1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 obj_size = spmc_shmem_obj_size(desc_size); 84 85 /* Ensure the obj size has not overflowed. */ 86 if (obj_size < desc_size) { 87 WARN("%s(0x%zx) desc_size overflow\n", 88 __func__, desc_size); 89 return NULL; 90 } 91 92 if (obj_size > free) { 93 WARN("%s(0x%zx) failed, free 0x%zx\n", 94 __func__, desc_size, free); 95 return NULL; 96 } 97 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 98 obj->desc = (struct ffa_mtd) {0}; 99 obj->desc_size = desc_size; 100 obj->desc_filled = 0; 101 obj->in_use = 0; 102 state->allocated += obj_size; 103 return obj; 104 } 105 106 /** 107 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 108 * @state: Global state. 109 * @obj: Object to free. 110 * 111 * Release memory used by @obj. Other objects may move, so on return all 112 * pointers to struct spmc_shmem_obj object should be considered invalid, not 113 * just @obj. 114 * 115 * The current implementation always compacts the remaining objects to simplify 116 * the allocator and to avoid fragmentation. 117 */ 118 119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 120 struct spmc_shmem_obj *obj) 121 { 122 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 123 uint8_t *shift_dest = (uint8_t *)obj; 124 uint8_t *shift_src = shift_dest + free_size; 125 size_t shift_size = state->allocated - (shift_src - state->data); 126 127 if (shift_size != 0U) { 128 memmove(shift_dest, shift_src, shift_size); 129 } 130 state->allocated -= free_size; 131 } 132 133 /** 134 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 135 * @state: Global state. 136 * @handle: Unique handle of object to return. 137 * 138 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 139 * %NULL, if not object in @state->data has a matching handle. 140 */ 141 static struct spmc_shmem_obj * 142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 143 { 144 uint8_t *curr = state->data; 145 146 while (curr - state->data < state->allocated) { 147 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 148 149 if (obj->desc.handle == handle) { 150 return obj; 151 } 152 curr += spmc_shmem_obj_size(obj->desc_size); 153 } 154 return NULL; 155 } 156 157 /** 158 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 159 * @offset: Offset used to track which objects have previously been 160 * returned. 161 * 162 * Return: the next struct spmc_shmem_obj_state object from the provided 163 * offset. 164 * %NULL, if there are no more objects. 165 */ 166 static struct spmc_shmem_obj * 167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 168 { 169 uint8_t *curr = state->data + *offset; 170 171 if (curr - state->data < state->allocated) { 172 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 173 174 *offset += spmc_shmem_obj_size(obj->desc_size); 175 176 return obj; 177 } 178 return NULL; 179 } 180 181 /******************************************************************************* 182 * FF-A memory descriptor helper functions. 183 ******************************************************************************/ 184 /** 185 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 186 * clients FF-A version. 187 * @desc: The memory transaction descriptor. 188 * @index: The index of the emad element to be accessed. 189 * @ffa_version: FF-A version of the provided structure. 190 * @emad_size: Will be populated with the size of the returned emad 191 * descriptor. 192 * Return: A pointer to the requested emad structure. 193 */ 194 static void * 195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 196 uint32_t ffa_version, size_t *emad_size) 197 { 198 uint8_t *emad; 199 200 assert(index < desc->emad_count); 201 202 /* 203 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 204 * format, otherwise assume it is a v1.1 format. 205 */ 206 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 207 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 208 *emad_size = sizeof(struct ffa_emad_v1_0); 209 } else { 210 assert(is_aligned(desc->emad_offset, 16)); 211 emad = ((uint8_t *) desc + desc->emad_offset); 212 *emad_size = desc->emad_size; 213 } 214 215 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 216 return (emad + (*emad_size * index)); 217 } 218 219 /** 220 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 221 * FF-A version of the descriptor. 222 * @obj: Object containing ffa_memory_region_descriptor. 223 * 224 * Return: struct ffa_comp_mrd object corresponding to the composite memory 225 * region descriptor. 226 */ 227 static struct ffa_comp_mrd * 228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 229 { 230 size_t emad_size; 231 /* 232 * The comp_mrd_offset field of the emad descriptor remains consistent 233 * between FF-A versions therefore we can use the v1.0 descriptor here 234 * in all cases. 235 */ 236 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 237 ffa_version, 238 &emad_size); 239 240 /* Ensure the composite descriptor offset is aligned. */ 241 if (!is_aligned(emad->comp_mrd_offset, 8)) { 242 WARN("Unaligned composite memory region descriptor offset.\n"); 243 return NULL; 244 } 245 246 return (struct ffa_comp_mrd *) 247 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 248 } 249 250 /** 251 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 252 * a given memory transaction. 253 * @sp_id: Partition ID to validate. 254 * @obj: The shared memory object containing the descriptor 255 * of the memory transaction. 256 * Return: true if ID is valid, else false. 257 */ 258 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 259 { 260 bool found = false; 261 struct ffa_mtd *desc = &obj->desc; 262 size_t desc_size = obj->desc_size; 263 264 /* Validate the partition is a valid participant. */ 265 for (unsigned int i = 0U; i < desc->emad_count; i++) { 266 size_t emad_size; 267 struct ffa_emad_v1_0 *emad; 268 269 emad = spmc_shmem_obj_get_emad(desc, i, 270 MAKE_FFA_VERSION(1, 1), 271 &emad_size); 272 /* 273 * Validate the calculated emad address resides within the 274 * descriptor. 275 */ 276 if ((emad == NULL) || (uintptr_t) emad >= 277 (uintptr_t)((uint8_t *) desc + desc_size)) { 278 VERBOSE("Invalid emad.\n"); 279 break; 280 } 281 if (sp_id == emad->mapd.endpoint_id) { 282 found = true; 283 break; 284 } 285 } 286 return found; 287 } 288 289 /* 290 * Compare two memory regions to determine if any range overlaps with another 291 * ongoing memory transaction. 292 */ 293 static bool 294 overlapping_memory_regions(struct ffa_comp_mrd *region1, 295 struct ffa_comp_mrd *region2) 296 { 297 uint64_t region1_start; 298 uint64_t region1_size; 299 uint64_t region1_end; 300 uint64_t region2_start; 301 uint64_t region2_size; 302 uint64_t region2_end; 303 304 assert(region1 != NULL); 305 assert(region2 != NULL); 306 307 if (region1 == region2) { 308 return true; 309 } 310 311 /* 312 * Check each memory region in the request against existing 313 * transactions. 314 */ 315 for (size_t i = 0; i < region1->address_range_count; i++) { 316 317 region1_start = region1->address_range_array[i].address; 318 region1_size = 319 region1->address_range_array[i].page_count * 320 PAGE_SIZE_4KB; 321 region1_end = region1_start + region1_size; 322 323 for (size_t j = 0; j < region2->address_range_count; j++) { 324 325 region2_start = region2->address_range_array[j].address; 326 region2_size = 327 region2->address_range_array[j].page_count * 328 PAGE_SIZE_4KB; 329 region2_end = region2_start + region2_size; 330 331 /* Check if regions are not overlapping. */ 332 if (!