (mbox->rxtx_page_count == 0U) {
994 		WARN("%s: buffer pair not registered.\n", __func__);
995 		ret = FFA_ERROR_INVALID_PARAMETER;
996 		goto err_arg;
997 	}
998 
999 	if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
1000 		WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
1001 		     fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
1002 		ret = FFA_ERROR_INVALID_PARAMETER;
1003 		goto err_arg;
1004 	}
1005 
1006 	if (fragment_length > obj->desc_size - obj->desc_filled) {
1007 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
1008 		     fragment_length, obj->desc_size - obj->desc_filled);
1009 		ret = FFA_ERROR_INVALID_PARAMETER;
1010 		goto err_arg;
1011 	}
1012 
1013 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1014 	       (uint8_t *) mbox->tx_buffer, fragment_length);
1015 
1016 	/* Ensure that the sender ID resides in the normal world. */
1017 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1018 		WARN("%s: Invalid sender ID 0x%x.\n",
1019 		     __func__, obj->desc.sender_id);
1020 		ret = FFA_ERROR_DENIED;
1021 		goto err_arg;
1022 	}
1023 
1024 	/* Ensure the NS bit is set to 0. */
1025 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1026 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1027 		ret = FFA_ERROR_INVALID_PARAMETER;
1028 		goto err_arg;
1029 	}
1030 
1031 	/*
1032 	 * We don't currently support any optional flags so ensure none are
1033 	 * requested.
1034 	 */
1035 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
1036 	    (obj->desc.flags != mtd_flag)) {
1037 		WARN("%s: invalid memory transaction flags %u != %u\n",
1038 		     __func__, obj->desc.flags, mtd_flag);
1039 		ret = FFA_ERROR_INVALID_PARAMETER;
1040 		goto err_arg;
1041 	}
1042 
1043 	if (obj->desc_filled == 0U) {
1044 		/* First fragment, descriptor header has been copied */
1045 		ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1046 					      fragment_length, obj->desc_size);
1047 		if (ret != 0) {
1048 			goto err_bad_desc;
1049 		}
1050 
1051 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1052 		obj->desc.flags |= mtd_flag;
1053 	}
1054 
1055 	obj->desc_filled += fragment_length;
1056 	ret = spmc_shmem_check_obj(obj, ffa_version);
1057 	if (ret != 0) {
1058 		ret = FFA_ERROR_INVALID_PARAMETER;
1059 		goto err_bad_desc;
1060 	}
1061 
1062 	handle_low = (uint32_t)obj->desc.handle;
1063 	handle_high = obj->desc.handle >> 32;
1064 
1065 	if (obj->desc_filled != obj->desc_size) {
1066 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1067 			 handle_high, obj->desc_filled,
1068 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1069 	}
1070 
1071 	/* The full descriptor has been received, perform any final checks. */
1072 
1073 	/*
1074 	 * If a partition ID resides in the secure world validate that the
1075 	 * partition ID is for a known partition. Ignore any partition ID
1076 	 * belonging to the normal world as it is assumed the Hypervisor will
1077 	 * have validated these.
1078 	 */
1079 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1080 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1081 					       &emad_size);
1082 		if (emad == NULL) {
1083 			ret = FFA_ERROR_INVALID_PARAMETER;
1084 			goto err_bad_desc;
1085 		}
1086 
1087 		ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
1088 
1089 		if (ffa_is_secure_world_id(ep_id)) {
1090 			if (spmc_get_sp_ctx(ep_id) == NULL) {
1091 				WARN("%s: Invalid receiver id 0x%x\n",
1092 				     __func__, ep_id);
1093 				ret = FFA_ERROR_INVALID_PARAMETER;
1094 				goto err_bad_desc;
1095 			}
1096 		}
1097 	}
1098 
1099 	/* Ensure partition IDs are not duplicated. */
1100 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1101 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1102 					       &emad_size);
1103 		if (emad == NULL) {
1104 			ret = FFA_ERROR_INVALID_PARAMETER;
1105 			goto err_bad_desc;
1106 		}
1107 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
1108 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1109 							     ffa_version,
1110 							     &emad_size);
1111 			if (other_emad == NULL) {
1112 				ret = FFA_ERROR_INVALID_PARAMETER;
1113 				goto err_bad_desc;
1114 			}
1115 
1116 			if (emad->mapd.endpoint_id ==
1117 				other_emad->mapd.endpoint_id) {
1118 				WARN("%s: Duplicated endpoint id 0x%x\n",
1119 				     __func__, emad->mapd.endpoint_id);
1120 				ret = FFA_ERROR_INVALID_PARAMETER;
1121 				goto err_bad_desc;
1122 			}
1123 		}
1124 	}
1125 
1126 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1127 	if (ret) {
1128 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1129 		ret = FFA_ERROR_INVALID_PARAMETER;
1130 		goto err_bad_desc;
1131 	}
1132 
1133 	/*
1134 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1135 	 * the descriptor format to use the v1.1 structures.
