1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 obj_size = spmc_shmem_obj_size(desc_size); 84 85 /* Ensure the obj size has not overflowed. */ 86 if (obj_size < desc_size) { 87 WARN("%s(0x%zx) desc_size overflow\n", 88 __func__, desc_size); 89 return NULL; 90 } 91 92 if (obj_size > free) { 93 WARN("%s(0x%zx) failed, free 0x%zx\n", 94 __func__, desc_size, free); 95 return NULL; 96 } 97 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 98 obj->desc = (struct ffa_mtd) {0}; 99 obj->desc_size = desc_size; 100 obj->desc_filled = 0; 101 obj->in_use = 0; 102 state->allocated += obj_size; 103 return obj; 104 } 105 106 /** 107 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 108 * @state: Global state. 109 * @obj: Object to free. 110 * 111 * Release memory used by @obj. Other objects may move, so on return all 112 * pointers to struct spmc_shmem_obj object should be considered invalid, not 113 * just @obj. 114 * 115 * The current implementation always compacts the remaining objects to simplify 116 * the allocator and to avoid fragmentation. 117 */ 118 119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 120 struct spmc_shmem_obj *obj) 121 { 122 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 123 uint8_t *shift_dest = (uint8_t *)obj; 124 uint8_t *shift_src = shift_dest + free_size; 125 size_t shift_size = state->allocated - (shift_src - state->data); 126 127 if (shift_size != 0U) { 128 memmove(shift_dest, shift_src, shift_size); 129 } 130 state->allocated -= free_size; 131 } 132 133 /** 134 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 135 * @state: Global state. 136 * @handle: Unique handle of object to return. 137 * 138 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 139 * %NULL, if not object in @state->data has a matching handle. 140 */ 141 static struct spmc_shmem_obj * 142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 143 { 144 uint8_t *curr = state->data; 145 146 while (curr - state->data < state->allocated) { 147 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 148 149 if (obj->desc.handle == handle) { 150 return obj; 151 } 152 curr += spmc_shmem_obj_size(obj->desc_size); 153 } 154 return NULL; 155 } 156 157 /** 158 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 159 * @offset: Offset used to track which objects have previously been 160 * returned. 161 * 162 * Return: the next struct spmc_shmem_obj_state object from the provided 163 * offset. 164 * %NULL, if there are no more objects. 165 */ 166 static struct spmc_shmem_obj * 167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 168 { 169 uint8_t *curr = state->data + *offset; 170 171 if (curr - state->data < state->allocated) { 172 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 173 174 *offset += spmc_shmem_obj_size(obj->desc_size); 175 176 return obj; 177 } 178 return NULL; 179 } 180 181 /******************************************************************************* 182 * FF-A memory descriptor helper functions. 183 ******************************************************************************/ 184 /** 185 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 186 * clients FF-A version. 187 * @desc: The memory transaction descriptor. 188 * @index: The index of the emad element to be accessed. 189 * @ffa_version: FF-A version of the provided structure. 190 * @emad_size: Will be populated with the size of the returned emad 191 * descriptor. 192 * Return: A pointer to the requested emad structure. 193 */ 194 static void * 195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 196 uint32_t ffa_version, size_t *emad_size) 197 { 198 uint8_t *emad; 199 200 assert(index < desc->emad_count); 201 202 /* 203 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 204 * format, otherwise assume it is a v1.1 format. 205 */ 206 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 207 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 208 *emad_size = sizeof(struct ffa_emad_v1_0); 209 } else { 210 assert(is_aligned(desc->emad_offset, 16)); 211 emad = ((uint8_t *) desc + desc->emad_offset); 212 *emad_size = desc->emad_size; 213 } 214 215 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 216 return (emad + (*emad_size * index)); 217 } 218 219 /** 220 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 221 * FF-A version of the descriptor. 222 * @obj: Object containing ffa_memory_region_descriptor. 223 * 224 * Return: struct ffa_comp_mrd object corresponding to the composite memory 225 * region descriptor. 226 */ 227 static struct ffa_comp_mrd * 228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 229 { 230 size_t emad_size; 231 /* 232 * The comp_mrd_offset field of the emad descriptor remains consistent 233 * between FF-A versions therefore we can use the v1.0 descriptor here 234 * in all cases. 235 */ 236 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 237 ffa_version, 238 &emad_size); 239 240 /* Ensure the composite descriptor offset is aligned. */ 241 if (!is_aligned(emad->comp_mrd_offset, 8)) { 242 WARN("Unaligned composite memory region descriptor offset.\n"); 243 return NULL; 244 } 245 246 return (struct ffa_comp_mrd *) 247 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 248 } 249 250 /** 251 * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj. 252 * @obj: Object containing ffa_memory_region_descriptor. 253 * 254 * Return: Size of ffa_constituent_memory_region_descriptors in @obj. 255 */ 256 static size_t 257 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj, 258 uint32_t ffa_version) 259 { 260 struct ffa_comp_mrd *comp_mrd; 261 262 comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 263 if (comp_mrd == NULL) { 264 return 0; 265 } 266 return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd); 267 } 268 269 /** 270 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 271 * a given memory transaction. 272 * @sp_id: Partition ID to validate. 273 * @obj: The shared memory object containing the descriptor 274 * of the memory transaction. 275 * Return: true if ID is valid, else false. 276 */ 277 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 278 { 279 bool found = false; 280 struct ffa_mtd *desc = &obj->desc; 281 size_t desc_size = obj->desc_size; 282 283 /* Validate the partition is a valid participant. */ 284 for (unsigned int i = 0U; i < desc->emad_count; i++) { 285 size_t emad_size; 286 struct ffa_emad_v1_0 *emad; 287 288 emad = spmc_shmem_obj_get_emad(desc, i, 289 MAKE_FFA_VERSION(1, 1), 290 &emad_size); 291 /* 292 * Validate the calculated emad address resides within the 293 * descriptor. 294 */ 295 if ((emad == NULL) || (uintptr_t) emad >= 296 (uintptr_t)((uint8_t *) desc + desc_size)) { 297 VERBOSE("Invalid emad.\n"); 298 break; 299 } 300 if (sp_id == emad->mapd.endpoint_id) { 301 found = true; 302 break; 303 } 304 } 305 return found; 306 } 307 308 /* 309 * Compare two memory regions to determine if any range overlaps with another 310 * ongoing memory transaction. 311 */ 312 static bool 313 overlapping_memory_regions(struct ffa_comp_mrd *region1, 314 struct ffa_comp_mrd *region2) 315 { 316 uint64_t region1_start; 317 uint64_t region1_size; 318 uint64_t region1_end; 319 uint64_t region2_start; 320 uint64_t region2_size; 321 uint64_t region2_end; 322 323 assert(region1 != NULL); 324 assert(region2 != NULL); 325 326 if (region1 == region2) { 327 return true; 328 } 329 330 /* 331 * Check each memory region in the request against existing 332 * transactions. 