((region2_end <= region1_start) || 333 (region1_end <= region2_start))) { 334 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 335 region1_start, region1_end, 336 region2_start, region2_end); 337 return true; 338 } 339 } 340 } 341 return false; 342 } 343 344 /******************************************************************************* 345 * FF-A v1.0 Memory Descriptor Conversion Helpers. 346 ******************************************************************************/ 347 /** 348 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 349 * converted descriptor. 350 * @orig: The original v1.0 memory transaction descriptor. 351 * @desc_size: The size of the original v1.0 memory transaction descriptor. 352 * 353 * Return: the size required to store the descriptor store in the v1.1 format. 354 */ 355 static size_t 356 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 357 { 358 size_t size = 0; 359 struct ffa_comp_mrd *mrd; 360 struct ffa_emad_v1_0 *emad_array = orig->emad; 361 362 /* Get the size of the v1.1 descriptor. */ 363 size += sizeof(struct ffa_mtd); 364 365 /* Add the size of the emad descriptors. */ 366 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 367 368 /* Add the size of the composite mrds. */ 369 size += sizeof(struct ffa_comp_mrd); 370 371 /* Add the size of the constituent mrds. */ 372 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 373 emad_array[0].comp_mrd_offset); 374 375 /* Check the calculated address is within the memory descriptor. */ 376 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 377 (uintptr_t)((uint8_t *) orig + desc_size)) { 378 return 0; 379 } 380 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 381 382 return size; 383 } 384 385 /** 386 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 387 * converted descriptor. 388 * @orig: The original v1.1 memory transaction descriptor. 389 * @desc_size: The size of the original v1.1 memory transaction descriptor. 390 * 391 * Return: the size required to store the descriptor store in the v1.0 format. 392 */ 393 static size_t 394 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 395 { 396 size_t size = 0; 397 struct ffa_comp_mrd *mrd; 398 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 399 ((uint8_t *) orig + 400 orig->emad_offset); 401 402 /* Get the size of the v1.0 descriptor. */ 403 size += sizeof(struct ffa_mtd_v1_0); 404 405 /* Add the size of the v1.0 emad descriptors. */ 406 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 407 408 /* Add the size of the composite mrds. */ 409 size += sizeof(struct ffa_comp_mrd); 410 411 /* Add the size of the constituent mrds. */ 412 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 413 emad_array[0].comp_mrd_offset); 414 415 /* Check the calculated address is within the memory descriptor. */ 416 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 417 (uintptr_t)((uint8_t *) orig + desc_size)) { 418 return 0; 419 } 420 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 421 422 return size; 423 } 424 425 /** 426 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 427 * @out_obj: The shared memory object to populate the converted descriptor. 428 * @orig: The shared memory object containing the v1.0 descriptor. 429 * 430 * Return: true if the conversion is successful else false. 431 */ 432 static bool 433 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 434 struct spmc_shmem_obj *orig) 435 { 436 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 437 struct ffa_mtd *out = &out_obj->desc; 438 struct ffa_emad_v1_0 *emad_array_in; 439 struct ffa_emad_v1_0 *emad_array_out; 440 struct ffa_comp_mrd *mrd_in; 441 struct ffa_comp_mrd *mrd_out; 442 443 size_t mrd_in_offset; 444 size_t mrd_out_offset; 445 size_t mrd_size = 0; 446 447 /* Populate the new descriptor format from the v1.0 struct. */ 448 out->sender_id = mtd_orig->sender_id; 449 out->memory_region_attributes = mtd_orig->memory_region_attributes; 450 out->flags = mtd_orig->flags; 451 out->handle = mtd_orig->handle; 452 out->tag = mtd_orig->tag; 453 out->emad_count = mtd_orig->emad_count; 454 out->emad_size = sizeof(struct ffa_emad_v1_0); 455 456 /* 457 * We will locate the emad descriptors directly after the ffa_mtd 458 * struct. This will be 8-byte aligned. 459 */ 460 out->emad_offset = sizeof(struct ffa_mtd); 461 462 emad_array_in = mtd_orig->emad; 463 emad_array_out = (struct ffa_emad_v1_0 *) 464 ((uint8_t *) out + out->emad_offset); 465 466 /* Copy across the emad structs. */ 467 for (unsigned int i = 0U; i < out->emad_count; i++) { 468 /* Bound check for emad array. */ 469 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 470 ((uint8_t *) mtd_orig + orig->desc_size)) { 471 VERBOSE("%s: Invalid mtd structure.\n", __func__); 472 return false; 473 } 474 memcpy(&emad_array_out[i], &emad_array_in[i], 475 sizeof(struct ffa_emad_v1_0)); 476 } 477 478 /* Place the mrd descriptors after the end of the emad descriptors.*/ 479 mrd_in_offset = emad_array_in->comp_mrd_offset; 480 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 481 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 482 483 /* Add the size of the composite memory region descriptor. */ 484 mrd_size += sizeof(struct ffa_comp_mrd); 485 486 /* Find the mrd descriptor. */ 487 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 488 489 /* Add the size of the constituent memory region descriptors. */ 490 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 491 492 /* 493 * Update the offset in the emads by the delta between the input and 494 * output addresses. 495 */ 496 for (unsigned int i = 0U; i < out->emad_count; i++) { 497 emad_array_out[i].comp_mrd_offset = 498 emad_array_in[i].comp_mrd_offset + 499 (mrd_out_offset - mrd_in_offset); 500 } 501 502 /* Verify that we stay within bound of the memory descriptors. */ 503 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 504 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 505 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 506 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 507 ERROR("%s: Invalid mrd structure.\n", __func__); 508 return false; 509 } 510 511 /* Copy the mrd descriptors directly. */ 512 memcpy(mrd_out, mrd_in, mrd_size); 513 514 return true; 515 } 516 517 /** 518 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 519 * v1.0 memory object. 520 * @out_obj: The shared memory object to populate the v1.0 descriptor. 521 * @orig: The shared memory object containing the v1.1 descriptor. 522 * 523 * Return: true if the conversion is successful else false. 