1136 	 */
1137 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1138 		struct spmc_shmem_obj *v1_1_obj;
1139 		uint64_t mem_handle;
1140 
1141 		/* Calculate the size that the v1.1 descriptor will required. */
1142 		size_t v1_1_desc_size =
1143 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1144 						      obj->desc_size);
1145 
1146 		if (v1_1_desc_size == 0U) {
1147 			ERROR("%s: cannot determine size of descriptor.\n",
1148 			      __func__);
1149 			goto err_arg;
1150 		}
1151 
1152 		/* Get a new obj to store the v1.1 descriptor. */
1153 		v1_1_obj =
1154 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
1155 
1156 		if (!v1_1_obj) {
1157 			ret = FFA_ERROR_NO_MEMORY;
1158 			goto err_arg;
1159 		}
1160 
1161 		/* Perform the conversion from v1.0 to v1.1. */
1162 		v1_1_obj->desc_size = v1_1_desc_size;
1163 		v1_1_obj->desc_filled = v1_1_desc_size;
1164 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1165 			ERROR("%s: Could not convert mtd!\n", __func__);
1166 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1167 			goto err_arg;
1168 		}
1169 
1170 		/*
1171 		 * We're finished with the v1.0 descriptor so free it
1172 		 * and continue our checks with the new v1.1 descriptor.
1173 		 */
1174 		mem_handle = obj->desc.handle;
1175 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1176 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1177 		if (obj == NULL) {
1178 			ERROR("%s: Failed to find converted descriptor.\n",
1179 			     __func__);
1180 			ret = FFA_ERROR_INVALID_PARAMETER;
1181 			return spmc_ffa_error_return(smc_handle, ret);
1182 		}
1183 	}
1184 
1185 	/* Allow for platform specific operations to be performed. */
1186 	ret = plat_spmc_shmem_begin(&obj->desc);
1187 	if (ret != 0) {
1188 		goto err_arg;
1189 	}
1190 
1191 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1192 		 0, 0, 0);
1193 
1194 err_bad_desc:
1195 err_arg:
1196 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1197 	return spmc_ffa_error_return(smc_handle, ret);
1198 }
1199 
1200 /**
1201  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1202  * @client:             Client state.
1203  * @total_length:       Total length of shared memory descriptor.
1204  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1205  *                      this call.
1206  * @address:            Not supported, must be 0.
1207  * @page_count:         Not supported, must be 0.
1208  * @smc_handle:         Handle passed to smc call. Used to return
1209  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1210  *
1211  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1212  * to share or lend memory from non-secure os to secure os (with no stream
1213  * endpoints).
1214  *
1215  * Return: 0 on success, error code on failure.