333 */ 334 for (size_t i = 0; i < region1->address_range_count; i++) { 335 336 region1_start = region1->address_range_array[i].address; 337 region1_size = 338 region1->address_range_array[i].page_count * 339 PAGE_SIZE_4KB; 340 region1_end = region1_start + region1_size; 341 342 for (size_t j = 0; j < region2->address_range_count; j++) { 343 344 region2_start = region2->address_range_array[j].address; 345 region2_size = 346 region2->address_range_array[j].page_count * 347 PAGE_SIZE_4KB; 348 region2_end = region2_start + region2_size; 349 350 /* Check if regions are not overlapping. */ 351 if (!((region2_end <= region1_start) || 352 (region1_end <= region2_start))) { 353 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 354 region1_start, region1_end, 355 region2_start, region2_end); 356 return true; 357 } 358 } 359 } 360 return false; 361 } 362 363 /******************************************************************************* 364 * FF-A v1.0 Memory Descriptor Conversion Helpers. 365 ******************************************************************************/ 366 /** 367 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 368 * converted descriptor. 369 * @orig: The original v1.0 memory transaction descriptor. 370 * @desc_size: The size of the original v1.0 memory transaction descriptor. 371 * 372 * Return: the size required to store the descriptor store in the v1.1 format. 373 */ 374 static size_t 375 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 376 { 377 size_t size = 0; 378 struct ffa_comp_mrd *mrd; 379 struct ffa_emad_v1_0 *emad_array = orig->emad; 380 381 /* Get the size of the v1.1 descriptor. */ 382 size += sizeof(struct ffa_mtd); 383 384 /* Add the size of the emad descriptors. */ 385 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 386 387 /* Add the size of the composite mrds. */ 388 size += sizeof(struct ffa_comp_mrd); 389 390 /* Add the size of the constituent mrds. */ 391 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 392 emad_array[0].comp_mrd_offset); 393 394 /* Check the calculated address is within the memory descriptor. */ 395 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 396 (uintptr_t)((uint8_t *) orig + desc_size)) { 397 return 0; 398 } 399 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 400 401 return size; 402 } 403 404 /** 405 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 406 * converted descriptor. 407 * @orig: The original v1.1 memory transaction descriptor. 408 * @desc_size: The size of the original v1.1 memory transaction descriptor. 409 * 410 * Return: the size required to store the descriptor store in the v1.0 format. 411 */ 412 static size_t 413 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 414 { 415 size_t size = 0; 416 struct ffa_comp_mrd *mrd; 417 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 418 ((uint8_t *) orig + 419 orig->emad_offset); 420 421 /* Get the size of the v1.0 descriptor. */ 422 size += sizeof(struct ffa_mtd_v1_0); 423 424 /* Add the size of the v1.0 emad descriptors. */ 425 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 426 427 /* Add the size of the composite mrds. */ 428 size += sizeof(struct ffa_comp_mrd); 429 430 /* Add the size of the constituent mrds. */ 431 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 432 emad_array[0].comp_mrd_offset); 433 434 /* Check the calculated address is within the memory descriptor. */ 435 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 436 (uintptr_t)((uint8_t *) orig + desc_size)) { 437 return 0; 438 } 439 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 440 441 return size; 442 } 443 444 /** 445 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 446 * @out_obj: The shared memory object to populate the converted descriptor. 447 * @orig: The shared memory object containing the v1.0 descriptor. 448 * 449 * Return: true if the conversion is successful else false. 450 */ 451 static bool 452 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 453 struct spmc_shmem_obj *orig) 454 { 455 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 456 struct ffa_mtd *out = &out_obj->desc; 457 struct ffa_emad_v1_0 *emad_array_in; 458 struct ffa_emad_v1_0 *emad_array_out; 459 struct ffa_comp_mrd *mrd_in; 460 struct ffa_comp_mrd *mrd_out; 461 462 size_t mrd_in_offset; 463 size_t mrd_out_offset; 464 size_t mrd_size = 0; 465 466 /* Populate the new descriptor format from the v1.0 struct. */ 467 out->sender_id = mtd_orig->sender_id; 468 out->memory_region_attributes = mtd_orig->memory_region_attributes; 469 out->flags = mtd_orig->flags; 470 out->handle = mtd_orig->handle; 471 out->tag = mtd_orig->tag; 472 out->emad_count = mtd_orig->emad_count; 473 out->emad_size = sizeof(struct ffa_emad_v1_0); 474 475 /* 476 * We will locate the emad descriptors directly after the ffa_mtd 477 * struct. This will be 8-byte aligned. 478 */ 479 out->emad_offset = sizeof(struct ffa_mtd); 480 481 emad_array_in = mtd_orig->emad; 482 emad_array_out = (struct ffa_emad_v1_0 *) 483 ((uint8_t *) out + out->emad_offset); 484 485 /* Copy across the emad structs. */ 486 for (unsigned int i = 0U; i < out->emad_count; i++) { 487 /* Bound check for emad array. */ 488 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 489 ((uint8_t *) mtd_orig + orig->desc_size)) { 490 VERBOSE("%s: Invalid mtd structure.\n", __func__); 491 return false; 492 } 493 memcpy(&emad_array_out[i], &emad_array_in[i], 494 sizeof(struct ffa_emad_v1_0)); 495 } 496 497 /* Place the mrd descriptors after the end of the emad descriptors.*/ 498 mrd_in_offset = emad_array_in->comp_mrd_offset; 499 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 500 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 501 502 /* Add the size of the composite memory region descriptor. */ 503 mrd_size += sizeof(struct ffa_comp_mrd); 504 505 /* Find the mrd descriptor. */ 506 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 507 508 /* Add the size of the constituent memory region descriptors. */ 509 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 510 511 /* 512 * Update the offset in the emads by the delta between the input and 513 * output addresses. 514 */ 515 for (unsigned int i = 0U; i < out->emad_count; i++) { 516 emad_array_out[i].comp_mrd_offset = 517 emad_array_in[i].comp_mrd_offset + 518 (mrd_out_offset - mrd_in_offset); 519 } 520 521 /* Verify that we stay within bound of the memory descriptors. */ 522 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 523 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 524 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 525 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 526 ERROR("%s: Invalid mrd structure.\n", __func__); 527 return false; 528 } 529 530 /* Copy the mrd descriptors directly. */ 531 memcpy(mrd_out, mrd_in, mrd_size); 532 533 return true; 534 } 535 536 /** 537 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 538 * v1.0 memory object. 539 * @out_obj: The shared memory object to populate the v1.0 descriptor. 540 * @orig: The shared memory object containing the v1.1 descriptor. 