524 */ 525 static bool 526 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 527 struct spmc_shmem_obj *orig) 528 { 529 struct ffa_mtd *mtd_orig = &orig->desc; 530 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 531 struct ffa_emad_v1_0 *emad_in; 532 struct ffa_emad_v1_0 *emad_array_in; 533 struct ffa_emad_v1_0 *emad_array_out; 534 struct ffa_comp_mrd *mrd_in; 535 struct ffa_comp_mrd *mrd_out; 536 537 size_t mrd_in_offset; 538 size_t mrd_out_offset; 539 size_t emad_out_array_size; 540 size_t mrd_size = 0; 541 size_t orig_desc_size = orig->desc_size; 542 543 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 544 out->sender_id = mtd_orig->sender_id; 545 out->memory_region_attributes = mtd_orig->memory_region_attributes; 546 out->flags = mtd_orig->flags; 547 out->handle = mtd_orig->handle; 548 out->tag = mtd_orig->tag; 549 out->emad_count = mtd_orig->emad_count; 550 551 /* Determine the location of the emad array in both descriptors. */ 552 emad_array_in = (struct ffa_emad_v1_0 *) 553 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 554 emad_array_out = out->emad; 555 556 /* Copy across the emad structs. */ 557 emad_in = emad_array_in; 558 for (unsigned int i = 0U; i < out->emad_count; i++) { 559 /* Bound check for emad array. */ 560 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 561 ((uint8_t *) mtd_orig + orig_desc_size)) { 562 VERBOSE("%s: Invalid mtd structure.\n", __func__); 563 return false; 564 } 565 memcpy(&emad_array_out[i], emad_in, 566 sizeof(struct ffa_emad_v1_0)); 567 568 emad_in += mtd_orig->emad_size; 569 } 570 571 /* Place the mrd descriptors after the end of the emad descriptors. */ 572 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 573 574 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 575 emad_out_array_size; 576 577 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 578 579 mrd_in_offset = mtd_orig->emad_offset + 580 (mtd_orig->emad_size * mtd_orig->emad_count); 581 582 /* Add the size of the composite memory region descriptor. */ 583 mrd_size += sizeof(struct ffa_comp_mrd); 584 585 /* Find the mrd descriptor. */ 586 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 587 588 /* Add the size of the constituent memory region descriptors. */ 589 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 590 591 /* 592 * Update the offset in the emads by the delta between the input and 593 * output addresses. 594 */ 595 emad_in = emad_array_in; 596 597 for (unsigned int i = 0U; i < out->emad_count; i++) { 598 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 599 (mrd_out_offset - 600 mrd_in_offset); 601 emad_in += mtd_orig->emad_size; 602 } 603 604 /* Verify that we stay within bound of the memory descriptors. */ 605 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 606 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 607 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 608 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 609 ERROR("%s: Invalid mrd structure.\n", __func__); 610 return false; 611 } 612 613 /* Copy the mrd descriptors directly. */ 614 memcpy(mrd_out, mrd_in, mrd_size); 615 616 return true; 617 } 618 619 /** 620 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 621 * the v1.0 format and populates the 622 * provided buffer. 623 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 624 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 625 * @buf_size: Size of the buffer to populate. 626 * @offset: The offset of the converted descriptor to copy. 627 * @copy_size: Will be populated with the number of bytes copied. 628 * @out_desc_size: Will be populated with the total size of the v1.0 629 * descriptor. 630 * 631 * Return: 0 if conversion and population succeeded. 632 * Note: This function invalidates the reference to @orig therefore 633 * `spmc_shmem_obj_lookup` must be called if further usage is required. 634 */ 635 static uint32_t 636 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 637 size_t buf_size, size_t offset, 638 size_t *copy_size, size_t *v1_0_desc_size) 639 { 640 struct spmc_shmem_obj *v1_0_obj; 641 642 /* Calculate the size that the v1.0 descriptor will require. */ 643 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 644 &orig_obj->desc, orig_obj->desc_size); 645 646 if (*v1_0_desc_size == 0) { 647 ERROR("%s: cannot determine size of descriptor.\n", 648 __func__); 649 return FFA_ERROR_INVALID_PARAMETER; 650 } 651 652 /* Get a new obj to store the v1.0 descriptor. */ 653 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 654 *v1_0_desc_size); 655 656 if (!v1_0_obj) { 657 return FFA_ERROR_NO_MEMORY; 658 } 659 660 /* Perform the conversion from v1.1 to v1.0. */ 661 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 662 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 663 return FFA_ERROR_INVALID_PARAMETER; 664 } 665 666 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 667 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 668 669 /* 670 * We're finished with the v1.0 descriptor for now so free it. 671 * Note that this will invalidate any references to the v1.1 672 * descriptor. 673 */ 674 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 675 676 return 0; 677 } 678 679 static int 680 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 681 size_t fragment_length, size_t total_length) 682 { 683 unsigned long long emad_end; 684 unsigned long long emad_size; 685 unsigned long long emad_offset; 686 unsigned int min_desc_size; 687 688 /* Determine the appropriate minimum descriptor size. */ 689 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 690 min_desc_size = sizeof(struct ffa_mtd_v1_0); 691 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 692 min_desc_size = sizeof(struct ffa_mtd); 693 } else { 694 return FFA_ERROR_INVALID_PARAMETER; 695 } 696 if (fragment_length < min_desc_size) { 697 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 698 min_desc_size); 699 return FFA_ERROR_INVALID_PARAMETER; 700 } 701 702 if (desc->emad_count == 0U) { 703 WARN("%s: unsupported attribute desc count %u.\n", 704 __func__, desc->emad_count); 705 return FFA_ERROR_INVALID_PARAMETER; 706 } 707 708 /* 709 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 710 * format, otherwise assume it is a v1.1 format. 711 */ 712 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 713 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 714 } else { 715 if (!is_aligned(desc->emad_offset, 16)) { 716 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 717 __func__, desc->emad_offset); 718 return FFA_ERROR_INVALID_PARAMETER; 719 } 720 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 721 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 722 __func__, desc->emad_offset, 723 sizeof(struct ffa_mtd)); 724 return FFA_ERROR_INVALID_PARAMETER; 725 } 726 emad_offset = desc->emad_offset; 727 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 728 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 729 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 730 return FFA_ERROR_INVALID_PARAMETER; 731 } 732 if (!is_aligned(desc->emad_size, 16)) { 733 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 734 __func__, desc->emad_size); 735 return FFA_ERROR_INVALID_PARAMETER; 736 } 737 emad_size = desc->emad_size; 738 } 739 740 /* 741 * Overflow is impossible: the arithmetic happens in at least 64-bit 742 * precision, but all of the operands are bounded by UINT32_MAX, and 743 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 744 * = (2^64 - 1). 