1216  */
1217 long spmc_ffa_mem_send(uint32_t smc_fid,
1218 			bool secure_origin,
1219 			uint64_t total_length,
1220 			uint32_t fragment_length,
1221 			uint64_t address,
1222 			uint32_t page_count,
1223 			void *cookie,
1224 			void *handle,
1225 			uint64_t flags)
1226 
1227 {
1228 	long ret;
1229 	struct spmc_shmem_obj *obj;
1230 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1231 	ffa_mtd_flag32_t mtd_flag;
1232 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1233 	size_t min_desc_size;
1234 
1235 	if (address != 0U || page_count != 0U) {
1236 		WARN("%s: custom memory region for message not supported.\n",
1237 		     __func__);
1238 		return spmc_ffa_error_return(handle,
1239 					     FFA_ERROR_INVALID_PARAMETER);
1240 	}
1241 
1242 	if (secure_origin) {
1243 		WARN("%s: unsupported share direction.\n", __func__);
1244 		return spmc_ffa_error_return(handle,
1245 					     FFA_ERROR_INVALID_PARAMETER);
1246 	}
1247 
1248 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1249 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1250 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1251 		min_desc_size = sizeof(struct ffa_mtd);
1252 	} else {
1253 		WARN("%s: bad FF-A version.\n", __func__);
1254 		return spmc_ffa_error_return(handle,
1255 					     FFA_ERROR_INVALID_PARAMETER);
1256 	}
1257 
1258 	/* Check if the descriptor is too small for the FF-A version. */
1259 	if (fragment_length < min_desc_size) {
1260 		WARN("%s: bad first fragment size %u < %zu\n",
1261 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1262 		return spmc_ffa_error_return(handle,
1263 					     FFA_ERROR_INVALID_PARAMETER);
1264 	}
1265 
1266 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1267 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1268 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1269 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1270 	} else {
1271 		WARN("%s: invalid memory management operation.\n", __func__);
1272 		return spmc_ffa_error_return(handle,
1273 					     FFA_ERROR_INVALID_PARAMETER);
1274 	}
1275 
1276 	spin_lock(&spmc_shmem_obj_state.lock);
1277 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1278 	if (obj == NULL) {
1279 		ret = FFA_ERROR_NO_MEMORY;
1280 		goto err_unlock;
1281 	}
1282 
1283 	spin_lock(&mbox->lock);
1284 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1285 				 ffa_version, handle);
1286 	spin_unlock(&mbox->lock);
1287 
1288 	spin_unlock(&spmc_shmem_obj_state.lock);
1289 	return ret;
1290 
1291 err_unlock:
1292 	spin_unlock(&spmc_shmem_obj_state.lock);
1293 	return spmc_ffa_error_return(handle, ret);
1294 }
1295 
1296 /**
1297  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1298  * @client:             Client state.
1299  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1300  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1301  * @fragment_length:    Length of fragments transmitted.
1302  * @sender_id:          Vmid of sender in bits [31:16]
1303  * @smc_handle:         Handle passed to smc call. Used to return
1304  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1305  *
1306  * Return: @smc_handle on success, error code on failure.
1307  */
1308 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1309 			  bool secure_origin,
1310 			  uint64_t handle_low,
1311 			  uint64_t handle_high,
1312 			  uint32_t fragment_length,
1313 			  uint32_t sender_id,
1314 			  void *cookie,
1315 			  void *handle,
1316 			  uint64_t flags)
1317 {
1318 	long ret;
1319 	uint32_t desc_sender_id;
1320 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1321 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1322 
1323 	struct spmc_shmem_obj *obj;
1324 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1325 
1326 	spin_lock(&spmc_shmem_obj_state.lock);
1327 
1328 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1329 	if (obj == NULL) {
1330 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1331 		     __func__, mem_handle);
1332 		ret = FFA_ERROR_INVALID_PARAMETER;
1333 		goto err_unlock;
1334 	}
1335 
1336 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1337 	if (sender_id != desc_sender_id) {
1338 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1339 		     sender_id, desc_sender_id);
1340 		ret = FFA_ERROR_INVALID_PARAMETER;
1341 		goto err_unlock;
1342 	}
1343 
1344 	if (obj->desc_filled == obj->desc_size) {
1345 		WARN("%s: object desc already filled, %zu\n", __func__,
1346 		     obj->desc_filled);
1347 		ret = FFA_ERROR_INVALID_PARAMETER;
1348 		goto err_unlock;
1349 	}
1350 
1351 	spin_lock(&mbox->lock);
1352 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1353 				 handle);
1354 	spin_unlock(&mbox->lock);
1355 
1356 	spin_unlock(&spmc_shmem_obj_state.lock);
1357 	return ret;
1358 
1359 err_unlock:
1360 	spin_unlock(&spmc_shmem_obj_state.lock);
1361 	return spmc_ffa_error_return(handle, ret);
1362 }
1363 
1364 /**
1365  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1366  *				      if the caller implements a version greater
1367  *				      than FF-A 1.0 or if they have requested
1368  *				      the functionality.