541 * 542 * Return: true if the conversion is successful else false. 543 */ 544 static bool 545 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 546 struct spmc_shmem_obj *orig) 547 { 548 struct ffa_mtd *mtd_orig = &orig->desc; 549 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 550 struct ffa_emad_v1_0 *emad_in; 551 struct ffa_emad_v1_0 *emad_array_in; 552 struct ffa_emad_v1_0 *emad_array_out; 553 struct ffa_comp_mrd *mrd_in; 554 struct ffa_comp_mrd *mrd_out; 555 556 size_t mrd_in_offset; 557 size_t mrd_out_offset; 558 size_t emad_out_array_size; 559 size_t mrd_size = 0; 560 size_t orig_desc_size = orig->desc_size; 561 562 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 563 out->sender_id = mtd_orig->sender_id; 564 out->memory_region_attributes = mtd_orig->memory_region_attributes; 565 out->flags = mtd_orig->flags; 566 out->handle = mtd_orig->handle; 567 out->tag = mtd_orig->tag; 568 out->emad_count = mtd_orig->emad_count; 569 570 /* Determine the location of the emad array in both descriptors. */ 571 emad_array_in = (struct ffa_emad_v1_0 *) 572 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 573 emad_array_out = out->emad; 574 575 /* Copy across the emad structs. */ 576 emad_in = emad_array_in; 577 for (unsigned int i = 0U; i < out->emad_count; i++) { 578 /* Bound check for emad array. */ 579 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 580 ((uint8_t *) mtd_orig + orig_desc_size)) { 581 VERBOSE("%s: Invalid mtd structure.\n", __func__); 582 return false; 583 } 584 memcpy(&emad_array_out[i], emad_in, 585 sizeof(struct ffa_emad_v1_0)); 586 587 emad_in += mtd_orig->emad_size; 588 } 589 590 /* Place the mrd descriptors after the end of the emad descriptors. */ 591 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 592 593 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 594 emad_out_array_size; 595 596 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 597 598 mrd_in_offset = mtd_orig->emad_offset + 599 (mtd_orig->emad_size * mtd_orig->emad_count); 600 601 /* Add the size of the composite memory region descriptor. */ 602 mrd_size += sizeof(struct ffa_comp_mrd); 603 604 /* Find the mrd descriptor. */ 605 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 606 607 /* Add the size of the constituent memory region descriptors. */ 608 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 609 610 /* 611 * Update the offset in the emads by the delta between the input and 612 * output addresses. 613 */ 614 emad_in = emad_array_in; 615 616 for (unsigned int i = 0U; i < out->emad_count; i++) { 617 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 618 (mrd_out_offset - 619 mrd_in_offset); 620 emad_in += mtd_orig->emad_size; 621 } 622 623 /* Verify that we stay within bound of the memory descriptors. */ 624 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 625 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 626 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 627 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 628 ERROR("%s: Invalid mrd structure.\n", __func__); 629 return false; 630 } 631 632 /* Copy the mrd descriptors directly. */ 633 memcpy(mrd_out, mrd_in, mrd_size); 634 635 return true; 636 } 637 638 /** 639 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 640 * the v1.0 format and populates the 641 * provided buffer. 642 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 643 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 644 * @buf_size: Size of the buffer to populate. 645 * @offset: The offset of the converted descriptor to copy. 646 * @copy_size: Will be populated with the number of bytes copied. 647 * @out_desc_size: Will be populated with the total size of the v1.0 648 * descriptor. 649 * 650 * Return: 0 if conversion and population succeeded. 651 * Note: This function invalidates the reference to @orig therefore 652 * `spmc_shmem_obj_lookup` must be called if further usage is required. 653 */ 654 static uint32_t 655 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 656 size_t buf_size, size_t offset, 657 size_t *copy_size, size_t *v1_0_desc_size) 658 { 659 struct spmc_shmem_obj *v1_0_obj; 660 661 /* Calculate the size that the v1.0 descriptor will require. */ 662 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 663 &orig_obj->desc, orig_obj->desc_size); 664 665 if (*v1_0_desc_size == 0) { 666 ERROR("%s: cannot determine size of descriptor.\n", 667 __func__); 668 return FFA_ERROR_INVALID_PARAMETER; 669 } 670 671 /* Get a new obj to store the v1.0 descriptor. */ 672 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 673 *v1_0_desc_size); 674 675 if (!v1_0_obj) { 676 return FFA_ERROR_NO_MEMORY; 677 } 678 679 /* Perform the conversion from v1.1 to v1.0. */ 680 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 681 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 682 return FFA_ERROR_INVALID_PARAMETER; 683 } 684 685 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 686 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 687 688 /* 689 * We're finished with the v1.0 descriptor for now so free it. 690 * Note that this will invalidate any references to the v1.1 691 * descriptor. 692 */ 693 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 694 695 return 0; 696 } 697 698 static int 699 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 700 size_t fragment_length, size_t total_length) 701 { 702 unsigned long long emad_end; 703 unsigned long long emad_size; 704 unsigned long long emad_offset; 705 unsigned int min_desc_size; 706 707 /* Determine the appropriate minimum descriptor size. */ 708 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 709 min_desc_size = sizeof(struct ffa_mtd_v1_0); 710 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 711 min_desc_size = sizeof(struct ffa_mtd); 712 } else { 713 return FFA_ERROR_INVALID_PARAMETER; 714 } 715 if (fragment_length < min_desc_size) { 716 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 717 min_desc_size); 718 return FFA_ERROR_INVALID_PARAMETER; 719 } 720 721 if (desc->emad_count == 0U) { 722 WARN("%s: unsupported attribute desc count %u.\n", 723 __func__, desc->emad_count); 724 return FFA_ERROR_INVALID_PARAMETER; 725 } 726 727 /* 728 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 729 * format, otherwise assume it is a v1.1 format. 730 */ 731 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 732 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 733 } else { 734 if (!is_aligned(desc->emad_offset, 16)) { 735 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 736 __func__, desc->emad_offset); 737 return FFA_ERROR_INVALID_PARAMETER; 738 } 739 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 740 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 741 __func__, desc->emad_offset, 742 sizeof(struct ffa_mtd)); 743 return FFA_ERROR_INVALID_PARAMETER; 744 } 745 emad_offset = desc->emad_offset; 746 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 747 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 748 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 749 return FFA_ERROR_INVALID_PARAMETER; 750 } 751 if (!is_aligned(desc->emad_size, 16)) { 752 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 753 __func__, desc->emad_size); 754 return FFA_ERROR_INVALID_PARAMETER; 755 } 756 emad_size = desc->emad_size; 757 } 758 759 /* 760 * Overflow is impossible: the arithmetic happens in at least 64-bit 761 * precision, but all of the operands are bounded by UINT32_MAX, and 762 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 763 * = (2^64 - 1). 