745 */ 746 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 747 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 748 (unsigned long long)sizeof(struct ffa_comp_mrd) + 749 (unsigned long long)emad_offset; 750 751 if (emad_end > total_length) { 752 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 753 __func__, emad_end, total_length); 754 return FFA_ERROR_INVALID_PARAMETER; 755 } 756 757 return 0; 758 } 759 760 /** 761 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 762 * @obj: Object containing ffa_memory_region_descriptor. 763 * @ffa_version: FF-A version of the provided descriptor. 764 * 765 * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor 766 * offset or count is invalid. 767 */ 768 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 769 uint32_t ffa_version) 770 { 771 const struct ffa_emad_v1_0 *emad; 772 size_t emad_size; 773 uint32_t comp_mrd_offset = 0; 774 775 if (obj->desc_filled != obj->desc_size) { 776 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 777 __func__, obj->desc_filled, obj->desc_size); 778 panic(); 779 } 780 781 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 782 obj->desc_filled, obj->desc_size)) { 783 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 784 __func__); 785 panic(); 786 } 787 788 emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 789 ffa_version, &emad_size); 790 791 for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { 792 size_t size; 793 size_t count; 794 size_t expected_size; 795 uint64_t total_page_count; 796 size_t header_emad_size; 797 uint32_t offset; 798 struct ffa_comp_mrd *comp; 799 ffa_endpoint_id16_t ep_id; 800 801 /* 802 * Validate the calculated emad address resides within the 803 * descriptor. 804 */ 805 if ((uintptr_t) emad > 806 ((uintptr_t) &obj->desc + obj->desc_size - emad_size)) { 807 ERROR("BUG: Invalid emad access not detected earlier.\n"); 808 panic(); 809 } 810 811 emad = (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + emad_size); 812 offset = emad->comp_mrd_offset; 813 814 /* 815 * If a partition ID resides in the secure world validate that 816 * the partition ID is for a known partition. Ignore any 817 * partition ID belonging to the normal world as it is assumed 818 * the Hypervisor will have validated these. 819 */ 820 ep_id = emad->mapd.endpoint_id; 821 if (ffa_is_secure_world_id(ep_id)) { 822 if (spmc_get_sp_ctx(ep_id) == NULL) { 823 WARN("%s: Invalid receiver id 0x%x\n", 824 __func__, ep_id); 825 return -EINVAL; 826 } 827 } 828 829 /* 830 * The offset provided to the composite memory region descriptor 831 * should be consistent across endpoint descriptors. Store the 832 * first entry and compare against subsequent entries. 833 */ 834 if (comp_mrd_offset == 0) { 835 comp_mrd_offset = offset; 836 } else { 837 if (comp_mrd_offset != offset) { 838 ERROR("%s: mismatching offsets provided, %u != %u\n", 839 __func__, offset, comp_mrd_offset); 840 return -EINVAL; 841 } 842 continue; /* Remainder only executed on first iteration. */ 843 } 844 845 header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) + 846 (obj->desc.emad_count * emad_size); 847 848 if (offset < header_emad_size) { 849 WARN("%s: invalid object, offset %u < header + emad %zu\n", 850 __func__, offset, header_emad_size); 851 return -EINVAL; 852 } 853 854 size = obj->desc_size; 855 856 if (offset > size) { 857 WARN("%s: invalid object, offset %u > total size %zu\n", 858 __func__, offset, obj->desc_size); 859 return -EINVAL; 860 } 861 size -= offset; 862 863 if (size < sizeof(struct ffa_comp_mrd)) { 864 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 865 __func__, offset, obj->desc_size); 866 return -EINVAL; 867 } 868 size -= sizeof(struct ffa_comp_mrd); 869 870 count = size / sizeof(struct ffa_cons_mrd); 871 872 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 873 874 if (comp == NULL) { 875 WARN("%s: invalid comp_mrd offset\n", __func__); 876 return -EINVAL; 877 } 878 879 if (comp->address_range_count != count) { 880 WARN("%s: invalid object, desc count %u != %zu\n", 881 __func__, comp->address_range_count, count); 882 return -EINVAL; 883 } 884 885 expected_size = offset + sizeof(*comp) + 886 count * sizeof(struct ffa_cons_mrd); 887 888 if (expected_size != obj->desc_size) { 889 WARN("%s: invalid object, computed size %zu != size %zu\n", 890 __func__, expected_size, obj->desc_size); 891 return -EINVAL; 892 } 893 894 total_page_count = 0; 895 896 for (size_t i = 0; i < count; i++) { 897 total_page_count += 898 comp->address_range_array[i].page_count; 899 } 900 if (comp->total_page_count != total_page_count) { 901 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 902 __func__, comp->total_page_count, 903 total_page_count); 904 return -EINVAL; 905 } 906 } 907 return 0; 908 } 909 910 /** 911 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 912 * regions that are currently involved with an 913 * existing memory transactions. This implies that 914 * the memory is not in a valid state for lending. 915 * @obj: Object containing ffa_memory_region_descriptor. 916 * 917 * Return: 0 if object is valid, -EINVAL if invalid memory state. 918 */ 919 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 920 uint32_t ffa_version) 921 { 922 size_t obj_offset = 0; 923 struct spmc_shmem_obj *inflight_obj; 924 925 struct ffa_comp_mrd *other_mrd; 926 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 927 ffa_version); 928 929 if (requested_mrd == NULL) { 930 return -EINVAL; 931 } 932 933 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 934 &obj_offset); 935 936 while (inflight_obj != NULL) { 937 /* 938 * Don't compare the transaction to itself or to partially 939 * transmitted descriptors. 940 */ 941 if ((obj->desc.handle != inflight_obj->desc.handle) && 942 (obj->desc_size == obj->desc_filled)) { 943 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 944 FFA_VERSION_COMPILED); 945 if (other_mrd == NULL) { 946 return -EINVAL; 947 } 948 if (overlapping_memory_regions(requested_mrd, 949 other_mrd)) { 950 return -EINVAL; 951 } 952 } 953 954 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 955 &obj_offset); 956 } 957 return 0; 958 } 959 960 static long spmc_ffa_fill_desc(struct mailbox *mbox, 961 struct spmc_shmem_obj *obj, 962 uint32_t fragment_length, 963 ffa_mtd_flag32_t mtd_flag, 964 uint32_t ffa_version, 965 void *smc_handle) 966 { 967 int ret; 968 size_t emad_size; 969 uint32_t handle_low; 970 uint32_t handle_high; 971 struct ffa_emad_v1_0 *emad; 972 struct ffa_emad_v1_0 *other_emad; 973 974 if (mbox->rxtx_page_count == 0U) { 975 WARN("%s: buffer pair not registered.\n", __func__); 976 ret = FFA_ERROR_INVALID_PARAMETER; 977 goto err_arg; 978 } 979 980 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 981 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 982 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 983 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 984 ret = FFA_ERROR_INVALID_PARAMETER; 985 goto err_arg; 986 } 987 988 if (fragment_length > obj->desc_size - obj->desc_filled) { 989 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 990 fragment_length, obj->desc_size - obj->desc_filled); 991 ret = FFA_ERROR_INVALID_PARAMETER; 992 goto err_arg; 993 } 994 995 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 996 (uint8_t *) mbox->tx_buffer, fragment_length); 997 998 /* Ensure that the sender ID resides in the normal world. */ 999 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1000 WARN("%s: Invalid sender ID 0x%x.