1369  *				      TODO: We are assuming that the caller is
1370  *				      an SP. To support retrieval from the
1371  *				      normal world this function will need to be
1372  *				      expanded accordingly.
1373  * @resp:       Descriptor populated in callers RX buffer.
1374  * @sp_ctx:     Context of the calling SP.
1375  */
1376 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1377 			 struct secure_partition_desc *sp_ctx)
1378 {
1379 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1380 	    sp_ctx->ns_bit_requested) {
1381 		/*
1382 		 * Currently memory senders must reside in the normal
1383 		 * world, and we do not have the functionlaity to change
1384 		 * the state of memory dynamically. Therefore we can always set
1385 		 * the NS bit to 1.
1386 		 */
1387 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1388 	}
1389 }
1390 
1391 /**
1392  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1393  * @smc_fid:            FID of SMC
1394  * @total_length:       Total length of retrieve request descriptor if this is
1395  *                      the first call. Otherwise (unsupported) must be 0.
1396  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1397  *                      in this call. Only @fragment_length == @length is
1398  *                      supported by this implementation.
1399  * @address:            Not supported, must be 0.
1400  * @page_count:         Not supported, must be 0.
1401  * @smc_handle:         Handle passed to smc call. Used to return
1402  *                      FFA_MEM_RETRIEVE_RESP.
1403  *
1404  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1405  * Used by secure os to retrieve memory already shared by non-secure os.
1406  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1407  * the client must call FFA_MEM_FRAG_RX until the full response has been
1408  * received.
1409  *
1410  * Return: @handle on success, error code on failure.
1411  */
1412 long
1413 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1414 			  bool secure_origin,
1415 			  uint32_t total_length,
1416 			  uint32_t fragment_length,
1417 			  uint64_t address,
1418 			  uint32_t page_count,
1419 			  void *cookie,
1420 			  void *handle,
1421 			  uint64_t flags)
1422 {
1423 	int ret;
1424 	size_t buf_size;
1425 	size_t copy_size = 0;
1426 	size_t min_desc_size;
1427 	size_t out_desc_size = 0;
1428 
1429 	/*
1430 	 * Currently we are only accessing fields that are the same in both the
1431 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1432 	 * here. We only need validate against the appropriate struct size.
1433 	 */
1434 	struct ffa_mtd *resp;
1435 	const struct ffa_mtd *req;
1436 	struct spmc_shmem_obj *obj = NULL;
1437 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1438 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1439 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1440 
1441 	if (!secure_origin) {
1442 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1443 		return spmc_ffa_error_return(handle,
1444 					     FFA_ERROR_INVALID_PARAMETER);
1445 	}
1446 
1447 	if (address != 0U || page_count != 0U) {
1448 		WARN("%s: custom memory region not supported.\n", __func__);
1449 		return spmc_ffa_error_return(handle,
1450 					     FFA_ERROR_INVALID_PARAMETER);
1451 	}
1452 
1453 	spin_lock(&mbox->lock);
1454 
1455 	req = mbox->tx_buffer;
1456 	resp = mbox->rx_buffer;
1457 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1458 
1459 	if (mbox->rxtx_page_count == 0U) {
1460 		WARN("%s: buffer pair not registered.\n", __func__);
1461 		ret = FFA_ERROR_INVALID_PARAMETER;
1462 		goto err_unlock_mailbox;
1463 	}
1464 
1465 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1466 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1467 		ret = FFA_ERROR_DENIED;
1468 		goto err_unlock_mailbox;
1469 	}
1470 
1471 	if (fragment_length != total_length) {
1472 		WARN("%s: fragmented retrieve request not supported.\n",
1473 		     __func__);
1474 		ret = FFA_ERROR_INVALID_PARAMETER;
1475 		goto err_unlock_mailbox;
1476 	}
1477 
1478 	if (req->emad_count == 0U) {
1479 		WARN("%s: unsupported attribute desc count %u.\n",