764 */ 765 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 766 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 767 (unsigned long long)sizeof(struct ffa_comp_mrd) + 768 (unsigned long long)emad_offset; 769 770 if (emad_end > total_length) { 771 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 772 __func__, emad_end, total_length); 773 return FFA_ERROR_INVALID_PARAMETER; 774 } 775 776 return 0; 777 } 778 779 /** 780 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 781 * @obj: Object containing ffa_memory_region_descriptor. 782 * @ffa_version: FF-A version of the provided descriptor. 783 * 784 * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor 785 * offset or count is invalid. 786 */ 787 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 788 uint32_t ffa_version) 789 { 790 const struct ffa_emad_v1_0 *emad; 791 size_t emad_size; 792 uint32_t comp_mrd_offset = 0; 793 794 if (obj->desc_filled != obj->desc_size) { 795 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 796 __func__, obj->desc_filled, obj->desc_size); 797 panic(); 798 } 799 800 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 801 obj->desc_filled, obj->desc_size)) { 802 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 803 __func__); 804 panic(); 805 } 806 807 emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 808 ffa_version, &emad_size); 809 810 for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { 811 size_t size; 812 size_t count; 813 size_t expected_size; 814 uint64_t total_page_count; 815 size_t header_emad_size; 816 uint32_t offset; 817 struct ffa_comp_mrd *comp; 818 ffa_endpoint_id16_t ep_id; 819 820 /* 821 * Validate the calculated emad address resides within the 822 * descriptor. 823 */ 824 if ((uintptr_t) emad > 825 ((uintptr_t) &obj->desc + obj->desc_size - emad_size)) { 826 ERROR("BUG: Invalid emad access not detected earlier.\n"); 827 panic(); 828 } 829 830 emad = (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + emad_size); 831 offset = emad->comp_mrd_offset; 832 833 /* 834 * If a partition ID resides in the secure world validate that 835 * the partition ID is for a known partition. Ignore any 836 * partition ID belonging to the normal world as it is assumed 837 * the Hypervisor will have validated these. 838 */ 839 ep_id = emad->mapd.endpoint_id; 840 if (ffa_is_secure_world_id(ep_id)) { 841 if (spmc_get_sp_ctx(ep_id) == NULL) { 842 WARN("%s: Invalid receiver id 0x%x\n", 843 __func__, ep_id); 844 return -EINVAL; 845 } 846 } 847 848 /* 849 * The offset provided to the composite memory region descriptor 850 * should be consistent across endpoint descriptors. Store the 851 * first entry and compare against subsequent entries. 852 */ 853 if (comp_mrd_offset == 0) { 854 comp_mrd_offset = offset; 855 } else { 856 if (comp_mrd_offset != offset) { 857 ERROR("%s: mismatching offsets provided, %u != %u\n", 858 __func__, offset, comp_mrd_offset); 859 return -EINVAL; 860 } 861 continue; /* Remainder only executed on first iteration. */ 862 } 863 864 header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) + 865 (obj->desc.emad_count * emad_size); 866 867 if (offset < header_emad_size) { 868 WARN("%s: invalid object, offset %u < header + emad %zu\n", 869 __func__, offset, header_emad_size); 870 return -EINVAL; 871 } 872 873 size = obj->desc_size; 874 875 if (offset > size) { 876 WARN("%s: invalid object, offset %u > total size %zu\n", 877 __func__, offset, obj->desc_size); 878 return -EINVAL; 879 } 880 size -= offset; 881 882 if (size < sizeof(struct ffa_comp_mrd)) { 883 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 884 __func__, offset, obj->desc_size); 885 return -EINVAL; 886 } 887 size -= sizeof(struct ffa_comp_mrd); 888 889 count = size / sizeof(struct ffa_cons_mrd); 890 891 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 892 893 if (comp == NULL) { 894 WARN("%s: invalid comp_mrd offset\n", __func__); 895 return -EINVAL; 896 } 897 898 if (comp->address_range_count != count) { 899 WARN("%s: invalid object, desc count %u != %zu\n", 900 __func__, comp->address_range_count, count); 901 return -EINVAL; 902 } 903 904 expected_size = offset + sizeof(*comp) + 905 spmc_shmem_obj_ffa_constituent_size(obj, 906 ffa_version); 907 908 if (expected_size != obj->desc_size) { 909 WARN("%s: invalid object, computed size %zu != size %zu\n", 910 __func__, expected_size, obj->desc_size); 911 return -EINVAL; 912 } 913 914 total_page_count = 0; 915 916 for (size_t i = 0; i < count; i++) { 917 total_page_count += 918 comp->address_range_array[i].page_count; 919 } 920 if (comp->total_page_count != total_page_count) { 921 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 922 __func__, comp->total_page_count, 923 total_page_count); 924 return -EINVAL; 925 } 926 } 927 return 0; 928 } 929 930 /** 931 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 932 * regions that are currently involved with an 933 * existing memory transactions. This implies that 934 * the memory is not in a valid state for lending. 935 * @obj: Object containing ffa_memory_region_descriptor. 936 * 937 * Return: 0 if object is valid, -EINVAL if invalid memory state. 938 */ 939 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 940 uint32_t ffa_version) 941 { 942 size_t obj_offset = 0; 943 struct spmc_shmem_obj *inflight_obj; 944 945 struct ffa_comp_mrd *other_mrd; 946 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 947 ffa_version); 948 949 if (requested_mrd == NULL) { 950 return -EINVAL; 951 } 952 953 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 954 &obj_offset); 955 956 while (inflight_obj != NULL) { 957 /* 958 * Don't compare the transaction to itself or to partially 959 * transmitted descriptors. 960 */ 961 if ((obj->desc.handle != inflight_obj->desc.handle) && 962 (obj->desc_size == obj->desc_filled)) { 963 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 964 FFA_VERSION_COMPILED); 965 if (other_mrd == NULL) { 966 return -EINVAL; 967 } 968 if (overlapping_memory_regions(requested_mrd, 969 other_mrd)) { 970 return -EINVAL; 971 } 972 } 973 974 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 975 &obj_offset); 976 } 977 return 0; 978 } 979 980 static long spmc_ffa_fill_desc(struct mailbox *mbox, 981 struct spmc_shmem_obj *obj, 982 uint32_t fragment_length, 983 ffa_mtd_flag32_t mtd_flag, 984 uint32_t ffa_version, 985 void *smc_handle) 986 { 987 int ret; 988 size_t emad_size; 989 uint32_t handle_low; 990 uint32_t handle_high; 991 struct ffa_emad_v1_0 *emad; 992 struct ffa_emad_v1_0 *other_emad; 993 994 if (mbox->rxtx_page_count == 0U) { 995 WARN("%s: buffer pair not registered.