\n", 1001 __func__, obj->desc.sender_id); 1002 ret = FFA_ERROR_DENIED; 1003 goto err_arg; 1004 } 1005 1006 /* Ensure the NS bit is set to 0. */ 1007 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1008 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1009 ret = FFA_ERROR_INVALID_PARAMETER; 1010 goto err_arg; 1011 } 1012 1013 /* 1014 * We don't currently support any optional flags so ensure none are 1015 * requested. 1016 */ 1017 if (obj->desc.flags != 0U && mtd_flag != 0U && 1018 (obj->desc.flags != mtd_flag)) { 1019 WARN("%s: invalid memory transaction flags %u != %u\n", 1020 __func__, obj->desc.flags, mtd_flag); 1021 ret = FFA_ERROR_INVALID_PARAMETER; 1022 goto err_arg; 1023 } 1024 1025 if (obj->desc_filled == 0U) { 1026 /* First fragment, descriptor header has been copied */ 1027 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1028 fragment_length, obj->desc_size); 1029 if (ret != 0) { 1030 goto err_bad_desc; 1031 } 1032 1033 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1034 obj->desc.flags |= mtd_flag; 1035 } 1036 1037 obj->desc_filled += fragment_length; 1038 1039 handle_low = (uint32_t)obj->desc.handle; 1040 handle_high = obj->desc.handle >> 32; 1041 1042 if (obj->desc_filled != obj->desc_size) { 1043 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1044 handle_high, obj->desc_filled, 1045 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1046 } 1047 1048 /* The full descriptor has been received, perform any final checks. */ 1049 1050 ret = spmc_shmem_check_obj(obj, ffa_version); 1051 if (ret != 0) { 1052 ret = FFA_ERROR_INVALID_PARAMETER; 1053 goto err_bad_desc; 1054 } 1055 1056 /* Ensure partition IDs are not duplicated. */ 1057 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1058 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1059 &emad_size); 1060 1061 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1062 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1063 ffa_version, 1064 &emad_size); 1065 1066 if (emad->mapd.endpoint_id == 1067 other_emad->mapd.endpoint_id) { 1068 WARN("%s: Duplicated endpoint id 0x%x\n", 1069 __func__, emad->mapd.endpoint_id); 1070 ret = FFA_ERROR_INVALID_PARAMETER; 1071 goto err_bad_desc; 1072 } 1073 } 1074 } 1075 1076 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1077 if (ret) { 1078 ERROR("%s: invalid memory region descriptor.\n", __func__); 1079 ret = FFA_ERROR_INVALID_PARAMETER; 1080 goto err_bad_desc; 1081 } 1082 1083 /* 1084 * Everything checks out, if the sender was using FF-A v1.0, convert 1085 * the descriptor format to use the v1.1 structures. 1086 */ 1087 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1088 struct spmc_shmem_obj *v1_1_obj; 1089 uint64_t mem_handle; 1090 1091 /* Calculate the size that the v1.1 descriptor will required. */ 1092 size_t v1_1_desc_size = 1093 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1094 obj->desc_size); 1095 1096 if (v1_1_desc_size == 0U) { 1097 ERROR("%s: cannot determine size of descriptor.\n", 1098 __func__); 1099 goto err_arg; 1100 } 1101 1102 /* Get a new obj to store the v1.1 descriptor. */ 1103 v1_1_obj = 1104 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size); 1105 1106 if (!v1_1_obj) { 1107 ret = FFA_ERROR_NO_MEMORY; 1108 goto err_arg; 1109 } 1110 1111 /* Perform the conversion from v1.0 to v1.1. */ 1112 v1_1_obj->desc_size = v1_1_desc_size; 1113 v1_1_obj->desc_filled = v1_1_desc_size; 1114 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1115 ERROR("%s: Could not convert mtd!\n", __func__); 1116 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1117 goto err_arg; 1118 } 1119 1120 /* 1121 * We're finished with the v1.0 descriptor so free it 1122 * and continue our checks with the new v1.1 descriptor. 1123 */ 1124 mem_handle = obj->desc.handle; 1125 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1126 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1127 if (obj == NULL) { 1128 ERROR("%s: Failed to find converted descriptor.\n", 1129 __func__); 1130 ret = FFA_ERROR_INVALID_PARAMETER; 1131 return spmc_ffa_error_return(smc_handle, ret); 1132 } 1133 } 1134 1135 /* Allow for platform specific operations to be performed. */ 1136 ret = plat_spmc_shmem_begin(&obj->desc); 1137 if (ret != 0) { 1138 goto err_arg; 1139 } 1140 1141 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1142 0, 0, 0); 1143 1144 err_bad_desc: 1145 err_arg: 1146 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1147 return spmc_ffa_error_return(smc_handle, ret); 1148 } 1149 1150 /** 1151 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1152 * @client: Client state. 1153 * @total_length: Total length of shared memory descriptor. 1154 * @fragment_length: Length of fragment of shared memory descriptor passed in 1155 * this call. 1156 * @address: Not supported, must be 0. 1157 * @page_count: Not supported, must be 0. 1158 * @smc_handle: Handle passed to smc call. Used to return 1159 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1160 * 1161 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1162 * to share or lend memory from non-secure os to secure os (with no stream 1163 * endpoints). 1164 * 1165 * Return: 0 on success, error code on failure. 1166 */ 1167 long spmc_ffa_mem_send(uint32_t smc_fid, 1168 bool secure_origin, 1169 uint64_t total_length, 1170 uint32_t fragment_length, 1171 uint64_t address, 1172 uint32_t page_count, 1173 void *cookie, 1174 void *handle, 1175 uint64_t flags) 1176 1177 { 1178 long ret; 1179 struct spmc_shmem_obj *obj; 1180 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1181 ffa_mtd_flag32_t mtd_flag; 1182 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1183 size_t min_desc_size; 1184 1185 if (address != 0U || page_count != 0U) { 1186 WARN("%s: custom memory region for message not supported.\n", 1187 __func__); 1188 return spmc_ffa_error_return(handle, 1189 FFA_ERROR_INVALID_PARAMETER); 1190 } 1191 1192 if (secure_origin) { 1193 WARN("%s: unsupported share direction.\n", __func__); 1194 return spmc_ffa_error_return(handle, 1195 FFA_ERROR_INVALID_PARAMETER); 1196 } 1197 1198 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1199 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1200 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1201 min_desc_size = sizeof(struct ffa_mtd); 1202 } else { 1203 WARN("%s: bad FF-A version.\n", __func__); 1204 return spmc_ffa_error_return(handle, 1205 FFA_ERROR_INVALID_PARAMETER); 1206 } 1207 1208 /* Check if the descriptor is too small for the FF-A version. */ 1209 if (fragment_length < min_desc_size) { 1210 WARN("%s: bad first fragment size %u < %zu\n", 1211 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1212 return spmc_ffa_error_return(handle, 1213 FFA_ERROR_INVALID_PARAMETER); 1214 } 1215 1216 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1217 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1218 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1219 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1220 } else { 1221 WARN("%s: invalid memory management operation.