1480 		     __func__, obj->desc.emad_count);
1481 		ret = FFA_ERROR_INVALID_PARAMETER;
1482 		goto err_unlock_mailbox;
1483 	}
1484 
1485 	/* Determine the appropriate minimum descriptor size. */
1486 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1487 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1488 	} else {
1489 		min_desc_size = sizeof(struct ffa_mtd);
1490 	}
1491 	if (total_length < min_desc_size) {
1492 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1493 		     min_desc_size);
1494 		ret = FFA_ERROR_INVALID_PARAMETER;
1495 		goto err_unlock_mailbox;
1496 	}
1497 
1498 	spin_lock(&spmc_shmem_obj_state.lock);
1499 
1500 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1501 	if (obj == NULL) {
1502 		ret = FFA_ERROR_INVALID_PARAMETER;
1503 		goto err_unlock_all;
1504 	}
1505 
1506 	if (obj->desc_filled != obj->desc_size) {
1507 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1508 		     __func__, obj->desc_filled, obj->desc_size);
1509 		ret = FFA_ERROR_INVALID_PARAMETER;
1510 		goto err_unlock_all;
1511 	}
1512 
1513 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1514 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1515 		     __func__, req->sender_id, obj->desc.sender_id);
1516 		ret = FFA_ERROR_INVALID_PARAMETER;
1517 		goto err_unlock_all;
1518 	}
1519 
1520 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1521 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1522 		     __func__, req->tag, obj->desc.tag);
1523 		ret = FFA_ERROR_INVALID_PARAMETER;
1524 		goto err_unlock_all;
1525 	}
1526 
1527 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1528 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1529 		     __func__, req->emad_count, obj->desc.emad_count);
1530 		ret = FFA_ERROR_INVALID_PARAMETER;
1531 		goto err_unlock_all;
1532 	}
1533 
1534 	/* Ensure the NS bit is set to 0 in the request. */
1535 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1536 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1537 		ret = FFA_ERROR_INVALID_PARAMETER;
1538 		goto err_unlock_all;
1539 	}
1540 
1541 	if (req->flags != 0U) {
1542 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1543 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1544 			/*
1545 			 * If the retrieve request specifies the memory
1546 			 * transaction ensure it matches what we expect.
1547 			 */
1548 			WARN("%s: wrong mem transaction flags %x != %x\n",
1549 			__func__, req->flags, obj->desc.flags);
1550 			ret = FFA_ERROR_INVALID_PARAMETER;
1551 			goto err_unlock_all;
1552 		}
1553 
1554 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1555 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1556 			/*
1557 			 * Current implementation does not support donate and
1558 			 * it supports no other flags.
1559 			 */
1560 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1561 			ret = FFA_ERROR_INVALID_PARAMETER;
1562 			goto err_unlock_all;
1563 		}
1564 	}
1565 
1566 	/* Validate the caller is a valid participant. */
1567 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1568 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1569 			__func__, sp_ctx->sp_id);
1570 		ret = FFA_ERROR_INVALID_PARAMETER;
1571 		goto err_unlock_all;
1572 	}
1573 
1574 	/* Validate that the provided emad offset and structure is valid.*/
1575 	for (size_t i = 0; i < req->emad_count; i++) {
1576 		size_t emad_size;
1577 		struct ffa_emad_v1_0 *emad;
1578 
1579 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1580 					       &emad_size);
1581 		if (emad == NULL) {
1582 			WARN("%s: invalid emad structure.\n", __func__);
1583 			ret = FFA_ERROR_INVALID_PARAMETER;
1584 			goto err_unlock_all;
1585 		}
1586 
1587 		if ((uintptr_t) emad >= (uintptr_t)
1588 					((uint8_t *) req + total_length)) {
1589 			WARN("Invalid emad access.\n");
1590 			ret = FFA_ERROR_INVALID_PARAMETER;
1591 			goto err_unlock_all;
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * Validate all the endpoints match in the case of multiple
1597 	 * borrowers. We don't mandate that the order of the borrowers
1598 	 * must match in the descriptors therefore check to see if the
1599 	 * endpoints match in any order.