\n", __func__); 996 ret = FFA_ERROR_INVALID_PARAMETER; 997 goto err_arg; 998 } 999 1000 if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) { 1001 WARN("%s: bad fragment size %u > %u buffer size\n", __func__, 1002 fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB); 1003 ret = FFA_ERROR_INVALID_PARAMETER; 1004 goto err_arg; 1005 } 1006 1007 if (fragment_length > obj->desc_size - obj->desc_filled) { 1008 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 1009 fragment_length, obj->desc_size - obj->desc_filled); 1010 ret = FFA_ERROR_INVALID_PARAMETER; 1011 goto err_arg; 1012 } 1013 1014 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 1015 (uint8_t *) mbox->tx_buffer, fragment_length); 1016 1017 /* Ensure that the sender ID resides in the normal world. */ 1018 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1019 WARN("%s: Invalid sender ID 0x%x.\n", 1020 __func__, obj->desc.sender_id); 1021 ret = FFA_ERROR_DENIED; 1022 goto err_arg; 1023 } 1024 1025 /* Ensure the NS bit is set to 0. */ 1026 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1027 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1028 ret = FFA_ERROR_INVALID_PARAMETER; 1029 goto err_arg; 1030 } 1031 1032 /* 1033 * We don't currently support any optional flags so ensure none are 1034 * requested. 1035 */ 1036 if (obj->desc.flags != 0U && mtd_flag != 0U && 1037 (obj->desc.flags != mtd_flag)) { 1038 WARN("%s: invalid memory transaction flags %u != %u\n", 1039 __func__, obj->desc.flags, mtd_flag); 1040 ret = FFA_ERROR_INVALID_PARAMETER; 1041 goto err_arg; 1042 } 1043 1044 if (obj->desc_filled == 0U) { 1045 /* First fragment, descriptor header has been copied */ 1046 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1047 fragment_length, obj->desc_size); 1048 if (ret != 0) { 1049 goto err_bad_desc; 1050 } 1051 1052 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1053 obj->desc.flags |= mtd_flag; 1054 } 1055 1056 obj->desc_filled += fragment_length; 1057 1058 handle_low = (uint32_t)obj->desc.handle; 1059 handle_high = obj->desc.handle >> 32; 1060 1061 if (obj->desc_filled != obj->desc_size) { 1062 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1063 handle_high, obj->desc_filled, 1064 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1065 } 1066 1067 /* The full descriptor has been received, perform any final checks. */ 1068 1069 ret = spmc_shmem_check_obj(obj, ffa_version); 1070 if (ret != 0) { 1071 ret = FFA_ERROR_INVALID_PARAMETER; 1072 goto err_bad_desc; 1073 } 1074 1075 /* Ensure partition IDs are not duplicated. */ 1076 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1077 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1078 &emad_size); 1079 1080 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1081 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1082 ffa_version, 1083 &emad_size); 1084 1085 if (emad->mapd.endpoint_id == 1086 other_emad->mapd.endpoint_id) { 1087 WARN("%s: Duplicated endpoint id 0x%x\n", 1088 __func__, emad->mapd.endpoint_id); 1089 ret = FFA_ERROR_INVALID_PARAMETER; 1090 goto err_bad_desc; 1091 } 1092 } 1093 } 1094 1095 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1096 if (ret) { 1097 ERROR("%s: invalid memory region descriptor.\n", __func__); 1098 ret = FFA_ERROR_INVALID_PARAMETER; 1099 goto err_bad_desc; 1100 } 1101 1102 /* 1103 * Everything checks out, if the sender was using FF-A v1.0, convert 1104 * the descriptor format to use the v1.1 structures. 1105 */ 1106 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1107 struct spmc_shmem_obj *v1_1_obj; 1108 uint64_t mem_handle; 1109 1110 /* Calculate the size that the v1.1 descriptor will required. */ 1111 size_t v1_1_desc_size = 1112 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1113 obj->desc_size); 1114 1115 if (v1_1_desc_size == 0U) { 1116 ERROR("%s: cannot determine size of descriptor.\n", 1117 __func__); 1118 goto err_arg; 1119 } 1120 1121 /* Get a new obj to store the v1.1 descriptor. */ 1122 v1_1_obj = 1123 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size); 1124 1125 if (!v1_1_obj) { 1126 ret = FFA_ERROR_NO_MEMORY; 1127 goto err_arg; 1128 } 1129 1130 /* Perform the conversion from v1.0 to v1.1. */ 1131 v1_1_obj->desc_size = v1_1_desc_size; 1132 v1_1_obj->desc_filled = v1_1_desc_size; 1133 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1134 ERROR("%s: Could not convert mtd!\n", __func__); 1135 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1136 goto err_arg; 1137 } 1138 1139 /* 1140 * We're finished with the v1.0 descriptor so free it 1141 * and continue our checks with the new v1.1 descriptor. 1142 */ 1143 mem_handle = obj->desc.handle; 1144 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1145 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1146 if (obj == NULL) { 1147 ERROR("%s: Failed to find converted descriptor.\n", 1148 __func__); 1149 ret = FFA_ERROR_INVALID_PARAMETER; 1150 return spmc_ffa_error_return(smc_handle, ret); 1151 } 1152 } 1153 1154 /* Allow for platform specific operations to be performed. */ 1155 ret = plat_spmc_shmem_begin(&obj->desc); 1156 if (ret != 0) { 1157 goto err_arg; 1158 } 1159 1160 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1161 0, 0, 0); 1162 1163 err_bad_desc: 1164 err_arg: 1165 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1166 return spmc_ffa_error_return(smc_handle, ret); 1167 } 1168 1169 /** 1170 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1171 * @client: Client state. 1172 * @total_length: Total length of shared memory descriptor. 1173 * @fragment_length: Length of fragment of shared memory descriptor passed in 1174 * this call. 1175 * @address: Not supported, must be 0. 1176 * @page_count: Not supported, must be 0. 1177 * @smc_handle: Handle passed to smc call. Used to return 1178 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1179 * 1180 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1181 * to share or lend memory from non-secure os to secure os (with no stream 1182 * endpoints). 1183 * 1184 * Return: 0 on success, error code on failure. 1185 */ 1186 long spmc_ffa_mem_send(uint32_t smc_fid, 1187 bool secure_origin, 1188 uint64_t total_length, 1189 uint32_t fragment_length, 1190 uint64_t address, 1191 uint32_t page_count, 1192 void *cookie, 1193 void *handle, 1194 uint64_t flags) 1195 1196 { 1197 long ret; 1198 struct spmc_shmem_obj *obj; 1199 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1200 ffa_mtd_flag32_t mtd_flag; 1201 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1202 size_t min_desc_size; 1203 1204 if (address != 0U || page_count != 0U) { 1205 WARN("%s: custom memory region for message not supported.\n", 1206 __func__); 1207 return spmc_ffa_error_return(handle, 1208 FFA_ERROR_INVALID_PARAMETER); 1209 } 1210 1211 if (secure_origin) { 1212 WARN("%s: unsupported share direction.\n", __func__); 1213 return spmc_ffa_error_return(handle, 1214 FFA_ERROR_INVALID_PARAMETER); 1215 } 1216 1217 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1218 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1219 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1220 min_desc_size = sizeof(struct ffa_mtd); 1221 } else { 1222 WARN("%s: bad FF-A version.\n", __func__); 1223 return spmc_ffa_error_return(handle, 1224 FFA_ERROR_INVALID_PARAMETER); 1225 } 1226 1227 /* Check if the descriptor is too small for the FF-A version. */ 1228 if (fragment_length < min_desc_size) { 1229 WARN("%s: bad first fragment size %u < %zu\n", 1230 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1231 return spmc_ffa_error_return(handle, 1232 FFA_ERROR_INVALID_PARAMETER); 1233 } 1234 1235 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1236 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1237 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1238 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1239 } else { 1240 WARN("%s: invalid memory management operation.