\n", __func__); 1222 return spmc_ffa_error_return(handle, 1223 FFA_ERROR_INVALID_PARAMETER); 1224 } 1225 1226 spin_lock(&spmc_shmem_obj_state.lock); 1227 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1228 if (obj == NULL) { 1229 ret = FFA_ERROR_NO_MEMORY; 1230 goto err_unlock; 1231 } 1232 1233 spin_lock(&mbox->lock); 1234 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1235 ffa_version, handle); 1236 spin_unlock(&mbox->lock); 1237 1238 spin_unlock(&spmc_shmem_obj_state.lock); 1239 return ret; 1240 1241 err_unlock: 1242 spin_unlock(&spmc_shmem_obj_state.lock); 1243 return spmc_ffa_error_return(handle, ret); 1244 } 1245 1246 /** 1247 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1248 * @client: Client state. 1249 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1250 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1251 * @fragment_length: Length of fragments transmitted. 1252 * @sender_id: Vmid of sender in bits [31:16] 1253 * @smc_handle: Handle passed to smc call. Used to return 1254 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1255 * 1256 * Return: @smc_handle on success, error code on failure. 1257 */ 1258 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1259 bool secure_origin, 1260 uint64_t handle_low, 1261 uint64_t handle_high, 1262 uint32_t fragment_length, 1263 uint32_t sender_id, 1264 void *cookie, 1265 void *handle, 1266 uint64_t flags) 1267 { 1268 long ret; 1269 uint32_t desc_sender_id; 1270 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1271 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1272 1273 struct spmc_shmem_obj *obj; 1274 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1275 1276 spin_lock(&spmc_shmem_obj_state.lock); 1277 1278 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1279 if (obj == NULL) { 1280 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1281 __func__, mem_handle); 1282 ret = FFA_ERROR_INVALID_PARAMETER; 1283 goto err_unlock; 1284 } 1285 1286 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1287 if (sender_id != desc_sender_id) { 1288 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1289 sender_id, desc_sender_id); 1290 ret = FFA_ERROR_INVALID_PARAMETER; 1291 goto err_unlock; 1292 } 1293 1294 if (obj->desc_filled == obj->desc_size) { 1295 WARN("%s: object desc already filled, %zu\n", __func__, 1296 obj->desc_filled); 1297 ret = FFA_ERROR_INVALID_PARAMETER; 1298 goto err_unlock; 1299 } 1300 1301 spin_lock(&mbox->lock); 1302 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1303 handle); 1304 spin_unlock(&mbox->lock); 1305 1306 spin_unlock(&spmc_shmem_obj_state.lock); 1307 return ret; 1308 1309 err_unlock: 1310 spin_unlock(&spmc_shmem_obj_state.lock); 1311 return spmc_ffa_error_return(handle, ret); 1312 } 1313 1314 /** 1315 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1316 * if the caller implements a version greater 1317 * than FF-A 1.0 or if they have requested 1318 * the functionality. 1319 * TODO: We are assuming that the caller is 1320 * an SP. To support retrieval from the 1321 * normal world this function will need to be 1322 * expanded accordingly. 1323 * @resp: Descriptor populated in callers RX buffer. 1324 * @sp_ctx: Context of the calling SP. 1325 */ 1326 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1327 struct secure_partition_desc *sp_ctx) 1328 { 1329 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1330 sp_ctx->ns_bit_requested) { 1331 /* 1332 * Currently memory senders must reside in the normal 1333 * world, and we do not have the functionlaity to change 1334 * the state of memory dynamically. Therefore we can always set 1335 * the NS bit to 1. 1336 */ 1337 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1338 } 1339 } 1340 1341 /** 1342 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1343 * @smc_fid: FID of SMC 1344 * @total_length: Total length of retrieve request descriptor if this is 1345 * the first call. Otherwise (unsupported) must be 0. 1346 * @fragment_length: Length of fragment of retrieve request descriptor passed 1347 * in this call. Only @fragment_length == @length is 1348 * supported by this implementation. 1349 * @address: Not supported, must be 0. 1350 * @page_count: Not supported, must be 0. 1351 * @smc_handle: Handle passed to smc call. Used to return 1352 * FFA_MEM_RETRIEVE_RESP. 1353 * 1354 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1355 * Used by secure os to retrieve memory already shared by non-secure os. 1356 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1357 * the client must call FFA_MEM_FRAG_RX until the full response has been 1358 * received. 1359 * 1360 * Return: @handle on success, error code on failure. 1361 */ 1362 long 1363 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1364 bool secure_origin, 1365 uint32_t total_length, 1366 uint32_t fragment_length, 1367 uint64_t address, 1368 uint32_t page_count, 1369 void *cookie, 1370 void *handle, 1371 uint64_t flags) 1372 { 1373 int ret; 1374 size_t buf_size; 1375 size_t copy_size = 0; 1376 size_t min_desc_size; 1377 size_t out_desc_size = 0; 1378 1379 /* 1380 * Currently we are only accessing fields that are the same in both the 1381 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1382 * here. We only need validate against the appropriate struct size. 1383 */ 1384 struct ffa_mtd *resp; 1385 const struct ffa_mtd *req; 1386 struct spmc_shmem_obj *obj = NULL; 1387 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1388 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1389 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1390 1391 if (!secure_origin) { 1392 WARN("%s: unsupported retrieve req direction.\n", __func__); 1393 return spmc_ffa_error_return(handle, 1394 FFA_ERROR_INVALID_PARAMETER); 1395 } 1396 1397 if (address != 0U || page_count != 0U) { 1398 WARN("%s: custom memory region not supported.\n", __func__); 1399 return spmc_ffa_error_return(handle, 1400 FFA_ERROR_INVALID_PARAMETER); 1401 } 1402 1403 spin_lock(&mbox->lock); 1404 1405 req = mbox->tx_buffer; 1406 resp = mbox->rx_buffer; 1407 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1408 1409 if (mbox->rxtx_page_count == 0U) { 1410 WARN("%s: buffer pair not registered.\n", __func__); 1411 ret = FFA_ERROR_INVALID_PARAMETER; 1412 goto err_unlock_mailbox; 1413 } 1414 1415 if (mbox->state != MAILBOX_STATE_EMPTY) { 1416 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1417 ret = FFA_ERROR_DENIED; 1418 goto err_unlock_mailbox; 1419 } 1420 1421 if (fragment_length != total_length) { 1422 WARN("%s: fragmented retrieve request not supported.\n", 1423 __func__); 1424 ret = FFA_ERROR_INVALID_PARAMETER; 1425 goto err_unlock_mailbox; 1426 } 1427 1428 if (req->emad_count == 0U) { 1429 WARN("%s: unsupported attribute desc count %u.