1600 	 */
1601 	for (size_t i = 0; i < req->emad_count; i++) {
1602 		bool found = false;
1603 		size_t emad_size;
1604 		struct ffa_emad_v1_0 *emad;
1605 		struct ffa_emad_v1_0 *other_emad;
1606 
1607 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1608 					       &emad_size);
1609 		if (emad == NULL) {
1610 			ret = FFA_ERROR_INVALID_PARAMETER;
1611 			goto err_unlock_all;
1612 		}
1613 
1614 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1615 			other_emad = spmc_shmem_obj_get_emad(
1616 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1617 					&emad_size);
1618 
1619 			if (other_emad == NULL) {
1620 				ret = FFA_ERROR_INVALID_PARAMETER;
1621 				goto err_unlock_all;
1622 			}
1623 
1624 			if (req->emad_count &&
1625 			    emad->mapd.endpoint_id ==
1626 			    other_emad->mapd.endpoint_id) {
1627 				found = true;
1628 				break;
1629 			}
1630 		}
1631 
1632 		if (!found) {
1633 			WARN("%s: invalid receiver id (0x%x).\n",
1634 			     __func__, emad->mapd.endpoint_id);
1635 			ret = FFA_ERROR_INVALID_PARAMETER;
1636 			goto err_unlock_all;
1637 		}
1638 	}
1639 
1640 	mbox->state = MAILBOX_STATE_FULL;
1641 
1642 	if (req->emad_count != 0U) {
1643 		obj->in_use++;
1644 	}
1645 
1646 	/*
1647 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1648 	 * directly.
1649 	 */
1650 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1651 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1652 							&copy_size,
1653 							&out_desc_size);
1654 		if (ret != 0U) {
1655 			ERROR("%s: Failed to process descriptor.\n", __func__);
1656 			goto err_unlock_all;
1657 		}
1658 	} else {
1659 		copy_size = MIN(obj->desc_size, buf_size);
1660 		out_desc_size = obj->desc_size;
1661 
1662 		memcpy(resp, &obj->desc, copy_size);
1663 	}
1664 
1665 	/* Set the NS bit in the response if applicable. */
1666 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1667 
1668 	spin_unlock(&spmc_shmem_obj_state.lock);
1669 	spin_unlock(&mbox->lock);
1670 
1671 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1672 		 copy_size, 0, 0, 0, 0, 0);
1673 
1674 err_unlock_all:
1675 	spin_unlock(&spmc_shmem_obj_state.lock);
1676 err_unlock_mailbox:
1677 	spin_unlock(&mbox->lock);
1678 	return spmc_ffa_error_return(handle, ret);
1679 }
1680 
1681 /**
1682  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1683  * @client:             Client state.
1684  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1685  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1686  * @fragment_offset:    Byte offset in descriptor to resume at.
1687  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1688  *                      hypervisor. 0 otherwise.
1689  * @smc_handle:         Handle passed to smc call. Used to return
1690  *                      FFA_MEM_FRAG_TX.
1691  *
1692  * Return: @smc_handle on success, error code on failure.
1693  */
1694 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1695 			  bool secure_origin,
1696 			  uint32_t handle_low,
1697 			  uint32_t handle_high,
1698 			  uint32_t fragment_offset,
1699 			  uint32_t sender_id,
1700 			  void *cookie,
1701 			  void *handle,
1702 			  uint64_t flags)
1703 {
1704 	int ret;
1705 	void *src;
1706 	size_t buf_size;
1707 	size_t copy_size;
1708 	size_t full_copy_size;
1709 	uint32_t desc_sender_id;
1710 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1711 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1712 	struct spmc_shmem_obj *obj;
1713 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1714 
1715 	if (!secure_origin) {
1716 		WARN("%s: can only be called from swld.\n",
1717 		     __func__);
1718 		return spmc_ffa_error_return(handle,
1719 					     FFA_ERROR_INVALID_PARAMETER);
1720 	}
1721 
1722 	spin_lock(&spmc_shmem_obj_state.lock);
1723 
1724 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1725 	if (obj == NULL) {
1726 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1727 		     __func__, mem_handle);
1728 		ret = FFA_ERROR_INVALID_PARAMETER;
1729 		goto err_unlock_shmem;
1730 	}
1731 
1732 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1733 	if (sender_id != 0U && sender_id != desc_sender_id) {
1734 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1735 		     sender_id, desc_sender_id);
1736 		ret = FFA_ERROR_INVALID_PARAMETER;
1737 		goto err_unlock_shmem;
1738 	}
1739 
1740 	if (fragment_offset >= obj->desc_size) {
1741 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1742 		     __func__, fragment_offset, obj->desc_size);
1743 		ret = FFA_ERROR_INVALID_PARAMETER;
1744 		goto err_unlock_shmem;
1745 	}
1746 
1747 	spin_lock(&mbox->lock);
1748 
1749 	if (mbox->rxtx_page_count == 0U) {
1750 		WARN("%s: buffer pair not registered.\n", __func__);
1751 		ret = FFA_ERROR_INVALID_PARAMETER;
1752 		goto err_unlock_all;
1753 	}
1754 
1755 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1756 		WARN("%s: RX Buffer is full!\n", __func__);
1757 		ret = FFA_ERROR_DENIED;
1758 		goto err_unlock_all;
1759 	}
1760 
1761 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1762 
1763 	mbox->state = MAILBOX_STATE_FULL;
1764 
1765 	/*
1766 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1767 	 * directly.