\n", __func__); 1241 return spmc_ffa_error_return(handle, 1242 FFA_ERROR_INVALID_PARAMETER); 1243 } 1244 1245 spin_lock(&spmc_shmem_obj_state.lock); 1246 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1247 if (obj == NULL) { 1248 ret = FFA_ERROR_NO_MEMORY; 1249 goto err_unlock; 1250 } 1251 1252 spin_lock(&mbox->lock); 1253 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1254 ffa_version, handle); 1255 spin_unlock(&mbox->lock); 1256 1257 spin_unlock(&spmc_shmem_obj_state.lock); 1258 return ret; 1259 1260 err_unlock: 1261 spin_unlock(&spmc_shmem_obj_state.lock); 1262 return spmc_ffa_error_return(handle, ret); 1263 } 1264 1265 /** 1266 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1267 * @client: Client state. 1268 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1269 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1270 * @fragment_length: Length of fragments transmitted. 1271 * @sender_id: Vmid of sender in bits [31:16] 1272 * @smc_handle: Handle passed to smc call. Used to return 1273 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1274 * 1275 * Return: @smc_handle on success, error code on failure. 1276 */ 1277 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1278 bool secure_origin, 1279 uint64_t handle_low, 1280 uint64_t handle_high, 1281 uint32_t fragment_length, 1282 uint32_t sender_id, 1283 void *cookie, 1284 void *handle, 1285 uint64_t flags) 1286 { 1287 long ret; 1288 uint32_t desc_sender_id; 1289 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1290 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1291 1292 struct spmc_shmem_obj *obj; 1293 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1294 1295 spin_lock(&spmc_shmem_obj_state.lock); 1296 1297 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1298 if (obj == NULL) { 1299 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1300 __func__, mem_handle); 1301 ret = FFA_ERROR_INVALID_PARAMETER; 1302 goto err_unlock; 1303 } 1304 1305 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1306 if (sender_id != desc_sender_id) { 1307 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1308 sender_id, desc_sender_id); 1309 ret = FFA_ERROR_INVALID_PARAMETER; 1310 goto err_unlock; 1311 } 1312 1313 if (obj->desc_filled == obj->desc_size) { 1314 WARN("%s: object desc already filled, %zu\n", __func__, 1315 obj->desc_filled); 1316 ret = FFA_ERROR_INVALID_PARAMETER; 1317 goto err_unlock; 1318 } 1319 1320 spin_lock(&mbox->lock); 1321 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1322 handle); 1323 spin_unlock(&mbox->lock); 1324 1325 spin_unlock(&spmc_shmem_obj_state.lock); 1326 return ret; 1327 1328 err_unlock: 1329 spin_unlock(&spmc_shmem_obj_state.lock); 1330 return spmc_ffa_error_return(handle, ret); 1331 } 1332 1333 /** 1334 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1335 * if the caller implements a version greater 1336 * than FF-A 1.0 or if they have requested 1337 * the functionality. 1338 * TODO: We are assuming that the caller is 1339 * an SP. To support retrieval from the 1340 * normal world this function will need to be 1341 * expanded accordingly. 1342 * @resp: Descriptor populated in callers RX buffer. 1343 * @sp_ctx: Context of the calling SP. 1344 */ 1345 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1346 struct secure_partition_desc *sp_ctx) 1347 { 1348 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1349 sp_ctx->ns_bit_requested) { 1350 /* 1351 * Currently memory senders must reside in the normal 1352 * world, and we do not have the functionlaity to change 1353 * the state of memory dynamically. Therefore we can always set 1354 * the NS bit to 1. 1355 */ 1356 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1357 } 1358 } 1359 1360 /** 1361 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1362 * @smc_fid: FID of SMC 1363 * @total_length: Total length of retrieve request descriptor if this is 1364 * the first call. Otherwise (unsupported) must be 0. 1365 * @fragment_length: Length of fragment of retrieve request descriptor passed 1366 * in this call. Only @fragment_length == @length is 1367 * supported by this implementation. 1368 * @address: Not supported, must be 0. 1369 * @page_count: Not supported, must be 0. 1370 * @smc_handle: Handle passed to smc call. Used to return 1371 * FFA_MEM_RETRIEVE_RESP. 1372 * 1373 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1374 * Used by secure os to retrieve memory already shared by non-secure os. 1375 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1376 * the client must call FFA_MEM_FRAG_RX until the full response has been 1377 * received. 1378 * 1379 * Return: @handle on success, error code on failure. 1380 */ 1381 long 1382 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1383 bool secure_origin, 1384 uint32_t total_length, 1385 uint32_t fragment_length, 1386 uint64_t address, 1387 uint32_t page_count, 1388 void *cookie, 1389 void *handle, 1390 uint64_t flags) 1391 { 1392 int ret; 1393 size_t buf_size; 1394 size_t copy_size = 0; 1395 size_t min_desc_size; 1396 size_t out_desc_size = 0; 1397 1398 /* 1399 * Currently we are only accessing fields that are the same in both the 1400 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1401 * here. We only need validate against the appropriate struct size. 1402 */ 1403 struct ffa_mtd *resp; 1404 const struct ffa_mtd *req; 1405 struct spmc_shmem_obj *obj = NULL; 1406 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1407 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1408 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1409 1410 if (!secure_origin) { 1411 WARN("%s: unsupported retrieve req direction.\n", __func__); 1412 return spmc_ffa_error_return(handle, 1413 FFA_ERROR_INVALID_PARAMETER); 1414 } 1415 1416 if (address != 0U || page_count != 0U) { 1417 WARN("%s: custom memory region not supported.\n", __func__); 1418 return spmc_ffa_error_return(handle, 1419 FFA_ERROR_INVALID_PARAMETER); 1420 } 1421 1422 spin_lock(&mbox->lock); 1423 1424 req = mbox->tx_buffer; 1425 resp = mbox->rx_buffer; 1426 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1427 1428 if (mbox->rxtx_page_count == 0U) { 1429 WARN("%s: buffer pair not registered.\n", __func__); 1430 ret = FFA_ERROR_INVALID_PARAMETER; 1431 goto err_unlock_mailbox; 1432 } 1433 1434 if (mbox->state != MAILBOX_STATE_EMPTY) { 1435 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1436 ret = FFA_ERROR_DENIED; 1437 goto err_unlock_mailbox; 1438 } 1439 1440 if (fragment_length != total_length) { 1441 WARN("%s: fragmented retrieve request not supported.\n", 1442 __func__); 1443 ret = FFA_ERROR_INVALID_PARAMETER; 1444 goto err_unlock_mailbox; 1445 } 1446 1447 if (req->emad_count == 0U) { 1448 WARN("%s: unsupported attribute desc count %u.