\n", 1430 __func__, obj->desc.emad_count); 1431 ret = FFA_ERROR_INVALID_PARAMETER; 1432 goto err_unlock_mailbox; 1433 } 1434 1435 /* Determine the appropriate minimum descriptor size. */ 1436 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1437 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1438 } else { 1439 min_desc_size = sizeof(struct ffa_mtd); 1440 } 1441 if (total_length < min_desc_size) { 1442 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1443 min_desc_size); 1444 ret = FFA_ERROR_INVALID_PARAMETER; 1445 goto err_unlock_mailbox; 1446 } 1447 1448 spin_lock(&spmc_shmem_obj_state.lock); 1449 1450 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1451 if (obj == NULL) { 1452 ret = FFA_ERROR_INVALID_PARAMETER; 1453 goto err_unlock_all; 1454 } 1455 1456 if (obj->desc_filled != obj->desc_size) { 1457 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1458 __func__, obj->desc_filled, obj->desc_size); 1459 ret = FFA_ERROR_INVALID_PARAMETER; 1460 goto err_unlock_all; 1461 } 1462 1463 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1464 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1465 __func__, req->sender_id, obj->desc.sender_id); 1466 ret = FFA_ERROR_INVALID_PARAMETER; 1467 goto err_unlock_all; 1468 } 1469 1470 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1471 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1472 __func__, req->tag, obj->desc.tag); 1473 ret = FFA_ERROR_INVALID_PARAMETER; 1474 goto err_unlock_all; 1475 } 1476 1477 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1478 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1479 __func__, req->emad_count, obj->desc.emad_count); 1480 ret = FFA_ERROR_INVALID_PARAMETER; 1481 goto err_unlock_all; 1482 } 1483 1484 /* Ensure the NS bit is set to 0 in the request. */ 1485 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1486 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1487 ret = FFA_ERROR_INVALID_PARAMETER; 1488 goto err_unlock_all; 1489 } 1490 1491 if (req->flags != 0U) { 1492 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1493 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1494 /* 1495 * If the retrieve request specifies the memory 1496 * transaction ensure it matches what we expect. 1497 */ 1498 WARN("%s: wrong mem transaction flags %x != %x\n", 1499 __func__, req->flags, obj->desc.flags); 1500 ret = FFA_ERROR_INVALID_PARAMETER; 1501 goto err_unlock_all; 1502 } 1503 1504 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1505 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1506 /* 1507 * Current implementation does not support donate and 1508 * it supports no other flags. 1509 */ 1510 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1511 ret = FFA_ERROR_INVALID_PARAMETER; 1512 goto err_unlock_all; 1513 } 1514 } 1515 1516 /* Validate the caller is a valid participant. */ 1517 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1518 WARN("%s: Invalid endpoint ID (0x%x).\n", 1519 __func__, sp_ctx->sp_id); 1520 ret = FFA_ERROR_INVALID_PARAMETER; 1521 goto err_unlock_all; 1522 } 1523 1524 /* Validate that the provided emad offset and structure is valid.*/ 1525 for (size_t i = 0; i < req->emad_count; i++) { 1526 size_t emad_size; 1527 struct ffa_emad_v1_0 *emad; 1528 1529 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1530 &emad_size); 1531 1532 if ((uintptr_t) emad >= (uintptr_t) 1533 ((uint8_t *) req + total_length)) { 1534 WARN("Invalid emad access.\n"); 1535 ret = FFA_ERROR_INVALID_PARAMETER; 1536 goto err_unlock_all; 1537 } 1538 } 1539 1540 /* 1541 * Validate all the endpoints match in the case of multiple 1542 * borrowers. We don't mandate that the order of the borrowers 1543 * must match in the descriptors therefore check to see if the 1544 * endpoints match in any order. 1545 */ 1546 for (size_t i = 0; i < req->emad_count; i++) { 1547 bool found = false; 1548 size_t emad_size; 1549 struct ffa_emad_v1_0 *emad; 1550 struct ffa_emad_v1_0 *other_emad; 1551 1552 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1553 &emad_size); 1554 1555 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1556 other_emad = spmc_shmem_obj_get_emad( 1557 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1558 &emad_size); 1559 1560 if (req->emad_count && 1561 emad->mapd.endpoint_id == 1562 other_emad->mapd.endpoint_id) { 1563 found = true; 1564 break; 1565 } 1566 } 1567 1568 if (!found) { 1569 WARN("%s: invalid receiver id (0x%x).\n", 1570 __func__, emad->mapd.endpoint_id); 1571 ret = FFA_ERROR_INVALID_PARAMETER; 1572 goto err_unlock_all; 1573 } 1574 } 1575 1576 mbox->state = MAILBOX_STATE_FULL; 1577 1578 if (req->emad_count != 0U) { 1579 obj->in_use++; 1580 } 1581 1582 /* 1583 * If the caller is v1.0 convert the descriptor, otherwise copy 1584 * directly. 1585 */ 1586 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1587 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1588 ©_size, 1589 &out_desc_size); 1590 if (ret != 0U) { 1591 ERROR("%s: Failed to process descriptor.\n", __func__); 1592 goto err_unlock_all; 1593 } 1594 } else { 1595 copy_size = MIN(obj->desc_size, buf_size); 1596 out_desc_size = obj->desc_size; 1597 1598 memcpy(resp, &obj->desc, copy_size); 1599 } 1600 1601 /* Set the NS bit in the response if applicable. */ 1602 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1603 1604 spin_unlock(&spmc_shmem_obj_state.lock); 1605 spin_unlock(&mbox->lock); 1606 1607 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1608 copy_size, 0, 0, 0, 0, 0); 1609 1610 err_unlock_all: 1611 spin_unlock(&spmc_shmem_obj_state.lock); 1612 err_unlock_mailbox: 1613 spin_unlock(&mbox->lock); 1614 return spmc_ffa_error_return(handle, ret); 1615 } 1616 1617 /** 1618 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1619 * @client: Client state. 1620 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1621 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1622 * @fragment_offset: Byte offset in descriptor to resume at. 1623 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1624 * hypervisor. 0 otherwise. 1625 * @smc_handle: Handle passed to smc call. Used to return 1626 * FFA_MEM_FRAG_TX. 1627 * 1628 * Return: @smc_handle on success, error code on failure. 1629 */ 1630 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1631 bool secure_origin, 1632 uint32_t handle_low, 1633 uint32_t handle_high, 1634 uint32_t fragment_offset, 1635 uint32_t sender_id, 1636 void *cookie, 1637 void *handle, 1638 uint64_t flags) 1639 { 1640 int ret; 1641 void *src; 1642 size_t buf_size; 1643 size_t copy_size; 1644 size_t full_copy_size; 1645 uint32_t desc_sender_id; 1646 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1647 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1648 struct spmc_shmem_obj *obj; 1649 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1650 1651 if (!secure_origin) { 1652 WARN("%s: can only be called from swld.\n", 1653 __func__); 1654 return spmc_ffa_error_return(handle, 1655 FFA_ERROR_INVALID_PARAMETER); 1656 } 1657 1658 spin_lock(&spmc_shmem_obj_state.lock); 1659 1660 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1661 if (obj == NULL) { 1662 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1663 __func__, mem_handle); 1664 ret = FFA_ERROR_INVALID_PARAMETER; 1665 goto err_unlock_shmem; 1666 } 1667 1668 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1669 if (sender_id != 0U && sender_id != desc_sender_id) { 1670 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1671 sender_id, desc_sender_id); 1672 ret = FFA_ERROR_INVALID_PARAMETER; 1673 goto err_unlock_shmem; 1674 } 1675 1676 if (fragment_offset >= obj->desc_size) { 1677 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1678 __func__, fragment_offset, obj->desc_size); 1679 ret = FFA_ERROR_INVALID_PARAMETER; 1680 goto err_unlock_shmem; 1681 } 1682 1683 spin_lock(&mbox->lock); 1684 1685 if (mbox->rxtx_page_count == 0U) { 1686 WARN("%s: buffer pair not registered.