1768 	 */
1769 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1770 		size_t out_desc_size;
1771 
1772 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1773 							buf_size,
1774 							fragment_offset,
1775 							&copy_size,
1776 							&out_desc_size);
1777 		if (ret != 0U) {
1778 			ERROR("%s: Failed to process descriptor.\n", __func__);
1779 			goto err_unlock_all;
1780 		}
1781 	} else {
1782 		full_copy_size = obj->desc_size - fragment_offset;
1783 		copy_size = MIN(full_copy_size, buf_size);
1784 
1785 		src = &obj->desc;
1786 
1787 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1788 	}
1789 
1790 	spin_unlock(&mbox->lock);
1791 	spin_unlock(&spmc_shmem_obj_state.lock);
1792 
1793 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1794 		 copy_size, sender_id, 0, 0, 0);
1795 
1796 err_unlock_all:
1797 	spin_unlock(&mbox->lock);
1798 err_unlock_shmem:
1799 	spin_unlock(&spmc_shmem_obj_state.lock);
1800 	return spmc_ffa_error_return(handle, ret);
1801 }
1802 
1803 /**
1804  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1805  * @client:             Client state.
1806  *
1807  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1808  * Used by secure os release previously shared memory to non-secure os.
1809  *
1810  * The handle to release must be in the client's (secure os's) transmit buffer.
1811  *
1812  * Return: 0 on success, error code on failure.
1813  */
1814 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1815 			    bool secure_origin,
1816 			    uint32_t handle_low,
1817 			    uint32_t handle_high,
1818 			    uint32_t fragment_offset,
1819 			    uint32_t sender_id,
1820 			    void *cookie,
1821 			    void *handle,
1822 			    uint64_t flags)
1823 {
1824 	int ret;
1825 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1826 	struct spmc_shmem_obj *obj;
1827 	const struct ffa_mem_relinquish_descriptor *req;
1828 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1829 
1830 	if (!secure_origin) {
1831 		WARN("%s: unsupported relinquish direction.\n", __func__);
1832 		return spmc_ffa_error_return(handle,
1833 					     FFA_ERROR_INVALID_PARAMETER);
1834 	}
1835 
1836 	spin_lock(&mbox->lock);
1837 
1838 	if (mbox->rxtx_page_count == 0U) {
1839 		WARN("%s: buffer pair not registered.\n", __func__);
1840 		ret = FFA_ERROR_INVALID_PARAMETER;
1841 		goto err_unlock_mailbox;
1842 	}
1843 
1844 	req = mbox->tx_buffer;
1845 
1846 	if (req->flags != 0U) {
1847 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1848 		ret = FFA_ERROR_INVALID_PARAMETER;
1849 		goto err_unlock_mailbox;
1850 	}
1851 
1852 	if (req->endpoint_count == 0) {
1853 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1854 		ret = FFA_ERROR_INVALID_PARAMETER;
1855 		goto err_unlock_mailbox;
1856 	}
1857 
1858 	spin_lock(&spmc_shmem_obj_state.lock);
1859 
1860 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1861 	if (obj == NULL) {
1862 		ret = FFA_ERROR_INVALID_PARAMETER;
1863 		goto err_unlock_all;
1864 	}
1865 
1866 	/*
1867 	 * Validate the endpoint ID was populated correctly. We don't currently
1868 	 * support proxy endpoints so the endpoint count should always be 1.