\n", 1449 __func__, obj->desc.emad_count); 1450 ret = FFA_ERROR_INVALID_PARAMETER; 1451 goto err_unlock_mailbox; 1452 } 1453 1454 /* Determine the appropriate minimum descriptor size. */ 1455 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1456 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1457 } else { 1458 min_desc_size = sizeof(struct ffa_mtd); 1459 } 1460 if (total_length < min_desc_size) { 1461 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1462 min_desc_size); 1463 ret = FFA_ERROR_INVALID_PARAMETER; 1464 goto err_unlock_mailbox; 1465 } 1466 1467 spin_lock(&spmc_shmem_obj_state.lock); 1468 1469 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1470 if (obj == NULL) { 1471 ret = FFA_ERROR_INVALID_PARAMETER; 1472 goto err_unlock_all; 1473 } 1474 1475 if (obj->desc_filled != obj->desc_size) { 1476 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1477 __func__, obj->desc_filled, obj->desc_size); 1478 ret = FFA_ERROR_INVALID_PARAMETER; 1479 goto err_unlock_all; 1480 } 1481 1482 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1483 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1484 __func__, req->sender_id, obj->desc.sender_id); 1485 ret = FFA_ERROR_INVALID_PARAMETER; 1486 goto err_unlock_all; 1487 } 1488 1489 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1490 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1491 __func__, req->tag, obj->desc.tag); 1492 ret = FFA_ERROR_INVALID_PARAMETER; 1493 goto err_unlock_all; 1494 } 1495 1496 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1497 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1498 __func__, req->emad_count, obj->desc.emad_count); 1499 ret = FFA_ERROR_INVALID_PARAMETER; 1500 goto err_unlock_all; 1501 } 1502 1503 /* Ensure the NS bit is set to 0 in the request. */ 1504 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1505 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1506 ret = FFA_ERROR_INVALID_PARAMETER; 1507 goto err_unlock_all; 1508 } 1509 1510 if (req->flags != 0U) { 1511 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1512 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1513 /* 1514 * If the retrieve request specifies the memory 1515 * transaction ensure it matches what we expect. 1516 */ 1517 WARN("%s: wrong mem transaction flags %x != %x\n", 1518 __func__, req->flags, obj->desc.flags); 1519 ret = FFA_ERROR_INVALID_PARAMETER; 1520 goto err_unlock_all; 1521 } 1522 1523 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1524 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1525 /* 1526 * Current implementation does not support donate and 1527 * it supports no other flags. 1528 */ 1529 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1530 ret = FFA_ERROR_INVALID_PARAMETER; 1531 goto err_unlock_all; 1532 } 1533 } 1534 1535 /* Validate the caller is a valid participant. */ 1536 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1537 WARN("%s: Invalid endpoint ID (0x%x).\n", 1538 __func__, sp_ctx->sp_id); 1539 ret = FFA_ERROR_INVALID_PARAMETER; 1540 goto err_unlock_all; 1541 } 1542 1543 /* Validate that the provided emad offset and structure is valid.*/ 1544 for (size_t i = 0; i < req->emad_count; i++) { 1545 size_t emad_size; 1546 struct ffa_emad_v1_0 *emad; 1547 1548 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1549 &emad_size); 1550 1551 if ((uintptr_t) emad >= (uintptr_t) 1552 ((uint8_t *) req + total_length)) { 1553 WARN("Invalid emad access.\n"); 1554 ret = FFA_ERROR_INVALID_PARAMETER; 1555 goto err_unlock_all; 1556 } 1557 } 1558 1559 /* 1560 * Validate all the endpoints match in the case of multiple 1561 * borrowers. We don't mandate that the order of the borrowers 1562 * must match in the descriptors therefore check to see if the 1563 * endpoints match in any order. 1564 */ 1565 for (size_t i = 0; i < req->emad_count; i++) { 1566 bool found = false; 1567 size_t emad_size; 1568 struct ffa_emad_v1_0 *emad; 1569 struct ffa_emad_v1_0 *other_emad; 1570 1571 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1572 &emad_size); 1573 1574 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1575 other_emad = spmc_shmem_obj_get_emad( 1576 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1577 &emad_size); 1578 1579 if (req->emad_count && 1580 emad->mapd.endpoint_id == 1581 other_emad->mapd.endpoint_id) { 1582 found = true; 1583 break; 1584 } 1585 } 1586 1587 if (!found) { 1588 WARN("%s: invalid receiver id (0x%x).\n", 1589 __func__, emad->mapd.endpoint_id); 1590 ret = FFA_ERROR_INVALID_PARAMETER; 1591 goto err_unlock_all; 1592 } 1593 } 1594 1595 mbox->state = MAILBOX_STATE_FULL; 1596 1597 if (req->emad_count != 0U) { 1598 obj->in_use++; 1599 } 1600 1601 /* 1602 * If the caller is v1.0 convert the descriptor, otherwise copy 1603 * directly. 1604 */ 1605 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1606 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1607 ©_size, 1608 &out_desc_size); 1609 if (ret != 0U) { 1610 ERROR("%s: Failed to process descriptor.\n", __func__); 1611 goto err_unlock_all; 1612 } 1613 } else { 1614 copy_size = MIN(obj->desc_size, buf_size); 1615 out_desc_size = obj->desc_size; 1616 1617 memcpy(resp, &obj->desc, copy_size); 1618 } 1619 1620 /* Set the NS bit in the response if applicable. */ 1621 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1622 1623 spin_unlock(&spmc_shmem_obj_state.lock); 1624 spin_unlock(&mbox->lock); 1625 1626 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1627 copy_size, 0, 0, 0, 0, 0); 1628 1629 err_unlock_all: 1630 spin_unlock(&spmc_shmem_obj_state.lock); 1631 err_unlock_mailbox: 1632 spin_unlock(&mbox->lock); 1633 return spmc_ffa_error_return(handle, ret); 1634 } 1635 1636 /** 1637 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1638 * @client: Client state. 1639 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1640 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1641 * @fragment_offset: Byte offset in descriptor to resume at. 1642 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1643 * hypervisor. 0 otherwise. 1644 * @smc_handle: Handle passed to smc call. Used to return 1645 * FFA_MEM_FRAG_TX. 1646 * 1647 * Return: @smc_handle on success, error code on failure. 1648 */ 1649 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1650 bool secure_origin, 1651 uint32_t handle_low, 1652 uint32_t handle_high, 1653 uint32_t fragment_offset, 1654 uint32_t sender_id, 1655 void *cookie, 1656 void *handle, 1657 uint64_t flags) 1658 { 1659 int ret; 1660 void *src; 1661 size_t buf_size; 1662 size_t copy_size; 1663 size_t full_copy_size; 1664 uint32_t desc_sender_id; 1665 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1666 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1667 struct spmc_shmem_obj *obj; 1668 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1669 1670 if (!secure_origin) { 1671 WARN("%s: can only be called from swld.\n", 1672 __func__); 1673 return spmc_ffa_error_return(handle, 1674 FFA_ERROR_INVALID_PARAMETER); 1675 } 1676 1677 spin_lock(&spmc_shmem_obj_state.lock); 1678 1679 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1680 if (obj == NULL) { 1681 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1682 __func__, mem_handle); 1683 ret = FFA_ERROR_INVALID_PARAMETER; 1684 goto err_unlock_shmem; 1685 } 1686 1687 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1688 if (sender_id != 0U && sender_id != desc_sender_id) { 1689 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1690 sender_id, desc_sender_id); 1691 ret = FFA_ERROR_INVALID_PARAMETER; 1692 goto err_unlock_shmem; 1693 } 1694 1695 if (fragment_offset >= obj->desc_size) { 1696 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1697 __func__, fragment_offset, obj->desc_size); 1698 ret = FFA_ERROR_INVALID_PARAMETER; 1699 goto err_unlock_shmem; 1700 } 1701 1702 spin_lock(&mbox->lock); 1703 1704 if (mbox->rxtx_page_count == 0U) { 1705 WARN("%s: buffer pair not registered.