\n", __func__); 1687 ret = FFA_ERROR_INVALID_PARAMETER; 1688 goto err_unlock_all; 1689 } 1690 1691 if (mbox->state != MAILBOX_STATE_EMPTY) { 1692 WARN("%s: RX Buffer is full!\n", __func__); 1693 ret = FFA_ERROR_DENIED; 1694 goto err_unlock_all; 1695 } 1696 1697 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1698 1699 mbox->state = MAILBOX_STATE_FULL; 1700 1701 /* 1702 * If the caller is v1.0 convert the descriptor, otherwise copy 1703 * directly. 1704 */ 1705 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1706 size_t out_desc_size; 1707 1708 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1709 buf_size, 1710 fragment_offset, 1711 ©_size, 1712 &out_desc_size); 1713 if (ret != 0U) { 1714 ERROR("%s: Failed to process descriptor.\n", __func__); 1715 goto err_unlock_all; 1716 } 1717 } else { 1718 full_copy_size = obj->desc_size - fragment_offset; 1719 copy_size = MIN(full_copy_size, buf_size); 1720 1721 src = &obj->desc; 1722 1723 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1724 } 1725 1726 spin_unlock(&mbox->lock); 1727 spin_unlock(&spmc_shmem_obj_state.lock); 1728 1729 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1730 copy_size, sender_id, 0, 0, 0); 1731 1732 err_unlock_all: 1733 spin_unlock(&mbox->lock); 1734 err_unlock_shmem: 1735 spin_unlock(&spmc_shmem_obj_state.lock); 1736 return spmc_ffa_error_return(handle, ret); 1737 } 1738 1739 /** 1740 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1741 * @client: Client state. 1742 * 1743 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1744 * Used by secure os release previously shared memory to non-secure os. 1745 * 1746 * The handle to release must be in the client's (secure os's) transmit buffer. 1747 * 1748 * Return: 0 on success, error code on failure. 1749 */ 1750 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1751 bool secure_origin, 1752 uint32_t handle_low, 1753 uint32_t handle_high, 1754 uint32_t fragment_offset, 1755 uint32_t sender_id, 1756 void *cookie, 1757 void *handle, 1758 uint64_t flags) 1759 { 1760 int ret; 1761 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1762 struct spmc_shmem_obj *obj; 1763 const struct ffa_mem_relinquish_descriptor *req; 1764 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1765 1766 if (!secure_origin) { 1767 WARN("%s: unsupported relinquish direction.\n", __func__); 1768 return spmc_ffa_error_return(handle, 1769 FFA_ERROR_INVALID_PARAMETER); 1770 } 1771 1772 spin_lock(&mbox->lock); 1773 1774 if (mbox->rxtx_page_count == 0U) { 1775 WARN("%s: buffer pair not registered.\n", __func__); 1776 ret = FFA_ERROR_INVALID_PARAMETER; 1777 goto err_unlock_mailbox; 1778 } 1779 1780 req = mbox->tx_buffer; 1781 1782 if (req->flags != 0U) { 1783 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1784 ret = FFA_ERROR_INVALID_PARAMETER; 1785 goto err_unlock_mailbox; 1786 } 1787 1788 if (req->endpoint_count == 0) { 1789 WARN("%s: endpoint count cannot be 0.\n", __func__); 1790 ret = FFA_ERROR_INVALID_PARAMETER; 1791 goto err_unlock_mailbox; 1792 } 1793 1794 spin_lock(&spmc_shmem_obj_state.lock); 1795 1796 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1797 if (obj == NULL) { 1798 ret = FFA_ERROR_INVALID_PARAMETER; 1799 goto err_unlock_all; 1800 } 1801 1802 /* 1803 * Validate the endpoint ID was populated correctly. We don't currently 1804 * support proxy endpoints so the endpoint count should always be 1. 1805 */ 1806 if (req->endpoint_count != 1U) { 1807 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1808 req->endpoint_count); 1809 ret = FFA_ERROR_INVALID_PARAMETER; 1810 goto err_unlock_all; 1811 } 1812 1813 /* Validate provided endpoint ID matches the partition ID. */ 1814 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1815 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1816 req->endpoint_array[0], sp_ctx->sp_id); 1817 ret = FFA_ERROR_INVALID_PARAMETER; 1818 goto err_unlock_all; 1819 } 1820 1821 /* Validate the caller is a valid participant. */ 1822 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1823 WARN("%s: Invalid endpoint ID (0x%x).\n", 1824 __func__, req->endpoint_array[0]); 1825 ret = FFA_ERROR_INVALID_PARAMETER; 1826 goto err_unlock_all; 1827 } 1828 1829 if (obj->in_use == 0U) { 1830 ret = FFA_ERROR_INVALID_PARAMETER; 1831 goto err_unlock_all; 1832 } 1833 obj->in_use--; 1834 1835 spin_unlock(&spmc_shmem_obj_state.lock); 1836 spin_unlock(&mbox->lock); 1837 1838 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1839 1840 err_unlock_all: 1841 spin_unlock(&spmc_shmem_obj_state.lock); 1842 err_unlock_mailbox: 1843 spin_unlock(&mbox->lock); 1844 return spmc_ffa_error_return(handle, ret); 1845 } 1846 1847 /** 1848 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1849 * @client: Client state. 1850 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1851 * @handle_high: Unique handle of shared memory object to reclaim. 1852 * Bit[63:32]. 1853 * @flags: Unsupported, ignored. 1854 * 1855 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1856 * Used by non-secure os reclaim memory previously shared with secure os. 1857 * 1858 * Return: 0 on success, error code on failure. 1859 */ 1860 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1861 bool secure_origin, 1862 uint32_t handle_low, 1863 uint32_t handle_high, 1864 uint32_t mem_flags, 1865 uint64_t x4, 1866 void *cookie, 1867 void *handle, 1868 uint64_t flags) 1869 { 1870 int ret; 1871 struct spmc_shmem_obj *obj; 1872 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1873 1874 if (secure_origin) { 1875 WARN("%s: unsupported reclaim direction.\n", __func__); 1876 return spmc_ffa_error_return(handle, 1877 FFA_ERROR_INVALID_PARAMETER); 1878 } 1879 1880 if (mem_flags != 0U) { 1881 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1882 return spmc_ffa_error_return(handle, 1883 FFA_ERROR_INVALID_PARAMETER); 1884 } 1885 1886 spin_lock(&spmc_shmem_obj_state.lock); 1887 1888 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1889 if (obj == NULL) { 1890 ret = FFA_ERROR_INVALID_PARAMETER; 1891 goto err_unlock; 1892 } 1893 if (obj->in_use != 0U) { 1894 ret = FFA_ERROR_DENIED; 1895 goto err_unlock; 1896 } 1897 1898 if (obj->desc_filled != obj->desc_size) { 1899 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1900 __func__, obj->desc_filled, obj->desc_size); 1901 ret = FFA_ERROR_INVALID_PARAMETER; 1902 goto err_unlock; 1903 } 1904 1905 /* Allow for platform specific operations to be performed. */ 1906 ret = plat_spmc_shmem_reclaim(&obj->desc); 1907 if (ret != 0) { 1908 goto err_unlock; 1909 } 1910 1911 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1912 spin_unlock(&spmc_shmem_obj_state.lock); 1913 1914 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1915 1916 err_unlock: 1917 spin_unlock(&spmc_shmem_obj_state.lock); 1918 return spmc_ffa_error_return(handle, ret); 1919 } 1920