1869 	 */
1870 	if (req->endpoint_count != 1U) {
1871 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1872 		     req->endpoint_count);
1873 		ret = FFA_ERROR_INVALID_PARAMETER;
1874 		goto err_unlock_all;
1875 	}
1876 
1877 	/* Validate provided endpoint ID matches the partition ID. */
1878 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1879 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1880 		     req->endpoint_array[0], sp_ctx->sp_id);
1881 		ret = FFA_ERROR_INVALID_PARAMETER;
1882 		goto err_unlock_all;
1883 	}
1884 
1885 	/* Validate the caller is a valid participant. */
1886 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1887 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1888 			__func__, req->endpoint_array[0]);
1889 		ret = FFA_ERROR_INVALID_PARAMETER;
1890 		goto err_unlock_all;
1891 	}
1892 
1893 	if (obj->in_use == 0U) {
1894 		ret = FFA_ERROR_INVALID_PARAMETER;
1895 		goto err_unlock_all;
1896 	}
1897 	obj->in_use--;
1898 
1899 	spin_unlock(&spmc_shmem_obj_state.lock);
1900 	spin_unlock(&mbox->lock);
1901 
1902 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1903 
1904 err_unlock_all:
1905 	spin_unlock(&spmc_shmem_obj_state.lock);
1906 err_unlock_mailbox:
1907 	spin_unlock(&mbox->lock);
1908 	return spmc_ffa_error_return(handle, ret);
1909 }
1910 
1911 /**
1912  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1913  * @client:         Client state.
1914  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1915  * @handle_high:    Unique handle of shared memory object to reclaim.
1916  *                  Bit[63:32].
1917  * @flags:          Unsupported, ignored.
1918  *
1919  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1920  * Used by non-secure os reclaim memory previously shared with secure os.
1921  *
1922  * Return: 0 on success, error code on failure.
1923  */
1924 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1925 			 bool secure_origin,
1926 			 uint32_t handle_low,
1927 			 uint32_t handle_high,
1928 			 uint32_t mem_flags,
1929 			 uint64_t x4,
1930 			 void *cookie,
1931 			 void *handle,
1932 			 uint64_t flags)
1933 {
1934 	int ret;
1935 	struct spmc_shmem_obj *obj;
1936 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1937 
1938 	if (secure_origin) {
1939 		WARN("%s: unsupported reclaim direction.\n", __func__);
1940 		return spmc_ffa_error_return(handle,
1941 					     FFA_ERROR_INVALID_PARAMETER);
1942 	}
1943 
1944 	if (mem_flags != 0U) {
1945 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1946 		return spmc_ffa_error_return(handle,
1947 					     FFA_ERROR_INVALID_PARAMETER);
1948 	}
1949 
1950 	spin_lock(&spmc_shmem_obj_state.lock);
1951 
1952 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1953 	if (obj == NULL) {
1954 		ret = FFA_ERROR_INVALID_PARAMETER;
1955 		goto err_unlock;
1956 	}
1957 	if (obj->in_use != 0U) {
1958 		ret = FFA_ERROR_DENIED;
1959 		goto err_unlock;
1960 	}
1961 
1962 	if (obj->desc_filled != obj->desc_size) {
1963 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1964 		     __func__, obj->desc_filled, obj->desc_size);
1965 		ret = FFA_ERROR_INVALID_PARAMETER;
1966 		goto err_unlock;
1967 	}
1968 
1969 	/* Allow for platform specific operations to be performed. */
1970 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1971 	if (ret != 0) {
1972 		goto err_unlock;
1973 	}
1974 
1975 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1976 	spin_unlock(&spmc_shmem_obj_state.lock);
1977 
1978 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1979 
1980 err_unlock:
1981 	spin_unlock(&spmc_shmem_obj_state.lock);
1982 	return spmc_ffa_error_return(handle, ret);
1983 }
1984