\n", __func__); 1706 ret = FFA_ERROR_INVALID_PARAMETER; 1707 goto err_unlock_all; 1708 } 1709 1710 if (mbox->state != MAILBOX_STATE_EMPTY) { 1711 WARN("%s: RX Buffer is full!\n", __func__); 1712 ret = FFA_ERROR_DENIED; 1713 goto err_unlock_all; 1714 } 1715 1716 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1717 1718 mbox->state = MAILBOX_STATE_FULL; 1719 1720 /* 1721 * If the caller is v1.0 convert the descriptor, otherwise copy 1722 * directly. 1723 */ 1724 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1725 size_t out_desc_size; 1726 1727 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1728 buf_size, 1729 fragment_offset, 1730 ©_size, 1731 &out_desc_size); 1732 if (ret != 0U) { 1733 ERROR("%s: Failed to process descriptor.\n", __func__); 1734 goto err_unlock_all; 1735 } 1736 } else { 1737 full_copy_size = obj->desc_size - fragment_offset; 1738 copy_size = MIN(full_copy_size, buf_size); 1739 1740 src = &obj->desc; 1741 1742 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1743 } 1744 1745 spin_unlock(&mbox->lock); 1746 spin_unlock(&spmc_shmem_obj_state.lock); 1747 1748 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1749 copy_size, sender_id, 0, 0, 0); 1750 1751 err_unlock_all: 1752 spin_unlock(&mbox->lock); 1753 err_unlock_shmem: 1754 spin_unlock(&spmc_shmem_obj_state.lock); 1755 return spmc_ffa_error_return(handle, ret); 1756 } 1757 1758 /** 1759 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1760 * @client: Client state. 1761 * 1762 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1763 * Used by secure os release previously shared memory to non-secure os. 1764 * 1765 * The handle to release must be in the client's (secure os's) transmit buffer. 1766 * 1767 * Return: 0 on success, error code on failure. 1768 */ 1769 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1770 bool secure_origin, 1771 uint32_t handle_low, 1772 uint32_t handle_high, 1773 uint32_t fragment_offset, 1774 uint32_t sender_id, 1775 void *cookie, 1776 void *handle, 1777 uint64_t flags) 1778 { 1779 int ret; 1780 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1781 struct spmc_shmem_obj *obj; 1782 const struct ffa_mem_relinquish_descriptor *req; 1783 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1784 1785 if (!secure_origin) { 1786 WARN("%s: unsupported relinquish direction.\n", __func__); 1787 return spmc_ffa_error_return(handle, 1788 FFA_ERROR_INVALID_PARAMETER); 1789 } 1790 1791 spin_lock(&mbox->lock); 1792 1793 if (mbox->rxtx_page_count == 0U) { 1794 WARN("%s: buffer pair not registered.\n", __func__); 1795 ret = FFA_ERROR_INVALID_PARAMETER; 1796 goto err_unlock_mailbox; 1797 } 1798 1799 req = mbox->tx_buffer; 1800 1801 if (req->flags != 0U) { 1802 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1803 ret = FFA_ERROR_INVALID_PARAMETER; 1804 goto err_unlock_mailbox; 1805 } 1806 1807 if (req->endpoint_count == 0) { 1808 WARN("%s: endpoint count cannot be 0.\n", __func__); 1809 ret = FFA_ERROR_INVALID_PARAMETER; 1810 goto err_unlock_mailbox; 1811 } 1812 1813 spin_lock(&spmc_shmem_obj_state.lock); 1814 1815 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1816 if (obj == NULL) { 1817 ret = FFA_ERROR_INVALID_PARAMETER; 1818 goto err_unlock_all; 1819 } 1820 1821 /* 1822 * Validate the endpoint ID was populated correctly. We don't currently 1823 * support proxy endpoints so the endpoint count should always be 1. 1824 */ 1825 if (req->endpoint_count != 1U) { 1826 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1827 req->endpoint_count); 1828 ret = FFA_ERROR_INVALID_PARAMETER; 1829 goto err_unlock_all; 1830 } 1831 1832 /* Validate provided endpoint ID matches the partition ID. */ 1833 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1834 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1835 req->endpoint_array[0], sp_ctx->sp_id); 1836 ret = FFA_ERROR_INVALID_PARAMETER; 1837 goto err_unlock_all; 1838 } 1839 1840 /* Validate the caller is a valid participant. */ 1841 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1842 WARN("%s: Invalid endpoint ID (0x%x).\n", 1843 __func__, req->endpoint_array[0]); 1844 ret = FFA_ERROR_INVALID_PARAMETER; 1845 goto err_unlock_all; 1846 } 1847 1848 if (obj->in_use == 0U) { 1849 ret = FFA_ERROR_INVALID_PARAMETER; 1850 goto err_unlock_all; 1851 } 1852 obj->in_use--; 1853 1854 spin_unlock(&spmc_shmem_obj_state.lock); 1855 spin_unlock(&mbox->lock); 1856 1857 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1858 1859 err_unlock_all: 1860 spin_unlock(&spmc_shmem_obj_state.lock); 1861 err_unlock_mailbox: 1862 spin_unlock(&mbox->lock); 1863 return spmc_ffa_error_return(handle, ret); 1864 } 1865 1866 /** 1867 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1868 * @client: Client state. 1869 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1870 * @handle_high: Unique handle of shared memory object to reclaim. 1871 * Bit[63:32]. 1872 * @flags: Unsupported, ignored. 1873 * 1874 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1875 * Used by non-secure os reclaim memory previously shared with secure os. 1876 * 1877 * Return: 0 on success, error code on failure. 1878 */ 1879 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1880 bool secure_origin, 1881 uint32_t handle_low, 1882 uint32_t handle_high, 1883 uint32_t mem_flags, 1884 uint64_t x4, 1885 void *cookie, 1886 void *handle, 1887 uint64_t flags) 1888 { 1889 int ret; 1890 struct spmc_shmem_obj *obj; 1891 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1892 1893 if (secure_origin) { 1894 WARN("%s: unsupported reclaim direction.\n", __func__); 1895 return spmc_ffa_error_return(handle, 1896 FFA_ERROR_INVALID_PARAMETER); 1897 } 1898 1899 if (mem_flags != 0U) { 1900 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1901 return spmc_ffa_error_return(handle, 1902 FFA_ERROR_INVALID_PARAMETER); 1903 } 1904 1905 spin_lock(&spmc_shmem_obj_state.lock); 1906 1907 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1908 if (obj == NULL) { 1909 ret = FFA_ERROR_INVALID_PARAMETER; 1910 goto err_unlock; 1911 } 1912 if (obj->in_use != 0U) { 1913 ret = FFA_ERROR_DENIED; 1914 goto err_unlock; 1915 } 1916 1917 if (obj->desc_filled != obj->desc_size) { 1918 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1919 __func__, obj->desc_filled, obj->desc_size); 1920 ret = FFA_ERROR_INVALID_PARAMETER; 1921 goto err_unlock; 1922 } 1923 1924 /* Allow for platform specific operations to be performed. */ 1925 ret = plat_spmc_shmem_reclaim(&obj->desc); 1926 if (ret != 0) { 1927 goto err_unlock; 1928 } 1929 1930 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1931 spin_unlock(&spmc_shmem_obj_state.lock); 1932 1933 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1934 1935 err_unlock: 1936 spin_unlock(&spmc_shmem_obj_state.lock); 1937 return spmc_ffa_error_return(handle, ret); 1938 } 1939